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Abstract This work shows that chaotic signals with
different power spectrum and different positive Lya-
punov exponents are robust to linear superposition,
meaning that the superposition preserves the Lyapunov
exponents and the information content of the source
signals, even after being transmitted over non-ideal
physical medium. This work tackles with great detail
how chaotic signals and their information content are
affected when travelling through medium that presents
the non-ideal properties of multi-path propagation,
noise and chaotic interference (linear superposition),
and how this impacts on the proposed communication
system. Physical media with other non-ideal properties
(dispersion and interference with periodic signals) are
also discussed. These wonderful properties that chaotic
signals have allow me to propose a novel communica-
tion system based on chaos, where information com-
posed from and to multiple users each operating with
different base frequencies and that is carried by chaotic
wavesignals, can be fully preserved after transmission
in the open air wireless physical medium, and it can be
trivially decoded with low probability of errors.
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1 Introduction

Communication systems are designed to cope with the
constraints of the physical medium. Previous works
have shown that chaos has intrinsic properties thatmake
it attractive to sustain the modern design of communi-
cation systems.

Take x(t) to represent a controlled chaotic signal
and that encodes information from a single transmit-
ter. Let r(t) represent the transformed signal that is
received. Chaos has offered communication systems
whose information capacity could remain invariant by
a small increase in the noise level, [1–4] and could
be robust to filtering [5–7] and multi-path propagation
[7], intrinsically present in the wireless communica-
tion. Decoding of r(t) can be trivial, with the use of
a simple threshold technique [7,8]. Chaos allows for
simple controlling techniques to encode digital infor-
mation [9,10]. For the wonderful solvable systems pro-
posed in [11,12], simple analytical expressions to gen-
erate the controlled signal x(t) can be derived [13,14].
Moreover, these systems have matched filters whose
output maximizes the signal-to-noise ratio (SNR) of
r(t), thus offering a practical and reliable way to
decode transmitted information. Chaos allows for inte-
grated communication protocols [15]; it offers viable
solutions for the wireless underwater [16,17], digi-
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tal [18] and optical [19] communication, radar appli-
cations [20], and simultaneously radar communica-
tion [21]. Chaotic communication has been experimen-
tally shown to achieve higher bit rate in a commercial
wired fibre-optic channel [22] and lower bit error rate
(BER) than conventional wireless non-chaotic base-
band waveformmethods. Moreover, chaos-based com-
munication only requires equipment that is compatible
with the today’s commonly used ones [14].

Several works on communication with chaos have
focused on a system composed by two users, the trans-
mitter and the receiver. Some works were motivated
by themaster–slave synchronization configuration [23]
where the master (the transmitter) sends the informa-
tion to the slave (the receiver) [1]. The understanding
of how two users communicate cannot always capture
the complexities involved in even simple networked
communication systems. It is oftenmore appropriate to
break down this complex communication problem into
a much simpler problem consisting of two configura-
tions, the uplink and the downlink. The uplink config-
uration would render us an understanding of how sev-
eral nodes that transmit different information signals
can be processed in a unique central node. The down-
link configuration would render us an understanding
about how a unique central node that transmits a single
signal can distribute dedicated information for several
other nodes. This strategy to break a complex network
problem into several smaller networks being described
by the uplink and the downlink configurations, which
is crucial to understand very complex technologically
oriented flownetworks, such as the communication and
power networks, can also shed much light into the pro-
cessing of information in networks as complex as the
brain. The uplink configuration would contribute to a
better understanding about how pre-synaptic neurons
transmit information to a hub neuron, and the downlink
configuration would contribute to a better understand-
ing about how post-synaptic neurons can process infor-
mation about a hub neuron. This paper focuses on infor-
mation signals that are linearly composed, and thus, this
approach could in principle be used to explain commu-
nication in neurons doing electric synapses. However,
the main focus of the present paper is about the under-
standing of how superimposed chaotic signals can be
robust to non-ideal properties of physical medium that
is present in wireless communication networks.

A novelty of this work is to show that chaos can
naturally allow for communication systems that oper-

ate in a multi-transmitter/receiver and multi-frequency
environment. In a scenario where the received signal,
r(t), is composed by a linear superposition of chaotic
signals of two transmitters x (1) and x (2) (or more), as
in r(t) = γ̃ (1)x (1)(t) + γ̃ (2)x (2)(t) + w(t), each sig-
nal operating with different frequency bandwidths and
each encoding different information contents with dif-
ferent bit rates, with γ̃ (i) ∈ � and w(t) representing
additive white Gaussian noise (AWGS) modelling the
action of a physical medium in the composed trans-
mitted signal, is it possible to decompose the source
signals, x (1)(t) and x (2)(t), out of the received signal
r(t), and recover (i.e. decode) their information con-
tent? My work explores the wonderful decomposabil-
ity property chaotic signals have to positively answer
this question, enabling a solution for amulti-source and
multi-frequency communication.

In this paper, I show that for the no-noise scenario,
the spectrum of positive Lyapunov Exponents (LEs)
of r(t) is the union of the set of the positive Lya-
punov exponents of both signals x (1)(t) and x (2)(t).
This is demonstrated in the main manuscript in Sect.
2.2 for the system used to communicate. “Appendix C”
generalizes this result to superimposed signals coming
from arbitrary chaotic systems. And what is more, for
the system proposed in [11], the information content
of the composed signal r(t) preserves the information
carried by the source signals, this being linked to the
preservation of the positive Lyapunov exponents. This
result is fully explained in Sect. 2.3, where I present the
information encoding capacity of the proposed com-
munication system, or in other words, the rate of infor-
mation contained the linearly composed signal of sev-
eral chaotic sources. I also discuss in this section how
this result extends to communication systems that have
users communicating with other chaotic systems, dif-
ferent from theone inRef. [11]. Preservationof theLya-
punov exponents in the composed signals of arbitrary
chaotic systems is demonstrated; thanks to an equiva-
lence principle deterministic chaotic systems have that
permits that the composed signal can be effectively
described by a signal departing from a single source but
with time-delayed components. Moreover, when the
physical medium where the composed signal is trans-
mitted has noise, it is possible to determine appropriate
linear coefficients γ̃ (i) (denoted as power gains, see Eq.
(17) in Sect. 2.4), which will depend on the natural fre-
quency of the user, on the attenuation properties of the
media and the number of users (end of Sect. 2), such
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that the information content carried by the composed
signal r(t) can be trivially decomposed, or decoded,
by a simple threshold (see Eq. (18)), with low proba-
bility of errors, or no errors at all for sufficiently small
noise levels. In the latter case, that would imply that
the information encoding capacity provides the infor-
mation capacity of the system, or the rate of information
received/decoded.

The scientific problem to decompose a linear super-
position of chaotic signals that renders the mathemat-
ical support for the proposed communication system
is similar to that of blind source separation for mixed
chaotic signals [24] or that of the separation of a sig-
nal composed of a linear superposition of indepen-
dent signals [25]. However, these separation methods
require longmeasurements, and additionally either sev-
eral measurements of multiple linear combinations of
the source signals, or source signals that have similar
power spectra and that are independent. These require-
ments cannot be typically fulfilled by a typical wireless
communication environment, where information must
be decoded evenwhen very few observations are made,
signals are sent only once with constant power gains,
source signals can have arbitrary natural frequencies,
and they can be dependent.

I also show in Sect. 3 that in the single-user com-
munication system proposed in the work of [11], with
a chaotic generator for the source signal and a matched
filter to decode information from the received signal
corrupted by noise, the chaotic generator has no neg-
ative LEs, which leads to a stable matched filter with
no positive LEs, and that can therefore optimally filter
noise. Moreover, I show that the single-user commu-
nication system formed by the chaotic generator plus
the matched filter can be roughly approximated by the
unfolded Baker’s map [26]. This understanding per-
mits the conclusion that in the multi-user environment
the matched filter that decomposes the source signal of
a user from the received composed signal r(t) is the
matched filter of that user alone.

I will then study, in Sect. 4, the information capac-
ity of the proposed communication system in proto-
typedwireless network configurations, and in Sect. 4.1,
I will compare its performancewith a non-chaotic com-
munication method that is the strongest candidate for
the future 5G networks, the non-orthogonal multiplex
access (NOMA), andwill show that the proposedmulti-
user chaos-based communication system can (under

certain configurations) communicate at higher bit rates
for large noise levels in the physical medium.

In Sect. 5, I will discuss how communication with
chaos can be made robust to other types of non-ideal
physical media (also refereed as a “channel of com-
munication”) [27] that present dispersion and whose
signals interfere with other period (non-chaotic) sig-
nals.

Finally, for a succinct presentation on the histor-
ical developments of chaos for communication, see
“Appendix D”.

2 Linear composition of chaotic signals, the
preservation of the Lyapunov exponents and
encoding for transmission

A wonder of chaotic oscillations for communication is
the system proposed in Ref. [11]. With an appropriate
rescaling of time to a new time frame dt ′ = γ dt , it can
be rewritten as

ẍ − 2β(γ )ẋ + (ω2 + β(γ )2)(x − s(t)) = 0, (1)

where s(t) ∈ (−1, 1) is a 2-symbol alphabet discrete
state that switches the value by the signum function
s(t) = x(t)/|x(t)|, whenever |x(t)| < 1 and ẋ = 0.
If the information to be communicated is the binary
stream b = {b0, b1, b2, . . .} (bn ∈ {0, 1}), a signal
can be created such that s(t) = (2bn − 1), for nT ≤
t < (n + 1)T [13]. In this new time frame, the natu-
ral frequency is f (γ ) = 1/γ (ω = 2π f ), the period
T (γ ) = 1/ f (γ ) = γ , and β(γ ) = β(γ = 1) f (γ ),
where 0 < β(γ = 1) ≤ ln (2). More details can be
seen in “Appendix A”. β(γ = 1) is a parameter, but
with an important physical meaning. It represents the
Lyapunov exponent (LE) of the system in units of nepits
per period (or per cycles), which is also equal to the
rate of information produced by the chaotic trajectory
in nepits per period. On the other hand, β(γ ) represents
the LE in units of nepits per unit of time, which is also
equal to the rate of information produced by the chaotic
trajectory in nepits per unit of time. See Sect. 2.3.

The received signal in the noiseless wireless channel
from user k can be modelled by

r (k)(t) =
L−1∑

l=0

αlγ
(k)x(t − τl) (2)
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where there are L propagation paths, each with an
attenuation factor of αl and a time delay τl for the
signal to arrive to the receiver along the path l (with
0 = τ0 < τ2 < · · · < τL−1), and γ (k) is an equalizing
power gain to compensate for the amplitude decay due
to the attenuation factor. The noisy channel can thus be
modelled by r(t) + w(t), where w(t) is an AWGN.

Let me consider the time-discrete dynamics of the
signal generated by a single user r (k)(t) = r(t) (with
γ (k) = 1), whose signal is sampled at frequency f , so
rn = r(n/ f ) are collected, then the return map (see
“Appendix B”) of the received signal (assuming for
simplicity that γ (k)=1) is given by

rn+1 = e
β
f rn −

L−1∑

l=0

αl

(
eβ/ f sn′ − Kl sn′

−sn′+1 + sn′+1Kl
)

(3)

where n′ = n − � f τl� and Kl = e−β(τl−�τl/T �T )

[cos (
2π τl

T

) + β
ω
sin

(
2π τl

T

)] where sn represents the
binary symbol associated with the time interval nT ≤
t < (n + 1)T , so sn = s(t = nT ), � f τl� rep-
resenting the ceiling integer of f τl , and

β
f denotes

β(γ )
f (γ )

= β(γ = 1). Equation (3) extends the result
in [28], valid for when τl = mT , with m ∈ N, when
Kl = 1.

The Lyapunov exponent (LE) of the 1-dimensional
map in Eq. (3) in units of nepits per period for multi-
path propagation, denoted by χ , (which is equal to
the positive LE of the continuous dynamics—see Sect.
I of Supplementary Material (SM)) is equal to χ =
β
f = β(γ = 1) [nepits per period], since χ =
limn→∞ 1

n ln
∣∣∣
∏n

i=0
drn+1

drn

∣∣∣. This LE can be calculated

in nepits per unit of time by simply making χ
T = β. LE

can be calculated in units of “bits per period” by using
binary logarithm instead of natural logarithm. This is
also equal to the LE of the return map

xn+1 = e
β
f [xn − (1 − e−β/ f )sn], (4)

obtained from Eq. (3) when there is only a direct path,
L = 1. Notice also that the constant attenuation factor
αl does not contribute to this LE, only acting on the
value of the binary symbols. This is to be expected
[29].

2.1 Linear composition of chaotic signals for the
uplink and the downlink communication
configurations

The analysis will focus on two prototype wireless com-
munication configurations: the uplink and the down-
link. In the uplink communication, several users trans-
mit signals that become linearly superimposed when
they arrive to a base station antenna (BS). In the down-
link communication, a BS sends 1 composed signal
(linear superposition of chaotic signals) signal contain-
ing information to be decomposed (or decoded) by sev-
eral users.

I propose a chaos-based communication system,
named “Wi-C1”, that allows for multi-user communi-
cation, where one of the N users operates with its own
natural frequency. It is assumed that other constraints
of the wireless medium are present, such as multi-path
propagation andAWGN.Wi-C1with 1BS can bemod-
elled by a linear superposition of chaotic signals as

O(t)u =
N∑

k=1

L(k)−1∑

l=0

α
(k)
l γ (k)γ̃ (k)x(k)(t − τ

(k)
l ) + w(t) (5)

O(m)(t)d =
L(k)−1∑

l=0

α
(m)
l

N∑

k=1

γ (k)γ̃ (k)x(k)(t − τ
(m)
l )

+w(m)

O(t)u in Eq. (5) represents the composed signal
received at BS from all users in the uplink. This signal
will be the focus of the paper from now on. O(m)(t)d

represents the signal received by user m from a com-
posed signal transmitted by the BS in the downlink.
w(t) represents an AGWN at the base station, and
wm(t), for m = 1, . . . , N represents AGWN at the
user m. α

(k)
l is the attenuation factor between the BS

and the user k along path l, and γ (k) and γ̃ (k) are
power gains. L(k) are the number of propagation paths
between user k and the BS. In this work, wewill choose
γ (k) = 1/α(k)

l , to compensate for the medium attenu-
ation, and γ̃ (k) is a power gain to be applied at the
transmitter or BS and that can be identified as being
the linear coefficients of the superposition of chaotic
signals.

I will now consider the uplink, where 2 users send
signals that are linearly composed by a superposition
that happens at the BS, each user or source signal is
identified with an index k = {1, 2} and will in most
of the following results neglect in Eq. (3) the contribu-
tion from other propagation paths other than the direct
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(L(1) = L(2) = 1). Assume user 1 to operate at fre-
quency f (1) = f = 1/T and user 2 at frequency
f (2) = 2 f = 2/T , and γ (k) = 1. In order to reduce
the continuous mathematical description of the uplink
communication, including thedecodingphase to the 2D
unfolded Baker’s map, I will only treat cases for which
the natural frequency of user k is given by f (k) = 2m f ,
with m ∈ N, the parameter β(k) = f (k) ln (2), and f is
the base frequency of user 1, which will be chosen to
be 1. At time (n + 1)T , the signal received by BS from
user k=1 as a function of the signal received at nT is
described by

r (1)
n+1 = 2r (1)

n − α
(1)
0 s(1)

n . (6)

At time (n + 1)T , the signal received by BS from
user k=2 as a function of the signal received at nT is

r (2)
2n+2 = 4r (2)

2n − α
(2)
0 [2s(2)

2n + s(2)
2n+1], (7)

where the r2n represents the value of r (2)(t = nT )

(recall that at each time interval T , user 2 chaotic sys-
tem completes two full cycles each with period T/2).
Notice that the LE of Eq. (7) will provide a quantity
in term of 2 cycles of user 2, but 1 cycle in terms of
user 1. So, the LE of Eq. (7) is equal to ln (4) nepits
per each period T , which is twice the LE of Eq. (6) for
that same period T . Comparison of both LEs become
easier if we calculate them in units of nepits per unit of
time. LE for user 1 is β(1) = f (1) ln (2) = ln (2) and
that for user 2 is β(2) = f (2) ln (2) = 2 ln (2). This is
because user 2 has a frequency twice larger than that
of user 1 [30]. Since these two maps are full shift, their
LE equals their Shannon entropy, so their LE repre-
sents the encoding capacity (in units of nepit). Doing
the coordinate transformation r (1)

n = 2u(1)
n − 1 (for the

map in (6)) and r (2)
2n = 2u(2)

n − 1 (for the map in (7))
and choosing γ (k) = 1/α(k), Eqs. (6) and (7) become,
respectively,

u(1)
n+1 = 2u(1)

n − 
2u(1)
n � ≡ 2u(1)

n − b(1)
n (8)

u(2)
n+1 = 4u(2)

n − 
4u(2)
n � ≡ 4u(2)

n − b(2)
n , (9)

where u(k)
n ∈ [0, 1] (in contrast to r (k)

n ∈ [−1, 1]),
and b(1)

n = 1/2(s(1)
n + 1) ∈ (0, 1), and b(2)

n =
(s(2)

n + s(2)
n+1/2) ∈ (0, 1, 2, 3). Equation (8) is sim-

ply the Bernoulli shift map, representing the discrete
dynamics of user 1 (the signal received after equaliz-
ing for the attenuation), and Eq. (9) is the second itera-

tion of the shift map representing the discrete dynam-
ics of user 2 (after equalizing the attenuation, by doing
γ (k) = 1/α(k)).

Figure 1A, B shows in red dots solutions for Eqs. (8)
and (9), respectively. Corresponding return maps of the
discrete set of points x (k)

n is constructed directly from
the continuous solution of Eq. (1) with frequency given
by f (k) = k f by taking points at the time t = nT , and
doing the normalization as before x (k)

n = 2x (k)
n −1 (so,

x (k)
n ∈ [0, 1]) is shown by the black crosses.
The composed received signal at discrete times nT ,

a linear superposition of 2 chaotic signals with different
power spectrum, is given by

On = γ̃ (1)u(1)
n + γ̃ (2)u(2)

n . (10)

Generalization for N source signals can be written as
On = ∑N

k=1 γ̃ (k)u(k)
n . At the BS, the received signal is

On + wn , so it is corrupted by an AGWN wn that has
a signal-to-noise rate (SNR) in dB as compared with
the power of the signal On . The received discrete-time
return map, for wn = 0, can be derived by putting Eqs.
(8) and (9) into Eq. (10)

On+1 = 4On − 2γ̃ (1)u(1)
n − γ̃ (2)b(2)

n − γ̃ (1)b(1)
n (11)

u(1)
n+1 = 2u(1)

n − b(1)
n , (12)

where Eq. (12) is just Eq. (8).

2.2 Preservation of LEs for linear compositions of
chaotic source signals

The system of Eqs. (11) and (12) has two distinct pos-
itive LEs, one along the direction v(1) = (0 1) associ-
ated with the user 1 and equal to χ(1) = ln (2) nepit per
period T , and another along the direction v(2) = (1 0),
which can be associated with the user 2 and equals
χ(2) = ln (4) = 2ln(2) nepit per period T .

To calculate the LEs of this 2-dimensional system
(see [29,31]), we consider the expansion of a unitary
basis of orthogonal perturbation vectors v and calculate
them by

χ = lim
n→∞

1

n
ln ||M · v||, (13)

where ||v|| is the norm of vector v, M = Jn , and

J =
(
4 −2γ̃ (1)

0 2

)
. Thus, combining chaotic signals
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Fig. 1 The return maps of Eqs. (8) and (9) are shown by red
dots, and corresponding return maps of discrete sets obtained
directly from the continuous solution of Eq. (1) are shown by

black crosses. In A, discrete states for user k = 1, and in B,
discrete states for user k=2. (Color figure online)

with different frequencies as a linear superposition
described by Eq. (10) preserves the spectra of LEs
of the signals from the users alone. This is a hyper-
bolic map where the sum of the positive Lyapunov
exponents is equal to the Kolmogorov–Sinai’s entropy,
which represents the information rate. Consequently,
the information received is equal to the sum of the
information transmitted by both users, for the no-noise
scenario. More details about this relationship are pre-
sented in Sect. 2.3. In other words, a linear superposi-
tion of chaotic signals as represented by Eq. (10) does
not destroy the information content of each source sig-
nal. Preservation of the spectrum of the LEs in a signal
that is a linear superposition of chaotic signals with dif-
ferent power spectrum is a universal property of chaos.
Demonstration is provided in “Appendix C”, where
I study signals composed by two variables from the
Rössler attractor, user 2 with a base frequency that is
Q times that of the user 1. This demonstration uses an
equivalence principle. Every wireless communication
network with several users can be made equivalent to a
single user in the presence of several imaginary propa-
gating paths. Attenuation and power gain factors need
to be recalculated to compensate for a signal that is in
reality departing from user 2 but that is being effec-

tively described as departing from user 1. Suppose the
2 users case, both with the same frequency f (k) = f ,
in the uplink scenario. The trajectory of user 2 at a
given time t , x (2)(t), can be described in terms of the
trajectory of the user 1 at a given time t − τ . So, the
linear superposition of 2 source signals in Eq. (5) can
be simply written as a single source with time-delayed
components as

O(t)u =
L(k)−1∑

l=0

[α(1)
l γ (1)γ̃ (1)x (1)(t − τ

(1)
l )

+α
(2)
l γ (2)γ̃ (2)x (1)(t − τ

(1)
l − τ)] + w(t). (14)

In practice, τ can be very small, because of the sensi-
bility to the initial conditions and transitivity of chaos.
For a small τ and ε, it is true that |x (2)(t)−x (1)(t−τ)| ≤
ε, regardless of t .

This property of chaos is extremely valuable, since
when extending the ideas of this work to arbitrarily
large and complex communicating networks, onemight
want to derive expressions such as in Eqs. (11) and (12)
to decode the information arriving at the BS. Details of
how to use this principle to derive these equations for
two userswith f (2) = 2 f (1) and alsowhen f (2) = f (1)

are shown in Sect. II of SM.
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2.3 Lyapunov exponents, the information carried by
chaotic signals and the information capacity
of Wi-C1

Pesin’s equality relates positive Lyapunov exponents
(LEs) with information rate of a chaotic trajectory [32]:
The sum of positive LEs of a chaotic trajectory is equal
to theKolmogorov–Sinai entropy, denoted HK S (a kind
of Shannon entropy rate), a quantity that is considered
to be the physical entropy of a chaotic system. This is
always true for chaotic systems that possess the Sinai–
Ruelle–Bowen (SRB) measure [33], or more precisely
that have absolutely continuous conditional measures
on unstable manifolds. In this work, I have considered
a parameter configuration such that the system used to
generate chaotic signals is described by the shift map,
a hyperbolic map, which has SRB measure. Therefore,
the amount of information transmitted by a user is given
by the LE of the system in Eq. (1).

I have demonstrated that linearly composed chaotic
signals with different natural frequencies preserve all
the positive LEs of the source signals (“Appendix C”).
By a chaotic signal, I mean a 1-dimensional scalar
time-series, or simply a single variable component of
a higher-dimensional chaotic trajectory. If the chaotic
signals are generated by Eq. (1), their linear composi-
tion in Eqs. (11) and (12) is still described by a hyper-
bolic dynamics (possessing SRB measure), thus lead-
ing to a trajectory whose information content is given
by the sum of the positive LEs, which happens to be
equal to the sum of the LEs of the source signals. So,
the information encoding capacity in units of nepits per
unit of time of the Wi-C1, denoted by Ce, when users
use the system in Eq. (1) to generate chaotic signals, is
given by the sum of Lyapunov exponents of the source
signals:

Ce =
∑

k

f (k)β(γ = 1)(k) =
∑

k

β(γ )(k) (15)

where f (k) and β(γ = 1)(k) and are the natural fre-
quency of the signal and the LE of user k (in units
of nepits per unit of time), respectively. By informa-
tion encoding capacity, I mean the information rate
of a signal that is obtained by a linear composition
of chaotic signals. If linear coefficients (power gains)
are appropriately chosen (see next Sect. 2.4) and noise
is sufficiently low (see Sect. 4), then the information
encoding capacity of Wi-C1 is equal to the informa-

tion capacity of Wi-C1, or the total rate of information
being received/decoded.

It is worth discussing, however, what would be the
information capacity of Wi-C1, in case one, considers
users communicating with other chaotic systems than
that described by Eq. (1). My result in “Appendix C”
demonstrates that all the positive Lyapunov exponents
of the chaotic source signals are present in the spectra
of the linearly composed chaotic signals constructed
using different chaotic signals (that may have different
natural frequencies) and being generated by the same
chaotic system.

Recent work [34,35] has shown that there is a strong
link between the sum of the positive LEs and the topo-
logical entropy, denoted HT , in a chaotic system. The
topological entropy measures the rate of exponential
growth of the number of distinct orbits, as we consider
orbits with growing periods. For Eq. (1), its topologi-
cal entropy equals its positive LE and its Kolmogorov–
Sinai entropy. So, HT = β(γ ) = HK S (in units of bits
per unit of time). That is not always the case. Denot-
ing the sum of LEs of a chaotic system by

∑+, one
would typically expect that HT ≥ HK S and moreover
that

∑+ ≥ HK S . However, the recent works in Refs.
[34,35] have shown that there are chaotic systems for
which HT = ∑+.

This work considers that the proposed communi-
cation systemWi-C1 has users that use chaotic signals
generatedbymeansof controlling (class (i) discussed in
Sect. 1), so that the trajectory can represent the desired
information to be transmitted. The work in Ref. [9]
has shown that the information encoding capacity of a
chaotic trajectory produced by control is given by the
topological entropy of the non-perturbed system, not by
its Kolmogorov–Sinai entropy. Therefore, if only a sin-
gle user is being considered in the communication (e.g.
only one transmitter), and this user generates chaotic
signals for which HT = ∑+, the information encod-
ing capacity of this communication system would be
given by

∑+.
Let us now discuss the multi-user scenario, still

assuming that the users generate their source chaotic
signals using systems forwhich HT = ∑+. As demon-
strated in “Appendix C”, all the positive Lyapunov
exponents of chaotic source signals are preserved in
a linearly composed signal. Moreover, since that LEs
of a chaotic signal are preserved by linear transforma-
tions, and since a linear transformation to a signal does
not alter its information content, it is suggestive to con-
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sider that the information capacity of this multi-user
communication system would be given by the sum of
the positive LEs of the chaotic source signals for each
user. This, however, will require further analysis.

2.4 Preparing the signal to be transmitted (encoding):
finding appropriate power gains

In order to avoid interference or false near neighbours
crossing in the received composed signal, allowing one
to discover the symbols b(1) and b(2) only by observ-
ing the 2-dimensional return map of On+1 × On that
maximizes the separation among the branches of the
map to avoid mistakes induced by noise, we need to
appropriately choose the power gains γ̃ (k). Looking at
the mapping in Eq. (11), the term 2 f (2)

On represents a
piecewise linear map with 2 f (2)

branches. The spatial
domain for each piece has a length denoted by ζ( f (2)).
The term (2 f (2) −2)γ̃ (1)u(1)

n representing the dynamics
for the smallest oscillatory frequency is described by
a piecewise linear map with (2 f (2) − 2) branches. To
avoid interference, the return map for this term must
occupy a length ζ( f (1)) that is fully embedded within
the domain for the dynamics representing higher-order
frequencies. Assuming that for a given number of users
N , all frequencies f (i) with i = 1, . . . , N are used; this
idea can be expressed in terms of an equation where

ζ( f (i)) = 2( f (i))ζ(i − 1), i = {1, . . . , N }. (16)

Then, γ̃ (k) = ζ(k), but for a received map within the
interval [0, 1], normalization of the values o γ̃ (k) by

γ̃ (k) = ζ(k)
∑N

i=1 ζ( f (i))
. (17)

For 2 users (N = 2) and ζ(1) = 0.2, the appropri-
ate power gains to be chosen in the encoding phase
and that allows for the decomposition (or decoding) of
the information content of the composed received sig-
nal are given by γ̃ (1) = 0.2 and γ̃ (2) = 0.8. Using
these values for γ̃ (1) and γ̃ (1) in Eq. (10) and consid-
ering an AWGN wn with SNR of 40dB (with respect
to the power of On) produces the return map shown
by points in Fig. 2A, with 8 branches all aligned along
the same direction (the branches would have the same
derivative for the no noise scenario), which therefore

prevents crossings or false near neighbours—and are
also equally separated to avoid mistakes in the decod-
ing of the information due to noise.

The choice of the power gains for the downlink con-
figuration is similarly done as in the uplink configu-
ration, taking into consideration that each user has its
own noise level. This is shown in Sect. III of SM.

3 Decomposing the linear superposition of chaotic
signals, and the decoding of signals
and their information content

3.1 Decomposition (decoding) by thresholding
received signal

Communication based on chaos offers several alterna-
tives for decoding, or in other words, the process to
obtain the information that is conveyed by the received
signal. Assuming the received signal is modelled by
Eqs. (11) and (12), with the appropriated power gains
as in Eq. (17), the optimal 2-dimensional partition to
decode the digital information is described by the same
map of Eqs. (11) and (12) with a translation. For the
case of 2 users in the uplink scenario, this translates
into a 7-line partition

O∗
n+1( j) = 4O∗

n ( j) − Tj ,

Tj = 1

2

[
3γ̃ (1) + ( j − 1)γ̃ (2)

]
, j = {1, . . . , 7}. (18)

These partition lines for γ̃ (1) = 0.2 and γ̃ (2) = 0.8
are shown by the coloured straight lines in Fig. 2A.
They allow for the decomposition/decoding of the dig-
ital (symbolic) information contained in the composed
received signal.

3.2 Decomposition (decoding) by filtering
received signal

A more sophisticated approach to decode information
is based on a matched filter [11]. In here I show that the
system formed by Eq. (1) and its matched filter can be
approximately described by the unfolded Baker’s map,
a result that allows us to understand that the recovery
of the signal sent by a user from the composed signal
solely depends on the inverse dynamics of this user.
Details of the fundamentals presented in the follow-
ing can be seen in Sect. IV of SM. If the equations
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describing the dynamics of the transmitted chaotic sig-
nal (in this case Eq. (1)) possess no negative Lyapunov
exponents—as it is shownSect. I of SM—attractor esti-
mation of a noisily corrupted signal can be done using
its time-inverse dynamics that is stable andpossesses no
positive LEs (shown in Sect. V of SM). The evolution
to the future of the time-inverse dynamics is described
by a system of ODE hybrid equations obtained by the
time-rescaling d/dt ′ = −d/dt applied to Eq. (1) result-
ing in

ÿ + 2β ẏ + (ω2 + β2)[y − η(t)] = 0, (19)

where the variable y represents the x in time reverse,
and as shown in Sect. IV of SM, if η(t) is defined by

˙η(t) = x(t) − x(t − T ) (defined as ˙η(t) = x(t + T ) −
x(t) in Ref. [11]) it can be roughly approximated to be
equal to the symbol s(t).

Taking the values of y at discrete times atnT ,writing
that y(nT ) = yn , and defining the new variable for
users 1 and 2 as before y(1)

n = 2z(1)
n − 1 and y(2)

2n =
2z(2)

n −1 if Eqs. (8) and (9) are map solutions of Eq. (1)
(in the re-scaled coordinate system, with appropriate
γ gains) for user k with frequencies f (k) = k, their
inverse mapping the solution of Eq. (19) is given by

z(k)
n+1 = 2−k{z(k)

n − 
2ku(k)
n �}, and 
2ku(k)

n � ≡ b(k)
n ,

(20)

This map can be derived simply defining z(k)
n+1 = u(k)

n

and z(k)
n = u(k)

n+1. We always have that 
2ku(k)
n � =

b(k)
n . So, for any z(k)

n ∈ [0, 1] and which can be simply
chosen to be equal to the received composed signal On

(normalized such that ∈ [0, 1]), it is also true that


2k z(k)
n+1� = 
2ku(k)

n � = b(k)
n . (21)

So, if we represent an estimation of the transmitted
symbol of user k by b̃(k)

n , then decoding of the trans-
mitted symbol of user k can be done by calculating
z(k)

n+1 using the inverse dynamics of the user k

z(k)
n+1 = 2−k{z(k)

n − b̃(k)
n }. (22)

and applying this value to Eq. (21). This means that
the system formed by the variables u(k)

n , z(k)
n is a gen-

eralization (for k �= 1) of the unfolded Baker’s map

[26], being described by a time-forward variable u(k)
n

(the Bernoulli shift for k=1), and its backward variable
component z(k)

n .
Figure 2B demonstrates that it is possible to extract

the signal of a user (user k=2) from the composed sig-
nal, On (Eq. (10)), by setting in Eq. (22) that z(2)

n = On ,
and b̃(k)

n = b(k)
n . Even though u(2)

n �= z(2)
n , decod-

ing Eq. (21) is satisfied. Therefore, the matched filter
that decomposes the source signal of a user from the
received composed signal is the matched filter of that
user alone.

4 Analysis of performance of Wi-C1,
under noise constraints

I can now do an analysis of the performance of the
Wi-C1, for both the uplink and the downlink configu-
rations, for 2 users modelled by Eqs. (8) and (9) with
power gains γ̃ (1) = 0.2 and γ̃ (2) = 0.8. The informa-
tion capacity for both users (in bits per iteration, or bits
per period) is given by

C = 0.5 log2 (1 + SNR), (23)

where SNR = P
Pw (units in dB, decibel) is the signal-

to-noise ratio, the ratio between the power P of the
linearly composed signal γ̃ (1)u(1)

n + γ̃ (2)u(2)
n (arriving

at the BS, in the uplink configuration, or departing from
it, in the downlink configuration) and Pw, the power of
the noise wn at the BS (for the uplink configuration) or
at the users (for the downlink configuration, assumed to
be the same). The total capacity of the communication
denoted by C is calculated, assuming that decoding of
users 1 and 2 is simultaneously done from the noisily
corrupted received signal On + wn (see Eq. (10)), and
so, decoding of the signal from user 2 does not treat the
signal of user 1 as noise.

This capacity has to be compared to the actual
rate of information being realised at the BS (or at
the receivers), quantified by the mutual information,
I (b(k)

n ; b̃(k)
n ) between the symbols transmitted (b(k)

n )
and the decoded symbols b̃(k)

n estimated by using parti-
tion in Eq. (18), defined as usual by I (b(k)

n ; b̃(k)
n ) =

H(b(k)
n ) − H(b(k)

n |b̃(k)
n ) where H(b(k)

n ) denotes the
Shannon’s entropy of the user k which is equal to the
positive LE of the user k, for β(γ = 1) = ln (2), and
H(b(k)

n |b̃(k)
n ) is the conditional entropy.

Figure 2C shows in red squares the full theoretical
capacity given by C against the rate of information
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Fig. 2 In A points shows
the return map of the
received signal with
γ̃ (1) = 0.2 and γ̃ (2) = 0.8,
and the lines the partitions
from which received
symbols are estimated.
Inside the parenthesis, the
first symbol is from user 2
and the second symbol is
from user 2. In B, one sees a
solution of the unfolded
Baker’s map, where
horizontal axis shows
trajectory points from Eq.
(9) and vertical axis
trajectory points from Eq.
(21), for the user k=2. In C
is shown C against

∑
I ,

with respect to the
signal-to-noise ratio (SNR)
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decoded given by
∑

I = I (b(1)
n ; b̃(1)

n ) + I (b(2)
n ; b̃(2)

n ),
in black circles, with respect to the SNR. As it is to be
expected, the information rate received

∑
I is equal to

the information encoding capacityCe that is transmitted
(both equal to 3bits/period) for low noise levels, tough
smaller than the theoretical limit.

Notice that this analysis was carried out using the
map version of the matched filter [11] in Eq. (19), and
as such lacks the powerful use of the negativeness of the
LE to filter noise. Moreover, decoding used the trivial
2D threshold by Eq. (18), and not higher-dimensional
reconstructions.

4.1 Comparison of performance of
Wi-C1 against NOMA

To cope with the expected demand in 5Gwireless com-
munication, non-orthogonal multiple access (NOMA)
[36–38]was proposed to allowall users to use thewhole
available frequency spectrum. One of the most popular
NOMA schemes allocates different power gains to the
signal of each user. Full description of this scheme and
its similarities with Wi-C1 is given in Sect. VI of SM.

The key concept behind NOMA is that users signals
are superimposed with different power gains, and suc-

cessive interference cancellation (SIC) is applied at the
user with better channel condition, in order to remove
the other users signals before detecting its own signal
[39]. In the Wi-C1, as well as in NOMA, power gains
are also applied to construct the linear superposition
of signals. But in this work, I assume that the largest
power gain is applied to the user with the largest fre-
quency. Moreover, in this work, I have not done suc-
cessive interference cancellation (SIC), since the infor-
mation from all the users is simultaneously recovered
by the thresholding technique, by considering a trivial
2D threshold by Eq. (18).

Comparison of the performance of Wi-C1 and
NOMA is done considering the work in Ref. [40],
which has analysed the performance of NOMA for two
users in the downlink configuration, under partial chan-
nel knowledge. Partial channel knowledge means in
rough terms that the “amplitude” of the signal arriving
to a user from the BS is incorrectly estimated. In this
sense, I have considered in the Wi-C1 perfect channel
knowledge, since my simulations in Fig. 2C based on
Eq. (10) assume that γ (k) = 1

α(k) to compensate for

the amplitude decay α(k) in the physical media (see
Eq. (5)). More precisely, partial channel knowledge
means that aGaussian distribution describing the signal
amplitudes departing from a user decreases its variance
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Fig. 3 Red circles show
∑

I , blue down triangle show the aver-
age sum rate for partial channel knowledge (σε = 0.0005),
and black squares show the average sum rate for perfect chan-
nel knowledge, with respect to the signal-to-noise ratio (SNR).
(Color figure online)

inversely proportional to a power-law function of the
distance between that user and BS. The variance of the
error of this distribution estimation is denoted by σε , an
important parameter to understand the results in Ref.
[40]. Partial channel knowledgewill impact on the opti-
mal SIC performed for the results in Ref. [40]. Recall
again that for the Wi-C1, no SIC is performed.

In Fig. 3, the curve for
∑

I (the rate of decoded
information) in Fig. 2C is plotted in red circles and
compared with data shown in Fig. 3 of Ref. [40] for the
quantity “average sum rate”, where each dataset con-
siders a different channel configuration. Blue down tri-
angles show the quantity “average sum rate” for perfect
channel knowledge (σε = 0), and black squares repre-
sent the same quantity for partial channel knowledge
(σε = 0.0005). The data points in Fig. 3 of Ref. [40]
were extracted by a digitalization process. The quan-
tity

∑
I for Wi-C1 in in Fig. 2C in units of bits per

period (or channel use) is compared with the quantity
“average sum rate” (whose unit was given in bits per
second per Hz) by assuming the period of signals in
Ref. [40] is 1s. The average value obtained in Ref. [40]
has taken into consideration Monte Carlo simulations
of several configurations for 2 users that are uniformly
distributed in a disk and the BS is located at the centre.

The results in Fig. 3 show that Wi-C1 has similar
performance in terms of the bit rate for 0 dB, better
performance for the SNR ∈]0, 30] dB as that of the
NOMA (with respect to the average sum rate) for per-

fect channel knowledge, and better performance for the
SNR ∈]0, 40[ dB as that of the NOMA (with respect to
the average sum rate) for partial channel knowledge.

One needs to have into consideration that this out-
standing performance of Wi-C1 against NOMA is pre-
liminary, requiring more deep analysis, but that is out
of the scope of the present work.

5 Other non-ideal physical media

Previous sections of this work have tackled with great
rigour and detail how chaotic signals are affected
when travelling through medium that presents non-
ideal properties such as multi-path propagation, noise
and chaotic interference (linear superposition), and
how this impacts on the proposed communication sys-
tem. This section is dedicated to conceptually discuss
with some mathematical support how chaotic signals
and their information content are transformed by phys-
ical channels with other non-ideal properties (disper-
sion and interference with periodic signals), and how
this impacts on the multi-user communication system
proposed.

For the following analysis, I will neglect the exis-
tence of multiple indirect paths of propagation and will
consider that only the direct path contributes to the
transmission of information, so L = 1. I will consider
the uplink scenario where users transmit to a BS. I will
initially focus the analysis about the impact of the non-
ideal physical medium on the signal of a single user,
in particular the effect of the medium in the received
discrete signal being described by Eq. (3) and its Lya-
punov exponent (LE), and will then briefly discuss the
impact of the non-ideal medium on a communication
configuration with multi-users.

5.1 Physical media with dispersion

Physical media with dispersion are those in which
waves have their phase velocity altered as a function
of the frequency of the signal. However, a dispersive
medium does not alter the frequency of the signal, and
therefore, it does not alter its natural period, only its
propagation velocity. As a consequence, the LEs of
any arbitrary chaotic signal travelling in a dispersive
medium are not modified. The information carried by
this chaotic signal would also not be altered, if it were
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generated by Eq. (1), or by a system whose chaotic tra-
jectory possesses SRB measure, or that its topological
entropy HT equals the sum of the positive LEs.

However, the travel time of a signal to arrive at the
BS along the direct path τ0 is altered. This can impact
on the ability to decode as can be seen from Eq. (3).
Suppose that the travel time of user k, given by τ

(k)
0 ,

increases from 0 (as in the previous derivations) to a
finite value that is still smaller than the period of that
user T (k), so that n′ = n for that user. But,K0 would be
different than 1, and as a consequence, the returnmapof
the received signal would contain a term that is a func-
tion of the symbol sn+1. Extracting the symbols from
the received discrete signal (decoding) would have to
take into consideration this extra symbol, which rep-
resents a symbol 1 iteration (or period) in the future.
Decoding for the symbol sn from the received signal
would require the knowledge of the symbol sn+1. So,
to decode what is being received at a given moment
in the present would require knowledge of the symbol
that has just been sent. To circumvent this limitation,
one could firstly send a dummy symbol known by both
the transmitter and the receiver at the BS, and use it
to decode the incoming symbol sn , which then could
be used to decode sn−1, and so on. Noise could impact
on the decoding. Every new term that appears in Eq.
(3) results in a new branch for this map. With noise, a
branch in the return map that appears due to the symbol
sn+1 could bemisinterpreted as a branch for the symbol
sn , causing errors in the decoding.

In a multi-user scenario, dispersion would only con-
tribute to change the time delays τ

(k)
l for each user

for each propagating path. As discussed, this will not
affect the LEs of the source chaotic signals. Moreover,
as demonstrated, the LEs of the source signals should
be preserved by the linearly composed signal arriv-
ing at the BS, suggesting that the information encod-
ing capacity given by Eq. (15) in the multi-user sce-
nario could also be preserved for the systems for which
HT = ∑+ or

∑+ = HK S (as discussed in Sect. 2.3).
Noise would, however, increase the chances of mis-
takes in the decoding of amulti-user configuration, thus
impacting on the information capacity of the commu-
nication, since branches in the mapping of the received
signal could overlap. At the overlap, one cannot discern
which symbol was transmitted.

5.2 Physical media with interfering
periodic (non-chaotic) signals

This case could be treated as a chaotic signal that is
modulatedby aperiodic signal.Assumingnoamplitude
attenuation, the continuous signal arriving at the BS
from user k can be described by

r (k)(t) = x(t) + A sin (2π f pt + φ0) (24)

where f p represents the frequency of the periodic sig-
nal, and φ0 its initial constant phase. In here, I anal-
yse the simplest case, when f p = f (k), in which the
discrete-time signal arriving at the BS at times t = nT ,
from user k, would receive a constant contribution
c(k) = A sin (2πn + φ0), due to the interfering peri-
odic signal. If r (k)

n and r (k)
n+1 denote the discrete time

signals arriving at the BS without periodic interference
from user k at discrete times t = nT and t = (n +1)T ,
respectively, then r̃ (k)

n and r̃ (k)
n+1 described by

r̃ (k)
n = r (k)

n + c(k) (25)

r̃ (k)
n+1 = r (k)

n+1 + c(k) (26)

would represent the discrete time signals arriving at
times t = nT and t = (n +1)T at the BS, respectively,
after suffering interference from the periodic signal.
Substituting these equations into the mapping in Eq.
(3) would allow us to derive a mapping for the signal
with interference

r̃ (k)
n+1 = e

β
f r̃ (k)

n − (e
β
f − 1)(c(k) + α0sn). (27)

As expected, adding a constant term to a chaotic map
does not alter its LE given by β

f . Consequently, the
information encoding capacity of this chaotic signal is
also not altered, since it is generated by Eq. (1).

This constant addition results in a vertical displace-

ment of the map by a constant value -(e
β
f − 1)c(k).

So, added noise in the received signal with interfer-
ence would not impact more than the impact caused by
noise in the signal without interference.

In a multi-user scenario, LEs of the linearly com-
posed signal arriving at the BS should preserve all the
LEs of the source chaotic signals, suggesting that the
information encoding capacity in the multi-user sce-
nario could also be preserved, for signals being gener-
atedby the chaotic systemsdiscussed inSect. 2.3.Noise
would, however, increase the chances ofmistakes in the
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decoding of a multi-user configuration, thus impact-
ing on the information capacity of the communication,
since for each user the branches of themapping describ-
ing the received signal would be vertically shifted by a
different constant, resulting in branches of the received
signal that overlap. At the overlap, one cannot discern
which symbol was transmitted.

6 Conclusions

In this work, I show with mathematical rigour that a
linear superposition of chaotic signals with different
natural frequencies fully preserves the spectra of Lya-
punov exponents and the information content of the
source signals. I also show that if each source signal
is tuned with appropriated linear coefficients (or power
gains), successful decomposition of the source signals
and their information content out of the composed sig-
nal is possible.Driven by today’s huge demand for data,
there is a desire to develop wireless communication
systems that can handle several sources, each using
different frequencies of the spectrum. As an applica-
tion of this wonderful decomposability property that
chaotic signals have, I propose a multi-user and multi-
frequency communication system, Wi-C1, where the
encoding phase (i.e. the preparation of the signal to be
transmitted through a physical media) is based on the
correct choice of the linear coefficients, and the decod-
ing phase (i.e. the recovery of the transmitted signals
and their information content) is based on the decom-
position of the received composed signal.

The information encoding capacity ofWi-C1, or the
information rate of a signal that is obtained by a linear
composition of chaotic signals, is demonstrated to be
equal to the sum of positive Lyapunov exponents of the
source signals of each user. If linear coefficients (power
gains) are appropriately chosen, and noise is suffi-
ciently low, then the information encoding capacity of
Wi-C1 is equal to the information capacity of Wi-C1,
or the total rate of information being received/decoded.

Further improvement for the rate of information
could be achieved by adding more transmitters (or
receivers) at the expense of reliability. One could also
consider similar ideas as in [3,4], which would involve
more post-processing, at the expense of weight. Post-
processing would involve the resetting of initial con-
ditions in Eq. (20) all the time, and then using the
inverse dynamics up to some specified number of back-

ward iterations to estimate the past of u(k)
n . One could

even think of constructing stochastic resonance detec-
tors to extract the information of a specific user from the
received composed signal [41]. These proposed anal-
yses for the improvement of performance in speed,
weight and reliability of the communication are out
of the scope of this work.

I have compared the performance of Wi-C1 with a
non-chaotic communication method that is the
strongest candidate for the future 5Gnetworks, the non-
orthogonal multiplex access (NOMA), and have shown
thatWi-C1 can communicate at higher bit rates for large
noise levels in the channel.

The last section of this paper is dedicated to con-
ceptually discuss with somemathematical support how
chaotic signals and their information content are trans-
formed by physical channelswith other non-ideal prop-
erties (dispersion and interference with periodic sig-
nals), and how this impacts on the multi-user commu-
nication system proposed.
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Appendix A: The continuous hybrid-dynamics
chaotic wavesignal generator

A wonder of chaotic oscillations for communication is
the system proposed in Ref. [11]. As originally pro-
posed, the system is operating in a time frame whose
infinitesimal is denoted by dt , has a natural frequency
f0 = 1, a natural period T0 = 1, and an angular fre-
quencyω0 = 2π .With an appropriate rescaling of time
to a new time frame dt ′ = γ dt , it can be rewritten as in
Eq. (1), which I reproduce here to simplify understand-
ing of this and following sections of this “Appendix”.

ẍ − 2β ẋ + (ω2 + β2)(x − s(t)) = 0, (28)

where s(t) ∈ (−1, 1) is 2-symbol alphabet discrete
state that switches value by the signum function s(t) =
x(t)/|x(t)|, whenever |x(t)| < 1 and ẋ = 0. In this new
time frame, the natural frequency is f (γ ) = (1/γ )

(angular frequency equals 2π f ), the period T (γ ) =
1/ f (γ ) = γ T0(γ = 1), and β(γ ) = β(γ = 1) f (γ ),
where 0 < β(γ = 1) ≤ ln (2). β

f will be further used

to denote β(γ )
f (γ )

= β(γ = 1).
Equation (28) (andEq. (1)) has an analytical solution

that links its continuous form to its symbolic encoding,
provided by the discrete state sn obtained by sampling
the time at t = n/ f , where n = 
 f t� is the floor
function that extracts the integer part of f t :

x(t) = sn +
{

−sn + (1 − e−β/ f )

∞∑

i=0

si+ne−iβ/ f

}

×eβ(t−nT )

(
cosωt − β

ω
sinωt

)
. (29)

Main steps to derive this equation can be seen in Refs.
[8,13,28,45]; however, its present form allows Eq. (3)

to express a return map of signals with multiple propa-
gation paths and with arbitrary time delays for the time
of propagation of the multiple paths. Its formal deriva-
tion will be elsewhere published. In this equation, sn

represents the binary symbol associated with the time
interval nT ≤ t < (n + 1)T , where sn = s(t = nT ).
Sampling the time at this same rate a discrete mapping
of x(t) can be constructed

xn = enβ/ f

{
x0 − (1 − e−β/ f )

n−1∑

i=0

si e
−iβ/ f

}
. (30)

Moreover, this solution can be written in terms of
an infinite sum of basis function whose coefficients
are the symbolic encoding of the analogical trajectory
(sn). This representation allows for the creation of a
matched filter, which receives as the input the signal
x(t) corrupted by white Gaussian noise (AWGN) and
produces as the output an estimation of x(t).

It offers in a single system all the benefits of both
the analogical and digital approaches to communicate.
The continuous signal copeswith the physicalmedium,
and the digital representation provides a translation of
the chaotic signal to the digital language that we and
machines understand. Supposing the information to be
communicated is a binary stream b = {b0, b1, b2, . . .},
a signal can be created (the source encoding phase)
such that s(t) = (2bn − 1), for nT ≤ t < (n + 1)T
[13]. The so-called source encoding phase is thus based
on a digital encoding. Moreover, the discrete variable
sn is the symbolic encoding of the chaotic trajectory in
the space x, ẋ .

This kind of hybrid chaotic system to communicate
is not unique. Corron and Blakely [12] and Corron,
Cooper and Blakely [46] have recently proposed other
similar chaotic systems to that of Eq. (28) (and Eq.
(28)). It is hypothesised in Ref. [12] that the optimal
waveform that allows for a stable matched filter is a
chaotic waveform. In this work, we provide support
for this conjecture, but by showing that stability for the
recovery of the information can be cask in terms of the
non-existence of negative Lyapunov exponents of Eq.
(28) (and Eq. (28)). This is shown in Sect. I of SM.
Had this system negative LEs, its inverse dynamics—
thematched filter—responsible to filter out noise of the
received signal would possess a positive LE making it
to become unstable to small perturbations in the input
of the matched filter (the received signal).
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Appendix B: The return mapping of the received
signal for a single user and an arbitrary number of
propagation paths, in the noiseless channel

In Eq. (29), sn represents the binary symbol associated
with the time interval nT ≤ t < (n + 1)T , where
sn = s(t = nT ).

The received signal in the noiseless wireless channel
with a single user can be modelled by

r(t) =
L−1∑

l=0

αl x(t − τl), (31)

where there are L propagation paths, each with an
attenuation factor of αl and a time delay τl for the
signal to arrive to the receiver along the path l (with
0 = τ0 < τ2 < · · · < τL−1).

To obtain a map solution for Eq. (31), we need to
understand which symbol sn′ is associated with the
time. t − τl . Let us define the time-translated variable

t ′ = t − τl , (32)

where t represents the global time for all elements
involved in the communication, the time that a certain
signal x(t) was generated by a user from the chaotic
system in Eq. (28), the “transmitter”. t ′ represents the
delayed time. The clock of the user, the “receiver”, is
at time t , but it receives the signal r(t ′). The receiver
decodes for the symbol sn′ , where

n′ = 
 f t ′�. (33)

The operator 
·� represents the floor function. The
transmitter constructs a map at times t = n/ f , so Eqs.
(32) and (33) can be written as

n′ = 
n − f τl� = n − � f τl�, (34)

t ′ = n

f
− τl , (35)

where the operator �·� represents the ceiling function.
In the time frame of t ′, the solution in (29)multiplied

by an arbitrary attenuation factor can be written as

αl x(t ′)

= αl sn′ + αl

⎧
⎨

⎩−sn′ + (1 − e−β/ f )

∞∑

i=0

si+n′ e−iβ/ f

⎫
⎬

⎭

× eβ(t ′−n′T )

(
cosωt ′ − β

ω
sinωt ′

)
. (36)

Let us understand what happens to the oscillatory

term
(
cosωt ′ − β

ω
sinωt ′

)
in Eq. (36). Using Eq. (35),

we obtain that

cos (ωt ′)− β

ω
sin (ωt ′)=cos

(
2π

τl

T

)
+ β

ω
sin

(
2π

τl

T

)
.

(37)

So,

αl x(t ′) = αl sn′ + αlκl

{
−sn′ + (1 − e−β/ f )

∞∑

i=0

si+n′e−iβ/ f

}
, (38)

where

κl = eβ(t ′−n′T )

{
cos

(
2π

τl

T

)
+ β

ω
sin

(
2π

τl

T

)}
.

(39)

Let us calculate the previously shown quantities for
a delayed time t ′′ one period ahead in time of t ′:

t ′′ = t ′ + T = t ′ + 1/ f , (40)

n′′ = 
 f t ′′� = 1 + n′. (41)

It can be also be written that

t ′′ − n′′T = t ′ − n′T . (42)

This equation can be derived by doing t ′′ − n′′T =
t ′ + 1

f − n′T − T .
Using Eqs. (32), (40), and (42), it is possible to

obtain

cos (ωt ′′) − β

ω
sin (ωt ′′)

= cos (ωt ′) − β

ω
sin (ωt ′), (43)

= cos
(
2π

τl

T

)
+ β

ω
sin

(
2π

τl

T

)
,

eβ(t ′′−n′′T ) = eβ(t ′−n′T ). (44)

So, the attenuated signal at time t ′′ is given by

αl x(t ′′) = αl sn′+1 − αlκl sn′+1

+αlκl

⎧
⎨

⎩(1 − e−β/ f )

∞∑

i=0

si+n′+1e−iβ/ f

⎫
⎬

⎭ . (45)

123



1836 M. S. Baptista

Returning to Eq. (38), notice that by a manipulation of
the terms inside the summation, it can be written as

αl x(t ′)
= αl sn′ + αlκl

{
−sn′ + (1 − e−β/ f )sn′

+(1 − e−β/ f )

∞∑

i=0

si+n′+1e−(i+1)β/ f

}

= αl sn′ + αlκl

{
−sn′e−β/ f

+(1 − e−β/ f )

∞∑

i=0

si+n′+1e−(i+1)β/ f

}
. (46)

Multiplying this equation by eβ/ f results in

eβ/ f αl x(t ′)
= eβ/ f αl sn′ − αlκl sn′ + αlκl{

(1 − e−β/ f )

∞∑

i=0

si+n′+1e−iβ/ f

}
. (47)

The received signal at time t and t + T is then given
by

r(t) =
L−1∑

l=0

αl x(t ′), (48)

r(t + T ) =
L−1∑

l=0

αl x(t ′′). (49)

If we observe the received signal only at discrete times
t = nT , and defining the discrete variable r(nT ) ≡ rn ,
we obtain that

eβ/ f rn =
L−1∑

l=0

αl

{
eβ/ f sn′ − Kl sn′ + KlA

}
, (50)

rn+1 =
L−1∑

l=0

αl
{
sn′+1 − Kl sn′+1 + KlA

}
, (51)

where

Kl = e−β(τl−�τl/T �T )

{
cos

(
2π

τl

T

)
+ β

ω
sin

(
2π

τl

T

)}
. (52)

The variable Kl is derived by noticing that

e−β(τl−�τl/T �T ) = eβ(t ′−n′T ). (53)

Comparing Eqs. (50) and (51), we finally arrive at a
return map for the received signal with multipath prop-
agation

rn+1 = eβ/ f rn −
L−1∑

l=0

αl

(
eβ/ f sn′ − Kl sn′

−sn′+1 + sn′+1Kl
)
. (54)

Appendix C: The equivalence principle for flows,
and the preservation of the Lyapunov exponents for
linearly composed chaotic signals

Let us assume that information is being encoded by
using the Rössler attractor. User 1 encodes its informa-
tion in the variable x1(t) and user 2 in the variable x2(t).
User 2 has a base frequency Q times the one from user
1. Notice that Q = 1/γ , where γ is the time-rescaling
factor. User 1 chaotic signal x1 is generated by

ẋ1 = −y1 − z1(t),

ẏ1 = x1 + ay1,

ż1 = b + z1(x1 − c). (55)

User 2 uses the signal x2 generated by :

ẋ2 = Q[−y2 − z2(t)],
ẏ2 = Q[x2 + ay2],
ż2 = Q[b + z2(x2 − c)], (56)

where a, b and c represent the usual parameters of the
Rössler attractors. Notice, however, that this demon-
stration would be valid to any nonlinear system, the
Rössler was chosen simply to make the following cal-
culation straightforward to follow. The system of equa-
tions in (56) is already in the transformed time frame,
so that user 2 has a basis frequency Q times larger than
user 1.

The transmitted composed signal can be represented
by

O(t) = α1x1(t) + α2x2(t), (57)

where α1 and α2 are attenuation, or power gain factors.
The interest is to derive a systems of ODEs that

describes all variables involved inODEsystemdescrib-
ing the received signal

Ȯ(t) = α1 ẋ1(t) + α2 ẋ2(t). (58)

Determinism in chaos allows us to write that at a
time t there exists a τ such that x2(t) = x1(t −τ). More
generally, if user 2 has a basic frequency Q times that
of user 1, its trajectory at time t + nδt (n ∈ N) can be
written in terms of the user 1’s trajectory by

x2(t + nδt) = x1(t + nQδt − τ). (59)
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I now define a new set of transformation variables
given by

w1x
n (t) = x1(t − Q n δt), (60)

w
1y
n (t) = y1(t − Q n δt), (61)

w1z
n (t) = z1(t − Q n δt), (62)

where

n = {0, . . . , N }, (63)

Nδt = τ. (64)

Defining the vectors X1(t) = {x1(t), y1(t), z1(t)} and
W1

n(t) = {w1x
n (t), w1y

n (t), w1z
n (t)}, I can write Eqs.

(60)–(62) in a compact form

W1
n(t) = X1(t − Q n δt). (65)

Notice also that by defining the vector X2(t) =
{x2(t), y2(t), z2(t)}, I can write that at time t

W1
n(t) = X1(t − τ + (N − Q n)δt), (66)

= X2

(
t + (N − Qn)

Q
δt

)
. (67)

To facilitate the following calculations, I express some
terms of Eqs. (66) and (67) along the variables x1(t)
and x2(t) for n = {0, 1, 2, . . . , N − 1, N }:

w1x
N (t) = x1(t − τ) = x2(t), (68)

w1x
N−1(t) = x1(t − τ + Qδt) = x2(t + δt), (69)

...

w1x
2 (t) = x1(t − 2Qδt), (70)

= x2(t + τ/Q − 2δt),

w1x
1 (t) = x1(t − 2δt), (71)

= x2(t + τ/Q − δt),

w1x
0 (t) = x1(t) = x2(t + τ/Q). (72)

I express the transformation variables considering a
small displacement Qδt in time from the time t :

W1
n(t + Qδt) = X1(t − τ + (N − Q n)δt + Qδt)(73)

= X2

(
t + (N − Qn)

Q
δt + Qδt

)
. (74)

Then, time derivatives can now be defined by

Ẇ1
n−1(t) = (W1

n−1 − W1
n(t))

Qδt
,

n ∈ [2, . . . , N ]. (75)

For the variables of the user 2, we have that

ẋ2(t) = x2(t + δt) − x2(t)

δt
= w2

N−1(t) − w2
N−1(t)

δt
,

= ẇ2
N (t), (76)

which takes us to

Ẇ2
n(t) = (W2

n−1 − W2
n(t))

δt
,

n ∈ [1, . . . , N − 1]. (77)

The original variables of the Rössler system for user
1 can be written in terms of the new transformed vari-
ables by

W1
0 = X1(t),

Ẇ1
0 = Ẋ1(t), (78)

and for the user 2

W2
N = X2(t),

Ẇ2
N = Ẋ2(t). (79)

Before I proceed, it is helpful to do some considera-
tions, regarding this transformation of variables. Notice
that ẋ2 = wN−1(t)−wN (t)

δt and ẋ1 = w0(t)−w1(t)
Qδt . So, ẋ2 =

Qẋ1. Moreover,W1
n(t = X1(t −τ +(N − Qn)δt)) and

W2
n(t = X2(t+(N −Qn)/Qδt)). So,W1

n(t) = W2
n(t),

but their derivatives are not equal.
In the new variables, the ODE system describing the

received signal from user 1 is described by

ẇ1x
0 = −w

1y
0 − w1z

0 ,

ẇ
1y
0 = w1x

0 + aw
1y
0 ,

ẇ1z
0 = b + w1z

0 (w1x
0 − c), (80)

and user 2 is described by:

ẇ2x
N = −w

2y
N − w2z

N ,

ẇ
2y
N = w2x

N + aw
2y
N ,

ẇ2z
N = b + w2z

N (w2x
N − c). (81)

The received signal is described by

O(t) = α1w
1x
0 + α2w

2x
N , (82)

and its first time derivative

Ȯ(t) = α1ẇ
1x
0 + α2ẇ

2x
N ,

= α1(−w
1y
0 − w1z

0 ) + α2(−w
2y
N − w2z

N ). (83)

A final equation is needed to describe the first time
derivative of ẇ2x

0 (t) in terms of the previously defined
new variables. We have that

ẇ2x
0 = 1

δt
(w2x

0 (t + δt) − w2x
0 (t)). (84)
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Moreover,

w2x
0 (t + δt) = w1x

0 (t + Qδt), (85)

w1x
0 (t + Qδt) = w1x

0 (t) + ẇ1x
0 Qδt. (86)

Placing Eqs. (85) and (86) in Eq. (84) takes us to

ẇ2x
0 = Qẇ1x

0 = 1

δt
(w1x

0 − w1x
1 ). (87)

The variational equations of the systems formed by
Eqs. (75), (77), (80), (81), (83), and (87) can be con-
structed by defining the perturbed variables w̃

jk
i =

w
jk
i + δw

jk
i , with the index representing j ∈ {1, 2, 3},

k ∈ {x, y, z}, i ∈ {0, . . . , N }, whose first derivative
is ˙̃w jk

i = ẇ
jk
i + δẇ

jk
i . Also, Õ = O + δO , for the

received signal. The Jacobian matrix of the variational
equations is thus given by

δw1x
0 δw

1y
0 δw1z

0 δw1x
1 δw1x

2 . . . δw2x
0 δw2x

1 δw2x
2 . . . δw2x

N δw
2y
N δw2z

N δO
δẇ1x

0 . −1 −1 . . . . . . . . . . .

δẇ
1y
0 1 a . . . . . . . . . . . .

δẇ1z
0 w1z

0 . w1x
0 − c . . . . . . . . . . .

δẇ1x
1 . . . (Qδt)−1 −(Qδt)−1 . . . . . . . . .

δẇ1x
2 . . . . (Qδt)−1 . . . . . . . . .
... . . . . . .

. . . . . . . . .
...

δẇ2x
0 δt−1 . . −δt−1 . . . . . . . . . .

δẇ2x
1 . . . . . . δt−1 −δt−1 . . . . . .

δẇ2x
2 . . . . . . . δt−1 −δt−1 . . . . .
... . . . . . . . . .

. . . . . .
...

δẇ2x
N . . . . . . . . . . . −Q −Q .

δẇ
2y
N . . . . . . . . . . Q Qa . .

δẇ2z
N . . . . . . . . . . Qw2z

N . Q(w2x
N − c) .

δȯ . −α1 α1 . . . . . . . . −Qα2 −Qα2 .

The upper-left diagonal block

⎛

⎝
. −1 −1
1 a .

w1z
0 . w1x

0 − c

⎞

⎠ ,

is responsible to produce the same three Lyapunov
exponents χ1, χ2 = 0, χ3 (χ1 > 0, χ3 < 0) of the
Rössler attractor, for the user 1.

The bottom-right diagonal block

⎛

⎝
. −Q −Q
Q Qa .

Qw1z
0 . Q(w1x

0 − c)

⎞

⎠ ,

is responsible to produce the three Lyapunov expo-
nents Qχ1, χ2 = 0, Qχ3 (so Q times the Lyapunov
exponents of the Rössler attractor), for the user 2. The
diagonal elements of the Jacobian will produce N − 1
Lyapunov exponents equal to (Qδt)−1 and N −1 expo-
nents −δt−1. The signs of the “infinities” Lyapunov
exponents are a consequence of the way the derivatives
were defined, and they could have been made to have
the same signs. These exponents represent a higher-
dimensional dynamics that effectively does not partic-
ipate in the low-dimensional ordinary dynamics of the
measured received signal. They are a consequence of
the transformation of a time-delayed system of differ-
ential equations into an ODE, without explicitly time
dependence.

Concluding, the spectra of Lyapunov exponents of
the dynamics generating the signals for user 1 and 2 are
preserved in the received signal and are not affected by
the combination of the signals.

Appendix D: A succinct presentation on the history
of chaos for communication

This work reveals novel fundamental properties of
chaotic signals to communicate. Some of the work
presented in this work also incorporates wonderful
properties of chaos that had been reported in the

123



Chaos for communication 1839

almost 2 decades of research in this field, which I
succinctly acknowledge in the following. Three sem-
inal works [1,9,47] have launched the area of com-
munication with chaos. In Ref. [9], the authors have
controlled chaos [48] to propose a communication
system where signals would represent desired digital
information, yet preserving the original dynamics of
the chaotic system. In Ref. [1], the authors have pro-
posed a communication system in which analog infor-
mation signals were added (masked) into the chaotic
signal to be transmitted. Synchronization of chaos
between transmitter and the receiver [23] was used
as a means to extract the information at the receiver
end. In Ref. [47], the authors have shown that chaos
can be modulated to represent arbitrary digital infor-
mation. Later on, other works have followed [49,50],
where in Ref. [49], it was shown that chaotic sig-
nals could be modulated in spread sequences to rep-
resent arbitrary digital information, and in Ref. [50],
a general method to communicate based on the syn-
chronization of chaotic systems was proposed. Since
then, the area has attracted great attention to the
scientific community, producing a vast collection of
research.

These communication methods can be classified
according to the wonderful fundamental properties of
chaos they take advantage of: (i) those methods that
control the chaotic signal to represent (encode) infor-
mation, yet preserving relevant invariant properties of
chaos, as in Refs. [9,13,14]; (ii) those that manip-
ulate/modulate the chaotic signal for it to represent
(encode) the desired information by altering some nat-
ural property of the signal, for example its amplitude,
as the chaos shift keying [47,51] and the spreading
method of [49]); (iii) those in which information is
extracted at the receiver (decoded) by means of visual
inspection of the received signals, as in Refs. [7,9];
(iv) those in which extraction of information happens
via a matched filter as in Ref. [11] (also known as
coherent matched filter receiver [52]); (v) those in
which information is extracted by means of synchro-
nization (also known as coherent correlation receiver
with chaotic synchronization [52]), as in Ref. [1,50].
In the review on digital communication with chaos in
Ref. [52], two additional schemes are discussed, non-
coherent detection techniques, and differentially coher-
ent reception. The present work belongs to the 4 first
categories ((i)–(iv)). I do assume that there is a con-
trol producing a chaotic signal that encodes a desired

arbitrary digital message (i), the signal has its ampli-
tude modified by a power gain (ii), decoding is done
by a simple visual inspection of the received signal
(iii), and information can be extracted by means of a
matched filter at the receiver (iv). However, my work
additionally explores the wonderful decomposability
property chaotic signals have and that enables a solu-
tion for a multi-source and multi-frequency commu-
nication, a work that can allow chaos to be adopted
as a native signal to support wireless networked com-
munication systems such as the Internet of Things or
5G.
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