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Abstract

We investigate a nonlinear inverted pendulum impacting between two rigid walls under
external periodic excitation. Based on KAM theory, we prove that there are three regions
(corresponding to different energies) occupied by quasi-periodic solutions in phase space
when the periodic excitation is small. Moreover, the rotational quasi-periodic motion is
maintained when the perturbation gets larger. The existence of subharmonic periodic
solutions is obtained by the Aubry-Mather theory and the boundedness of all solutions
is followed by the fact that there exist abundant invariant tori near infinity. To study
the homoclinic bifurcation of this system, we present a numerical method to compute the
discontinuous invariant manifolds accurately, which provides a useful tool for the study of
invariant manifolds under the effect of impacts.

Keywords: KAM theory, quasi-periodic solution, impact system, computation of
discontinuous invariant manifold

1. Introduction

The mathematical pendulum is one of the most studied classical nonlinear oscillators,
which has very rich and intricate dynamics. Different dynamical systems’ theories have
been applied to the excited mathematical pendulum, such as KAM theory [15], Melnikov
method [9, 10], variational method [19], and so on. See the comprehensive survey [19] and
references therein for additional results on the forced pendulum.

In recent years, since non-smooth systems have attracted wide attention, the impact
inverted pendulum has been studied by many authors. The impact inverted pendulum
was simplified to a linear oscillator in [7] and the bifurcations of subharmonic periodic
solutions were studied. The simplified system was also investigated in [25] by modifying
the classical Melnikov method to show the existence of chaos. And the results in [25] were
generalised by Du and Zhang [10] for more general nonlinear oscillators that have similar
phase portraits as the impact inverted pendulum. See, e.g., [9, 11, 12, 26] for recent studies
of piecewise smooth systems with homoclinic orbits.
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Most of the known results are related to the applications of Melnikov method in impact
systems and the bifurcations of periodic solutions. However, to the best of our knowledge,
there is still no result on the existence of quasi-periodic solutions and the dynamics for the
high energy case. This work aims to fill this gap. Since the dynamical system investigated
in this work is non-smooth, the KAM theory cannot be applied directly. We thus introduce
two settings to study this system. The exchange of the role of space and time allows us to
smooth the dynamics of the system so that the KAM theory can be applied when some
derivative estimates hold. More precisely, under suitable smoothness assumption for the
perturbation, the dynamics of three regions of phase space, the first two corresponding to
low energy and the last one corresponding to high energy, is reduced to twist maps. So the
Moser’s twist theorems imply the existence invariant curves, i.e., invariant tori in phase
space. In addition, the existence of invariant curves near infinity implies that all solutions
are bounded. Between two invariant curves, we use the method in [23, Section 5] to obtain a
monotone twist map that preserves the boundaries. The existence of subharmonic periodic
solutions is then obtained by the Aubry-Mather theory [3, 20].

The dynamics in the neighbourhood of unperturbed homoclinic orbit is very compli-
cated. By the work in [10], the intersection of perturbed stable manifold and unstable
manifold for such non-smooth system can be detected by the Melnikov method. We do
not attempt to touch upon it in here. Instead, in this work, we modify the method for the
computation of invariant manifolds for smooth systems [13, 17] to accommodate systems
under the effect of impacts. Since the perturbed invariant manifolds are discontinuous,
the traditional method is not applicable. Our modified parametric method provides an
accurate and intuitive way to address homoclinic bifurcations in systems with impacts. As
such, the tangency of unstable manifold and the impact surface can be detected directly
since the unstable manifold is trapped in the neighbourhood of grazing point. In addition,
we also discuss the symmetry of stable and unstable manifolds when a specific form of the
system is given.

The remaining of this paper is organised as follows. In Section 2, we introduce the
model and the main theoretical result of this paper. In Section 3, two settings of impact
systems are presented to simplify the dynamics. The dynamics in the three regions are
formally reduced to the near integrable ones in Section 4, and the necessary estimates,
which are required by KAM theory, are presented in Appendix A. In Section 5, we verify
the mathematical result by numerical simulation, and we also study the homoclinic bifur-
cation by the numerical method developed in Appendix B. The symmetry of perturbed
stable and unstable manifolds is discussed when a specific form of the perturbation is
assumed. Moreover, the tangency of the unstable manifold and the impact surface is i-
dentified since the unstable manifold is trapped in the neighbourhood of the grazing point
when the perturbation is large. In Section 6, we present the conclusion and remarks.

2. The inverted pendulum with two rigid walls

We consider the following equation that describes the inverted pendulum presented in
Figure 1:

ẋ =y,

ẏ =
g

l
sinx− Vx(x, t),

(2.1)

where (x, y) ∈ [−ξ, ξ] × R and 0 < ξ < π/2, g is the gravity constant, l is the length of
the rod, V : [−ξ, ξ] × S1 (S1 = R/Z) is a Cr (r ≥ 5) function. We assume the impact
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Figure 1: The mechanical model of the inverted pendulum between two rigid walls.

is elastic, i.e., y → −y when |x| = ξ. Without loss of generality, we take g/l = 1 in the
remaining of the paper.

The Hamiltonian of system (2.1) is

H(y, x, t) =
1

2
y2 + cosx+ V (x, t).

For the unperturbed system (V (x, t) = 0), the structure of the level set {(x, y) : 1
2y

2 +
cosx = h} is clear, see Figure 2. We define the following regions,

Figure 2: Phase portrait of (2.1) with V=0.

I := {(x, y) : cos ξ < h < 1 and x < 0},
II := {(x, y) : cos ξ < h < 1 and x > 0},

}
→ low energy

III := {(x, y) : h > 1} → high energy,
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see Figure 2. Note that the dynamics of regions I and II are similar to a nonlinear oscillator
with one-side impacts, and the region III is similar to the well-known Fermi-Ulam model
[4, 5, 28].

Usually, one takes the impact surfaces as the sections to obtain the first return maps.
The following theorem is the main theoretical result of this paper.

Theorem 2.1. (i) There exists constant ϵ0 > 0 such that for any ϵ ∈ [0, ϵ0] the first
return map of the surface

{(x, y, t) : x = −ξ, y ∈ [
√

2h0 − 2 cos ξ +O(ϵ),
√

2h1 − 2 cos ξ +O(ϵ)]}

has invariant curves with positive measure if

| ∂k+l

∂xk∂tl
V | ≤ ϵ ≤ ϵ0 (2.2)

on [−ξ, ξ] × S1 for all 0 ≤ k + l ≤ 5, where [h0, h1] ⊂ (cos ξ, 1) is a nonempty
interval, k, l are nonnegative integers. Moreover, the constant ϵ0 does only depend
on ξ, h0, h1, and the measure of invariant curves tends to the measure of the set

S1 × [
√

2h0 − 2 cos ξ +O(ϵ),
√

2h1 − 2 cos ξ +O(ϵ)]

as ϵ tends to zero. The results also hold (even the constant ϵ0 will not change) for
the surface

{(x, y, t) : x = ξ, y ∈ [
√

2h0 − 2 cos ξ +O(ϵ),
√

2h1 − 2 cos ξ +O(ϵ)]}.

(ii) There exists constant ϵ1 > 0 such that the first return map of the surface

{(x, y, t) : x = ξ, y ∈ [−4ξ

ϵ
+O(ϵ),−2ξ

ϵ
+O(ϵ)]}

has invariant curves for any ϵ ∈ (0, ϵ1). In particular, all solutions are bounded for
all time, i.e.,

sup
t∈R

(|x(t)|+ |y(t)|) < ∞.

3. The equivalent form of impact systems and a non-smooth action-angle co-
ordinate

Before getting into the technical details, we first introduce two settings to simplify
the impact systems as done in this work. The first setting allows us to treat the impact
systems as having a non-smooth Hamiltonian function [28, 29], and the second setting is
to carry out a non-smooth action-angle coordinate change that reduces the dynamics to a
near integrable one.

3.1. The equivalent form of impact systems

Consider the following system {
ẋ = y,

ẏ = −wx(x, t),
(3.1)
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where (x, y) ∈ [0,∞)× R, w : R2 → R is a C2 function. Suppose that there exists a rigid
wall at x = 0 and the impact is elastic, i.e., y → −y when x = 0. The equivalent form of
such system is described by the following equations:{

ẋ = y,

ẏ = −wx(x, t),
x > 0, (∗)

{
ẋ = y,

ẏ = wx(−x, t),
x < 0 (∗∗) (3.2)

In fact, if
(x(t, t0, x0, y0), y(t, t0, x0, y0))

is the solution of (∗) when the initial conditions are x(t0) = x0 ≥ 0, y(t0) = y0, where
t ∈ [t0, t1] and x(t, t0, x0, y0) ≥ 0 for t ∈ [t0, t1], then

(−x(t, t0, x0, y0),−y(t, t0, x0, y0))

is the solution of (∗∗) with initial conditions x(t0) = −x0 ≤ 0, y(t0) = −y0. Let a solution
of (3.1) be

{(x(1)(t), y(1)(t)), (x(2)(t), y(2)(t)), ..., (x(n)(t), y(n)(t)), ...},

where for any i, t ∈ [ti, ti+1], (x
(i)(t), y(i)(t)) is the solution of (3.1), and the following

conditions hold

x(i)(ti) = x(i)(ti+1) = 0, y(i)(ti+1) = −y(i+1)(ti+1), x
(i)(t) > 0 when t ∈ (ti, ti+1).

By the analysis above,

{(x(1)(t), y(1)(t)), (−x(2)(t),−y(2)(t)), (x(3)(t), y(3)(t)), (−x(4)(t),−y(4)(t)), ...},

is a solution of (3.2). See Figure 3 for an intuitive illustration.

(a) An orbit of (3.1) (b) The corresponding orbit of (3.2)

Figure 3: The equivalence of (3.1) and (3.2)

Finally, note that the equivalent system (3.2) is corresponding to a Hamiltonian system
with the non-smooth Hamiltonian

K(y, x, t) =
1

2
y2 + w(|x|, t).
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Remark 1. If the system (3.1) has two rigid walls, for example x = 0 and x = 2ξ, the
trajectories of the system with Hamiltonian K(y, x, t) from x = −2ξ to x = 2ξ correspond
to the trajectories of the impact system from x = 2ξ to x = 0 and then from x = 0 to
x = 2ξ, see Figure 4. Therefore, if we take the section {(x, y, t) : x = 2ξ, y < 0} to study
the system (3.1), then we can establish the Poincaré map equivalently by taking the map of
Hamiltonian system K(y, x, t) from {(x, y, t) : x = −2ξ, y > 0} to {(x, y, t) : x = 2ξ, y >
0}. We will use this fact in studying the region III, where the trajectories will collide with
both x = −ξ and x = ξ when the initial energy is large.

Figure 4: Level set of H.

3.2. A non-smooth action-angle coordinate

We consider the non-smooth action-angle coordinate (see [2]) in region I. The case of
region II can be obtained by reflecting the orbit about x = 0. After moving the wall from
x = −ξ to x = 0, we study the equivalent unperturbed system with Hamiltonian

H(y, x) =
1

2
y2 + cos(|x| − ξ).

The structure of the level set {(x, y) : 1
2y

2 +cos(|x| − ξ) = h and |x| < ξ} for h ∈ (cos ξ, 1)
is presented in Figure 5. In this Subsection, we assume h ∈ (cos ξ, 1) and |x| < ξ.

Let

I(h) = 4
√
2

∫ arccosh+ξ

0

√
h− cos(x− ξ)dx.

Observe that I(h) is the area of the domain surrounded by the level set {(x, y) : 1
2y

2 +
cos(|x| − ξ) = h and |x| < ξ}. It turns out that I(h) is smooth and I ′(h) > 0 for
h ∈ (cos ξ, 1), see Lemma A.1. Hence, we can reverse it and denote the inverse by h(I).
Let

D = {(x, y) : 1
2
y2 + cos(|x| − ξ) = h, |x| < ξ, cos ξ < h < 1}. (3.3)

We shall now define a symplectic transformation Φ : (I, θ) 7→ (x, y), where I ∈ (0, I(1)), θ ∈
S1, (x, y) ∈ D.

In the domain of x ≥ 0, let the generating function be defined by

S(y, I) =

∫ √
2(h(I)−cos ξ)

y
x(I, s)ds,
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Figure 5: Level set of H and the definitions of generating functions S and S̃

where y ∈ [−
√

2(h(I)− cos ξ),
√
2(h(I)− cos ξ)] and x(I, y) satisfies h(I) = 1

2y
2+cos(x(I, y)−

ξ), i.e.,

x(I, y) = − arccos(h(I)− 1

2
y2) + ξ.

The area of the shadowed region in the upper right of Figure 5 is the value of S(y0, I0).
The map Φ in this domain is defined by

x = −Sy(y, I), θ = SI(y, I). (3.4)

Since
∂2S

∂I∂y
= − h′(I)√

1− (h(I)− 1
2y

2)
< 0 (3.5)

for y ∈ [−
√

2(h(I)− cos ξ),
√

2(h(I)− cos ξ)], we can determine y(I, θ) from second for-
mula of (3.4) and then x(I, θ) is defined by the first formula of (3.4). It turns out that
both x(I, θ) and y(I, θ) are C∞ functions since S(y, I) is a C∞ function for x ≥ 0. Note
that θ ∈ [0, 1/2] when x ≥ 0. In fact, by definitions of S and θ, we have

θ(
√

2(h(I)− cos ξ), I) =
∂

∂I
S(

√
2(h(I)− cos ξ), I) = 0,

θ(−
√

2(h(I)− cos ξ), I) =
∂

∂I
S(−

√
2(h(I)− cos ξ), I) =

∂

∂I
(
1

2
I) =

1

2
.

Since y ∈ [−
√

2(h(I)− cos ξ),
√

2(h(I)− cos ξ)], then θ ∈ [0, 1/2] is followed by the fact
∂θ/∂y = ∂2S/∂I∂y < 0.

Similarly, in the domain of x ≤ 0, let

S̃(y, I) =
1

2
I +

∫ −
√

2(h−cos ξ)

y
x̃(s, I)ds,

where y ∈ [−
√

2(h(I)− cos ξ),
√

2(h(I)− cos ξ)],

x̃(I, y) = arccos(h(I)− 1

2
y2)− ξ.
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The map Φ in this domain is defined by

x = −S̃y(y, I), θ = S̃I(y, I). (3.6)

Since
∂S̃2

∂I∂y
=

h′(I)√
1− (h(I)− 1

2y
2)

> 0 (3.7)

for y ∈ [−
√

2(h(I)− cos ξ),
√

2(h(I)− cos ξ)], we can determine y(I, θ) from the second
formula of (3.6) and then x(I, θ) is defined by the first formula of (3.6). Therefore, the
map Φ is well defined. We can similarly show that θ ∈ [1/2, 1] when x ≤ 0.

If (x, y) rotates along the level curve clockwise and return to itself, then the generation
function increases by I and θ increases by 1. Hence θ ∈ S1. To see the non-smoothness of
Φ in θ ∈ {0, 12}, for example, by (3.4) and (3.6) we have

∂y

∂θ
=

1

SIy
for x ≥ 0,

∂y

∂θ
=

1

S̃Iy

for x ≤ 0. (3.8)

Note that when x → 0+ and y →
√

2(h− cos ξ), we have θ → 0+; when x → 0− and
y →

√
2(h− cos ξ), we have θ → 1−, i.e., θ → 0−. The formulas (3.5) and (3.7) yield

lim
θ→0+

∂y

∂θ
(I, θ) = −

√
1− cos ξ

h′(I)
̸= lim

θ→0−

∂y

∂θ
(I, θ) =

√
1− cos ξ

h′(I)
.

Therefore, the transformation Φ is non-smooth at θ = 0. The case of θ = 1
2 is similar.

For convenience, we summarise the above discussion as following:

Proposition 3.1. The non-smooth coordinate change Φ : (I, θ) → (x, y) is a C∞ map for
I ∈ (0, I(1)) and θ ∈ [0, 12 ] or θ ∈ [12 , 1]. In particular, x(I, θ) is Cr (r ≥ 1)bounded for
(I, θ) ∈ [I(h0), I(h1)] and θ ∈ [0, 12 ], where [h0, h1] ⊂ (cos ξ, 1).

4. The establishment of twist maps in the regions I,III and applications of
twist map theorems

In this Section, we choose suitable sections so that the Poincaré maps of these sections
in regions I and III are near integrable twist maps. Moser’s twist theorems imply the
existence invariant tori in the phase space. The produces in here are formal, and the
necessary estimates are presented in Appendix A.

4.1. The quasi-periodic motions in regions I and II

We first consider the one-side impact motion when V is small. Since the cases in the
regions I and II are similar, we only study the former one.

Usually, we can take the Poincaré map with the impact section {(x, y, t) : x = −ξ, y >
0} to study the dynamics in the region I. Ignoring the constant coordinate x = −ξ, the
Poincaré map can be decomposed into:

(y0, t0)
(i)−→ (−y1, t1)

(ii)−−→ (y1, t1), (4.1)

where y0, y1 > 0, the map (i) is the action of the flow of (2.1), the map (ii) is the impact
map. The key to establish the twist map is the estimate of t1 − t0. If we use the action-
angle coordinate in region I, θ increases from 0 to 1/2 when (y0, t0) arrives at (−y1, t1).
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Hence, if we can choose θ as the new time, then the time that the map (i) spends will be
a constant. Choosing energy and time as variants, the Poincaré map (4.1) becomes

(H0, t0)
(i)−→ (H1, t1)

(ii)−−→ (H1, t1),

where Hi = H(yi,−ξ, ti), the map (ii) becomes into identity map since the impact does
not change the energy. In the following, when V is small, we will obtain a Hamiltonian
system such that (H, t, θ) is the momentum, position, and time respectively. Therefore,
the Poincaré map (4.1) is a time-12 -map.

Recall that the Hamiltonian of the inverted pendulum is

H(y, x, t) =
1

2
y2 + cosx+ V (x, t).

Moving the wall x = −ξ to x = 0, we study the equivalent system with Hamiltonian

H(y, x, t) =
1

2
y2 + cos(|x| − ξ) + V (|x| − ξ, t), (4.2)

see Section 3.1 for the equivalence. Using the non-smooth action-angle coordinate (I, θ)
in Section 3.2, the Hamiltonian H in region I is

H(I, θ, t) = h(I) + V (|x(I, θ)| − ξ, t). (4.3)

Since we only consider the case of θ ∈ [0, 1/2], i.e., x ≥ 0, we can remove the absolute value
in (4.3). Following Arnold [1], Levi [16], and Zharnitsky [28, 29], we exchange the roles
of position and time (resp. Hamiltonian and momentum). More specifically, since the
integral curves of the Hamiltonian systems are invariantly associated with the differential
form

Idθ −Hdt = −(Hdt− Idθ),

we can choose (I,H, t, θ) as a new Hamiltonian, momentum, position, and time, respec-
tively. Since V is small and h′(I) > 0, we can get the formal formula of I by (4.3) and the
Implicit Function Theorem

I(H, t, θ) = I(H) + I1(H, t, θ),

where I(·) is the inverse of h(·), see Section 3.2. The corresponding equations are

dt

dθ
= I ′(H) +

∂I1
∂H

(H, t, θ),

dH

dθ
= −∂I1

∂t
(H, t, θ).

(4.4)

Integrating (4.4) from θ = 0 to θ = 1
2 , we obtain the Poincaré map

t1 = t0 +
1

2
I ′(H0) +N1(t0,H0),

H1 = H0 +N2(t0, H0).
(4.5)

We claim that there exist positive constants ϵ0 and a such that for any ϵ ∈ [0, ϵ0] the
following estimates

I ′′(H) ≥ a > 0 and | ∂k+l

∂Hk∂tl
Ni(H, t)| ≤ Cϵ (4.6)
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hold on (H, t) ∈ [h0, h1]× S1 for all 0 ≤ k + l ≤ 4, i = 1, 2, if

| ∂k+l

∂xk∂tl
V | ≤ ϵ ≤ ϵ0

holds on (x, t) ∈ [−ξ, ξ] × S1 for all 0 ≤ k + l ≤ 5, where C is a constant independent of
ϵ, [h0, h1] ⊂ (cos ξ, 1) is a nonempty interval and a only depends on h0 and h1.

Note that the intersection property, in which a homotopic nontrivial circle in [h0, h1]×
S1 has nonempty intersection with its image, holds since we choose the time section of a
Hamiltonian flow, see [28, Section 8] or [8, Lemma 4]. Hence, the map (4.5) satisfies the
conditions of Moser’s twist theorem [21] (see [24] for the C4 version), which implies that
there exist lots of invariant curves.

To show Theorem 2.1 (i) holds, we still have to back to the Poincaré map of the section
{(x, y, t) : x = −ξ, y > 0} (we have moved x = 0 back to x = −ξ). By (4.2) and (4.5), the
Poincaré map is

(t,
1

2
y2 + cos ξ +O(ϵ)) → (t+

1

2
I ′(h(y,−ξ) +O(ϵ)) +O(ϵ),

1

2
y2 + cos ξ +O(ϵ)),

where y2/2 + cos ξ +O(ϵ) ∈ [h0, h1], h(y, x) = y2/2 + cos(x). Since y > 0, the above map
in coordinate (t, y) is

t1 = t0 +
1

2
I ′(h(y0,−ξ)) +O(ϵ),

y1 = y0 +O(ϵ),

where (t0, y0) ∈ S1 × [
√
2h0 − 2 cos ξ + O(ϵ),

√
2h1 − 2 cos ξ + O(ϵ)]. Then Moser’s twist

theorem [24] yields Theorem 2.1 (i).

4.2. The quasi-periodic motions on regions III: the large energy case

We consider the motions that have impacts both with x = −ξ and x = ξ, i.e., the
initial energy is large. The case in here is similar in Section 3.1. After moving the wall
from x = −ξ to x = 0, the positions of the walls are x = 0 and x = 2ξ. By Section 3.1
and Remark 1, We consider the Hamiltonian system

H(y, x, t) =
1

2
y2 + cos(|x| − ξ) + V (|x| − ξ, t)

on R × [−2ξ, 2ξ] × S1. In the high energy region, we can use position x as time and the
map from {(x, y, t) : x = −2ξ, y > 0} to {(x, y, t) : x = 2ξ, y > 0} can be obtained by
integrating a near integrable Hamiltonian system formally. By Remark 1, this map is the
Poicaré map of system (2.1) with the section {(x, y, t) : x = 2ξ, y < 0}.

By the invariance of integral curves of Hamiltonian systems with the differential form

ϵ(ydx−Hdt) = ϵydx− ϵ2Hd
t

ϵ
,

we can choose (ϵ2H, ϵy, x, tϵ) = (F, p, q, T ) as a new Hamiltonian, momentum, position, and
time, respectively. See [28, 29] for similar coordinate transformations for billiard system
and Fermi-Ulam model. Note that, e.g., p ∈ [1, 2] is corresponding to y ∈ [1ϵ ,

2
ϵ ], i.e., the

energy is large. We have

F (p, q, T ) =
1

2
p2 + ϵ2(cos(|q| − ξ) + V (|q| − ξ, ϵT )). (4.7)
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We can still choose the position as the new time to eliminate the implicit arrival time at
the impact surfaces. More specifically, since

ϵ(pdq − FdT ) = −(FdϵT − ϵpdq),

we can choose (ϵp, F, ϵT, q) = (M,P,Q, s) as a new Hamiltonian, momentum, position,
and time, respectively. By (4.7), we have

p =
√
2F + ϵ2G(F, |q|, ϵT ).

Hence, we have
M(P,Q, s) = ϵ

√
2P + ϵ3G(P,Q, |s|).

The corresponding Hamiltonian equation is

dQ

ds
=

ϵ√
2P

+ ϵ3
∂G

∂P
,

dP

ds
= −ϵ3

∂G

∂Q
.

(4.8)

Let 4ξ√
2P

= P̄ . Then equation (4.8) in coordinate (P̄ , Q) becomes

dQ

ds
=

ϵP̄

4ξ
+ ϵ3G1(P̄ , Q, |s|),

dP̄

ds
= ϵ3G2(P̄ , Q, |s|),

(4.9)

where

G1(P̄ , Q, |s|) = ∂G

∂P
(
8ξ2

P̄ 2
, Q, |s|), G2(P̄ , Q, |s|) = P̄ 3

16ξ2
∂G

∂Q
(
8ξ2

P̄ 2
, Q, |s|).

Integrating (4.9) from s = −2ξ to s = 2ξ, we obtain the Poincaré map

Q1 = Q0 + ϵP̄ + ϵ3R1(Q0, P̄0, ϵ),

P̄1 = P̄0 + ϵ3R2(Q0, P̄0, ϵ).
(4.10)

We assert that there exists constant ϵ1 > 0 such that for any ϵ ∈ (0, ϵ1) the following
estimate

ϵ3| ∂k+l

∂Qk∂P̄ l
Ri(Q, P̄ , ϵ)| ≤ ϵ1+ν (4.11)

holds on (P̄ , Q) ∈ [1, 2] × S1 for all 0 ≤ k + l ≤ 4, i = 1, 2, where ν > 0 is a constant
independent of ϵ.

Hence, the map (4.10) satisfies the conditions of Moser’s small twist theorem [24].
Again, the intersection property holds for the time section map for (4.8), then it holds for
(4.10) since these maps are conjugate.

By retracing the transformations, the return map of the surface {(x, y, t) : x = ξ, y <
0}, which has the following form

t1 = t0 −
4ξ

y0
+O(ϵ2),

y1 = y0 +O(ϵ2)

for (y0, t0) ∈ [−4ξ
ϵ + O(ϵ),−2ξ

ϵ + O(ϵ)] × S1, possesses lots of invariant curves when ϵ ∈
(0, ϵ1), which yields Theorem 2.1 (ii).
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Remark 2. Using energy (see (4.2)) and time as variants, we have shown that the
Poincaré map with section {(x, y, t) : x = ξ, y < 0} has abundant invariant curves in

Uϵ := [
4ξ2

ϵ2
+O(1),

16ξ2

ϵ2
+O(1)]× S1.

Take a sequence {ϵi}i∈N such that ϵi → 0 as i → ∞ and Uϵi ∩ Uϵj = ∅ for i ̸= j. Since
Uϵi can near ∞× S1 arbitrarily as i → ∞, there exist invariant curves in the region with
arbitrary high energy, which provide barriers for any solution of system (2.1).

Remark 3. Both the map (4.5) and the map obtained by integrating equation (4.8) satisfy
the monotone twist condition, then we can use the method in [23, Section 5] between two
invariant curves to obtain a standard monotone twist map which preserves the boundaries.
Therefore, the existence of Aubry-Mather sets, including Birkhoff (p, q) periodic orbits,
generalised quasi-periodic solution for any irrational number contained in rotational inter-
val, and homoclinic,heteroclinic connections between periodic orbits is directly followed by
the Aubry-Mather theory [3, 20].

Conclusively, the Theorem 2.1 is followed by the Moser’s twist theorem and small twist
theorem as long as the estimates (4.6) and (4.11) hold. The proof of (4.6) and (4.11) is
contained in Appendix A.

5. The global dynamics of the inverted pendulum via numerical methods

In this Section, we give numerical evidence of Theorem 2.1, and we also show the
perturbed unstable and stable manifolds via the revised parametric method in Appendix
B. In such a manner, the global dynamics of the inverted pendulum can be understood in
an intuitive way.

Without loss of generality, we assume V (x, t) is π-periodic and let V (x, t) = ϵx cos(2t)
in this Section, where ϵ is a constant. Fixed ξ = π/4. When ϵ is small, there exists lots
of quasi-periodic solutions in regions I, II and III by Theorem 2.1. Let ϵ = 0.1. Figure
6, Figure 7, and Figure 8 show the Poincaré maps that have {(x, y, t) : x = −ξ, y > 0},
{(x, y, t) : x = ξ, y < 0}, and the time t = 0 (mod π) as Poincaré sections, respectively,
where different colours denote different initial conditions in these figures. It can be seen
that the numerical simulations are validated by Theorem 2.1.

When ϵ gets large, the invariant tori in regions I and II break up. However, in the
region for |y| large enough, the dynamics is still near integrable. For example, let ϵ = 0.8,
Figure 9 shows the Poincaré map that has {(x, y, t) : x = −ξ, y > 0} as a section. It
can be seen that there is chaotic behaviour when y is small while the invariant curves are
abundant for the larger energy.

To study the dynamics in the neighbourhood of unperturbed homoclinic orbit, we use
the method in Appendix B to compute the perturbed invariant manifold.

Let ϵ = 0.1. Let ϕ be the time-π-map from t = 0 to t = π. First we use the shooting
method to obtain the fixed point of ϕ perturbed from (0, 0):

(x∗, y∗) = (0.02000020577986, 0).

The saddle type π-periodic solution is shown in Figure 10. The eigenvalues and the
corresponding eigenvectors of the matrix Dϕ((x∗, y∗)) are:

λ1 = 23.1370608417321, v1 = (0.707127994451262, 0.7070855672854144),

12



Figure 6: Poincaré maps with section
{(x, y, t) : x = −ξ, y > 0} when ϵ = 0.1.

Figure 7: Poincaré maps with section
{(x, y, t) : x = ξ, y < 0} when ϵ = 0.1.

Figure 8: Poincaré maps with section
t = 0 (mod π) when ϵ = 0.1.

Figure 9: Poincaré maps with section
{(x, y, t) : x = −ξ, y > 0} when ϵ = 0.8.

Figure 10: The saddle type periodic solution perturbed from (0, 0).
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λ2 = 0.043220709991704, v2 = (−0.707127991753206, 0.707085569983632).

We apply the procedures (1)-(5) specified in the Appendix B iteratively, for ϕ and
for a line segment that has 0.01 length and the same direction as v1. We choose 100
points uniformly in this segment. Let δ1 = 10−6 , δ2 = 0.005, and m = 10 (see (2)-(4)
in Appendix B). After 4-times iterations, we show the parametric curves, i.e., a branch
of the unstable manifold, for all steps in Figure 11. Some magnifications of Figure 11 are
shown in Figure 12. The intersections of the unstable manifold with the impact surfaces
are well localised, see (a) in Figure 12.

Similarly, we can compute another branch of the unstable manifold and the stable
manifold. Figure 13 shows the complicated intersections of stable and unstable manifolds,
and magnifications of Figure 13 are shown in Figure 14.

When the perturbation is small, the stable and unstable manifolds are symmetric about
y = 0. In fact, one can verify that

(φ1(0,−t, x0,−y0),−φ2(0,−t, x0,−y0)) = (φ1(0, t, x0, y0), φ2(0, t, x0, y0))

since V (x, t) = ϵ cos(2t), where (φ1(0, t, x0, y0), φ2(0, t, x0, y0)) is the solution of (2.1) with
initial conditions x(0) = x0, y0 = y0. Since the impacts are elastic, the symmetry is not
destroyed. In particular, we have

(ϕ1(x, y),−ϕ2(x, y)) = ϕ−1(x,−y),

where ϕi is a component of ϕ. Let R(x, y) = (x,−y). Then the above identify can be
represented by

R ◦ ϕ = ϕ−1 ◦ R.

It follows that if A is a invariant set of ϕ, then R(A) is also ϕ-invariant. In particular, we
have

ϕ−1(x∗,−y∗) = (x∗,−y∗).

Since the fixed point (x∗, y∗) is unique in the neighbourhood of (0, 0) when the perturbation
is small, we must have y∗ = 0. If (x, y) lies on the stable manifold, i.e.,

ϕn(x, y) → (x∗, 0) as n → ∞,

then
(ϕn

1 (x, y),−ϕn
2 (x, y)) → (x∗, 0) as n → ∞,

where ϕn
i is a component of ϕn. Therefore,

ϕ−n(x,−y) → (x∗, 0) as n → ∞,

i.e., (x,−y) lies on the unstable manifold. Hence, the stable manifold and unstable mani-
fold are symmetric about y = 0. Figure 13, Figures 14 (b) and (d) verify this fact.

Conclusively, when the perturbation is small, the dynamics of the impact inverted
pendulum can be divided into four parts: the quasi-periodic solutions in regions I and
II, the quasi-periodic solutions in region III, the complicated homoclinic orbits, and the
chaotic orbits between these invariant sets. The first two parts can be analysed by KAM
theory and Aubry-Mather theory, see Section 4 and the Figure 8. The perturbed invariant
manifolds can be computed using the method in this paper (see Appendix B and the Figure
13) or be analysed by using the classical Menilkov method [10]. For the chaotic orbits

14



between these invariant sets, to the best of our knowledge, the Smale-Birkhoff theorem
[27, Theorem III.17] can be used to depict such stochastic orbits.

For ϵ = 0.8, it can be seen from Figure 9 that there are chaotic dynamics in the
low energy region. A branch of the unstable manifold, shown in Figure 15, prevents the
existence of quasi-periodic solutions in regions I and II. Moreover, the unstable manifold
is trapped in the neighbourhood of (ξ, 0), and the folds near (ξ, 0) (Figure 16) are quite
convoluted. It is anticipated that there exists tangency between the unstable manifold
and the impact surface {(x, y, t) : x = ξ}.

Figure 11: A branch of unstable manifold.

6. Concluding remarks

In this work, we prove the existence of invariant tori for an impact inverted pendulum
both in low and high energy via KAM theory. The homoclinic bifurcation is discussed by
a new numerical method, which provides tools for the computation of the discontinuous
invariant manifold in impact systems. When the perturbation gets large, there exists
tangency between the unstable manifold and the impact surface. In such case, the folds
of the invariant manifold is very complicated in the neighbourhood of the tangent point.
There are theories [6, 22] discussing about the case of tangency between the stable manifold
and the unstable manifold. However, to the best of our knowledge, the case of tangency
between the invariant manifold and the impact surface is still open. There is numerical
evidence in this work that the invariant manifold may be trapped in the neighbourhood
of the grazing point.

Appendix A: Estimate of the main remainders

In this Section, we prove the main estimates (4.6) and (4.11). We restate it in here for
convenience.
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(a) (b)

(c) (d)

Figure 12: Magnifications of a branch of the unstable manifold.
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Figure 13: The stable manifold (blue) and the unstable manifold (red).

Proposition A.1. (i) There exists positive constants ϵ0, a such that for any ϵ ∈ [0, ϵ0]
the following estimates

|I ′′(H)| ≥ a > 0 and | ∂k+l

∂Hk∂tl
Ni(H, t)| ≤ Cϵ

hold on (H, t) ∈ [h0, h1]× S1 for all 0 ≤ k + l ≤ 4, i = 1, 2, if

| ∂k+l

∂xk∂tl
V | ≤ ϵ ≤ ϵ0 (A.1)

on (x, t) ∈ [−ξ, ξ]×S1 for all 0 ≤ k+ l ≤ 5, where C is a constant independent of ϵ.

(ii) There exists constant ϵ1 > 0 such that for any ϵ ∈ (0, ϵ1) the following estimate

ϵ3| ∂k+l

∂Qk∂P̄ l
Ri(Q, P̄ , ϵ)| ≤ ϵ1+ν

holds on (P̄ , Q) ∈ [1, 2]×S1 for all 0 ≤ k+ l ≤ 4, i = 1, 2, where ν > 0 is a constant
independent of ϵ.

Lemma A.1. With the notations in Section 3.2, I(h) is C∞ and I ′(h) > 0, I ′′(h) > 0 on
h ∈ [h0, h1] for any interval [h0, h1] ⊂ (cos ξ, 1).

Proof. Note that

I ′(h) = 2
√
2

∫ arccosh−ξ

0

dx√
h− cos(x− ξ)

= T (h),

where T (h) is the period of closed orbit with energy h for h ∈ (cos ξ, 1). We first derive
the expression of the period of the pendulum.
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(a) (b)

(c) (d)

Figure 14: Magnifications of the intersections of stable and unstable manifolds.
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Figure 15: A branch of the unstable manifold for ϵ = 0.8.

Figure 16: The Magnification of Figure 15.
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Consider the Hamiltonian of classical pendulum

H(y, x) =
1

2
− cosx.

We consider the energy level h ∈ (0, 1), i.e., the oscillatory case. Let the lagrest angle of
the pendulum be θ0, i.e., −h = cos θ0. Set

sin
x

2
= sin

θ0
2
sinφ. (A.2)

If the integral interval is x ∈ [0, θ0], then φ ∈ [0, π2 ]. Hence, we have

dy

dt
= − sinx = −2 sin

x

2
cos

x

2
= −2 sin

θ0
2
sinφ

√
1− sin2

θ0
2
sin2 φ.

Because of

y =
√

2(h+ cosx)

=
√

2(− cos θ0 + cosx)

=
√
2

√
−(1− 2 sin2

θ0
2
) + (1− 2 sin2

θ0
2
sin2 φ)

=2 sin
θ0
2
cosφ,

we have

dy = −2 sin
θ0
2
sinφdφ.

Hence,

−
2 sin θ0

2 sinφdφ

dt
= −2 sin

θ0
2
sinφ

√
1− sin2

θ0
2
sin2 φ.

The period is

4

∫ π
2

0

dφ√
1− sin2 θ0

2 sin2 φ
, (A.3)

where θ0 = arccos−h.
After moving the wall from x = 0 to x = π − ξ, by (A.2) and (A.3) we have

I ′(h) = T (h) = 2
√
2

∫ arccosh−ξ

0

dx√
h− cos(x− ξ)

= 4

∫ π
2

K(h)

dφ√
1− sin2(arccos−h

2 ) sin2 φ
, (A.4)

where K(h) satisfies

sin
π − ξ

2
= sin

arccos−h

2
sinK(h),

so,

K(h) = arcsin
cos ξ

2

sin arccos−h
2

.

20



Since the denominator in (A.4) does not vanish for any h ∈ [h0, h1] ⊂ (cos ξ, 1), it is clear
that I ′(h) is C∞. By direct computation, we have

I ′′(h) = T ′(h) = 4

∫ π
2

K(h)

dφ

(1− sin2 arccos−h
2 sin2 φ)3/2

− 4
K ′(h)√
1− cos2 ξ

2

, (A.5)

where

K ′(h) = −
cos ξ

2 cos
arccos−h

2

2
√
1− h2

√
sin4 arccos−h

2 − sin2 arccos−h
2 cos2 ξ

2

.

It follows that I ′′(h) > 0 for h ∈ (cos ξ, 1) and I ′′(h) → ∞ as h → 1 or h → cos ξ.

We call a function to be differentiable in a closed set if it is differentiable in an open set
that contains the closed set. The proof of the following Lemma is followed by the Implicit
Function Theorem.

Lemma A.2. Let y = f(x) + f1(x,w, z), where f : [x0, x1] → R such that f ′(x) ≥ δ on
[x0, x1], f1 : [x0, x1]×K is a Cr function, where K ⊂ R2 is compact set and r ≥ 1. Then
there exists ϵ0 > 0 such that the inverse of x has the following form

x = f−1(y) + g1(y, w, z),

and

| ∂k+l+m

∂yk∂wl∂zm
g1| ≤ c2ϵ

for all k+ l+m ≤ r and (y, w, z) ∈ [f(x0) +O(ϵ), f(x1) +O(ϵ)]×K and c2 is a constant
only dependent on δ, if

| ∂k+l+m

∂yk∂wl∂zm
f1| ≤ c1ϵ

holds for for all k + l +m ≤ r and (x,w, z) ∈ [x0, x1]×K.

Proof of Proposition A.1. : By Lemma A.1, for H ∈ [h0, h1] ⊂ (cos ξ, 1) we have
I ′′(H) ≥ a > 0. Let I0 = h−1(h0) = I(h0) and h1 = h−1(h1) = I(h1). We first take an
interval [I0 − δ, I1 + δ] such that [h(I0 − δ), h(I1 + δ)] ⊂ (cos ξ, 1) for δ > 0. Since we only
consider the motion in θ ∈ [0, 12 ], i.e., x ≥ 0, (4.3) has the form

H(I, θ, t) = h(I) + V (x(I, θ)− ξ, t).

Since x(I, θ) is Cr bounded on [I0 − δ, I1 + δ]× [0, 12 ], by (A.1) we have

| ∂k+l+m

∂Ik∂θl∂tm
V (x(I, θ)− ξ, t)| ≤ Cϵ

on (I, θ, t) ∈ [I0 − δ, I1 + δ]× [0, 12 ]× S1 for all k + l +m ≤ 5. By Lemma A.2, we have

| ∂k+l+m

∂Hk∂tl∂θm
I1(H, t, θ)| ≤ C1ϵ

on (H, t, θ) ∈ [h(I0 − δ) +O(ϵ), h(I1 + δ) +O(ϵ)]× S1 × [0, 12 ] for all k + l+m ≤ 5. Since
h(I) is a strictly increasing function, we can take ϵ0 sufficiently small such that

[h(I0), h(I1)] ⊂ [h(I0 − δ) +O(ϵ), h(I1 + δ) +O(ϵ)] ⊂ (cos ξ, 1)
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for ϵ ∈ (0, ϵ0). Hence, in particular we have

| ∂k+l+m

∂Hk∂tl∂θm
Ei(H, t, θ)| ≤ C1ϵ (A.6)

on (H, t, θ) ∈ [h(I0), h(I1)]× S1 × [0, 12 ] for all k + l+m ≤ 4 and i = 1, 2, where E1 =
∂I1
∂H

and E2 = −∂I1
∂t . Since we integrate (4.4) on θ ∈ [0, 12 ], Ni has the same estimate as (A.6)

([18, Lemma 1]). The proof of (i) is complete.
Similarly, for the proof of (ii), we take an interval [2ξ− δ, 4ξ+ δ] for a constant δ > 0.

Note that p ∈ [2ξ − δ, 4ξ + δ] implies that |y| ∈ [2ξ−δ
ϵ , 4ξ+δ

ϵ ]. By (4.7) and Lemma A.2, we
have

ϵ2| ∂k+l+m

∂F k∂|q|l∂(ϵT )m
G| ≤ c1ϵ

2

on
(F, |q|, ϵT ) ∈ [(2ξ − δ)2/2 +O(ϵ2), (4ξ + δ)2/2 +O(ϵ2)]× [0, 2ξ]× S1

for all k + l +m ≤ 5. Hence, in particular we have

ϵ3| ∂k+l

∂P k∂Ql
Fi(P,Q, |s|)| ≤ c1ϵ

3

on (P,Q, |s|) ∈ [(2ξ)2/2, (4ξ)2/2]× S1 × [0, 2ξ] for all k + l +m ≤ 4, where F1 = ∂G
∂Q and

E2 = −∂G
∂P . It follows that

ϵ3| ∂k+l

∂P̄ k∂Ql
Gi(P̄ , Q, |s|)| ≤ c2ϵ

3 (A.7)

on (P̄ , Q, |s|) ∈ [1, 2] × S1 × [0, 2ξ] for all k + l +m ≤ 4 and i = 1, 2. Since we integrate
(4.9) on s ∈ [−2ξ, 2ξ], Ri has the same estimate as (A.7). Let c3 be the constant such that

ϵ3| ∂k+l

∂P̄ k∂Ql
Ri(P̄0, Q0, ϵ)| ≤ c3ϵ

3.

Take ϵ1 sufficiently small such that c3ϵ
3 ≤ ϵ1+ν for some ν > 0 when ϵ ∈ (0, ϵ1). This

completes the proof.

Appendix B: The numerical computation of invariant manifolds under the
effect of impacts

We restate the equation in here:

ẋ =y,

ẏ =sinx− Vx(x, t).
(B.1)

We assume V is T -periodic with respect to t in here. When V is small, there exists an
unique saddle type T -periodic solution near (0, 0), i.e., a fixed point of the time-T -map.
First, we need to locate the saddle fixed point. This can be done by using the classical
shooting method. Let the time-T -map from t = 0 to t = T be denoted by ϕ. Suppose
that the eigenvectors and the corresponding eigenvalues of Dϕ(X∗) are v1, v2, λ1, λ2, where
X∗ = (x∗, y∗) is the saddle point of ϕ. Without loss of generality, assume that λ1 > 1 and
λ2 < 1.

We only state next how to compute the unstable manifold, and the case of the stable
manifold is similar.
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(1) We take a very short line segment started at X∗ that has the same direction as v1.
Denote this segment by l0. We select some points increasingly or decreasingly in l0:

A0 = {X1, X2, · · · , XN},

where X1 = X∗ and XN is some other endpoint of l0. Then we map these points by
ϕ to obtain

ϕ(A0) = {ϕ(X1), ϕ(X2), · · · , ϕ(XN )}.

We choose the segment l0 small enough so that any solution started at Xi ∈ A0 does
not have impact with |x| = ξ. Note that ϕ(X1) = X1, then we can select the points
in ϕ(A0) that satisfy

||ϕ(Xi)−X1|| ≥ ||XN −X1||, (B.2)

where || · || is the Euclidean norm. Let

Ā0 = {XN , ϕ(Xn), ϕ(Xn+1), · · · , ϕ(XN )},

where Xi satisfies (B.2) for n ≤ i ≤ N .

(2) The continuation of Ā0 is via the modified parametric method, which is described as
follows. We interpolate the set Ā0 by a parametric curve p0 numerically such that

p0(
i− 1

#(Ā0)− 1
) = index[Ā0](i), (B.3)

where # is the cardinality of a set and index[·] is a map such that index[C](i) is
the i-th element of the finite set C. So we have p0 : [0, 1] → R2 and p0(0) = XN ,
p0(1) = ϕ(XN ). We associate each point in Ā0 with its parametric coordinate to
obtain a new set:

Ã0 = {(XN , 0), · · · , (ϕ(XN ), 1)}.

Then we define a map ϕ̄ such that

ϕ̄((X, s)) = (ϕ(X), s, n),

where n is the impact times of the orbit ϕt(X) during t ∈ [0, T ] (ϕt(X) is the solution
initiated at X for t = 0). Map the set Ã0 by ϕ̄. And then we partition the set ϕ̄(Ã0)
by the change of the last coordinate. Let the sets after partition be

{A1
1, A

1
2, · · · , A1

k}.

(3) The change of the last coordinate corresponds to the collision of unstable manifold
with the impact surface. Now we present an approach to locate the intersection of
the unstable manifold and the impact surface. For example, let the last element of
A1

1 and the first element of A1
2 be (Xj , sj , nj) and (Xj+1, sj+1, nj+1). If the following

inequality holds
||(xj , |yj |)− (xj+1, |yj+1|)|| ≤ δ1, (B.4)

where Xj = (xj , yj) and Xj+1 = (xj+1, yj+1), 0 < δ1 ≪ 1 is a constant, and we do
not change the sets A1

1 and A1
2. If (B.4) does not hold, we add the element

ϕ̄((p0(
1

2
(sj + sj+1)),

1

2
(sj + sj+1))
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to the end position of set A1
1 or the first position of set A1

2 if the last coordinate of
this element is same as nj or nj+1. If the set A1

1 or A1
2 has changed, then we repeat

this process until (B.4) holds. We deal with every adjoining sets A1
j and A1

j+1 by
above operation, and we can thus conclude numerical procedure.

(4) To get enough accurate parametric curves, we have to insure that the phase coordi-
nates of any adjoining elements in A1

i are not too far away. More precisely, if the
distance

||Xi −Xi+1|| ≤ δ2, (B.5)

we do not add points between (Xi, si, ni) and (Xi+1, si+1, ni+1), where (Xi, si, ni)
and (Xi+1, si+1, ni+1) are a pair of adjoining elements of A1

j . If (B.5) does not hold,
we add m points

ϕ̄((p0(si + d1), si + d1)), · · · , ϕ̄((p0(si + dm), si + dm))

between (Xi, si, ni) and (Xi+1, si+1, ni+1), where

dl =
l(si+1 − si)

m+ 1

for 1 ≤ l ≤ m. We apply this process to every adjoining elements in A1
j to obtain a

new set which we still denote it by A1
j . Then we repeat this whole process until A1

j

does not change any longer, i.e., (B.5) holds for any pair of adjoining elements in A1
j .

After applying the operation to every A1
l for 1 ≤ l ≤ k, we obtain the interpolation

data for the next parametrisation.

(5) We remove the last two coordinates for every elements of A1
l for 1 ≤ l ≤ k. Then we

parametrize each A1
i as (B.3) by p1i . Now we get the data for the next continuation

and its parametric curves

{A1
1, A

1
2, · · · , A1

k}, {p11, p12, · · · , p1k}.

This completes one time iteration.

We apply the procedures (2)-(5) to each pair of A1
i and p1i to obtain the second time

continuation data and its parametric curves:

{A2
1,1, A

2
1,2, · · · , A2

1,l1 , A
2
2,1, A

2
2,2, · · · , A2

2,l2 , · · · , A
2
k,1, A

2
k,2, · · · , A2

k,lk
},

{p21,1, p21,2, · · · , p21,l1 , p
2
2,1, p

2
2,2, · · · , p22,l2 , · · · , p

2
k,1, p

2
k,2, · · · , p2k,lk},

where A2
i,j and p2i,j are generated by A1

i and p1i for 1 ≤ j ≤ li. Hence, we can iterate this
procedure to obtain the 3th,4th,· · · times parametric curves.

We can apply the same procedure to another short segment started at X∗ and it has
the same direction as −v1. Finally, we complete the computation of unstable manifold.
We can obtain the stable manifold by replacing ϕ and v1 with ϕ−1 and v2.

Remark 4. We can also choose the initial segment as a quadratic curve instead of a
straight line segment. To determine this quadratic curve we have to compute the second
order variational equation of (B.1) in the neighbourhood of the saddle periodic solution.
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Remark 5. The procedures (3) and (4) add many points in A1
i so that the coordinate

for impact times in this set can have another value, so we have to partition A1
i again to

insure that the coordinate for impact times of every element is the same in A1
i .

Remark 6. For the non-conservative impact, i.e., y → −ry when |x| = ξ, where 0 < r < 1
is a constant, we can replace the criterion (B.4) by

||(xj , r|yj |)− (xj+1, |yj+1|)|| ≤ δ1

when we compute the unstable manifold. For the case of the stable manifold, the corre-
sponding criterion is

||(xj , |yj |)− (xj+1, r|yj+1|)|| ≤ δ1.
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