
1.  Introduction
Fractures are widely existed in subsurface. They dominate the fluid flow in many types of media and have a huge 
impact on many subjects such as environmental engineering, groundwater engineering, geothermal energy and 
etc (Council, 2001; Rouchier et al., 2012; Watanabe et al., 1998). Hydraulic fracturing techniques are frequently 
used to improve the productivity of tight reservoirs to make the production of shale gas and oil possible (Medeiros 
et al., 2007; Roussel & Sharma, 2011). Hence, fractures dominate the geo-mechanical and hydrological behavior 
of many hydrocarbon reservoirs.

A well known and successful method to characterize fractures is the Discrete Fracture Network (DFN) model. 
This technique was proposed in the 1980s and developed afterward with various applications in civil, environ-
mental and reservoir engineering (Berre et al., 2018; Long & Billaux, 1987; Robinson, 1984). DFN models are 
a reconstruction of the geometry of real fracture networks which preserve topology and use regular shapes to 
represent real fractures. The commonly used shapes include rectangular, disc, ellipse etc. The geometry of real 
fractures are simplified as fracture aperture, length and width (rectangular) or major and minor axes (ellipse). 
Generally, geometrical properties of fractures can be obtained on the basis of observations and measurements and 
from techniques such as X-ray micro-Computed Tomography or downhole tools like high resolution resistivity 
logging and borehole radar techniques (Serzu et al., 2004; Wu et al., 2020; Zhou et al., 2018). In addition, some 
researchers introduce roughness models into DFN, such as a joint roughness coefficient and fractal dimension 
models (Crandall et al., 2010; Jing et al., 2017; Lei et al., 2017). The topology of a fracture network is represented 
by the intersection points (in 2D) or intersection lines (or traces) (in 3D) of fractures, which are important for the 
network connectivity and fluid flow properties.

Various approaches have been developed to investigate the fractures' effect on fluid flow properties, for example, 
finite element method (FEM) (Elsworth,  1986; Köppel et  al.,  2019; Schädle et  al.,  2019), boundary element 
method (BEM) (Dershowitz & Fidelibus,  1999), finite volume method (FVM) (Berre et  al.,  2021; Flemisch 
et  al.,  2018), fracture pipe network model (FPNM) (Cacas et  al.,  1990; Dershowitz & Fidelibus,  1999), etc. 
The finite element method imposes a mesh over the individual fractures before solving the fluid field from 
Stoke's equation within fractures. Finite element method need mesh all of the fracture volume and apply denser 
mesh close to the intersection lines between fractures, which would be computationally expensive. The evolving 
non-conforming mesh technique overcomes the problems of conforming mesh. Independent discretizations for the 
fractures and matrix can be generated to achieve high flexibility and avoid the tedious fine-tuning of the conform-
ing mesh (Schädle et al., 2019). While boundary element method overcomes this problem, as it only discretizes 
the fracture external boundary and the intersection lines with other fractures. The fracture pipe network model 
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represents fractures as pipes with equivalent hydraulic conductivity. These three methods can also be combined 
to achieve better functionality. For example, Elsworth (1986) proposed a hybrid boundary element-finite element 
method to analyze fluid flow in DFNs. Dershowitz and Fidelibus (1999) used the boundary element method to 
calculate the equivalent conductance of fracture pipe element and then adopetd the fracture pipe network model 
to calculate the flow properties.

In this research, FPNM is selected for the following three reasons. First, the pipe model is straightforward because 
each fracture is represented by a hydraulically equivalent pipe element. Second, FPNM is easy to implement as it 
does not need a complex mesh process. Third, FPNM is computationally efficient compared to lattice-Boltzmann 
simulations in the predictions of fluid flow properties.

In general, direct numerical simulations (DNS) can be used to compare with fracture pipe network models. 
DNS methods include the direct simulations of fluid flow or computational fluid dynamics to solve the Navier–
Stokes equation. They include the traditional grid-based methods, for example, finite difference method and 
finite element method (Flemisch et al., 2018), as well as particle-based methods, for example, lattice Boltzmann 
method (Latt et al., 2020).

A key issue of FPNM construction is the estimation of the hydraulically equivalent pipe element parameters. We 
reviewed the literature and found most researchers used a common method to generate fracture pipe networks. We 
call this the centroid and intersection line method (CIM) (e.g., Guo et al., 2018; Jing et al., 2020; Ren et al., 2016; 
Tsang & Tsang, 1987, and others). However, the common formulation of CIM/FPNM results in large deviations 
in computed fluid flow properties when applied to complex interconnected DFNs. This will be discussed in later 
sections. This paper contains a number of proposals to circumvent this problem and improve the accuracy and 
versatility of current fracture pipe network models.

The structure of this paper is below. In Section 2, we firstly introduce the general procedures to construct a 
FPNM. Then, the procedures to calculate permeability by the FPNM are provided. A numerical method is intro-
duced to compare with the FPNM. In Section 3, the commonly used FPNM model is discussed through a simple 
DFN and a complex DFN test case. Two parameters are introduced to quantify the complexity of the DFN struc-
ture. Then, the four general modifications to the current FPNM formulation are elaborated to improve the FPNM 
model when applied to complex DFNs. In Section 4 presents two benchmarking DFN scenarios and two realistic 
fractured samples to compare and justify the improved FPNM with a lattice Boltzmann method. And then, the 
improved fracture pipe network model is discussed in terms of its application scope and limitations. In Section 5 
summarizes our conclusions.

2.  Methodology
In this section, the general procedures to build a fracture pipe network from a DFN is first introduced. Then, the 
fluid flow model is presented that is, the flow equations, initial conditions, boundary conditions and solution 
method. Finally, we demonstrate the four improvements to our new fracture pipe network model.

2.1.  Construction of Fracture Pipe Network

The centroid and intersection line method (CIM) of constructing a FPNM is described as follows. Figure 1 shows 
an illustration of a simple fracture pipe network, where fractures are represented as ellipses. The intersection 
between fracture planes is called an intersection line or trace. A pipe element is built between the centroid point 
of each fracture and the midpoint of the intersection line, as shown in Figure 1. Each pipe is further divided into 
two node elements connected by one bond element, for example, in fracture F2. The reason for this is that the 
intersection between fractures locally enlarges the flow path, while the flow in the middle part of fractures is not 
affected. The research of Sarkar et al. (2004) shows that fluid flow aligns with the fracture orientation, regardless 
of the direction of the global pressure gradient. This effect can only be applied on the boundary of fractures, 
namely, the node elements. This will be discussed further below.

From the fluid flow point, each pipe represents a seepage subdomain of fluid flow. As shown in Figure 1, the 
subdomain represents the part of fracture from its centroid to the intersection line. The next step is to convert each 
subdomain into an equivalent rectangular domain so that an analytical fluid flow solution can be applied directly. 
The most common approach is to use the well known “cubic law” which is the analytical solution of Stoke's 
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Equation 1 and the mass balance Equation 2 for incompressible laminar flow between infinite parallel planes with 
a no-slip boundary condition (Witherspoon et al., 1980):

𝜇𝜇∇2𝑢𝑢 − ∇𝑃𝑃 = 0� (1)

𝜌𝜌∇𝑢𝑢 = 0� (2)

where μ is the dynamic viscosity, 𝐴𝐴 𝐴𝐴𝐴 is the fluid velocity, P is the pressure and ρ is the fluid density.

In this research, we focus on the pore scale laminar flow. The Reynolds number is defined as:

Re =
𝜌𝜌𝜌𝜌𝜌𝜌𝜌

𝜇𝜇
� (3)

where b is the fracture aperture. It is the characteristic pore length in rock fracture system as used by many 
researchers. The Reynolds number values reported in the literature for the nonlinear flow in rough fractures are 
less than 20 (Quinn et al., 2020).

Guo et al. (2018) derived the equations for the equivalent rectangular element for disc like fracture, which will 
be referred as Guo's model in the later sections. They first proposed an equation to calculate the length of the 
centroid node:

𝑙𝑙𝑐𝑐 =
2𝐷𝐷

𝑁𝑁𝑖𝑖

⋅

𝑙𝑙𝑖𝑖

𝑙𝑙𝑖𝑖
� (4)

where D is the diameter of the disc shaped fracture, Ni is number of intersection lines on the fracture, li is the 
intersection line length and 𝐴𝐴 𝑙𝑙𝑖𝑖 is the average length of all intersection lines on the fracture.

The equivalent rectangular fracture parameters can be obtained by applying Darcy's law for each seepage subdo-
main, where two seepage domains produce the same flow rate under the same boundary conditions. The equiva-
lent width of the rectangle is:

𝑤𝑤𝑒𝑒𝑒𝑒 =
𝑙𝑙𝑐𝑐 − 𝑙𝑙𝑖𝑖

ln (𝑙𝑙𝑐𝑐∕𝑙𝑙𝑖𝑖)
� (5)

Hence, the conductance for each fracture pipe is obtained from the cubic law:

𝑔𝑔𝑓𝑓 = 𝑤𝑤𝑒𝑒𝑒𝑒 ⋅
𝑏𝑏3

12𝜇𝜇
� (6)

where b is the fracture aperture.

Figure 1.  Illustration of a simple Discrete Fracture Networks with three ellipse shape fractures, the centroid points, intersection lines, fracture pipe elements, and 
seepage subdomain (the shaded zone) which is transformed into equivalent rectangular seepage subdomain and then represented by the fracture pipe elements. gf is the 
hydraulic conductance of the equivalent rectangular fracture. b, weq, l are the fracture aperture, equivalent width and length.
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By applying the above equations, the parameters of each pipe element can be calculated and the fracture pipe 
network is consequently constructed.

2.2.  Calculation of Fluid Flow Properties

Fluid flow can be simulated directly in the fracture pipe network. This section introduces the assumptions used in 
the fluid flow simulation. Single phase incompressible laminar flow is considered and an analytical solution of 
the Stoke's equation is incorporated via the pipe conductances as discussed above.

A constant pressure boundary condition is applied to the model inlet and outlet, and the other faces of the model 
are assumed no-flow boundaries. Fluid pressures are defined at the center of the node elements and pressure drop 
occurs across bonds between the connected nodes. The flow rate Qij between two nodes is given by:

𝑄𝑄𝑖𝑖𝑖𝑖 =
𝑔𝑔𝑖𝑖𝑖𝑖

𝐿𝐿𝑖𝑖𝑖𝑖

(𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑗𝑗)� (7)

where gij is the harmonic mean conductance between two node elements i, j and a bond element k given by:

𝑔𝑔𝑖𝑖𝑖𝑖 =
𝐿𝐿𝑖𝑖𝑖𝑖

𝐿𝐿𝑖𝑖

𝑔𝑔𝑖𝑖
+

𝐿𝐿𝑗𝑗

𝑔𝑔𝑗𝑗
+

𝐿𝐿𝑘𝑘

𝑔𝑔𝑘𝑘

� (8)

Mass conservation is imposed for each node element i:

𝑁𝑁𝑖𝑖
∑

𝑗𝑗

𝑄𝑄𝑖𝑖𝑖𝑖 = 0� (9)

where j runs over all the bond elements connecting to the node element i. Combining Equations 7 and 9, a linear 
set of equations can be defined and solved for the node pressures. The number of equations and the number of 
unknowns is equal to the number of node elements. The linear equations are solved using the algebraic solver in 
OpenCV (Bradski, 2000).

With the pressure known at the center of each node element, the total flow rate Qt is found by calculating the aver-
age flow rate along the inlet and outlet, and the absolute permeability k of the network is found from Darcy's law:

𝑘𝑘 =
𝑄𝑄𝑡𝑡𝜇𝜇𝜇𝜇

𝐴𝐴Δ𝑃𝑃
� (10)

2.3.  Reference Numerical Method

Lattice Boltzmann Method (LBM) is used to benchmark the fracture pipe network model. LBM simulations 
were performed in Palabos, an open-source computational fluid dynamics (CFD) solver based on the C++ (Latt 
et al., 2020). The permeability was determined from LBM simulations of steady state single-phase flow.

It can be shown that the LBM is equivalent to the solution of the N–S equation assuming that density variations 
and the Mach number are small (Chen & Doolen, 1998). Hence the theoretical framework of LBM means it can 
predict accurate simulation results for single phase laminar flow. However, LBM is a numerical method, indi-
cating that simulation results by LBM also have numerical errors. Pan et al. (2006) did systematic quantitative 
comparisons of the numerical accuracy and convergence rate of the LBM when modeling fluid flow in sphere 
packs. Results show that permeabilities simulated by LBM are dependent on the image spatial resolution and the 
choice of the relaxation parameters. The smaller the pore size or the coarser the grid is, the larger the errors are. 
But for most cases of pore scale fluid flow simulations, LBM can still serve as a reasonable reference numerical 
method to benchmark other methods.

The following parameters were used for the LBM simulations in this study. The D3Q19 discrete velocity scheme 
and the multiple-relaxation-time models (MRT) were used. The initial conditions are zero fluid velocity and a 
constant pressure gradient in the principal flow direction. Bounce-back boundary conditions are applied at the 
solid walls and constant pressures are applied at the inlet and outlet. The pressure difference is set as 0.0001 in 
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lattice unit. The typical value of collision operator omega 1.0 is used and kinematic viscosity is 0.16667. In all 
cases the simulation converged to a steady state in less than 10,000 iterations.

3.  The Improved FPNM
This section introduces the improved fracture pipe network model. We firstly analyze the problems of the 
commonly used FPNM through a simple DFN and a complex DFN test case. Then, we introduce the four specific 
improvements made on the current FPNM formulation to improve its performance when applied to complex 
DFNs.

3.1.  Benchmarking of the Traditional FPNM

To investigate Guo's model, two different DFNs are constructed, as shown in Figure 2. The model size is 100 3 
voxels and the image resolution is 1 μm/voxel. The permeabilities are calculated both from the FPNM and directly 
from the 3D voxel volume using a lattice Boltzmann Method (LBM) (Latt et al., 2020).

Guo's model assumes fracture are disc shape, while these two models use rectangular fractures. Therefore, the 
diameter used in Equation 4 for the centroid node length, becomes:

𝐷𝐷 =

√

4𝐴𝐴

𝜋𝜋
� (11)

where A is the area of the rectangular fracture, that is, the product of fracture width and length.

The permeabilities calculated from FPNM using Guo's equations and the LBM simulations are shown in Table 1. 
The percentage deviation is calculated from:

deviation =
𝑘𝑘FPNM − 𝑘𝑘LBM

𝑘𝑘LBM

× 100%� (12)

It is clear that Guo's model predicts accurate permeabilities for model 1 but has large deviations for model 2. The 
difference between these two network lies in the complexity of fracture intersections. To quantify the complexity 
of DFN structures, we propose two complexity indicators.

The first indicator is the average intersection line number:

Figure 2.  The two Discrete Fracture Networks test cases used to validate Guo's model. Model 1 has 5 regular fracture and model 2 has 8 oriented fractures. The model 
size is 100 3 voxels, and image resolution is 1 μm/voxel.
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𝑁𝑁𝑖𝑖𝑖𝑖 =

∑

𝑁𝑁𝑖𝑖𝑖𝑖

2𝑁𝑁𝑓𝑓

� (13)

The second indicator is the average intersection point number:

𝑁𝑁𝑖𝑖𝑖𝑖 =

∑

𝑁𝑁𝑖𝑖𝑖𝑖

2𝑁𝑁𝑓𝑓

� (14)

where il stands for the intersection lines and ip is the intersection points for a fracture, Nf is the total number of 
fractures. Note that counting the intersection lines number includes the six bounding surfaces, and divided by 2 
is because each intersection is shared by two fractures.

The average intersection line number for these two model are 3.8 and 6.0 respectively, and the average intersec-
tion point number for the two models are 0 and 6.13. In general, the larger these two parameters are, the more 
complex the DFN is. It shows that DFN test Case 2 has more complex structure than model 1. And Guo's model 
has large deviations for a complex DFN. To improve the performance and versatility of the FPNM, we propose 
four modifications from different perspectives.

3.2.  Improvements Made on the New FPNM

Before introducing the improvements to the FPNM, the examples of DFN scenarios studied in this section should 
be introduced. The second example of DFN scenario in the previous section is separated into six sub-models in 
order of increasing complexity of DFN structures. Figure 3 displays the six sub models and Table 2 shows their 
complexity indicators.

Guo's model is applied on these six DFN scenarios to compute the permeabilities and the results are shown in 
Table 3. The average deviation is calculated for the X, Y and Z directions and plotted in Figure 4 for all models. 
Results show that Guo's model has large discrepancies with LBM and the deviations increase with increased 
complexity indicator of DFNs.

3.2.1.  First Improvement: Centroid Node Length

From Figure 4, we can see that the permeability from Guo's model is smaller than the LBM permeability. The 
main reason is that the conductance assigned to the fracture pipe elements is too small, which is furthermore 
related to the equivalent width and centroid node length.

For simple DFN, the number of fracture intersections is small and does not have a large effect on the length 
calculation. But for complex DFN, the number of intersection lines Ni increases dramatically, which decreases 
centroid node length and equivalent width, and thus the permeabilities are decreased significantly. The fact that 
permeability deviations for the six sub DFN scenarios increase with increased complexity indicators also reflects 
this trend. Therefore, the first improvement we made to Guo's fracture pipe network model is a modification of 
the centroid node length. The Ni is removed from the denominator shown in Equation 4 for the reason above, and 
the modified formula of centroid node length is:

Model name

kx (mD) ky (mD) kz (mD)

FPNM LBM FPNM LBM FPNM LBM

Model 1 862.73 893.27 128.73 135.68 223.93 223.88

Deviation (%) −3.42 – −5.12 – 0.02 –

Model 2 4952.05 8378.33 3322.0 6543.52 5215.94 9309.14

Deviation (%) −40.89 – −49.23 – −43.97 –

Table 1 
Permeabilities Calculated From Fracture Pipe Network Model and LBM Respectively for the Two Discrete Fracture 
Networks Test Cases
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𝑙𝑙𝑐𝑐 =

√

4𝐴𝐴

𝜋𝜋
⋅

𝑙𝑙𝑖𝑖

𝑙𝑙𝑖𝑖
� (15)

The first improvement is applied on the FPNM and the average deviation with LBM results are calculated and 
shown in Figure 4. The simulated permeabilities of the network and deviations data can be found in Table S1. It 
is clear that the results are improved. The average deviation for all six models is calculated, which is reduced from 
−35% to −18%, with around 17% improvement.

In addition, Figure  5 shows a comparison between the equivalent width and diameter for fractures in DFN 
scenario sub6. We can see the equivalent width of fractures calculated by our model is larger than Guo's model. 
DFN scenario sub6 only has 8 fractures, but its average intersection line number is 6.0 as shown in Table 2. This 
will significantly reduce the centroid node length calculated for the DFN scenario sub6 as well the equivalent 
width, therefore, the calculated permeability will be lower than the LBM. From Figure 5, we can conclude that 
the equivalent rectangular seepage subdomain should have consistent equivalent width and consistent fracture 
diameter so that the flow pattern of the original seepage subdomain can be represented.

3.2.2.  Second Improvement: Boundary Node Length

As shown in Figure 6, the boundary nodes constructed for the pipe network 
are half spheres while the inner nodes are whole spheres, and pressure is 
defined on the node center. These two kind of nodes are handled using the 
same strategy, that is, boundary nodes are treated as whole spheres, so there 
is extra pressure loss on boundary nodes. This issue can be solved easily by 

Figure 3.  Illustration of the six sub Discrete Fracture Networks scenarios.

sub1 sub2 sub3 sub4 sub5 sub6

𝐴𝐴 𝑁𝑁𝑖𝑖𝑖𝑖 5.0 5.25 5.8 5.67 5.86 6.0

𝐴𝐴 𝑁𝑁𝑖𝑖𝑖𝑖 1.0 0.75 3.0 5.0 6.0 6.13

Table 2 
Complexity Indicators for the Six Sub Discrete Fracture Networks Scenarios



Water Resources Research

WANG ET AL.

10.1029/2020WR029450

8 of 15

still keep the boundary nodes as whole spheres, while reducing the connected bond length by the boundary node 
radius, that is, 𝐴𝐴 𝐴𝐴𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑙𝑙𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑟𝑟𝑛𝑛 , where the lb is the bond length and rn is the boundary node radius.

By applying the second improvement, the average deviation with LBM results are calculated and shown in 
Figure 4. The average deviation for all six models is reduced from −18% to −7%, with around 11% improvement.

3.2.3.  Third Improvement: Node Cross-Sectional Area

When two fractures intersect, their intersection area will be greater than the original cross-sectional area within 
either fracture. This is another reason why pipe network permeabilities are lower than LBM results. We propose 
the dihedral angle θ between two intersecting fractures to calculate the node area, which is defined as the the 
angle between the normal vector of the two fractures and can be calculated from:

𝜃𝜃 = arccos

(

| ⃖⃖⃖⃖⃗𝑛𝑛𝑓𝑓1 ⋅ ⃖⃖⃖⃖⃗𝑛𝑛𝑓𝑓2|

| ⃖⃖⃖⃖⃗𝑛𝑛𝑓𝑓1| ⋅ | ⃖⃖⃖⃖⃗𝑛𝑛𝑓𝑓2|

)

� (16)

Model name

kx (mD) ky (mD) kz (mD)

FPNM LBM FPNM LBM FPNM LBM

sub1 3933.88 4854.66 3542.11 4459.88 6413.53 7244.41

Deviation (%) −18.97 – −20.58 – −11.47 –

sub2 5237.03 6152.01 3416.78 4911.36 6348.34 8176.29

Deviation (%) −14.87 – −30.43 – −22.36 –

sub3 4729.33 7122.32 3355.46 5741.8 5384.77 8443.32

Deviation (%) −33.60 – −41.56 – −36.22 –

sub4 4290.75 7343.8 3106.05 5956.25 4957.27 8632.74

Deviation (%) −41.57 – −47.85 – −42.58 –

sub5 4542.01 7743.75 3120.47 6192.96 5007.89 9020.16

Deviation (%) −41.35 – −49.61 – −44.48 –

sub6 4952.05 8378.33 3322.0 6543.52 5215.94 9309.14

Deviation (%) −40.89 – −49.23 – −43.97 –

Table 3 
Permeabilities Calculated From Fracture Pipe Network Model and LBM Respectively for the Six Sub Discrete Fracture 
Networks Scenarios

Figure 4.  Average deviation of permeabilities for the six sub Discrete Fracture Networks scenarios calculated by Fracture 
Pipe Network Model and compared to LBM results.
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In Guo's model the cross-sectional area of a node is simply calculated as: 
A = b1 ⋅ b2, but in our model the cross-sectional area is A = (b1 ⋅ b2)/sin(θ). 
Because conductance is generally scaled with square area g ∼ A 2, the updated 
conductance is:

𝑔𝑔 ∼
1

(sin(𝜃𝜃))2
� (17)

After applying this third improvement on all sub DFN scenarios, the average 
deviation with LBM results were calculated and shown in Figure 4. The aver-
age deviation for all six models is reduced from −7% to −5.6%, with around 
1.4% improvement.

This improvement is slight, because the enlarged intersection area is only 
applied to node elements and not bond elements. The study of Sarkar 
et al. (2004) shows that fluid flow aligns with the fracture orientation, regard-
less of the direction of the pressure gradient. Therefore, the cross-sectional 
area of the middle part of the fracture (where the bond element is constructed 
from) should not be modified.

3.2.4.  Fourth Improvement: Merge Nodes and Bonds

The fourth improvement is pertaining to the network construction process itself. Because of the complexity of 
fracture intersections, some nodes and bonds overlap or even locate at the same position, which affects the pipe 
network structure and fluid flow simulations. Therefore, we apply post processing to the pipe network to selec-
tively merge nodes and bonds to make sure the network topology is correct. This step is automated in our own 
software codes using C++.

As shown in Figure 7, there are some special cases when node or bond elements should be merged. The first 
case (Figure 7a) is when two fracture centroid points overlap and the two centroid nodes locate close, that is, the 
distance between two centroids is less than half of the fracture aperture, which would create a problem of bond 
construction and the network topology would be incorrect. The solution for this case is to only leave one node 
which would not affect the fluid flow simulation but can ensure the correct topology of the fracture pipe network.

Figure 5.  Comparison between equivalent width and diameter for Discrete 
Fracture Networks scenario sub6, where equivalent width is calculated from 
our model and Guo's model separately, and diameter is calculated from 
Equation 11.

Figure 6.  (a) The Discrete Fracture Networks scenario sub1 and (b) its corresponding pipe network, where blue spheres represent nodes and red cylinders are bonds, 
the number above spheres are the nodes index.
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The second case (Figure 7b) is when the middle points of two intersection lines overlap. Bonds constructed from 
fracture F1 to fracture F2 and F3 will cause repetition, so one bond needs to be deleted.

For the third case (Figure 7c), fracture 1 centroid is overlapped with the middle point of the intersection line. 
According to the pipe network construction process, there would be a bond between each centroid and intersection 
line. Therefore, this case will create a bond connected from a node to itself, so this redundancy needs to be deleted.

The fourth case (Figure 7d) is quite special. Fracture 1 and 2 centroid points overlap and their intersection lines 
with fracture 3 also overlap. When constructing a bond from fracture 1 and 2 to fracture 3 (between point A to 
B), the bonds are repeated, but they cannot be deleted because they are from different fractures. These two bonds 
should be merged using the superposition principle on the conductance, that is, add their conductance and assign 
to the bond.

The node and bond post processing was applied to all DFN scenarios and the average permeability deviation 
with LBM results were calculated and shown in Figure 4. The average deviation for all six models is reduced 
from −5.6% to −4.5%, with around 1.1% improvement. Although this improvement is slight, the post processing 
procedure is essential to achive the correct topology of the pipe network.

4.  Results and Discussions: Benchmarking With Idealized and Realistic Scenarios
In this section, we justify the improved FPNM model by two benchmarking scenarios with complex connected 
fractures, which are stochastically constructed by an open source code. Then, the improved FPNM is applied on 
two realistic fractured carbonate samples. Finally, the improved FPNM is discussed in terms of the pros and cons.

4.1.  Benchmarking Cases

Alghalandis  (2017); Alghalandis  (2018) developed an open source code (ADFNE) to generate and analyze 
discrete fracture networks. The code (version 1.5) was used to generate synthetic DFNs to validate our modi-
fications to the fracture pipe network model. Two benchmarking DFN examples were constructed as shown in 
Figure 8.

The testing case S1 has 74 fractures and case S2 has 157 fractures. A square fracture shape is used and the fracture 
side length follows an exponential distribution. The length ranges from 0.2 to 0.8 unit length (which is later scaled 
to 20 to 80 microns) with the mean value of the exponential distribution as 0.3. All fracture apertures are set as 5 
microns for case S1 and 7 microns for S2. Connectivity analysis was then applied to remove isolated fractures and 
to make sure the DFN is fully percolating for the purposes of fluid flow simulation. The DFNs shown in Figure 8 

Figure 7.  Illustration of the special cases when nodes and bonds should be merged.
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are fully percolating in all 3 directions. In addition, the average intersection line number for these two model are 
3.81 and 5.79 respectively, and the average intersection point number for the two models are 3.62 and 15.75. It is 
clear both of them are complex interconnected DFNs.

To start, the angle of fracture orientation distribution for the two DFNs are analyzed and the results are plotted 
in Figure 9. The angle is defined between the fracture normal vector and the X, Y, Z axes. If the angle is 90°, it 
means the fracture is parallel to the axis. If the angle is 0°, then the fracture is perpendicular to the axis. Analysis 
of the angle frequency distributions for the two benchmarking models show that the angles peak in 80° to 100° 
with X and Y axes, while the angles are close to uniformly distributed for Z axis for both models. This means that 
fractures are generally aligned closer to the X and Y axes.

Then, FPNMs are extracted from these two DFNs and the four improvements above were applied. Figure 10 (b) 
shows the extracted fracture pipe network. The permeabilities are calculated from both the pipe network model 
and LBM. For comparison, Guo's pipe network model was applied to compute the permeabilities from the same 
DNFs. Results are reported in Table 4. The permeabilities calculated by the improved fracture pipe network 
model show excellent agreement with LBM while Guo's model has large discrepancies.

In addition, on a personal laptop (Intel Core i7 CPU, 32 GB RAM), the computation time for the fracture pipe 
network model (a couple of seconds) is much faster than that of the corresponding LBM solution (average is 
500 s). It can be seen that the four improvements proposed in this study significantly improve the performance of 
fracture pipe network models, and particularly for complex connected discrete fracture networks.

Figure 8.  Two benchmarking Discrete Fracture Networks examples generated by ADFNE open source code.

Figure 9.  The angle frequency distribution for the two benchmarking Discrete Fracture Networks examples, which is defined between the fracture normal vector and 
the X, Y, Z axes.
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4.2.  Real-World Case Study

Two fractured samples are used to demonstrate the applicability of the improved FPNM model. The micro-CT 
images of these samples are from a carbonate rock reservoir. The reservoir formation rock is tight and the orig-
inal matrix porosity is enhanced by micro-fractrues and small scale faults networks. The representative discrete 
fracture networks are extracted with idealized fracture geometric and topological properties by hand using the 

ImageJ (Fiji) (Schindelin et al., 2012). Figure 11 shows the micro-CT images 
and the equivalent DFNs, where the case R1 has two intersecting fractures 
and case R2 has four fractures. For the permeability calculation, the small 
isolated fractures are removed from the fracture network.

Similarly, the Guo's model and the improved FPNM model are applied on 
the two DFN test cases. Table 5 shows the permeability results that are calcu-
lated from the DFNs and FPNMs. We can see that for most of the cases, 
the improved FPNM can predict more accurate permeability results than the 
Guo's model when compared to the results of LBM.

However, permeability deviations in real-world cases are larger than the 
benchmarking cases. The deviations involved usually come from several 
aspects. On the one hand, they are from the assumptions made in the model. 
In the current work, cubic law is adopted as the analytical solution to model 
the fluid flow in fractures. This may result in deviations when simulating the 
fluid flow in a real-world fracture system. On the other hand, the deviations 
may come from the simulation of LBM. The accuracy of LBM simulation 
depends on the number of lattices used in the model. The fewer the simula-
tion lattices it has, the larger errors it would result in. For example, real-world 

Figure 10.  (a) Two benchmarking Discrete Fracture Networks cases, S1 has 74 fractures and S2 has 157 fractures. The size of both models is 100 3 voxels and the 
image resolution is 1 μm/voxel. (b) The corresponding fracture pipe networks, where blue spheres are nodes and red cylinders are bonds. (c) The velocity profile along 
X direction simulated by LBM.

Model name Method name kx (mD) ky (mD) kz (mD)

Model 1 DFN (LBM) 238.98 184.27 182.197

FPNM (ours) 216.74 168.22 161.71

Deviation with DFN (%) −9.31 −8.71 −11.24

FPNM (Guo's) 95.19 75.27 64.17

Deviation with DFN (%) −60.17 −59.15 −64.78

Model 2 DFN (LBM) 4842.34 5951.23 3455.11

FPNM (ours) 4598.78 5594.29 3165.57

Deviation with DFN (%) −5.03 −7.51 −8.38

FPNM (Guo's) 1651.81 2049.86 1139.63

Deviation with DFN (%) −65.89 −65.56 −67.02

Table 4 
Permeabilities (unit: millidarcy (mD)) for the Two Benchmarking Discrete 
Fracture Networks Examples Calculated From Fracture Pipe Network 
Model and LBM Respectively
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case R2 has four fractures, while the minimum aperture size is only 4 voxels 
compared to the model size of 600 voxels. In this case, LBM could result in 
simulation errors.

4.3.  Discussions on the Model

The essence of the fracture pipe network model is to divide fractures into 
flow subdomains and transform them into equivalent pipes. The flow in ideal 
DFNs, where fractures have regular shape and constant aperture, is identical 
for each subdomain. Therefore, the flow in the fracture can be well repre-
sented by pipe elements. In the improved FPNM, we consider the single-
phase steady-state laminar flow rather than the turbulent flow, so that linear 
flow equations between the flow rate and pressure difference can be obtained.

The identification and extraction of fractures directly from micro-CT images 
and transformation to DFNs are challenging. This paper focuses on the fluid 
flow in DFNs principally. The improvements made on the new FPNM model 
are concentrating on the conductance assignment and the topology of the 
fracture networks, which are important to the fluid flow.

The DFN test cases used in this paper are ideal and regular fractures which 
do not include the fracture aperture variations and the roughness. Also, the 

Figure 11.  The micro-CT images of the realistic fractured samples R1 and R2 (a and b) and the corresponding equivalent Discrete Fracture Networks (c). The image 
size for R1 and R2 is 300 3 and 600 3 voxels respectively. Image resolution is 13 μm/voxel for both samples.

Model name Method name kx (D) ky (D) kz (D)

Case R1 DFN (LBM) 71.32 49.20 2.00

FPNM (ours) 80.78 59.19 1.69

Deviation with DFN (%) 13.27 20.31 −15.50

FPNM (Guo's) 86.04 62.70 2.42

Deviation with DFN (%) 20.64 27.45 21.00

Case R2 DFN (LBM) 39.46 0.00 55.68

FPNM (ours) 44.78 0.00 45.61

Deviation with DFN (%) 13.48 – −18.08

FPNM (Guo's) 54.32 0.00 59.22

Deviation with DFN (%) 37.66 – 6.36

Note. It should be noted that the fractures are not percolated in the Y direction 
for the case R2, and that's why ky = 0.

Table 5 
Permeabilities (unit: darcy (D)) for the Two Fractured Samples That Are 
Calculated From the Discrete Fracture Networks (DFN) and the Fracture 
Pipe Network Model (FPNM), Where the DFN Results Are Simulated by 
the LBM and FPNM Results Are Computed by the Model Proposed in This 
Paper
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model only considers fully opened fractures, however, natural fractures are not always fully open as the precipi-
tation of minerals inside fractures could seal and close fractures.

Currently, the model can only be applied to fractures without the pore matrix. The inclusion of the pore matrix in 
the FPNM is an important topic and we have developed a new model to consider both discrete fractures and pore 
matrix. This work will be presented in an upcoming paper.

5.  Conclusions
In this research, we have shown that fracture pipe network models can be used to represent and calculate fluid 
flow properties of fracture networks. The fracture pipe network model constructed by Guo's method produces 
good results only for simple connected DFNs but results in large permeability errors when applied to complex 
DFNs.

Two simple indicators are proposed to quantify the complexity of DFN structures. In general, the larger the DFN 
complexity indicator, the more complex the DFN structure is.

Four modifications are proposed to improve the performance and versatility of fracture pipe network models. Two 
benchmarking examples are presented and the results show the new FPNM modifications significantly improve 
the accuracy of computed permeability in complex DFNs.

In addition, a real-world case study is performed. Two fractured carbonate samples are utilized to demonstrate 
that the improved FPNM model can be of use for the real-world applications.

Fracture pipe network models are straightforward to be built, and they require substantially less computational 
cost to simulate fluid flow compared with direct numerical simulations such as LBM. It is concluded that fracture 
pipe network modeling has significant potential to expand the scope and utility of practical DFN applications.

In further research, we plan to extend this work to investigate fracture/matrix flow by coupling FPNM with pore 
network modeling (Scott et al., 2019; Wang et al., 2020). The inclusion of the fracture roughness model will also 
be considered.

Data Availability Statement
For the data availability, the data that support the findings of this research are available in Mendeley data repos-
itory (Wang, 2020). All of the parameters of the DFNs (the coordinates, the aperture of the DFNs) used are 
available in http://dx.doi.org/10.17632/c8r645tj9v.2.
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