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a b s t r a c t 

The accidents of subsea pipelines due to third-party interference often result in catastrophic impacts, therefore, 

risk assessment has progressively become substantial to ensure the safety and reliability of the systems. However, 

the current risk analysis approaches are unable to minimize the uncertainties in the analysis due to the high 

demands of the qualitative inputs. The Bayesian network approach is believed to be able to provide answers to 

such a problem. The main advantage of this technique is that it allows the inference model and predictive analysis 

for constructing the current and future performance of the system based on the observed evidence. These can be 

achieved by introducing the subsea pipeline’s accident history and operational data in the model for developing 

the conditional probability distribution of each variable in the analysis. This paper proposes a dynamic reliability 

model for subsea pipeline risk assessment due to third-party interference based on the Bayesian approach. This 

technique is combined with fault tree and the finite element models for producing a reliable risk assessment 

framework for subsea pipelines. It is expected that the proposed model will be able to minimize the number of 

qualitative inputs in the analysis and also provides dynamic results for estimating the risk level of the subsea 

pipeline throughout its service life. 
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. Introduction 

Subsea pipeline risk assessment has now become increasingly impor-

ant to guarantee the safety and reliability of the system throughout its

ervice life ( Kawsar et al., 2015 ; Khan et al., 2021 ). The likelihood and

onsequence of a subsea pipeline failure must be evaluated in order to

ssess the risks from several threats, such as corrosion, third-party dam-

ges and mechanical failures. The pipeline failure due to these threats

ould have devastating effects on human safety, environment and econ-

my. However, it is hard to predict failure probabilities in advance,

hich makes it harder for operators to maintain their pipelines in safe

peration ( DNV, 2017 ). 

Risk assessment presents several difficulties in its development, such

s the limitation of available information on the likelihood of fail-

re threats and the particular consequences of failure ( Shan et al.,

018 ). This could lead to making several assumptions and using ex-

ert opinions in the model and analysis, which might result in greater

ncertainty in the outcomes. Advanced logic-based approaches, such

s dynamic fault tree ( Aslansefat et al., 2020 ), Petri net ( Guo et al.,

016 ), and Bayesian network, are contemporary models used for dy-

amic risk assessment of safety critical infrastructure. An efficient

ipeline risk assessment should be able to characterize and calcu-

ate the risk associated with a pipeline. Unfortunately, the calcula-
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ion of risk requires knowledge about the probability of failure and

he consequence of failure. Both of which are difficult to estimate,

nd in practice, the system under analysis cannot be characterized

recisely. Moreover, numerical or objective data are often inade-

uate, uncertain, and sometimes unavailable to perform calculations

 Sulaiman, 2017 ). 

Failure threats in subsea pipelines are hard to inspect, but the pa-

ameters influencing them are easier to observe. Bayesian networks are

eveloped to manage and overcome data uncertainties in the predic-

ion of corroded pipeline performance. The dynamic risk is considered

y introducing the time function into the model variables ( Aulia et al.,

019 ). Applying the dynamic Bayesian reliability model to an industrial

ase study produced a realistic result of the pipeline estimated risk level,

hich was similar to the risk assessment result specified by the Opera-

or ( Aulia et al., 2021 ). Given the high amount of uncertainties that will

ost probably be involved in risk analysis Pesinis and Tee (2018) have

ndicated that Bayesian networks can provide a possible modelling and

redictive approach to forecast the pipeline performance. It is an effec-

ive method for reasoning under uncertainty, using well-established the-

retical principles of probability as the basis for inference analysis and

o overcome the uncertainty. Bayesian networks can also be expanded

o consider a system’s dynamic behaviour by introducing temporary net-

ork dependencies ( Chang et al., 2019 ). 
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In recent years, several studies have proposed relevant analysis

ethods in the field of subsea pipeline risk assessment ( Bai and

ai, 2014 ; Li et al., 2019 ). Bai and Bai (2014) suggested the probability

nd consequences of the failure of subsea pipelines from different types

f impact and investigated the prediction of risk and acceptance criteria

o establish an optimal plan for inspection. Kawsar et al. (2015) im-

lemented a QRA model of application by conducting numerical sim-

lations with finite element analysis based on statistical sampling and

robabilistic assessment of transverse accidental loading on submarine

ffshore transmission lines. 

Maintenance operations of subsea pipelines are generally carried out

nder challenging working conditions and subjected to a series of factors

uch as human error, harsh environment and equipment failure ( Li et al.,

019 ). Risk analysis during maintenance operations is required to im-

rove the completion probability of operations, and to avoid unexpected

ncidents. Some research works mainly focus on assessing the integrity

f the systems ( Aljaroudi et al., 2015 ; Barihaa et al., 2016 ), however,

hese studies do not use risk as a decision supporting tool. Silva and

oares (2016) assessed the risk level of a pipeline system encompassing

he pipelines as individual elements and their contribution to the subsea

roduction system. A semi-quantitative risk assessment tool is used to

valuate the pipeline failure probability and the severity of the failure. 

Pipeline leak accidents with disastrous consequences are rare, and in-

ufficient data are available for probability estimation of such an event

 Yang et al., 2015 ). In general, available information from different

ources is gathered to address insufficient data. This process introduces

ata uncertainty in risk analysis. Li et al. (2019) propose a new method-

logy implemented with hierarchical Bayesian network (BN) to assess

he risk of subsea pipelines leak. On the other hand, conventional meth-

ds would induce a biased result in probability estimation of the rare

vent with insufficient data. Quantitative risk assessment of such events

s consistently a challenging task due to data scarcity. 

Third-party interference is one of the significant causes resulting in

ubsea pipelines failure ( Li et al., 2018 ; Okodi et al., 2021 ). According

o European Gas Pipeline Incident Data Group ( Horalek, 2015 ), 35%

ccidents of subsea pipelines are induced by third-party interferences.

he current risk assessment methods for this failure threat are still relied

n the qualitative factors, such as background and experience of experts,

n most of the analysis and cannot practically address the complexity

f the risk factors ( Guo et al., 2018 ). 

The main objective of this paper is to propose a dynamic reliabil-

ty framework for assessing the subsea pipeline risk estimation due to

hird-party interferences. The fault-tree analysis is utilised to propose

n initial idea of the subsea pipeline failure mechanism. Then, the pro-

osed model is transformed into a dynamic Bayesian network to indi-

ate the dependencies between each variable, and also to introduce the

ime variable in the model. Several qualitative inputs in the analysis are

inimised by utilising the functional interpolating method proposed by

 Mkrtchyan et al., 2016 ), leading to reduced uncertainty factors in the

odel. Finite element analysis is also used to determine the pipeline im-

act forces due to the failure threats. The risk estimates obtained with

his model are compared with a practical industrial code-based assess-

ent for validation purposes. Furthermore, the dynamic model is also

tilised to estimate the risk estimation of the subsea pipeline throughout

ts design life using predictive inference. This inference analysis is ex-

ected to forecast the value of any node based on history and/or present

ata. With regard to pipeline life extension assessment, the model can

lso be expanded to cover the upcoming time slices beyond its design

ife, allowing to estimate the pipeline risk level during its extended life.

. Pipeline risk assessment 

Generally, risk assessments consist of an estimation of the failure fre-

uency and an assessment of the accident consequences. The frequency

f occurrence and the consequence of failure may be either: 
278 
1) calculated when there is sufficient data (quantitative approach); 

2) estimated on the basis of engineering judgment or expert opinion

(qualitative approach); 

3) combination of both approaches (semi-quantitative approach). 

The occurrence frequency is then ranked from 1 (i.e. low frequency)

o 5 (i.e. high frequency), and the consequence is ranked from 1 (i.e.

ow, non-critical) to 5 (i.e. high, significant impact). 

Reference DNV (2017) categorises the subsea pipeline’s failures into

ifferent damage categories, i.e. minor (D1), moderate (D2) and major

D3). The frequency ranking and consequence ranking are established

or each of the relevant damage categories, thus giving the risk for each

amage category. The explanation for each damage categories is as fol-

ow. 

1) Minor damage (D1): Damage neither requiring repair nor resulting

in any release of hydrocarbons. Smaller dents in the steel pipe wall,

e.g. up to 5% of the diameter, will not normally have any immediate

influence of the operation of the lines. 

2) Moderate damage (D2): Damage requiring repair, but not leading to

the release of hydrocarbons. Dent sizes restricting internal inspection

(e.g. over 5% of the diameter for steel pipelines) will usually require

repair. Ingress of seawater can lead to corrosion failures. However,

the repair may be deferred for some time, and the pipeline or um-

bilical may be operational, provided that the structural integrity is

confirmed. 

3) Major damage (D3): Damage leading to release of hydrocarbons or

water, etc. If the pipe wall is punctured or the pipeline ruptures,

the pipeline operation must be stopped immediately and the line

repaired. The damaged section must be removed and replaced. 

4) In case of damage leading to release (D3), the following classification

of releases are used: 

5) No release (R0). 

6) Small release (R1): The pipeline may release small amounts of con-

tent until detected either by a pressure drop or visually. 

7) Major release (R2): Release from ruptured pipelines. The full rupture

will lead to a total release of the volume of the pipeline and will

continue until the pipeline is isolated. 

The subsea pipeline risk is then evaluated by plotting the established

requency and consequence in a risk matrix. In a risk matrix, the ALARP

as-low-as-reasonably-practicable) region identifies an area where the

isk is acceptable; however, further reduction of the risk should be pur-

ued with cost-benefit evaluation. In order to compare the frequency and

onsequences with the risk of any of the relevant hazards, an individual

anking is proposed by DNV (2017) , as presented in Table 1 . 

There are several techniques which are widely utilised to identify

ailure causes and their effects and to estimate the associated probabil-

ties in risk assessment, i.e. fault tree analysis (FTA), hazard and op-

rability (HAZOP) study and failure mode and effect analysis (FMEA).

ault tree analysis is a widely known risk evaluation instrument that

akes unwanted occurrences or flaws and reflects them in a tree-like

ramework through a straightforward logic and graphic design method

 Kabir, 2017 ). A fault tree is built to identify and explicitly demonstrate

ll prospective causes (basic events) to result in the unwanted event

top event). The causal probabilities are linked through logical gates

OR, AND). These logical gates depict the connection between events of

utput and input. The objective of qualitative analysis in an FTA is to

chieve minimum cut sets. If all the minimum cut sets and basic event

robabilities were acquired, the likelihood of top event failure would

e achieved. On the other hand, the constraint of fault trees is that they

resume independence among the basic events, which is not usually a

alid hypothesis. Furthermore, the basic event probabilities are most

ikely assigned utilising qualitative inputs, hence, it results in a higher

egree of uncertainties in the analysis. 

A HAZOP study is a structured and systematic approach to identify-

ng any potential system hazards ( Taylor, 2017 ). HAZOP is based on a
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Table 1 

Risk ranking and measurements (Adapted and modified from DNVGL, 2017) 

Variables State description Proposed ranking Measurement 

Frequency of failure Annual frequency 1 < 10 − 5 

2 10 − 5 –10 − 4 

3 10 − 4 –10 − 3 

4 10 − 3 –10 − 2 

5 > 10 − 2 

Consequences of failure Human safety Human endangered 1 No person(s) are injured 

3 Serious injury, one fatality 

5 More than one fatality 

Environmental Amount of release 1 0 Tonnes 

2 < 1,000 Tonnes 

3 1,000–10,000 Tonnes 

4 10,000–100,000 Tonnes 

5 > 100,000 Tonnes 

Economic loss Production delay 1 0 days 

2 < 1 month 

3 1–3 months 

4 3–12 months 

5 > 12 months 
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ypothesis that risk events are triggered by operational or design pur-

ose deviations. It is a team approach involving multidisciplinary pro-

essionals for collective brainstorming to stimulate a variety of opinions

n the subject based on a list of guidelines. There are some disadvan-

ages in using HAZOP for risk assessment, such as low certainty due to

he qualitative inputs and high demands on the knowledge and experi-

nce of the participants. 

Failure mode and effects analysis (FMEA) is a structured approach

o discovering potential failures that may exist within the design of a

roduct or process ( Lo et al., 2019 ). Those initiating events with simi-

ar obstacles can be put in the same group in the FMEA-based risk as-

essment approach. Analyses will be simplified by concentrating on the

ignificant group instead of redundant events. FMEA analysis can be

lassified as a subset of a HAZOP study. FMEA’s purpose is to allow a

oncentrated system or process evaluation to define potential threats

nd their potential effect on performance outcomes. The disadvantages

f the assessment are that each event is treated as a different occur-

ence and no consideration is given to the interactions between events

 Sulaiman, 2017 ). 

There are several techniques and tools for analysing the safety and

eliability of a system dynamically, by estimating its failure threats, fre-

uencies and consequences. The artificial neural network (ANN) tech-

ique is a powerful method which is capable to learn information

rom samples, and is usually considered analogous to the human brain

 Xu et al., 2017 ). ANNs possess the ability to implicitly detect complex

on-linear relationships between independent and dependent variables,

nd predict accurate solutions for any undefined inputs in many research

elds. El-Abbasy et al. (2014) presented a study of ANN to develop con-

ition prediction models for oil and gas pipelines. The main advantage

f ANN in their study was related to the capability of learning from

pecific predefined patterns. The learning capacity might include classi-

cation, prediction, and control of any specific task. Furthermore, ANNs

ere used to predict the corrosion rate based on the parameters of cor-

osion defects obtained from in-line inspection data ( Ok et al., 2007 ),

nd applied to predict the ultimate tensile strength of the API X70 steels

fter thermomechanical treatment ( Khalaj and Khalaj, 2016 ). Although

he prediction results obtained from ANN models have acceptable ac-

uracy, the uncertainties in the measurement of hidden variables in the

etworks are often neglected ( Wen et al., 2019 ). 

Petri Net is a popular mathematical and graphical modelling tool for

inimising the uncertain, vague and random characteristics of risk fac-

ors on a system. Chang et al. (2018) claimed that the Petri Net model

an conform to human thinking and cognitive style and has a good par-
279 
llel processing capability for analysing the system risk. The Petri Net

odel can also be combined with fuzzy logic approach to further risk

valuation ( Guo et al., 2016 ; Li et al., 2019 ). Guo et al. (2016) presented

 Fuzzy Petri Net model combined with fuzzy reasoning algorithm for

he risk evaluation of long-distance oil and gas transportation pipelines.

he proposed model was claimed to be able to improve the traditional

ault tree analysis approach by conducting further quantitative analy-

is and found the weak links of the system precisely. The other popu-

ar technique for modelling the probabilistic analysis is Bayesian net-

ork (BN). Kabir and Papadopoulos (2019) compared the Petri Net and

ayesian Network based models when used as model-to-model transfor-

ation approaches, considering a simple dynamic fault tree (DFT). It

as seen from the result, from a graphical point of view, that the Petri

et model of the DFT was relatively more complex than the Bayesian

etwork model of the DFT. More specifically, while the Bayesian Net-

ork model had 23 nodes, the Petri Net model had 40 nodes. The

ayesian Network model had 23 arcs and the Petri Net model had 78

rcs and 34 transitions. In addition, in terms of parameter setting, the

etri Net model needs to set the firing rates of 13 timed transitions. On

he other hand, Bayesian Networks need to set the conditional proba-

ility table (CPT) for analysis, and in this case, there are 17,574 values

hat needed to set in the conditional probability tables. Out of these

alues, 17,496 values are deterministic, i.e., either 0 or 1, hence set au-

omatically. Therefore, there were 78 probabilistic values for 13 root

odes corresponding to 13 basic events of the DFT which were set man-

ally. In a Petri Net model, a transient analysis is performed for gen-

rating 174,345 states. DFTs of larger systems can be much larger and

ore complex, leading to graphically complex and computationally de-

anding Petri Net models. In terms of results, the Bayesian Network

nd the Petri Net-based methods estimated the top event probability

f the DFT as 0.0293 and 0.0290, respectively. This shows that the re-

ults given by the two models are comparable. A qualitative compar-

son between five soft computing techniques, i.e. decision tree, fuzzy

ule, artificial neural network, Bayesian network and cognitive maps,

as given in Ismail et al. (2011) . It can be seen that Bayesian networks

re the most suitable technique for the pipeline performance probability

nalysis. 

Several studies have been conducted on the utilisation of the

ayesian network for analysing the risk on the pipeline. Li et al.

2019) demonstrated the application of Bayesian network in risk anal-

sis of submarine oil and gas pipeline. The hazard identification and

scalation process of pipeline leakage were modelled using the bow-tie

pproach. A Bayesian network model was developed due to the limita-
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ion of bow-tie in conditional dependency analyses and common cause

ailures. The proposed approach was claimed as an efficient tool in risk

nalysis on leakage failure of the pipeline. However, the conditional

robability tables in this analysis were developed using the qualitative

nputs, which may result in uncertainties and biases on the outputs. Fur-

her review of dynamic BNs is given in Section 3.2 . 

An efficient subsea pipeline risk assessment should be able to charac-

erize and determine the risk associated with the pipeline, and examine

he likelihood and consequences of the failure threats. However, the cur-

ent approaches are lacking the ability to minimise the uncertainties in

he analysis due to the high demands of the qualitative inputs. Therefore,

his study will focus to overcome these uncertainties by developing dy-

amic reliability analysis, based on historical and actual pipeline data,

o examine the probabilities of the frequency and consequences in the

isk assessment. A Bayesian Network approach is believed to be able to

rovide answers to such a problem and this will be further explained in

he next section. 

. High-level research framework 

Fig. 1 shows the high-level research framework proposed in this

tudy. It contains five stages, i.e. failure mechanism identification, con-

itional probability development, impact force analysis, frequency and

onsequence analysis, and risk ranking measurement. There are three

ools which will be utilised to conduct the analysis, such as traditional

ault tree analysis for initial causal network development, finite element

nalysis for impact force analysis and dynamic Bayesian network for

onstructing the conditional probability distribution and analysing the

ynamic model for the whole risk assessment process. Each of the above

ools are explained in the following sections. 

.1. Fault tree analysis-based workflow 

Fault tree analysis is utilised to construct an initial model of the

ubsea pipeline failure mechanism. It consists of three main steps,

.e. potential threats identification, failure mechanism analysis and re-

ated factors identification. The tree development starts from identi-

ying the top event that is selected by the user for a specific interest

nd the tree developed will identify the root cause. Several sources are

sed throughout in building the fault tree model, such as related re-

earch papers ( Chang et al., 2019 ; Peng et al., 2016 ; Liang et al., 2012 ;

heliyan and Bhattacharyya, 2018 ), technical literature and project

xperiences. 
Fig. 1. Proposed five-stage research fram

280 
.2. Dynamic Bayesian networks-based workflow 

Dynamic Bayesian Networks (DBN) are a continuous enhancement

f static Bayesian networks for modelling dynamic systems through the

nalysis of time variations ( Hu et al., 2015 ). While the static Bayesian

etwork indicates the cumulative probability distribution over a collec-

ion of time-independent random variables, the dynamic Bayesian net-

ork is a multi-dimensional depiction of a random process. The DBNs

nable the interpretation of the present, the reconstruction of the past

nd the forecasting of the future, mostly due to the inference algo-

ithms’ computational complexity (time is considered as a discrete vari-

ble) ( Zarei et al., 2017 ). In this paper, dynamic Bayesian networks are

sed to analyse the probability distribution of the failure frequencies

nd consequences in the risk assessment. Moreover, dynamic models are

sed to introduce time-variance in the analysis for predicting the future

isk ranking estimation. The main advantages of the dynamic Bayesian

etwork are that they allow inference analysis based on observed evi-

ence and give options to model the future performance of the system

 Nguyen and Bai, 2018 ). 

The dynamic workflow from Fig. 1 considers the time-dependent

ariables related to failure threats in a systematic way. It minimises the

ualitative inputs from experts in the CPT development by creating a

ore effective and efficient expert questionnaire, leading to a reduced

egree of uncertainties in the analysis. The proposed framework is dis-

ributed among three levels. These are level 1: causal network devel-

pment; level 2: conditional probability distribution development, and

evel 3: dynamic probability analysis. Details of the dynamic Bayesian

nalysis steps are presented in Aulia et al. (2021) . 

For the initial step, once the failure mechanism models have been

onstructed by the fault tree analysis, the models are converted to a dy-

amic Bayesian causal network to determine the causality of each vari-

ble, and their impact on the system. Time dependant variables are also

efined in order to assign the time slice nodes into the network model.

everal sources are utilized throughout in building the causal network

o determine the state measurement and in assigning prior probabilities

o variables where data is not available, i.e. from literature, project ex-

eriences, and expert opinion ( Li et al., 2019 ). These prior probabilities

ill be updated when new observed evidences become available, and

ew results will also be extracted accordingly. 

The next step is to develop the conditional probability distribution

f the causal network. This stage is divided into three cases ( Aulia et al.,

021 ). The first case is applicable when there are no available project

atabases, so the expert domain will be utilised. The second case is rele-
ework for pipeline risk assessment. 
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Table 2 

Damage category for stress analysis. 

Damage category Maximum allowable stress 

Moderate 0.9 x SMYS 

Major 1 x SMYS 

Serious 1 x SMTS 

Catastrophic 1.1 x SMTS 

Disastrous > 1.1 x SMTS 
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(  
ant when the database containing pipelines’ historical data is available

o fill all variables such as pipeline design data, inspection history report,

perational data and incident report. Finally, the third case is a combi-

ation of the first and second case techniques, which will be utilised

hen the project database information is limited, and expert opinions

re used to fill the missing data. In this study, the third scenario will be

sed due to data availability for the conditional probability table devel-

pment. 

The last step is to analyse the time-dependant probability model

sing a dynamic Bayesian network. As the DBNs are applied to con-

truct future probability distribution, the performance of the pipelines

hich are threatened by the failures can be predicted as a function of

ime. Current operational data, such as temperature, pressure and con-

ent, and also third-party data, such as latest ship traffic data near the

ipeline, installation schedules, and platform lifting activities, are con-

idered as evidence or observed data to update the conditional proba-

ility distribution and dynamic model for failure probability prediction.

he future probability conditions of the top event are predicted using

he prediction inference calculation of the DBN. Prediction inference

an be utilised for all variables in the analysis as long as those variables

ave history and/or current observation data. Therefore, the Bayesian

etwork’s prior probabilities will always be updated when new data or

vidence becomes available. 

Dynamic Bayesian analyses are also employed in the risk matrix pre-

ictive analysis. The dynamic models provide a set of risk level probabil-

ties throughout the pipeline service life, and it can also be expanded to

nalyse the estimated risk level during the pipeline life extension phase.

f the estimated risk is above the relevant acceptance criterion, then

isk reduction can be achieved by reducing the frequency of the event,

educing the consequence of the event, or a combination of both. The

ynamic models allow the long-term effectivity assessment of several

reventive and corrective actions taken to minimise the risk. 

.3. Finite element analysis methodology 

The finite element approach is utilised in this study to analyse the

amaging impact on the pipeline due to the forces of failure threat.

he dropped object weight is represented by concentrated force, and

s applied on a straight pipeline at an angle of 90° to the seabed to

imulate the effects of the dropped object, as presented in Fig. 2 . The

orce value is increased until the equivalent stress at the hit point is equal

o the maximum allowable stress for each damage category. This is taken

o be the point at which leakage can occur, considering the maximum

eight from the dropped object, the specified minimum yield strength

SMYS) and specified minimum tensile strength (SMTS) of the pipeline.

he damage categories from several sources ( DNV, 2017 ; ASME, 2017 ;

lkazraji, 2008 ) are adopted and modified for conservatism purposes,

s listed in Table 2 . 
Fig. 2. Simulation of dropped object on the pipeline. 
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These damage categories will be considered as the pipeline impact

orce variable states for the Bayesian conditional probability develop-

ent. The frequency of the potential dropped object for each floater

ill be gathered to populate the conditional probability table. 

The stress analysis is performed in accordance with ( ASME, 2017 )

sing AutoPIPE software Version 12.01.00.09. AutoPIPE is a finite el-

ment analysis program used to analyse piping and structural systems

ubjected to static and dynamic loading. The program contains a com-

rehensive library of material properties and piping components includ-

ng pipes, bends, flanges and supports. The program takes into account

he non-linear behaviour of the restraints due to gap and/or friction and

odels the buoyancy effect in subsea pipelines. The following sections

etail the development of the model, the design load conditions and

tress analysis. 

.3.1. Model development 

In this study, pipeline elements are modelled as 3D straight pipe

eam elements connected at nodes. An anchor is required in the model

nd in this analysis, it is located at the end of the pipeline section. For

onservatism purposes, the seabed is modelled as rigid supports below

he pipeline, and a sharp-edge load perpendicular to the seabed is ap-

lied to give the worst impact to the pipeline ( DNV, 2017 ). The presence

f water is represented by buoyancy load requiring water surface ele-

ation and the specific gravity of the water. The wave is included by

nserting its height and associated period and profile of current velocity

t five different elevations is also included in the model. 

The software works on the basis of a global coordinate system that

an be located at any point along with the model. Nodes are established

t important locations such as anchors, support locations and to define

he length of the pipeline elements. The wave and currents loads are

pplied along with the global directions. 

Boundary conditions are specified at any of the nodes to restrain

ranslation or rotation of a particular node in any of the three global

or local) coordinate directions. The following describes the boundary

onditions used for the supports in the model. 

1) V-Stop: the supports that restrain vertical downward movements of

the pipeline. 

2) Anchor: the supports that restrain all translations and rotations at

any node of the system and are used to model the pipeline ends,

which are fixed in all degrees of freedom. The model ends at the

restrained section of the pipeline is constrained for all translations

and rotations. 

Some of the software features which has been used in this study are

escribed below. 

1) Coatings: external coatings (concrete & corrosion coating) are con-

sidered as part of the overall structural model of the pipeline. The

pipe weight is computed directly by the program. Since only one

coating is allowed to be input by AutoPIPE, external coatings that

consist of several different layers of coatings are calculated for one

composite coating density. 

2) Fluid Properties: both internal and external fluid properties influ-

ence the pipeline. Internal pressure is applied and results in both

circumferential and longitudinal stresses. The specific gravity of the

pipe contents can be specified in order to calculate its weight. 
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3) Buoyancy: by specifying the water level with respect to the vertical

global axis from the model origin and the specific gravity of seawater

the buoyancy loads are simulated and considered for the analysis. 

4) Current and Waves: this feature facilitates to simulate the wave and

current loads to be used in the stress analysis. 

.3.2. Load cases 

The basic functional and environmental load cases are considered

n this study. The functional loads are pipeline weight (gravity load),

nternal temperature and pressure, whilst the environmental loads are

aves and currents from four global directions. The proposed load case

ombinations are as follows. 

Load Case 1: Functional (GT1P1) 

Load Case 2: Functional + Environmental (GT1P1 + U1) 

Load Case 3: Functional + Environmental (GT1P1 + U2) 

Load Case 4: Functional + Environmental (GT1P1 + U3) 

Load Case 5: Functional + Environmental (GT1P1 + U4) 

Where: 

G: Gravity load (considering the pipe and coating / insulation

weight) 

T1: Fluid temperature 

P1: Pressure (internal and external) 

U1: Wave and current loads applied along + X axis (pipeline longi-

tudinal “+ ” direction) 

U2: Wave and current loads applied along + Y axis (pipeline lateral

“+ ” direction) 

U3: Wave and current loads applied along - X axis (pipeline longitu-

dinal “- “ direction) 

U4: Wave and current loads applied along - Y axis (pipeline lateral

“- “ direction) 

.3.3. Stress analysis 

Pipeline stress due to dropped object impact analysis has been car-

ied out in accordance with ( ASME, 2017 ). The hoop, longitudinal and

ombined stresses are verified against the allowable stresses by means of

ode compliance automatically by the program as per the design code.

he stress analysis is performed to limit the stresses within allowable

imit. In this study, it is assumed that the material remains elastic be-

ond the pipeline SMYS, therefore the failure load will be conservative.

or the purpose of this assessment, the analysis is sufficient to determine

hether or not the pipeline is at risk from this hazard. 

. Failure mechanism development 

In this study, third party interference is considered as the main

ipeline failure threat. Fig. 3 shows the proposed fault tree of the threat.

t can be seen that there are 13 basic events in the system, with 4 in-

ermediate events and 1 top event. Five types of floaters are considered

n this model, i.e. commercial ships, fishing vessels, military vessels, in-

tallation vessels and rig/platform. The passing frequencies and poten-

ial dropped objects from these floaters are assigned as the basic events

nder the OR gates. Several accident preventive actions are also intro-

uced in this fault tree such as vessel passing and dropped object pre-

entions and the pipeline protection system. Probability of object hitting

he pipeline and high impact force from the dropped object are exam-

ned to generate the pipeline failure probability as the top event. Details

f each event can be seen in Table 3 . 

. Causal network development 

Bayesian networks are utilised to construct the causal network de-

elopment based on the initial failure mechanism model from the fault

ree, as can be seen in Fig. 4 . It can be seen that thirteen basic events

rom the fault tree diagram have been reduced into six basic events in
282 
his Bayesian causal network. This is because the passing frequency and

otential dropped objects from five floaters can be combined due to their

ependencies. In addition, six variables are assigned to temporal clones,

hown in shaded circles, to represent the condition of the events from

he last operational activities or previous projects. The pipeline failure

ariable is divided into four small networks to determine the frequency

nd consequence of failure variable probabilities for each of the damage

lassifications. These damage classifications are taken from ( DNV, 2017 )

s previously mentioned in Section 2 , and it is assigned to the frequency

nd consequence of failure variables according to its relevance, such as:

Frequency of failure: D1, D2, D3, R0, R1, R1 

Consequence of failure; 

Human safety: R2 

Environmental: R1, R2 

Economic loss: D1, D2, D3, R0, R1, R2 

. Dynamic probabilistic modelling 

Dynamic Bayesian networks are utilised to analyse the probabilistic

odelling for the pipeline risk assessment. This technique is capable of

inimising the uncertainties in the model and reducing the number of

ualitative inputs in the analysis. Details of the dynamic Bayesian net-

ork methodology are presented in Section 3 . The following sections

resent the applications of the technique, such as constructing the con-

itional probability table, analysing the predictive inference and intro-

ucing the technique into the pipeline impact force analysis. 

.1. Conditional probability table development 

The conditional probability tables are constructed using the func-

ional interpolation technique suggested by Mkrtchyan et al. (2016) to

inimize the amount of qualitative inputs in the assessment. Five ex-

erts with professional knowledge and extensive pipeline engineering

xperience are invited to complete the questionnaire. Their answers are

rojected to provide a realistic measurement of the conditional proba-

ility distribution. This qualitative method is most probable to result in

andom distributions of probability due to varying backgrounds and ex-

erience of the experts. Due to lack of clear guidance from the literature,

uch uncertainties could be better depicted by a Gaussian distribution,

s presented in this section. 

Table 4 shows an example of expert questionnaire scores for commer-

ial vessel passing frequency (CV t ) given its temporal clone (commercial

essel passing frequency from the previous time slice, CV t-1 ), where t is

he event’s time slices. These scores are only considered as a numerical

xample to test the proposed approach. Dynamic Bayesian calculation

hown in Eq. (1) has been used to analyse the conditional probability be-

ween these two nodes, where P (CV i,t-1 ) are the parent nodes of P (CV i,t )

rom the previous time-slice, i is the sum start value index and n is the

pper range of i. 

 

(
CV 𝑡 

||CV 𝑡 −1 
)
= 

𝑛 ∑
𝑖 =1 

𝑃 

(
CV 𝑖,𝑡 

|||𝑃 
(
CV 𝑖,𝑡 −1 

))
(1) 

A questionnaire state of 1 to 5 proposed by Baraldi et al. (2015) is

sed for the score measurement (1 for “very low ”, 2 for “low ”, 3 for

medium ”, 4 for “high ” and 5 for “very high ”), and the experts only

eeded to fill the positive state 1 (very low) and the negative state 5

very high). The mean value of state 1 is 1.20 and the standard deviation

s 0.45, whilst the mean value and standard deviation of state 5 are 4.40

nd 0.55 respectively. These average scores are converted to probability

alues using the Gaussian distribution and the columns in between these

ositive and negative states are filled using the probability interpolating

ethod, as can be seen in Fig. 5 . These probability values will be used

o populate the CPT of the dynamic Bayesian network model. 
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Fig. 3. Fault tree diagram for pipeline failure due to third-party interference. 

Table 3 

Fault tree events’ descriptions. 

Event codes Details Descriptions 

TE1 Top event Pipeline failure 

IE1 Intermediate event 1 Object hits the pipeline 

IE2 Intermediate event 2 High impact force from the object 

IE3 Intermediate event 3 Dropped/dragged object 

IE4 Intermediate event 4 Floaters pass the pipeline route 

BE1 Basic event 1 Commercial ships very high passing frequency 

BE2 Basic event 2 Fishing vessels very high passing frequency 

BE3 Basic event 3 Military vessels very high passing frequency 

BE4 Basic event 4 Installation vessels very high passing frequency 

BE5 Basic event 5 Rig/platform near the pipeline 

BE6 Basic event 6 No vessel passing preventive actions 

BE7 Basic event 7 No dropped/dragged object preventive actions 

BE8 Basic event 8 No pipeline protections 

BE9 Basic event 9 Potential dropped object from commercial ships 

BE10 Basic event 10 Potential dropped object from fishing vessels 

BE11 Basic event 11 Potential dropped object from military vessels 

BE12 Basic event 12 Potential dropped object from installation vessels 

BE13 Basic event 13 Potential dropped object from rig/platform 

Table 4 

Expert questionnaire scores for commercial vessel passing given its temporal clone. 

State no. Parent node Child node Expert 1 

score 

Expert 2 

score 

Expert 3 

score 

Expert 4 

score 

Expert 5 

score Name State 

1 CV t-1 
(temporal 

clone) 

Very low 

(VL) 

CV t 1 1 1 2 1 

5 CV t-1 
(temporal 

clone) 

Very high 

(VH) 

CV t 4 5 5 4 4 

283 
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Fig. 4. Dynamic causal network for pipeline failure due to third-party interference. 

Fig. 5. Conditional probability distribution of commercial vessel passing frequency (child node) given its temporal clone (parent node). 
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Fig. 6. Bayesian network commercial vessel passing frequency given its tempo- 

ral clone from previous time slice. 
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.2. Predictive inference analysis 

In this level, the time series is introduced into the analysis using

BNs. Pipeline operational data and third-party activity reports are con-

idered as evidence data to update the conditional probability distribu-

ion and dynamic model for failure probability prediction. An example

f the DBN model of the commercial vessel passing frequency (CV t ) as

he parent node, given its temporal clone from previous time slice (CV t-1 )

nd its effect on pipeline impact force (IF t ) as the child node is shown

n Fig. 6 . The detailed probabilistic prediction analysis methodology is

resented in Section 3.2 . 

The future probability conditions of a variable commercial vessel

assing frequency are predicted using the prediction inference calcula-

ion of the DBN. Prediction inference can be utilised for all variables in

he analysis as long as those variables have history and/or current obser-

ation data ( Maldonado et al., 2019 ). Therefore, the Bayesian network

rior probabilities will always be updated when new data or evidence
ecomes available. 

284 
.3. Pipeline impact force analysis 

The pipeline impact forces due to dropped objects are analysed using

he combination of finite element modelling and the dynamic probabilis-

ic analysis. As mentioned in Section 3.3 , the finite element analysis in

his paper is performed using Autopipe software. Pipeline and environ-

ental data are presented in Table 5 , and the loading parameters used

n the model are a pipeline in operational condition with un-corroded
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Table 5 

Pipeline and environmental data. 

Type of data Value/remark 

Pipeline data Outside diameter 273.05 mm 

Wall thickness 12.70 mm 

Material grade API 5L X65 

SMYS 448 MPa 

SMTS 530 MPa 

Concrete weight coating thickness 28 mm 

Design life 25 years 

Operational pressure 30.89 MPa 

Operational temperature 143 °C 

Content density 83.20 kg/m 

3 

Environmental data Mean Sea Level 1.49 m 

Wave height 100-year 5.7 m 

Wave period 100-year 7.4 s 

Current velocity 100-year 0.47 m/s 
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all thickness, and 100-year maximum wave and current return period.

 concentrated force is applied on a straight pipeline and increased un-

il the equivalent stress at the hit point is equal to the damage crite-

ia. The conservative damage categories which have been mentioned in

ection 3.3 are used for the analysis, and the maximum stress ratios (ra-

io between actual stress and maximum allowable stress) are appeared

t the dropped object hit point, as can be seen in Fig. 7 . The governed

ase for this maximum actual stress is from the combined stress (hoop,

ongitudinal and torsional stresses). Global coordinate system is used in

he model as presented in Fig. 7 , i.e. X as pipeline longitudinal axis, Y

s pipeline lateral axis and Z as pipeline vertical axis. The code “Axx ”

ssigned along the pipeline in this figure are the node numbers for an-

hors, supports below the pipeline (seabed) and the dropped object hit

oint. 

The maximum potential forces for each damage category have been

etermined, and these forces are converted to weights measurement, as

an be seen in Table 6 . The measured weights for each damage criteria

re specified as the state measurement for the conditional probability

able development. 
Fig. 7. Pipeline stress result from Autopipe. 

Table 6 

Maximum forces for each damage category. 

Damage category Maximum force (N) Maximum weight (Tonnes) 

Moderate 5,500 0.56 

Serious 15,000 1.53 

Major 32,000 3.26 

Catastrophic 42,000 4.28 

Disastrous > 42,000 > 4.28 

r

F

t

285 
For the probabilistic modelling, the conditional probability table for

he pipeline impact force is populated by gathering the floater’s poten-

ial dropped object data. There are ten gathered data points for each

ype of floaters as can be seen in Table 7 . These data are considered as

he frequency probability of dropped object on the pipeline and com-

ined as the conditional probability table for each damage criteria spec-

fied previously. The detailed methodology of conditional probability

able development based on frequency data is presented in ( Aulia et al.,

021 ). 

. Case study 

The application of the proposed model to an industrial case study

s presented in this section. The pipeline and environmental data from

able 5 , and third-party data from Table 8 are included in the analy-

is as the observed evidence for updating the prior probabilities in the

onditional probability table of the dynamic Bayesian network shown

n Fig. 4 . The potential dropped object categorisation in Table 8 is taken

rom DNV (2017) . The pipeline is still in the construction phase and the

ervice life is 25 years. With this information, the estimated risk prob-

bilities were computed using the proposed dynamic Bayesian model.

urther fundamental details of the dynamic risk and reliability mod-

lling are available in Aulia (2019) . 

.1. Frequency and consequences probabilistic analysis 

Relevant damage classification for each frequency and consequence

ariables are assigned according to the causal network development

ethod presented in Section 6 . Details of each network can be seen

n this section. The assigned risk ranking was given in Table 1 . 

Fig. 8 shows the frequency of failure causal network, based on the

verall network shown in Fig. 4 . All damage classifications (D1, D2, D3,

0, R1 and R2) are included in the network as they are related to the

requency of failure variable. The analysis result based on the case study

ipeline data is shown in Table 9 . It can be seen that the most probable

tates for D1, D2, D3, R0, R1 and R2 are state 1 (very low), state 2 (low),

tate 3 (medium), state 1 (very low), state 2 (low) and state 3 (medium)

espectively. 
ig. 8. Causal network for pipeline frequency of failure due to third-party in- 

erference. 
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Table 7 

Potential dropped object weight classification for each floater. 

Floater’s 

type No. of sample 

No. of potential dropped object weight classification 

Moderate Serious Major Catastrophic Disastrous 

Commercial ships 10 0 2 8 0 10 

Fishing vessels 10 9 10 1 8 2 

Military vessels 10 0 3 7 0 10 

Installation vessels 10 2 13 3 2 10 

Rig/platform 10 21 35 23 15 10 

Table 8 

Third-party data for application to an industrial case study. 

Type 

of 

ship/vessel 

Passing 

frequency per 

year 

Potential dropped object categories of ship/vessel 

Flat/long shaped Box/round shaped 

< 2 Tes 2 - 8 Tes > 8 Tes < 2 Tes 2 - 8 Tes > 8 Tes 

Commercial ships 104 a a a a a a 

Fishing vessels 1,460 a a a 

Military vessels 730 a a a a a a 

Installation vessels 360 a a a a a a 

Type 

of 

structure 

No. of structures 

near the pipeline 

Potential dropped object categories of structure 

Flat/long shaped Box/round shaped 

< 2 Tes 2 - 8 Tes > 8 Tes < 2 Tes 2 - 8 Tes > 8 Tes 

Rig/platform 1 a a a a a a 

Table 9 

Probability analysis result for pipeline frequency of failure 

due to third-party interference. 

Damage 

classification 

States’ probability (%) 

1 2 3 4 5 

D1 90.56 9.44 0.00 0.00 0.00 

D2 28.75 65.38 3.98 1.89 0.00 

D3 6.51 42.71 46.90 1.88 2.00 

R0 65.38 20.74 10.57 2.34 0.97 

R1 33.51 58.84 4.51 1.02 2.12 

R2 7.02 39.31 47.57 1.74 4.37 

Table 10 

Probability analysis result for human 

safety consequence of failure due to 

third-party interference. 

Damage 

classification 

States’ probability (%) 

1 3 5 

R2 98.65 1.05 0.30 
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Fig. 9. Causal network for human safety consequence of failure due to third- 

party interference. 

Fig. 10. Causal network for environmental consequence of failure due to third- 

party interference. 
For the human safety consequence, there is usually very little human

ctivity in the vicinity of pipelines. Pipeline releases at the platform

pproach or near subsea structures may have consequences for 1st party

ersonnel on a platform or rig. In the pipeline mid-line zone, releases

an endanger 3rd party personnel. Only major release scenarios (i.e.

ategory R2) from pipelines transporting gas can endanger personnel. A

as cloud nearby the platform or the rig can be ignited resulting in a ball

f fire or an explosion. Ignition will only occur if the gas above the sea

urface is of flammable concentration and possible ignition sources are

resent within this cloud. Fig. 9 shows the human safety consequence

ausal network, and the analysis result based on the case study pipeline

ata is shown in Table 10 . It can be concluded that the probability of

he damage classification R2 for the human safety consequence in this

ase study is very low. 

For the environmental consequences, Fig. 10 shows that the con-

equence should be established both for minor and for major release
286 
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Table 11 

Probability analysis result for environmental conse- 

quence of failure due to third-party interference. 

Damage 

classification 

States’ probability (%) 

1 2 3 4 5 

R1 88.02 11.98 0.00 0.00 0.00 

R2 0.00 88.80 8.75 2.01 0.44 

Fig. 11. Causal network for economic loss consequence of failure due to third- 

party interference. 
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Fig. 12. Risk matrix for human safety consequence of failure due to third-party 

interference. 

Fig. 13. Risk matrix for environmental consequence of failure due to third-party 

interference. 
cenarios (i.e. R1 and R2). The environmental consequence of any leak-

ge from damaged pipelines should consider polluting impacts on eco-

ystems in the water. The analysis result based on the case study pipeline

ata is shown in Table 11 . It can be seen that in this case study, the prob-

bility of environmental consequence for damage classifications of R1

nd R2 are state 1 (very low) and state 2 (low) respectively. 

The economic loss consequence of any damage to pipelines can be

lassified with respect to the delay in production from a pipeline. This

onsequence is related to all damage categories, i.e. DI, D2, D3, R0, R1

nd R2, and its causal network is presented in Fig. 11 . The cost of pro-

uction delay normally exceeds the actual cost of repairing the damage.

he analysis result based on the case study pipeline data is shown in

able 12 . It can be seen that the probability of economic loss conse-

uence for all damage classifications are state 1 (very low) except for

he damage classification of R2 which is in the state 2 (low). 
Table 12 

Probability analysis result for economic loss consequence 

of failure due to third-party interference. 

Damage 

classification 

States’ probability (%) 

1 2 3 4 5 

D1 90.56 9.44 0.00 0.00 0.00 

D2 65.38 28.75 3.98 1.89 0.00 

D3 46.90 42.71 6.51 1.88 2.00 

R0 65.38 20.74 10.57 2.34 0.97 

R1 58.84 33.51 4.51 1.02 2.12 

R2 39.31 47.57 7.02 1.74 4.37 
F

i
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.2. Dynamic risk assessment 

The final risk assessment consists of coupling the relevant frequency

ankings with the consequence rankings and then comparing the result

gainst the acceptance criteria. Figs. 12–14 show the risk ranking re-

ults for human safety, environmental and economic loss consequences

espectively. All the damage categories for each consequence are in ac-

eptable level except damage category R2 of economic loss consequence

hich is in the ALARP region (shown in light shaded box). This is still

ategorised as an acceptable risk, however further reduction of the risk

hould be pursued with cost-benefit evaluation ( DNV, 2017 ). 

Examples of dynamic risk assessment results for environmental con-

equence R1 and R2 are presented in Figs. 15 and 16 respectively. The

nalyses result show that the estimated risk result for damage category

1 at the beginning of the pipeline’s service life is in moderate level.

owever, the dynamic model predicts that the estimated risk in this

evel will gradually decrease throughout the year, while the major risk

evel is getting higher during its service life. In addition, damage cate-

ory R2 also shows similar behaviour but at a different risk level. The

ighest risk level in the pipeline’s early life is at the major level, how-

ver, it will also gradually decrease throughout the service year, and the

erious risk level is steadily increased. The fluctuated movement of these

robabilities are happened because there are five time-dependant basic

odes in the dynamic Bayesian network shown in Fig. 4 with their condi-
ig. 14. Risk matrix for economic loss consequence of failure due to third-party 

nterference. 
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Fig. 15. Dynamic risk assessment for environmental consequence – R1. 

t  

(  

d  

d  

1

 

l  

p  

r  

m  

a  

t

 

c  

i  

s  

t  

f

(  

 

 

(  

 

(

 

q  

i  

p  

p

8

 

a  

T  

d  

y  

a  

t  

v  

a  

u  

t  

w  

n  

p  

m  

r

 

f  
ional probability distribution for each child node given the parent node

from previous time slice). The dynamic analysis is performed the pre-

ictive analysis based on these time-dependant conditional probability

istribution and produced the dynamic risk results shown in Figs. 15 and

6 . 

The estimated risk result at the beginning of the pipeline’s service

ife is similar to the risk result produced by the pipeline’s Operator as

resented in Table 13 , however, the DBN-based result provides a set of

isk level probabilities throughout the pipeline’s service life. The DBN

odel can also be expanded for analysing the estimated risk level prob-

bilities during the pipeline life extension phase, allowing the future

rend prediction of the pipeline failure risk due to third-party damage. 

In each project, the risk should be kept as low as reasonably practi-

able. This means that some low-cost risk reduction measures should be

ntroduced even if the risk is considered to be acceptable. In this case

tudy, dropped object factor seems to be the most significant cause of
Fig. 16. Dynamic risk assessment for environmental consequence – R2. 
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Table 13 

Consequence of failure ranking comparison between Operator and DBN-based assess

Pipeline Damage 

category 

Operator’s result 

Outside diameter Wall thickness 

Consequence of 

failure ranking Most sig

273.05 

mm 

12.70 

mm 

R1 1 Dropped

R2 2 Dropped

288 
he pipeline failure as presented in Table 12 . The risk reduction for this

actor can be achieved by: 

1) reducing the frequency of the event; this can be done by limiting the

lifting operations and the type of objects lifted in the pipeline zone,

and by introducing safety distance and safe areas in this certain zone.

2) reducing the consequence of the event; this can be done by increas-

ing the pipeline protection level and stopping the production in

pipeline during installation activity. 

3) combination of the above. 

Frequency reduction measures shall be prioritised before conse-

uence reduction measures. If the risk level is not acceptable, then mit-

gation measures should be taken to reduce the risk. The length of the

ipeline to be protected should be so that the overall risk of both the

rotected and the unprotected parts are acceptable. 

. Conclusions 

A dynamic reliability framework is proposed in this paper for

nalysing the pipeline risk assessment due to third-party interference.

he framework is established using three tools, i.e. fault tree analysis,

ynamic Bayesian network and finite element analysis. Fault tree anal-

sis is utilised to develop an initial model of the pipeline failure mech-

nism due to the third-party interference, then the model is upgraded

o a dynamic causal model using the Bayesian network to indicate the

ariable dependencies and to include time variant characteristics in the

nalysis. The pipeline impact forces due to failure threats are simulated

sing a finite element model, and the conditional probability distribu-

ion is developed based on the stress results. The dynamic Bayesian net-

ork is also employed in the risk matrix predictive analysis. The dy-

amic models provide a set of risk level probabilities throughout the

ipeline’s service life, and it can also be expanded for analysing the esti-

ated risk level during the pipeline life extension phase. The complete

isk assessment framework is presented in Fig. 1 . 

Based on the dynamic Bayesian network shown in Fig. 4 , the pipeline

ailure as the top event has been divided into four small networks for

efining the risk assessment variables, i.e. frequency of failure, and con-

equence of failure for human safety, environmental and economic loss.

amage categories are defined for each variable according to their rele-

ancies. There are eight basic events assigned to the model, and five of

hem are considered as time-dependant variables, hence, there are five

emporal clones introduced in the analysis to represent those variables

rom the previous time slices. The state probabilities for the pipeline

mpact force variable are assigned based on the finite element analysis

esults and the floaters’ potential dropped object data. From the dy-

amic risk assessment results, it can be seen that the estimated risks

or each consequence variable are in reasonable range and comparable

ith risk result produced by the pipeline’s Operator. In addition, the

BN-based outcome offers a set of risk level probabilities throughout

he pipeline’s service life and during the life-extension period, as pre-

ented in Figs. 15 and 16 . 

It was found that the advantages of the DBN-based risk assessment

pproach are significant, such as minimising number of qualitative in-

uts in the analysis, resulting expandable model to cover the upcoming

ime slices. It allows to estimate the pipeline risk level during its ex-

ended life, and enables the model to be updated when new data or
ment results. 

DBN result 

nificant cause 

Consequence of 

failure ranking Most significant cause 

 object 1 Installation vessel activity (dropped object) 

 object 2 Installation vessel activity (dropped object) 
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vidence become available, hence it can be categorised as self-learning

ool. For further study, it would be intriguing to develop an advanced

achine learning-based framework for third-party interference risk pre-

ictive analysis, leading to a complete set of subsea pipeline dynamic

eliability assessment. 
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