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Abstract

Evolutionary dynamic multi-objective optimisation (EDMO) is a relatively young area of investigation that
is rapidly growing. EDMO employs evolutionary approaches to handle multi-objective optimisation problems
that have time-varying changes in objective functions, constraints and/or environmental parameters. Due to the
simultaneous presence of dynamics and multi-objectivity in problems, the optimisation difficulty for EDMO has
a marked increase compared to that for single-objective or stationary optimisation. After nearly two decades
of effect, EDMO has achieved significant advancements on various topics, including dynamics characterisation,
change detection, change response, performance assessment. In addition, there have been a number of studies
on application of EDMO to real-world problems. This paper presents a broad survey and taxonomy of exist-
ing research on EDMO. As a result, multiple future research directions are highlighted to further promote the
development of the EDMO research field.

1 Introduction
Dynamic multi-objective optimisation problems (DMOPs) are those that have multiple objectives to be optimised
subject to a number of constraints, where the objectives and/or constraints change over time. Without loss of
generality, a mathematical representation of DMOPs can be described as follows:

min F(x, t) = (f1(x, t), ..., fMt(x, t))
T

s.t.


hi(x, t) = 0, i = 1, ..., nh(t)

gi(x, t) ≥ 0, i = 1, ..., ng(t)

x ∈ Ωx, t ∈ Ωt

(1)

where Mt is the number of conflicting objectives, nh(t) and ng(t) are the number of equality and inequality
constraints at time t, respectively. Ωx ⊆ Rn is the decision space and Ωt ⊆ R is the time space. F (x, t):
Ωx × Ωt → RMt is the objective function vector that evaluates the solution x at time t.

At a given time t, the DMOP described in (1) is a stationary multi-objective optimisation problem and thus the
concept of Pareto dominance applies well in EDMO. Therefore, by time discretisation a DMOP can be considered
as a sequence of stationary multi-objective optimisation problems. Accordingly, we have the following definitions:
Definition 1: A solution xt is said to dominate another solution yt at discretised time instant t, denoted xt ≺ yt,
if and only if their objective components satisfy Fj(xt, t) ≤ Fj(yt, t) for ∀j ∈ {1, 2, . . . ,Mt} and F(xt, t) 6=
F(yt, t).
Definition 2: A feasible solution x∗t to (1) at discretised time instant t is called a Pareto-optimal solution, if and
only if no solution yt exists such that yt ≺ x∗t . The set of all the Pareto-optimal solutions form the Pareto-optimal
set (PS t), namely, PS t = {xt ∈ Ωx|@yt ∈ Ωx, yt ≺ xt}. The image of the PS t in the objective space is called
the Pareto-optimal front (PF t), i.e., PF t = {F(xt, t)|xt ∈ PS t}.
Definition 3: A solution set P is said to dominate another solution set Q, if and only if there exists, for any
solution y in Q, a solution x in P to dominate y, i.e., P ≺ Q ⇐⇒ ∃x ∈ P, x ≺ y,∀y ∈ Q.

∗Corresponding contact: math4ne@gmail.com.
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Definition 4: The frequency of change, denoted as 1
τt

, measures how frequent a DMOP (1) changes. In an
optimisation process, τt can be either the number of generations or fitness evaluations (denoted update period)
for which the DMOP (1) stays temporarily stationary1. Mathematically, τt = max τ ; s.t. F(x, t + r(τ ′)) =
F(x, t),∀ τ ′ ≤ τ(τ ′ ≥ 0), where r(τ ′) is a time function of τ ′.
Definition 5: The severity of change, denoted as nt, is the magnitude of an environmental change, or the amount
of perturbation to a stationary system. It can be described as the amount of change enabling the transformation:
F(x, t)→ F(x, t+ 1).

In [90], nt is considered to affect system control parameters that change objective function landscapes f(x, φt, t),
where φt+1 = φt ⊕∆φ(nt). Weicker [151] proposed three definitions to measure the influence of problem prop-
erties on severity: minimal severity, maximal severity, and average severity. According to Weicker’s definitions,
one way to measure severity at the population level can be the average severity change of a population P , i.e.,
nt = 1

|P |
∑
x∈P ||F (x, t)− F (x, t− 1)||1, which can indicate how much change a population-based algorithm

undergoes in dynamic environments.
Dynamic multi-objective optimisation (DMO) is an important branch of dynamic optimisation, focussing on

solving DMOPs. The primary difference between DMO and dynamic single-objective optimisation (DSO) [116]
is the number of objective functions they handle. As a result, the solution to DMOPs is not a sequence of optima
but instead a sequence of trade-off solutions for all the environmental changes that occur in a considered period
of time. Unlike DSO which is aimed to track the single moving optimum, DMO is focused on tracking the
moving PS (and its image PF) closely over time. This difference leads to a significant increase in the complexity
of optimisation problems, algorithm design and performance measures in DMO. Compared to DSO that was
surveyed in recent studies [157, 158] , DMO presents some unique difficulties and challenges:

• Benchmarking dynamism of DMOPs is difficult. The presence of multiple objectives in DMO increases
possible combinations of dynamic features and static problem properties, making it difficult to benchmark
diverse real-world dynamics within a test suite that is often of limited size. It is likely that static multi-
objective properties dominate the difficulty of DMO, leading to the dynamism of DMOPs being unexpect-
edly obscured and poorly benchmarked [79].

• Diversity maintenance is demanding. Unlike DSO which maintains diversity just in variable space in dy-
namic environments, DMO additionally needs to maintain diversity in objective space to ensure its solu-
tions are a good representative of the PF. When designing approaches in response to environmental changes,
DMO shall consider diversity maintenance in both variable and objective space.

• Performance measures are difficult and computationally costly. It is difficult to design a good performance
measure to quantify the quality of a sequence of sets of trade-off solutions resulting from tracking the PS/PF,
especially when a single one that can measure the overall performance of an algorithm is pursued. If per-
formance measures require the PF to be known for each environmental change, it becomes computationally
intensive to sample and then store the PF in memory over all changes.

• Comparison of algorithms becomes complex. Due to Pareto optimality, algorithm comparison involves
comparison of sets of trade-off solutions. The multi-dimensional nature of the solution set makes it difficult
to discriminate between algorithms. This is further compounded by the dynamism of DMOPs, requiring
the comparison of multiple sequences of multi-dimensional solution sets.

• Visualisation is difficult. Although it is not a matter related to optimisation directly, visualisation of time-
series trade-off solutions in objective space can be difficult, especially for DMOPs with a high number of
objectives.

Despite that advances in DSO, including problem benchmarking and algorithmic design methodologies, have
been helpful for DMO, the above challenges require these methodologies to be appropriately adapted, often with
significant modifications, to suit DMO [11, 40]. Interested readers are encouraged to refer to surveys [24, 116,
157, 158] for details about DSO. The two recent surveys [157, 158] focused on DSO, where little was mentioned
about DMO. Some results of DSO, especially algorithmic design ideas, seem to be applicable to DMO. However,

1In this work, the terms ‘stationary’ and ‘static’ are interchangeable, referring to the system in unchanged states.
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Figure 1: Timeline of the development of EDMO for the last two decades. The line plot is the cumulative number
of publications in EDMO. Key milestones in algorithmic design, benchmarking, and change detection is shown.

the existence of multi-objectivity makes DMO significantly different from DSO. Thus, problem benchmarking,
algorithmic design and performance assessment in DMO face new challenges that DSO does not have, and a
separate survey of DMO is therefore highly needed.

There is a long history of investigations of DMO aimed at understanding properties of DMOPs and developing
effective algorithms. In the late 20th century, there was an increasing interest in DMO. Wiezbicki [152] reviewed
dynamic aspects of multi-objective optimisation, which can be related either to various features of the optimi-
sation model or to the character of decision process, and concluded that the dynamics and changing preferences
during the decision process have significant implications for multi-objective optimisation. Algorithmic design
was focused on multi-criteria approaches from the multi-criteria decision making (MCDC) community [49]. The
research on using evolutionary computation approaches for DMO (EDMO) started from early 2000s, with the pi-
oneering study [35, 36] that introduces EDMO definitions, test cases and approximations. Since then, significant
advancements have been achieved on various EDMO topics, including benchmarks, algorithmic design, perfor-
mance assessment and real-world applications. Fig. 1 shows the timeline of the rapid development of EDMO
over the last two decades. The number of publications in EDMO grows steadily, with a significant increase over
the last 5 years. The development has intensively focused on two aspects of DMO: problem benchmarking and
algorithmic design, although other EDMO topics including change detection and performance assessment have
also attracted growing interests. Problem benchmarking for EDMO first appeared in [35, 36], where the FDA
test suite was constructed. A number of test problems [41, 88, 111] were later developed using the benchmarking
methodology of FDA. In 2014, time-varying variable dependencies were introduced, resulting in two separate
test suites ZJZ [169] and UDF [12]. After that, the JY [82] and GTA [38] test suites were developed, covering
diverse problem properties that are not available in previous studies. DF [84], a collection of diversified test
problems were used for the 2018 IEEE Congress on Evolutionary Computation (CEC) competition on EDMO.
Recently, a test suite of scalable dynamic problems (SDP) has been proposed in [79]. For algorithmic design,
the first prediction-based approach, called forward-looking predictive strategy (FPS)[52], appeared in 2006 for
change response, and this approach has inspired the development of many other prediction based strategies for
DMO, including population-based prediction strategy (PPS) [169], Kalman filter prediction (KFP) [114], and
multi-directional prediction (MDP) [86]. Predictive models from the field of machine learning have also been
introduced into EDMO, and transfer learning [73] is a representative example of this kind. In 2007, Deb et al.
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proposed dynamic variants of NSGA-II [29], where random reinitialisation and mutation of existing solutions
were proposed and they have been very popular strategies that many algorithms would use for change response.
In 2009, dCOEA [41], the first multi-population based approach, was proposed. In 2016, Jiang and Yang [83] pro-
posed the first steady-state and generational evolutionary algorithm (SGEA) for DMOPs. Knee-based prediction
[175] was first introduced for DMO in 2017.

Aside from many research papers, there have been a number of PhD dissertations [15, 16, 31, 37, 40, 60, 77,
89, 112, 113] focusing on various EDMO topics. IEEE CIS Task Force on EC in Dynamic and Uncertain Envi-
ronments (http://ieee-tf-ecidue.cug.edu.cn/) has been a key venue to promote research in EDMO. IEEE Congress
on Evolutionary Computation (CEC) and IEEE Symposium Series on Computational Intelligence (SSCI) are two
primary hosts for a number of research activities for EDMO, including competitions (e.g., CEC’15, CEC’18),
tutorials (SSCI’17, CEC’20), and special sessions on SSCI and CEC.

This paper presents a comprehensive survey and taxonomy of existing studies on EDMO. We notice that a few
survey studies [8, 56, 57, 59] focusing on single topics in the past are available in the EDMO literature. The rapid
development of EDMO in the last five years or so has let us believe a comprehensive survey of recent advances
and future challenges is beneficial for drawing wider attention to EDMO and updating the community with latest
development status. Contrasting these studies, our survey has the following new contributions:

• Coverage. This paper has surveyed over 200 research papers. More than 170 publications are directly
related to dynamic multi-objective optimisation environments, covering a comprehensive list of various
topics that have been so far researched in EDMO. This survey is intended to provide an up-to-date, full and
clear picture of EDMO research status rather than single topics surveyed in the literature [8, 59].

• Taxonomy. We present a new taxonomy of EDMO research. First, our categorisation of EDMO studies pro-
vides a great detail of various lines of research in this field. Second, our categorisation includes important
elements of EDMO that are not in previous survey studies, such as problem classification rules, change de-
tection methods, and new types of change response mechanisms developed in the last few years. Third, we
provide summary tables for taxonomies and sub-taxonomies, which would allow interested readers to easily
overview existing studies on topics of interest and make comparisons. Fourth, for reader’s convenience, we
also provide detailed mathematical definitions of popular test problems and performance measures in the
supplementary material. Finally, where possible, illustrative graphs are provided for key concepts related
to EDMO, which would be helpful for non-expert readers.

• Linking theory to practice. We review extensively applied research in the field of EDMO to give readers an
idea of what and how practical problems have been solved by EDMO, demonstrating the utility and value
of EDMO in real-world applications. The review of use cases will help EDMO practitioners, including
problem modellers and algorithm developers, to establish truly strong links between their theoretic work
and applications.

• Opportunities. While some open issues identified in [56, 57, 59] remain to be solved, we highlight a
number of new opportunities for future research. EDMO has evolved rapidly recently, which opens up new
appealing challenges that are worthy of investigation. Listing future research lines, we hope it is helpful for
defining research projects for postgraduate and doctoral studies promoting EDMO.

The remainder of this paper is outlined as follows. Section 2 presents the research methodology used in
this survey and an overview of different taxonomies of research topics in EDMO, followed by classification of
DMOPs in Section 3. Section 4 and Section 5 review DMOPs benchmarking and change detection, respectively.
In Section 6, a review of different types of approaches for change response is presented. Section 7 presents
a review of performance measures for EDMO. Section 8 discusses links between real-world applications and
EDMO. Section 9 concludes the paper with exciting research directions in the future.
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Figure 2: Percentages of different topics in EDMO.

2 Research Methodology and EDMO Taxonomies

2.1 Research Methodology
The literature search was conducted using relevant search keywords including dynamic, time-varying, time-
dependent, non-stationary, multi-objective, multiple objective, optimization/optimisation, and decision making.
These search keywords were then combined to determine the search query for five widely used literature databases:
Web of Science 2, ScienceDirect 3, IEEE Xplore Digital Library 4, ACM Digital Library 5 and Springer Link 6,
resulting in a total of 9243 unique publications related to DMO after removing duplicated papers. We further fil-
tered out publications irrelevant to EAs and swarm intelligence (SI), giving us 1326 papers in total. Even so,47%
of these publications studied dynamic problems/real-world applications by simplifying them into static problems
which then were handled through static multi-objective optimisation, which were excluded from consideration.
Based on the remaining 710 papers, there are five main categories of EDMO, which is shown in Fig 2. EAs are
the primary approaches used in algorithmic design for DMOPs, followed by SI algorithms (participle swarm op-
timisation contributes the most of it). EDMO relevant applications account for 12% of the papers, indicating the
great need of EDMO for problem solving in real-world scenarios. There are about 5% studies focusing on bench-
marking DMOPs environments to facilitate EDMO analysis and algorithmic development. Lastly, there are 2%
papers in the ‘Others’ category which includes EDMO surveys, performance measures, problem classification,
and theoretic analysis. A further analysis of these publications result in the proposal of new EDMO taxonomies,
which is introduced in the following subsection.

2.2 EDMO Taxonomies
In 2004, Farina et al. [36] published a pioneering study on the use of evolutionary algorithms for DMOPs.
This study discusses a few open issues in EDMO, including test cases, algorithms, and applications. Since then,
EDMO has attracted fast-growing research interests and additional open issues have been increasingly recognised
by the research community. Thus, different research directions in EDMO have emerged mainly to: 1) understand
dynamic characteristics; 2) benchmark DMOP environments; 3) design effective algorithms; 4) develop sensible
measures for evaluating the performance of algorithms; and 5) apply DMO-centred EAs (DMOEAs) to different
types of DMOPs such as dynamic many-objective optimisation, constrained dynamic multi-objective optimisa-
tion, and real-world applications. With this in mind, we create a new taxonomy of EDMO as shown in Fig. 3. The

2https://www.webofscience.com/.
3https://www.sciencedirect.com.
4https://ieeexplore.ieee.org/Xplore/home.jsp.
5https://dl.acm.org/.
6https://link.springer.com/.
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Figure 3: A new taxonomy of evolutionary dynamic multi-objective optimisation.

taxonomy is composed of six main and indispensable components of EDMO, and some of them are divided into
sub-taxonomies for further details. We present a brief description of these components as follows:

1. Problem classification: Having a good understanding of dynamic characteristics and their effects on EAs
not only eases the complexity of DMOPs, but it also helps practitioners to develop effective algorithms for
addressing the negative effects. To this end, several studies have focussed on classification of DMOPs into
different types, as discussed in Section 3.

2. DMOP benchmarking: Despite that test cases were provided in [36], there is an increasing demand of
test suites with diverse dynamic characteristics linking closely to real-world scenarios. The diversity of
test cases is key to ensure that DMOEAs can be effectively evaluated and validated. Therefore, numerous
studies have emerged to develop advanced benchmark DMOPs in EDMO, as discussed in Section 4.

3. Change detection: Knowing whether there is an environmental change or not is important as it matters how
DMOEAs respond to the change during the search. Re-evaluation of some random population members
[36] has been the most popular change detection method in EDMO. However, it has been increasingly
argued that the location and number of detectors/sensors play important roles in change detection. Several
studies have extensively investigated change detection methods for better change response, as discussed in
greater detail in Section 5.
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4. Change response: This is the core of algorithm design where DMOEAs take actions in response to a de-
tected/known environmental change. Since the period during which DMOPs stay stationary is often short, it
is important that DMOEAs respond to the change rapidly and handle it well before the next change arrives.
There have been numerous studies exploring various change response approaches, including memory-based
approaches [14, 131], prediction-based approaches [169], diversity increase/maintenance approaches [29],
and mullti-population approaches [41]. These approaches are discussed in more detail in Section 6.

5. Performance measures: The performance of DMOEAs needs to be quantified effectively for easing algo-
rithm evaluation and comparison. Most of performance measures for EDMO are derivatives of the counter-
parts for stationary multi-objective optimisation. However, it is increasingly recognised that new specialist
performance measures are needed for dynamic environments. As a result, some studies have proposed
advanced performance measures for EDMO, as discussed in Section 7.

6. Linking theory to practice: Real-world DMOPs are complex and often ill posed, thus more often than
not general-purpose EAs cannot be immediately applied to solve them without modifications. However,
real-world applications facilitate reliable cases for validating EAs effectively. A number of studies have
employed DMOEAs to address real-world DMOPs with a varying degree of success, and these are sum-
marised in Section 8.

3 Problem Classification
In EDMO, the involvement of dynamics complicates the analysis of DMOPs. Therefore, it is a natural idea to
analyse dynamics for a better understanding of the complexity of problems. Classification of problems based
on the characteristics of dynamics, which we call dynamics-based classification, is thought to be a good starting
point for such analysis. So far, there have been two primary classification approaches: one focuses on the effect of
dynamics on the true PS/PF [36] and the other studies the source of dynamics that perturbs optimisation problems
[139]. Both approaches create a set of rules to classify DMOPs.

3.1 Effect-based Classification
Farina et al. [36] developed a set of problem classification rules by considering the effect of dynamics on the true
PS and/or PF, since dynamics can lead to changes in PS and/or PF. This approach, which we call effect-based
classification, classifies DMOPs into the following four types:

• Type I: the PS changes over time while the PF remains stationary;

• Type II: both the PF and PS change over time;

• Type III: the PF changes over time while the PS remains stationary;

• Type IV: both the PF and PS remain stationary, although objective functions/constraints may change over
time. In other words, the fitness landscapes change, but the PF/PS remains the same. Consequently, the
paths leading to the PF/PS may change.

The four problem types are illustrated in Fig. 4. Note that Fig. 4(d) just illustrates one scenario of Type IV where
the feasible search space changes over time. Another Type IV scenario is that objective functions (i.e., fitness
landscapes) are time dependent subject to stationary constraints (the feasible search space does not change),
which may cause the change of search directions (and the nondominated solution set), but the true PS/PF remains
unchanged.

Such classification has also played a vital role in developing benchmark problems. It helps developers to
construct effective test suites covering diverse problem characteristics by which a comprehensive testing of al-
gorithms could be achieved. Farina et al. [36] used this classification to develop one of the earliest synthetic
EDMO test suites. Some of the recent test suites [38, 82] also made use of the effect-based classification rules
when building some benchmarks. In addition, the effect-based classification can be also helpful for developing
DMOEAs. For example, if the type of a DMOP is known in advance, it may help us to determine the best actions
for DMOEAs to take in response to the underlying dynamics.
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Figure 4: Effect-based classification. Four problem types are illustrated by examples (a) – (d). Overlapped lines
mean the true PF/PS does not change from time t to t+ 1. Type IV is illustrated by a scenario where the feasible
search space changes over time but does not affect the true PF and PS.

3.2 Cause-based Classification
Another classification approach, suggested by Tantar et al. [139], focuses on the origination or the source of
dynamics that make optimisation problems time-varying. This approach is opposite to the effect-based classi-
fication, and therefore we term it as the cause-based classification. It classifies DMOPs into the following four
scenarios:

• Case 1 - the decision variables (e.g., the number of valid variables to be optimised) change over time.

• Case 2 - the objective functions change over time.

• Case 3 - decision variables/functions depend on their values in previous environments [140, 166]. This is
called parameter or function state time-dependency, i.e., the function or parameters are defined by consid-
ering not only the current state but also previous values/states.

• Case 4 - environments evolve with time due to time-varying constraints.

A similar classification framework has also been suggested in the study [14]. The four cases are not com-
pletely disjoint, and there are possibilities of overlapping between them. For example, a problem belonging to
Case 1 may also be classified as Case 2 since decision variables are involved in objective functions. Like the
effect-based classification, the cause-based classification provides some guidelines for constructing benchmark
problems. Specifically, it hints where and how to introduce dynamics into stationary optimisation problems to
make them dynamic. Test suites developed through this approach include but are not limited to SJY [81], CLY
[22] and SDP [79]. It is worth noting that the cause-based classification is not unique to DMOPs, and it is
applicable to dynamic single-objective optimisation problems too.

3.3 Discussion
The two classification approaches contribute greatly towards a good understanding of dynamics in EDMO. They
are so far primarily used to guide problem benchmarking, leading to a range of problem instances with diverse
dynamic characteristics. However, both approaches have limitations of not being able to cover all dynamic sce-
narios. For example, Jiang and Yang [82] argued that, according to effect-based classification, DMOPs can have
multiple types in dynamic environments, and they constructed problems oscillating between three types. Cause-
based classification may not be helpful in analysing DMOPs when there are multiple sources of dynamics that
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Table 1: Summary of test instances/suites in EDMO.
Category Name Main characteristics Year

Unconstrained
(Continuous)

FDA * [36] 3 bi-objective and 2 scalable test instances; time-varying PS/PF 2004
JS [85] A generic benchmark generator by aggregating objective functions with dynamic

weights
2004

DSW, DTF [111] 3 bi-objective instances and 1 scalable test case 2006
dMOP * [41] Dynamic PS/PF; significant diversity loss in dMOP3 2009
DZDT * [146] Bi-objective instances; disconnectivity, multi-modality 2009
DIMP * [88] Time-varying PS, multi-modality 2010
WYL * [147] A bi-objective instance; time-varying objective functions 2010
T[67] Multi-modality; accumulated approximation errors 2011
ZJZ * [169] Time-varying variable dependencies 2014
UDF * [12] Main optimisation difficulties lie in strong dependencies between variables 2014
HE * [57] Complicated PS, isolated PF, deception 2014
JSY [81] Five scalable test problems; time-varying PS/PF 2015
JY [82] Bi-objective problems; mixed concavity-convexity; dynamic variable dependencies 2016
GTA [38] Time-varying fitness landscape, modality, connectedness, and degeneracy 2017
CLY * [22] Time-varying number of objectives 2017
DF1 [84] A collection of 2/3-objective problems for CEC2018 competition on EDMO 2018
LDE [78] Four test cases with difficulties in change detection 2018
SDP2 [79] Scalable test suite with a wide range of dynamic features; balanced difficulty in multi-

objective optimisation and dynamics handling
2019

FUN [127] Different types of change in PS 2020

Constrained

DCTPz * [167] Time-varying constraints 2011
DCTPa * [6] Time-varying PS/PF and constraints 2015
DCMOP [161] Time-varying constraints 2017
CDYC * [21] Mixed convexity of PF, time-varying feasible region 2020

Discrete

DMTSP [36] A n-city travelling salesman problem; dynamic objective functions and coordinates of
cities

2011

DMNK [139] Dynamic MNK-landscapes 2011
DDST [51] Dynamic deep-sea treasure hunt testbed for reinforcement learning research 2019
DTTP [62] Travelling thief problem with dynamics in city locations, availability map and item val-

ues
2020

* denotes that the corresponding test suite is adapted from existing stationary optimisation problems.
1

MATLAB and C++ implementations are available at https://sites.google.com/view/shouyongjiang/resources/cec2018
2

C++ implementation is available at https://sites.google.com/view/shouyongjiang/resources

causes environments to change, since it does not provide any information about the importance of each source
of dynamics. In addition, the two approaches are largely investigated in synthetic test problems, and it remains
unclear how effective they are for classifying real-world applications.

Problem classification has also contributed to algorithm development for EDMO, suggesting classification
results can be used to handle environmental changes. For example, the study [133] investigated ways of detecting
types of changes under Farina et al.’s classification framework [36], based on which type-based change response
strategies were developed. However, it remains unclear whether similar work can be done using the cause-based
classification.

4 DMOP Benchmarking
Benchmarking DMOPs facilitates an important platform for EDMO research. As EDMO is a relatively new
research field, our understanding of DMOPs is still very limited. However, the growing attention and research
efforts have gradually led to new knowledge of DMOPs. As a result, a number of test suites [38, 57, 80, 81]
have been proposed since the first benchmarking work FDA [36] in 2004. These test suites have either expanded
dynamic characteristics or addressed some limitations of early benchmarking methodologies. Table 1 lists a set
of test suites found in the EDMO literature, and a detailed mathematical description of some important test suites
is provided in the supplemental material. According to the table, there are mainly three groups of benchmarks:
unconstrained (continuous) DMOPs, constrained DMOPs and discrete DMOPs.
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4.1 Unconstrained (continuous) DMOPs
The majority of optimisation problems studied in the field of EDMO are unconstrained continuous DMOPs.
A potential explanation may be that DMOPs can be constructed by using existing unconstrained continuous
benchmarking frameworks that exist in static multi-objective optimisation. Indeed, many continuous EDMO test
problems are developed in this way. For example, FDA [36], one of the first EDMO test suites, uses ZDT [172]
and DTLZ [30] problems from static optimisation as a starting point and adds some dynamic features to these
static problems such that the resulting problems change over time. Other ZDT- and DTLZ-derived test problems
include dMOP [41], HE[57] and CLY [22]. Static WFG [70] problems have been considered by HE [57]. The
static framework developed by Li and Zhang [91] for complicated PF shapes has been adopted to generate ZJZ
[169], UDF [12], GTA [38], etc. The dynamic features added to these static frameworks are diverse, including
time-varying PF/PS [36], dynamic landscapes of objective functions [22, 36, 57] and dynamic variable-linkages
[12, 169].

Aside from the above bootstrapping, there are also other benchmarking approaches that can create uncon-
strained DMOPs with new static and dynamic features. Jin and Sendhoff [85] developed a generic benchmark
framework for DMOPs by aggregating multiple objective functions with time-varying weights, but they did not
define any specific problems with this framework and there is a lack of guidelines on how to vary weights over
time. The JY [82] handcrafted some unconstrained problems with new dynamics, including mixed time-varying
convexity-concavity and dynamic variable dependency. Jiang et al. [79] developed the SDP testbed that covers 11
desirable dynamic features after a comprehensive analysis of synthetic and practical DMOPs. LDE [78] focuses
on benchmarking less detectable environments where changes are not easy to detect. FUN [127] benchmarks a
range of change patterns in PS that have a significant effect on optimisers, but dynamic features considered are
limited.

4.2 Constrained DMOPs
Constrained problems are common in application, and benchmarking them has practical implications. There are
a few constrained benchmark problems in the EDMO literature. Zhang and Qian [167] created the DCTPz test
problems that model the scenarios of time-varying constraints. Azzouz et al. [6] created a test suite, called
DCTPa, that characterises time-varying constraints and dynamic PS/PF. DCMOP [161] presented a constrained
DMOP framework where constraints are gradually tightened over time. Another interesting test suite is CDYCD
[21]. It has feasible regions for which the size changes (not necessarily monotonic) over time. Additionally,
CDYCD is compounded by its mixed convexity of PF.

4.3 Discrete DMOPs
There are a few studies of benchmarking discrete problems in EDMO. Farina et al. [36] extended multi-objective
travelling salesman problems by adding two dynamic features, i.e., time-varying objective functions and coordi-
nates of cities, leading to the DMTSP testbed. Tantar et al. [139] proposed a dynamic variant of MNK-landscape
model, called DMNK for short. They described two types of dynamic behaviours: 1) the number and distribution
of the bits of decision variables interacting epistatically with a give bit is dynamic; 2) objective functions are
time-dependent. Hasan et al. [51] have recently proposed a dynamic deep-sea treasure (DDST) hunt testbed [51]
for reinforcement learning, and they have also used it to assess genetic algorithms. Herring et al. [62] proposed
a dynamic version of travelling thief problem, considering dynamics in city locations, availability map and item
values.

4.4 Discussion
Benchmarking unconstrained continuous DMOPs has been extensively investigated, yielding numerous test suites
with a diverse set of dynamic features. However, existing benchmarks are far from perfect and more effort is re-
quired. Most of them are an adaptation of test problems from stationary multi-objective optimisation, with a few
exceptions that model dynamic environments using new benchmarking frameworks. As noted in [79], bootstrap-
ping benchmarking methodologies based on static optimisation problems fail to consider the balance between
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dynamics and stationary characteristics in optimisation difficulties for algorithms. In other words, dynamic fea-
tures may be obscured if their static counterparts dominate optimisation difficulties. In addition, only a few of
them are scalable in terms of the number of objectives [36, 79], which may limit the investigation of EDMO in
high-dimensional objective space. Furthermore, LDE [78] is the only test suite specifically for evaluating the
detection ability of algorithms. Similarly, the investigation of benchmarking constrained and discrete DMOPs is
underperformed, as indicated by just a few test problems with limited dynamic features in Table 1. In addition,
it remains unclear the extent to which these artificial problems reflect the dynamic characteristics of real-world
applications.

Due to the presence of dynamics in (either unconstrained or constrained) DMOPs, EAs face a few new chal-
lenges that do not exist in static multi-objective optimisation. Firstly, EAs are very likely to lose population diver-
sity due to environmental changes. A diverse population obtained for the current environment may be clustered
in the new environment. This can happen in both variable space and objective space. Diversity loss in variable
space may be caused by an increase in the number of decision variables after a change, whereas diversity loss in
objective space can be due to the change of true PF, which is commonly observable in EDMO [41, 83]. Secondly,
the search directions employed by EAs for the current environment may not be suitable for the new environment,
especially when the true PS of the new environment is significantly deviated from (in opposite directions in the
worst case) that of the current environment. Thirdly, the convergence hindrance can increase after a change, which
makes EAs slow to approach to the true PS/PF. Last but not least, DMOPs often change frequently and rapidly,
allowing very limited time for EAs to respond and adapt to new environments. Thus, it requires EAs to have a
quick response to changes and address all the changes effectively. EAs face greater challenges for constrained
DMOPs than for unconstrained ones. This is because constrained DMOPs can have dynamics in constraints in
addition to objective functions. Changes in constraints likely lead feasible solutions for the current environment
to being no longer feasible for the new environment, thus requiring EAs to be smart in reusing solutions found so
far to handle constraint violations.

On the other hand, almost all the existing DMOPs consider the frequency τt and severity nt in a compact form,
i.e., they are used to define the time instant t = 1

nt
b ττt c (where b·c is the floor function) for test problems, where τ

is the counter of either generations or function evaluations. Such a time definition eases the configuration of test
problems. However, a limitation is that both τt and nt affect the value of t, making t lose its physical meanings.
Therefore, it is suggested to make these three parameters independent of each other. An easy solution may be that
t is a function of τ , i.e., t = k(τ), and a DMOP is defined as DMOP (t, nt, τt). The study of [79] recommended
a list of features that a test suite should have. We would like to summarise good features that should be considered
in benchmarks, as follows:

• There is a good balance of difficulty between static optimisation and dynamics handling.

• Benchmarks are able to test the individual impact of the severity and frequency of change on EDMO algo-
rithms.

• Benchmarks have both predictable and stochastic environmental changes.

• Benchmarks allow the evaluation of algorithms for both (partially) detectable and undetectable changes.

• There are diverse PF features, including convexity, connectedness, dynamics, and degeneracy. The PS
features should include dynamics, variable dependency, and time-linkage.

• Benchmarks are scalable in variables and objectives, easy for visualisation and inspection in low-dimensional
space, and easy to comprehend in high-dimensional space.

• The true PFs/PSs are exactly known so that the quality/Pareto-optimality of solutions found by algorithms
is easily measurable.

• Environmental changes are controllable such that there are different levels of difficulty (e.g., loss of di-
versity, increased hindrance to converge, and increased difficulty to achieve uniformity of solutions) for
algorithms.
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Figure 5: Relationship between population, Pop(t), at time t and true PF, PF(t+1), at time t+ 1.

5 Change Detection
An environmental change can invoke two scenarios for nondominated solutions obtained for the past environment
(see Fig. 5 (a)–(b)): some solutions 1) are dominated by the solutions in the true PF of the current environment
(Fig. 5(a)) or 2) dominate solutions in the true PF of the current environment (Fig. 5(b)). In the first scenario,
previous solutions do not necessarily have to be re-evaluated if they happen to be all dominated by solutions
found in the current environment during the search (see [3] for example). If they are partially or not dominated
at all by any solutions generated by algorithms in the current environment, they need to be re-evaluated as they
might no longer be feasible solutions if constraints become tighter after the change. In the second scenario,
these previous solutions become infeasible solutions as they are outside of the obtainable objective space for the
current environment. Taking both scenarios into account, it is important for algorithms to “sense” the occurrence
of environmental changes. Note that, it is possible for algorithms to solve DMOPs correctly by re-evaluating
population in every generation while being “blind” to environmental changes, but such algorithms at the cost
of huge re-evaluation computations are obviously undesirable for efficient computing. Sometimes, algorithms
can be assumed to know in advance the time when environmental changes occur, as done in a number of studies
[52, 137, 160], thereby eliminating the need for change detection. While this rare scenario does exist in real-world
applications, for example periodic scheduling of computing jobs [26], in most cases it is difficult, if not impossible,
to have a good a priori knowledge of environmental changes and thus change detection is still important [132].
In the EDMO literature, there are three primary change detection approaches, as shown in Table 2. We describe
these approaches in great detail in the following subsections.

5.1 Random Re-evaluation
Randomly re-evaluating a population proportion at the beginning of each generation is one of the earliest and
most popular change detection techniques for DMOPs. This approach is first witnessed in [36] to the best of
our knowledge. Farina et al. [36] computed first discrepancies between objective values before and after re-
evaluation, which are then normalised by the time-dependent nadir and utopia points, for each random sensor.
Then an environmental change is assumed if the average of the normalised discrepancies for all the sensors is
bigger than a user-defined threshold for changes. Farina et al.’s approach was later simplified in a number of
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Table 2: Change detection approaches.
Approach Technique Study Year

Random re-evaluation

Normalised fitness discrepancy [36] 2004
Unnormalised fitness discrepancy [170] 2007
Random set from PF (PPOF)

[132] 2016Selection from different domination ranks (PRank)
Selection from different densities of PF (PPOFD)
Steady-state change detection (SSCD) [83] 2017

Sensor based detection
One time random initialisation (NP1)

[132] 2016Random initialisation for each test (NP2)
Distributed sensors (NP3)
Cluster-based detector [142] 2020

Population based detection Two-stage detection [39] 2017
Statistical testing [135] 2019

studies [82, 88, 170] for easy use: a change is assumed if discrepancies exist after objective re-evaluation for any
sensors.

Having recognised that Farina et al.’s approach and its derivatives do not detect changes until the population
evolves for one whole generational cycle, which may potentially delay change responses, Jiang and Yang [83]
proposed a steady-state change detection (SSCD) approach to fill this gap. In every generation, SSCD chooses
randomly some population members that undergo steady-state evolution as sensors to sequentially detect changes.
If one of them senses a change, the remaining unused sensors will be discarded and a prompt action is taken to
respond to the changes. This approach renders the population a quicker response to changes. However, it has been
suggested that SSCD may encounter challenges in less detectable environments [78, 79].

5.2 Sensor-based Detection
Unlike random re-evaluation where change detectors are selected at random, sensor-based detection selects detec-
tors and puts them in environments very carefully. The detectors are just like well configured sensors that monitor
environmental changes. However, detectors have a monitoring coverage limit and they cannot detect changes ‘out
of sight’ (see Fig. 5(c)–(d)). Therefore, it is important to perform sensor placement/selection in change detection
[132]. Sahmound and Topcuoglu [132] introduced a few population-based sensor placement schemes including
sensors placed on a PF approximation, sensors chosen from different domination ranks and sensors selected from
different densities of a PF approximation, and non-population based schemes including pre-defined random sen-
sors independent of evolution, random sensors created for each generation and equispaced sensors in the decision
space. They further conducted an analysis of these schemes on eight DMOPs, showing that non-population based
sensor placement schemes have a better performance for change detection.

Similarly, Wang et al. [142] discussed the possibility of failure of detection by random re-evaluation. To
overcome this issue, they proposed to divide the population into clusters by the K-means technique and then place
sensors in each cluster.

5.3 Population-based Detection
As noted in [169], using a few sensors is not always effective for change detection, especially when the envi-
ronment has uncertainties in objective values. This issue has also been observed in less detectable environments
[135]. Statistical approaches (e.g., the Wilcoxon-Mann-Whitney and Kolmogorov-Smirnov test) are rarely used
in DMOPs, although they have been frequently used for change detection in dynamic single-objective problems
[126]. Sahmound and Topcuoglu [135] have recently proposed an approach that hybridises sensor-based schemes
and statistical approaches for less detectable environmental changes. A statistical test which could be either the
Kolmogorov-Smirnov test or the Wilcoxon-Mann-Whitney test is performed to check if there is any significant
difference between the previous population and the current population. If a significant difference is found, the
change is detected. If not, a sensor-based approach where sensors are chosen from PF approximations based
on densities of solutions is invoked to further detect environmental changes. This hybrid approach showed a
generally higher performance on change detection tasks than other existing approaches [135].

In [39], a two-stage change detection test was proposed which uses an inverse model to check potential
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changes in the objective function landscape in the first stage and re-evaluates a fixed number of individuals in
the population in the second stage. Like SSCD [83], this approach can be used to detect changes happening in
between generations.

5.4 Discussion
As mentioned earlier, it is plausible to apply change detection where possible for the sake of computational
efficiency. When environmental changes are detectable, using a few detectors would help EAs to determine
actions smartly, i.e., responding to changes only when they are detected, therefore saving computational costs
from unnecessary actions. In the case where environmental changes are undetectable, change detection should be
omitted. However, EAs may have to take a proactive approach to undetectable changes. For example, Azzouz
et al. [5] proposed to re-evaluate population every generation in order not to miss any changes that are assumed
impossible to detect. In it, population re-evaluation over time incurs a huge amount of computational burden,
but it guarantees the search directions of population are correct for every new environment. This means there
is a tradeoff between computational efficiency and the correctness of search directions for undetectable changes.
Azzouz et al. ’s approach to undetectable changes can be thought of as favouring the correctness of search
directions completely. It will be interesting to see how the tradeoff can be balanced. A possible way may be to re-
evaluate the whole population every a certain number of generations/function evaluations (re-evaluation period),
which lowers computational costs at the risk of using wrong search directions as a change can occur within the
re-evaluation period. The optimal re-evaluation period can be problem specific.

On the other hand, almost all existing EDMO studies assume that changes are detectable. For detectable
changes, the output of change detection determines what consequent actions need to be taken. None of the
three detection approaches guarantees 100% detection rate of changes. This is mainly due to uncertainties in the
location of changes; changes can happen anywhere whereas detectors are often limited. Random re-evaluation has
the smallest computational cost, followed by sensor-based detection and then population-based detection. Since
they are often used in isolation from each other, there is a lack of comparative studies to show their strengths and
weaknesses in an evidence-based manner. These change detection methods have at worst a linear runtime, i.e.,
O(n), where n is the number of detectors. For easily detectable changes where a single detector is able to ‘sense’
the change of environments, the time complexity is ignorable.

In addition, little has been done towards the timeliness of detection, although the study [79] highlighted its
importance to change response. Late detection may be as bad as undesirable environmental changes, given that
the amount of time for handling a change is often limited. This needs to be taken into account while developing
effective detection techniques.

6 Change Response
When an environmental change is detected, it is important that algorithms take rapid measures in response to the
change. The simplest change response is population re-evaluation [72]. However, this passive approach is often
ineffective, especially when the population falls into local optima after the change [41, 83]. Therefore, better
approaches are needed. Diversity introduction/maintenance, prediction of the new PS/PF, memory retrieval and
multi-population are the most common change response mechanisms in EDMO. We provide in the following
sections a review of them together with other promising approaches.

6.1 Diversity Increase/Maintenance
An environmental change is often harmful to population diversity as it can cause various degrees of diversity
loss [29, 41]. Therefore, a natural idea is to rescue this loss by introducing some extra diversity when a change
occurs/is detected (see Fig. 6(a)). Another way of dealing diversity loss is to maintain high population diversity
over time regardless of changes so that algorithms can bear diversity loss to a certain extent (see Fig. 6(b)).
Table 3 shows a summary of representative studies on these two approaches. In the following, we review these
approaches in great detail.
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Figure 6: An illustration of diversity increase, diversity maintenance, and multi-population approaches.
Table 3: Diversity increase/maintenance approaches.

Approach Technique Study Year

Diversity increase

Hypermutating existing solutions [29] 2007Generating random solutions
Resetting personal best positions [89] 2007
Centroid based exploration [124] 2015
Borda selection [118] 2016
Replacing low-ranking solutions [1] 2017
Region-based random re-initialisation [105] 2020

Diversity maintenance
Diversity-enhanced reproduction operator [160] 2006
Adding extra objective functions [19] 2009
Generalised immigration [4] 2011
Two-archive maintenance [22] 2017

6.1.1 Diversity Increase

Two most popular implementations of diversity introduction exist in the EDMO literature: increasing population
immediately, when the change is detected, either by introducing some randomly generated solutions into the
population or by hyper-mutating some existing solutions [29]. Deb et al. [29] integrated these two approaches
into the nondominated sorting genetic algorithm II (NSGA-II) [28], forming two dynamic versions of NSGA-II:

• DNSGA-II-A: a small portion of population (≈ 20%) is replaced by randomly generated (feasible) solu-
tions. This means the new solutions introduced in the population are unrelated to the existing population.

• DNSGA-II-B: a small portion of population (≈ 20%) is replaced by mutated solutions of randomly chosen
existing solutions with a high mutation probability and low distribution index in polynomial mutation. This
means the new solutions introduced into the population are related to the existing population.

DNSGA-II-A is suitable for severe environmental changes that cause significant diversity loss since the introduced
solutions diversify significantly the population. On the contrary, DNSGA-II-B is suitable for subtle environmental
changes since the introduced solutions create small variations to the population. Note that, the polynomial mu-
tation in NSGA-II-B can be replaced by other hyper-mutation schemes such as Gaussian [102, 147] and Cauchy
mutation [155]. Many studies have demonstrated that these two algorithms perform differently, depending on the
severity of changes [29, 82]. These two diversity introduction mechanisms have been integrated into numerous
EAs [96, 97, 109] for handling DMOPs.

Lechuga [89] used particle swarm optimisation (PSO) for DMOPs. The algorithm increases the diversity
of solutions by resetting each particle’s personal best (pbest) location to its current location. The study [108]
explored multiple strategies to reinitialise particles. In another study [1], PSO reinitialises negatively affected
particles and re-evaluates the archive upon the detection of a change. Similar approaches are seen in [63].

Goh and Tan [41] suggested to introduce diversity more rigorously; randomly generated solutions are not
directly used to replace existing solutions. In their work, randomly generated solutions first have to compete
against the representatives of existing solutions (i.e., competitors from sub-populations) and only the winners can
be used for the new environment [41].
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Zhou et al. [170] tested two new diversity introduction approaches, that is, random reinitialisation and Gaus-
sian mutation, on DMOPs. Unlike other approaches where only a small portion of population is replaced with
introduced solutions, no past solutions are kept in the population for new environments. These two approaches
were evaluated on two DMOPs, showing that random reinitialisation of the whole population (essentially a restart
strategy [146]) does not work well due to the lack of the previous knowledge of dynamic environments, and
Gaussian mutation of the whole population works well especially when the frequency of change is low.

Zheng [168] proposed to introduce diversity by both hyper-mutation and random reinitialisation. That is, the
population for the new environment consists of hyper-mutated solutions of past elite solutions from an archive and
randomly created solutions. The percentage of past elite solutions used for hyper-mutation is coupled with the
number of elite solutions in the archive. Thus, the more there are the elite solutions from the previous environment,
the higher the probability is for them to be used in the new environment.

Similar to Zheng’s study [168], the diversity introduction proposed by Wang and Li [147] also consists of
hyper-mutation and random reinitialisation but differs mainly in hyper-mutation schemes. Specifically, Wang and
Li’s strategy [147] replaces a user-defined percentage (about 20%) of the population with Gaussian mutated so-
lutions of archived solutions. This strategy combined with some additional techniques showed high performance
for a variety of DMOPs [147]. In another study [146] of the same authors, the percentage of hyper-mutation is
further divided such that there is a chance to keep some past solutions in the population for the new environment.

Peng et al. [124] proposed for diversity increase an exploration strategy based on the population centroids of
the previous and current environments. By determining the moving direction of each variable towards the optima,
variable values are sampled along the moving directions. Similar approaches is also adopted in [130].

Recently, Ma et al. [105] have proposed to introduce random solutions in different regions of the objective
space, which ensures that introduced solutions to the population are well distributed. Orouskhani et al. [118]
increased population diversity in the event of changes by a Borda selection approach. In this approach, poor
individuals in the population are identified by the Borda count ranking and then randomly reinitialised. Ahrari
et al. [2] proposed a heredity-based adaptive variation operator to increase population diversity in a controlled
manner.

6.1.2 Diversity Maintenance

To our best knowledge, the ALife-inspired algorithm [3] is the first EA using Pareto dominance for EDMO. It
uses artificial operators to imitate interactions, including meeting, fighting and reproduction, between individuals
in a size-variable population. The existence of multiple interactions helps maintain population diversity, which in
turn leads to the resolution of dynamic environments.

Zeng et al. [160] introduced an orthogonal design based EA that maintains high diversity over time for han-
dling dynamic environments. The reproduction procedure chooses randomly one from the two types of crossover
operations: one is the orthogonal crossover based on orthogonal design and the other is linear crossover. As a
result, offspring population has more diversity than the parent population, helping the algorithm to explore widely
in the search space. This diversity maintenance approach is effective for bi-objective DMOPs, according to the
experimental results reported in [160].

Chen et al. [19] proposed to create an additional objective that looks after population diversity during the
search for DMOPs. They defined this objective by an entropy metric that measures population diversity. Popula-
tion diversity is adjusted dynamically by Pareto optimisation of the actual objective functions and this additional
objective. This approach achieves promising results for the FDA test suite, according to [19].

Chen et al. [22] proposed a two-archive structure with one maintaining diversity and the other dealing with
population convergence. The two archives co-evolve over time, promising to handle a time-varying number of
objective functions. The computational inefficiency of this structure has been addressed in [33].

In [144], population diversity is maintained by an infection operation based virus evolution. This approach is
combined with gene expression programming to tackle environmental changes. The study [136] relies on a clone
selection and a nonuniform mutation operator to maintain diversity over time.

Wang and Dang [148] proposed to maintain high population diversity over time using a uniform design based
crossover for population reproduction. The key idea behind this is that uniform design can avoid two close
parents being crossovered, leading to wider exploration in the search space which helps to address environmental
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Table 4: Multi-population approaches.
Approach Algorithm Study Year

Variable-based multi-population

dCOEA [41] 2009
PNSCCDMO [99] 2014
DNSGAII-CO [155] 2017DMOPSO-CO

Objective-based multi-population

DVEPSO [43] 2008
HDVEPSO [58] 2014
CMPSODMO [101] 2017
CPSO-RP [103] 2020

Reference-guided multi-population RPP [86] 2016

changes. In addition, they also transformed DMOPs into small ones through objective redefinition in order to
improve search efficiency.

Recently, The study [162] has introduced an efficient self-adaptive precision controllable mutation operator
to either exploit or explore the search space, and a niching technique imitating isotopic magnetic particles to
maintain diversity. Encouraging results are obtained on DMOPs when these new techniques are well coordinated
[162].

Immigration schemes, which have already demonstrated a great success in single-objective dynamic environ-
ments [156], have also been investigated in the context of multi-objective dynamic environments [11]. Immigrants
are introduced in place of some population members in every generation so that the population has excess diversity
to cope with the loss of diversity in the event of environmental changes. Azevedo and Araujo [4] characterised for
EDMO different immigration schemes, from which a generalised immigrants-based diversity generator (gIDG) is
derived. gIDG has two parameters α and β, with α controlling the proportion of immigrants introduced into the
population and β controlling the ratio of elitism-based immigrants to random immigrants. gIDG is integrated into
NSGA-II just before environmental selection, and the elitism-based immigrants are the mutated solutions of some
best individuals in nondominated sorting [28]. Experimental results show that gIDG performs better than single
elitism-based or random immigration schemes [4].

6.2 Multi-population Approaches
Multi-population approaches have advantages in maintaining population diversity since it is not likely to lose a
huge amount of diversity in the event of environmental changes when multiple sub-populations with intercom-
munication are well scattered in the search space (see Fig. 6(c)). This approach is especially useful in situations
where some search regions have environmental changes while the others do not. Table 4 shows different ways of
creating multiple populations; the number of populations are determined by the number of objectives, decision
variables, or references. In what follows, we review a number of studies using this approach to deal with DMOPs.

Goh and Tan [41] introduced a competitive-cooperation algorithm (dCOEA) that co-evolves a number of sub-
populations each responsible for a decision variable. The competitive procedure identifies the best sub-population
for each decision variable and the cooperative procedure assembles complete solutions with members in a sub-
population and the representatives of the other populations. In addition to the advantage of multi-populations in
exploring multiple regions of the search space which is beneficial for population diversity, dCOEA also intro-
duces two other dynamics-handling techniques whenever a change occurs. First, it takes a further step to ensure
good population diversity, i.e., by requiring randomly generated solutions to compete against the sub-population
representatives before allowing them to enter the population. Second, dCOEA has a memory pool from which
previous solutions can be retrieved for new environments to strengthen the converging process. Main ideas in
dCOEA have been used in the study [122].

Liu et al. [99] proposed a multi-population EA where each sub-population handles a subset of decision
variables. The algorithm evolves the sub-populations separately but combines them to form complete solutions
when it comes to evaluation. It deals with environmental changes using a predictive model suggested in [170].

In [155], two multi-population algorithms were developed from particle swarm optimisation (PSO) and NSGA-
II. Each of them has two sub-populations, with one sub-population optimising high sensitive variables and the
other optimising low-sensitive variables. The two sub-populations address environmental changes differently,
with the former using a linear predictive model and the latter using Cauchy mutation to populate decision vari-
ables. Experimental results showed the two algorithms have a better performance than their single-population
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counterparts, especially for DMOPs with decision variables inseparable from environmental changes.
Gong et al. [42] proposed a similarity-based cooperative co-evolutionary algorithm to deal with dynamic

interval MOPs. To tackle the interval of objective values, the authors decomposed decision variables into groups
according to the internal similarity between decision variables and interval parameters. Sub-populations with two
response strategies are used to handle each group of decision variables.

Liu et al. [101] proposed a multi-population PSO, called CMPSODMO, where each sub-population opti-
mises one objective function. An external archive is used to store the nondominated solutions from all the sub-
populations. Since there may exist nondominated solutions which are optimal for a certain objective function but
very poor for the others, an archive updating strategy based on objective space decomposition is used to filter out
such solutions. The algorithm employs the predictive model PPS [169] in response to environmental changes.
CMPSODMO introduces into the velocity update equation of standard PSO an additional item representing infor-
mation sharing between swarms, together with a velocity bounding strategy. CMPSODMO introduces diversity
by random reinitialisation of some population members [29] in response to environmental changes. Similarly, the
study [100] adopted a similar multi-population PSO but with a different archive maintenance strategy.

In [103], a cooperative PSO with multiple swarms is developed for handling DMOPs. These swarms handle
different objectives, with an external archive for information sharing, leading to high swarm diversity.

Greff and Engelbrecht [43] adopted the multi-swarm vector evaluated PSO (VEPSO) framework to develop a
dynamic VEPSO (DVEPSO) for dynamic environments. Later, Helbig and Engelbrecht added to DVEPSO with
three archive management approaches when a change is detected: 1) the archive is cleared; 2) solutions in the
archive are re-evaluated and dominated ones are removed; and 3) solutions in the archive are re-evaluated and
dominated ones are removed if they cannot be made nondominated after hill-climbing. In [58], a heterogeneous
DVEPSO was proposed, which allows particles to have different behaviours, such as social and cognitive be-
haviours. The same research group has extensively studied multi-population mechanisms from different angles
[44].

Jin et al. [86] proposed an EA with multiple sub-populations which are directed by a set of reference points.
The reference points specify the search directions of each sub-population in the objective space. When a change
occurs, the centroids of sub-populations in the new environment are predicted by employing a linear predictive
model, which are then used together with either uniform distribution or Gaussian distribution to create new sub-
populations. This multi-population strategy is integrated into NSGA-II with a reproduction operator of differential
evolution, forming a promising approach for DMOPs, as evidenced in [86].

Multiple populations have also been adopted to enhance diversity in artificial immune systems [137], and
encouraging results have been achieved for DMOPs.

6.3 Prediction Based Approaches
When environmental changes exhibit a regular pattern of predictability, predictive models can be used to predict
the new PS/PF after a change based on previous PS/PF approximations (see Fig. 7(a)). Predictive models have
gained significant popularity in EDMO, in part because problems in many test suites present predictable dynamics.
In EDMO, predictive models can be described as follows:

xt = Predict(PSt−1, PSt−2, . . . , PSt−l), (2)

where xt is a predicted solution (in the decision space) in a new environment, and Predict is a certain predictive
model operated on the PS approximations for the past l environments. Predict can be either linear or nonlinear,
depending on the complexity of environmental changes. Table 5 provides a summary of popular predictive models
used in EDMO. We review separately these two categories of predictive models, although we recognise that a
mixture exists in some studies (in this case, we list it as nonlinear models).

6.3.1 Linear Predictive Models

Linear predictive models can be expressed as follows:

xt =
∑l

i=1
αi · xt−i + β + δ(t), (3)
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Figure 7: An illustration of prediction, memory, special-point, and robustness based approaches.

which indicates the predicted solution x at time t is a linear combination of the solutions in the last l timesteps,
with αi and β being coefficients and intercept, respectively. δ(t) is a noise/forecast error to reflect the prediction
accuracy. Note that, Eq. (3) can be used to describe mutation of solutions for diversity introduction if xt−1 is used
only, but this is not focus of this section.

The feed-forward prediction strategy (FPS) [52] can be considered as the first predictive model for DMOPs.
It uses an autoregressive (AR) model to predict xt in Eq.(3) for a fraction of population in a new environment.
FPS ignores prediction errors, so δ(t) is not used. Later, a follow-up study [53] enhanced the effect of predicted
solutions by proposing different ways of constructing δ(t), demonstrating the importance of the topology of
predicted populations.

Zhou et al. [169] argued that a PS can be represented by a centre and a manifold. Instead of using Eq.(3)
to predict individuals for a new population, they proposed to use it for predicting the PS centre, by the same AR
model as in FPS. The new manifold was estimated by the previous manifold while assuming some similarities
exist between them. After that, the population for the new environment can be created by a combination of
the predicted PS centre and manifold. The proposed population prediction strategy (PPS) are widely adopted in
numerous EDMO algorithms [100].

Since a high-order model in Eq. (3) is complex and computationally intensive to build, numerous studies
[83, 124, 153] have suggested to use a simplified model, which can be expressed as follows:

xt = xt−1 + stepsize ∗ gt + δ(t), (4)

where gt is the unit moving direction computed based on previous PS approximations. If the PS approximations
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Table 5: Prediction based approaches.
Approach Technique Study Year

Linear prediction

Feed-forward prediction strategy [52] 2006
Predictive gradient strategy [88] 2010
Population prediction strategy [169] 2014
Kalman filter prediction [114] 2016
Multi-directional prediction [86] 2016
Prey predictive model [142] 2020

Nonlinear prediction

Inverse model [39] 2016
Transfer learning [73] 2017
Fuzzy inference prediction [18] 2018
Support vector machine [64] 2019
Manifold transfer learning [76] 2020
Takagi-Sugeno fuzzy nonlinear regression [174] 2020
Feature information prediction [106] 2021
Feature information prediction [106] 2021
Reinforcement learning [173] 2021

of the last two environments are used, gt can be computed by

gt =
Ct−1 − Ct−2
‖Ct−1 − Ct−2‖

, (5)

where Cj is the centroid of the PS approximation (population) for the j-th environment. Some studies [130, 164]
discard the term δ(t) in Eq. (4) while predicting the new location of a solution. gt−1 and gt can be used together in
Eq. (4) to improve prediction accuracy. In [17], a second-order difference model is developed to predict the trend
of PS centre. Koo [88] built a predictive model to generate solutions as a portion of population. The model defines
the concept of predictive gradient (equivalent to gt in Eq. (5)) which is a weighted sum of the previous gradient
(gt−1) and changes of population centroid calculated from a memory pool. The study of [154] argued that the
stepsize setting for the current environment should take into account the stepsize values of previous environments
and therefore defined a stepsize update formula.

In [142], a grey predictive model was created for population prediction. This model generates a part of initial
population in a new environment by using cluster centroids in previous environments.

Muruganantham et al. [114] suggested an MOEA/D [163] using a linear Kalman filter to predict the PS in
a change. Kalman filter prediction is used together with random reinitialisation through a scoring scheme when
creating the new population for the change.

The work of [155] used a linear predictive model to reinitialise a part of the population for the next environ-
ment. xt must be a nondominated solution from the past environment. gt is the change of population centroid
from the last two environments. δ(t) is Cauchy noise.

In [18], a hybrid population prediction strategy based on fuzzy inference and one-step prediction was pre-
sented. The strategy extrapolates ahead the trajectory (position and/or orientation) of the new PS from the previous
PS approximation and increases the response speed when tracking the changing PF.

The use of multiple (linear) predictive models for better prediction accuracy has also emerged. Rong et al.
[127] proposed multiple predictive models for population prediction. They developed a model selection approach:
first, the type of change in PS is detected; subsequently, the most suitable predictive model is used for the detected
type. Liang et al. [95] argued that environmental changes can be dealt with using predictive models based on their
similarity to historical changes. Therefore, they devised a similarity assessment procedure to classify changes.
If a change is similar to any historical changes, a memory-based technique is used for population prediction;
otherwise, a simple predictive model is used. In [125], different linear predictive models including Kalman filters
were used for PS prediction. These models are coordinated by a mixture of experts through a gating network.

When environmental changes that make consecutive PSs dissimilar, it is ineffective to use a single PS centre
to generate a population as an approximation to the new PS. This limitation can be addressed by multi-directional
prediction strategies [86, 105, 128]. In [86], the PS is approximated by multiple sub-populations with the aid of
reference points, and each sub-population in new environments is reinitialised based on a centre, predicted by a
linear model of Eq. (4). Similarly, Rong et al. [128] proposed a multi-directional prediction approach to predict
multiple points on the PS. This approach has also been employed in a recent work [105].
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6.3.2 Nonlinear Predictive Models

Nonlinear models are developed to capture the nonlinearity of environmental changes. In [149], an regression
transfer learning model embedding a support vector regressor is proposed to predict the PS of DMOPs over time.

An incremental support vector machine (SVM) classifier was used in [64] for handling environmental changes.
The classifier takes randomly generated solutions and also previous solutions as input data and classifies them into
two categories, i.e., ‘good’ and ‘bad’. The ‘good’ ones are included in the population for a new environment.

Jiang et al. [73] argued that integrating transfer learning approaches into EAs can offer significant benefits in
tracking the moving PS/PF of DMOPs. They adopted a domain adaptation method to construct a predictive model
that learns from past populations in finding PS. This idea combining with several other strategies has also been
applied in estimation of distribution algorithms to solve DMOPs [74]. Recently, Jiang et al. [76] have argued
further that the above idea can be improved by reducing the computational complexity involved in creating the
predictive model. Therefore, they proposed a manifold transfer learning for DMOPs. The new approach uses a
memory pool of best individuals, rather than populations, selected from past environments to predict the new PS,
thereby significantly alleviating intensive computation. Liu and Wang [104] have recently proposed to combine
the PPS approach [169] and transfer learning to improve population prediction. Fan et al. [34] also applied transfer
learning to solve expensive DMOPs. Transfer learning exploited knee points to improve prediction accuracy in
the study of [150].

Wang et al. [143] proposed an ensemble learning based prediction strategy. The strategy has three predictive
models including both linear and nonlinear models. The nonlinear ones are derivatives of autoregression models
which operate on either population centroids or solutions on knees of PF.

A nonlinear hybrid predictive approach was introduced in [174]. This approach is based on a Takagi-Sugeno
fuzzy nonlinear regression model and a linear multi-step prediction. The approach follows the same rule as PPS,
i.e., predicting PS centre and manifold, which are used for population reinitialisation.

Chen et al. [18] suggested a hybrid population prediction strategy based on fuzzy inference and one-step pre-
diction to track the moving PS/PF closely. This strategy is integrated into a teaching-learning based optimisation
algorithm. Zou et al. proposed a reinforcement learning based approach to determine actions to take in response
to changes, depending on the severity of change measured by the algorithm. This approach enables rational de-
cisions on change response. However, the number of states that the algorithm can stay is very low, resulting in
possibly inaccurate change response.

An inverse approach [39] created an inverse model to handle changes in addition to detecting them. This
approach was incorporated into MOEA/D [163] for solving DMOPs. Similarly, inverse models were used in
the study of [138] where the quantile information of the population is used to predict a population for a new
environment. Ma et al. [106] have recently proposed a feature information prediction algorithm for DMOPs.
In it, a joint distribution adaptation model is used to identify the distribution of solutions after environmental
changes, based on which the population for the new environment is created.

6.4 Memory-based Approaches
Solutions in past environments may be helpful for a new environment, especially when the new environment is
similar to a past environment. The use of a memory pool to store such solutions is another important approach for
handling environmental changes. In this approach, solutions from the evolving population are selectively saved
to a memory pool, and they are retrieved and merged into the population when they are needed (for example,
when a change occurs) (see Fig. 7(b)). Note that, prediction-based approaches also rely on past solutions. To
avoid confusion between these two approaches, this section only reviews studies/techniques that use past solutions
directly without a predictive model for new environments.

Koo [88] suggested to store nondominated sets found for previous environments in a memory pool. When a
change occurs, a desired number (γ) of past solutions are uniformly sampled from the memory pool, by recursively
removing the most crowded solution in the decision space from a copy of the memory pool until γ solutions are
left. These γ past solutions together with other solutions generated using a normal mutation form a large part of
the population for new environments.

Goh and Tan [41] chose γ random solutions from the previous population, with priority for extreme solutions
along objectives, right before an environmental change and added them into a memory pool of a fixed size. When
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the memory pool is full, the oldest members are removed to make room for new members. Note that solutions in
the memory pool will not be re-inserted into the population for the current environment but instead will be used to
update the archive of nondominated set, addressing the concern that past solutions may misguide the optimisation
process.

In [124], nondominated solutions for each past environment were saved into a memory pool of a fixed size.
When the memory pool is full, the first-in-first-out principle is used. In new environments, the solutions in the
memory pool are used to replace the worst individuals of the current population.

Wang et al. [145] adapted the squirrel search algorithm using the MOEA/D [163] framework to create a new
decomposition-based algorithm. This algorithm uses memory based techniques create a portion of population for
environmental changes.

Some studies recognise that knowledge of past environments and search experience can help address new envi-
ronments [123, 176]. In [176], a dynamic environmental evolutionary model was built, which records information
about environments and search experience of population before and after a change. The recorded information and
experience are then used to guide the search in new environments.

Chen et al. [21] introduced an EA for handling time-varying constraints and objective functions. The EA has
a new mating selection and environmental selection operator which can adaptively allow the inclusion of both
feasible and infeasible solutions in a population. In the event of changes, previous solutions are reused based on
information obtained from the new environment.

6.5 Local Search
Wandering around the neighbourhood of current solutions could lead to the identification of promising solutions
and search directions to the PF for the new environments. Local search can be particularly efficient when the new
PS is near the current PS. Local search was successfully applied to single-objective dynamic travelling salesman
problems [110]. In the EDMO literature, there has been increasing interest in local search. Padhye et al. [120]
proposed to combine local search and a dynamic version of NSGA-II to handle a dynamic sensor network problem.
In it, local search is carried out by repeated successive mutation for each bit in certain candidate solutions. Azzouz
et al. [5, 7] designed an ε-local search algorithm using an epsilon indicator-based selection method, which showed
great promise for guiding the population towards new search directions. The ε-local search algorithm has been
recently incorporated into a reinforcement learning framework for EDMO. The study of [94] applied local search
to a portion of the population which are considered key points representing the PF. Wu et al. [153] proposed a
directed local search which is along the search direction orthogonal to the moving diretion of the non-dominated
sets in two consecutive environments and they showed this new local search than a random local search. Very
recently, Hu et al. [65] developed a multi-direction local search strategy where population individuals are guided
either along the moving direction of nondominated solutions or the opposite direction from the moving direction.

6.6 Dynamics-based Approaches
Knowing something about changes can help algorithms to address the changes effectively. Dynamics based
approaches attempt to handle environmental changes by assessing their effects on algorithms. Two kinds of such
approaches have been investigated, as shown in Table 6. The first one responds to a change according to the
severity of the change. So, estimation of severity is the main task for this type of approach. If the severity is
high, algorithms need to make a big adjustment; otherwise, a subtle adjustment should suffice. The second group
assumes that not all decision variables of solutions are affected by changes. Algorithms should have different
response mechanisms for different types of variables. Thus, variable grouping is important. We review these two
kinds of approaches below.

6.6.1 Estimate of Severity of Change

Sahmoud and Topcuoglu [133] proposed a type-detection based algorithm to solve DMOPs. The algorithm mea-
sures the magnitude of environmental changes by calculating the difference of the number of nondominated
solutions between the previous environment and the current environment. If the ratio of the difference to the pop-
ulation size is bigger than a predefined threshold, then it is assumed that the change is Type-I or II [36]. Otherwise,
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Table 6: Dynamics based approaches.
Approach Technique Study Year

Estimate of severity of change

Environmental classification based strategy [166] 2008
Average severity based strategy [7] 2017
Type-detection based strategy [133] 2018
Maximum severity based strategy [134] 2019

Change based variable grouping Sensitivity-based grouping [155] 2017
Principal variable analysis [164] 2019

it is considered as a Type-III or IV environmental change. Accordingly, two DNSGA-II variants are used to deal
with these two scenarios, respectively. DNSGA-II-A [29] is employed in the former case whereas NSGA-II with
hyper-mutation is used for only one generation in the later case.

Zhang [166] proposed an environmental recognition rule based on the severity of changes to classify a new
environment as either an identical, similar or dissimilar one to the past environment. The classification result de-
termines appropriate actions to be taken. Not long after, Zhang and another co-author [167] proposed an enhanced
environmental classification rule and demonstrated high performance in addressing environmental changes in both
objective functions and constraints.

Azzouz et al. [7] proposed a severity-based change response approach based on the idea that, if a severe
change occurs, the probability to generate a better solution based on the current solution is high because the
current solution is not likely very close to the new PF, and this probability is low if a change is mild. They used
a local search technique to generate locally from the population some trial solutions by which the severity of
change can be estimated. If the severity of change is small, then it is suggested to use more archived solutions
than randomly generated ones in the new population for the current change; otherwise, more randomly generated
solutions are recommended in order to deal with the severe environmental change. Azzouz et al. integrated their
approach into NSGA-II, demonstrating a high level of capability of tracking the moving PSs/PFs.

In the work of Liu et al. [98], the severity of change is estimated by the average deviations in objective
values before and after a change over some randomly selected population members. Then the proportion of
population that needs to undergo diversity enhancement is coupled with the estimated severity of change. The
diversity enhancement is done by randomly generated solutions from uniform distribution with a probability of
the proportion value and from Gaussian distribution with the remaining probability.

Sahmoud and Topcuoglu [134] argued that Liu et al.’s approach [98] has some drawbacks: 1) the severity
estimation method using average deviation values may underestimate the severity of change particularly when
one objective function encounters severe changes while the others are not affected; 2) the estimated severity
for the new environment requires historical severity information, which therefore may not accurately reflect the
actual severity of change for the current environment. Accordingly, they proposed a new approach to measure
the severity of change. This approach calculates the sum of relative objective value differences between changes
over all the sensors for each objective and identifies the largest relative difference over all objectives. If the largest
relative difference is bigger than a user-defined parameter θmin, then a certain number of individuals in the current
population will be replaced by randomly generated new solutions and this number is capped if the measured
severity level is higher than another user-defined parameter θmax (θmax > θmin). If the estimated severity level
is lower than θmin, some population members will be replaced by mutated candidates of existing solutions. This
severity-based approach is integrated into the framework of NSGA-II, showing encouraging results as reported in
[134].

Rong et al. [128] estimated the severity of change by calculating the change of objective values of archived
solutions. Once estimated, the severity of change is used to determine the number of population individuals that
should be predicted by predictive models for a new environment.

Gong et al. [42] estimated the severity of change by measuring the dissimilarity between the previous envi-
ronment and the current environment in objective values. The severity of change is used to calculate the stepsize
by which a solution needs to move in the new environment.

Ou et al. [119] argued that the effect of changes on different decision variables may be different and therefore
response measures should be different as well. They calculated for each decision variable the severity of change,
according to which variable reinitialisation is made in response to changes.

Zou et al. [173] proposed to detect the severity of change by measuring the amount of change in the objective
values of detectors, and then developed a reinforcement learning approach to respond to environmental changes
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according to the severity of change. The severity of change has three categories: slight, medium, and severe,
which are considered three states in reinforcement leanring. Three actions, including a knee-based prediction,
a centre-based prediction, and local search are adopted, and the reinforcement learning approach is to select a
sequence of actions based on the given states and relocate the population to the new PF.

6.6.2 Variable Grouping

Xu et al. [155] proposed a variable grouping method that divides the decision variables into two groups, i.e.,
a high-sensitivity group and a low-sensitivity group, according to the interrelation with environments. When
creating a population for a new environment, variables from the high-sensitivity group are populated with values
through a linear predictive model and those from the low-sensitivity group are assigned values from Cauchy
mutation of previous solutions. This approach was incorporated into two existing multi-objective optimisers and
experimental results demonstrated its effectiveness in solving DMOPs with high dependencies between variables.
However, this approach relies heavily on the accuracy of grouping methods, and misclassified variables may be
forced to use inappropriate change response strategies.

Zhang et al. [164] grouped decision variables into principal and non-principal ones. The principal ones have
the largest deviation (assuming it being most influenced by changes). Different sampling strategies are used for
two groups to form a portion of population for a new environment. A possible limitation is that the assumption
of two-category variables may not be true in some problems and it is also often difficult to accurately determine
principal variables.

6.7 Special-point Based Approaches
Special points carrying important features of the PF, e.g., knee points [25], have been widely used in stationary
optimization environments [165]. A knee point on the PF refers to the point with the largest marginal return rate.
It means that if one objective improves a little, then at least one other objective will be accompanied by a serious
decline. In [27], knee points prove to be better than other points on the PF for hypervolume calculation [170]. The
speciality of such points has also been increasingly investigated in EDMO for handling environmental changes.
An illustration of the general framework of this approach is provided in Fig. 7(c).

In 2017, Zou et al. [175] firstly applied knee points to the field of DMO, and proposed a prediction strategy
based on centre points and knee points (CKPS). In CKPS, the PF is divided into several areas, and one knee point
is found in each area. Then the AR prediction model [169] is used to learn the change pattern of the knee point
in each area in the previous environments to predict the knee points of the next environment. These knee points
are used as representative individuals of the PF to guide the population to evolve toward the optimal solutions.
The knee points, together with the dominated set obtained by a feed-forward centre point method and an adaptive
diversity set, form the initial population of the new environment and accelerate the convergence process.

Li et al. [93] proposed a special-point based prediction strategy (SPPS). They argued that special points have
different functions. The centre point of the PS as a special point is not only used to predict the non-dominated set,
but also closely related to the number of adaptive individuals in an adaptive diversity set. The boundary point can
not only be used to guide the evolution of the population, but also is related to the scope of the adaptive diversity
individuals. The knee point and some other special points are mainly used as representative individuals on the PF
to guide the population to evolve toward the PS.

In 2019, Li et al. [92] proposed a special-point based hybrid prediction strategy (SHPS). In SHPS, when
historical information is not enough to build a predictive model for PPS [169], prediction (PRE) and variation
(VAR) strategies [170] are used to generate the initial population. Once the historical information is sufficient,
a special point set (including knee points) are predicted, and PPS is used to generate the population except the
special point set. These two parts make up the initial population in the new environment.

Recently, Jiang et al. [75] have proposed a knee point based transfer learning method (KT-DMOEA). In KT-
DMOEA, estimated knee points are generated by a trend prediction model (TPM), and then these knee points
are processed by an imbalance transfer learning method to obtain a high-quality initial population in the new
environment. This strategy improves calculation efficiency, and works well on DMOPs.

Liu et al. [102] considered special points as reference points that define the decision maker’s preference on
solutions. The preference is spherical area determined by a special point with a radius. The preference then guides
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the search for PSs/PFs. Similarly, reference points are used in [103] to predict the changing PS.

6.8 Robustness-based Approaches
Optimisation problems in different environments can be different, causing significant changes in Pareto-optimal
solutions. The overwhelming changes can not only make it difficult for algorithms to track the PS/PF over time,
but also can induce expensive switching costs for systems to accept completely new solutions. To deal with
this issue, researchers [20, 47] have employed robust optimisation over time (ROOT) that is originally designed
for single-objective dynamic optimisation [159]. ROOT is to find solutions acceptable for different environments,
avoiding the need to track new solutions for every environmental change (see Fig. 7(d)). In [20], a single predictive
model was proposed to estimate solutions’ fitness in subsequent environments. An ensemble predictive model [47]
was suggested to improve the prediction accuracy.

In [68], a ROOT derivative was proposed. The derivative considers the robustness of solutions and the switch-
ing cost for implementing the solutions as two objectives in each environment. A PSO algorithm is borrowed for
solving the resulting DMOPs over time. Recently, this approach has been extended with a selection strategy to
automate the decision-marking process over time [69].

In [48], the concept of ROOT was integrated into brain storm optimisation for finding robust PSs. The new
algorithm introduces grid-based clustering and a hybrid mutation operator to enhance population diversity.

6.9 Discussion
Diversity increase/maintenance is probably the easiest way to respond to environmental changes due to its low
complexity. Its use and effectiveness depend on the amount of change that the environment undergoes. In other
words, the level of diversity that needs to be introduced/maintained is related to the severity of change. Popula-
tion diversity needs small adjustment for slight changes and significant adjustment for severe changes [29], and
this should also apply to diversity maintenance techniques. Multi-population approaches define the structure of
population in the search, so they are often algorithm-specific approaches. This approach is studied mainly in
PSO, with a few exceptions in other types of algorithms, including evolutionary algorithms [41, 99] and artificial
immune systems [137]. Predictive models have been the most investigated approaches to change response. It is
widely used to improve population convergence. However, this approach depends heavily on the trajectory of the
PS/PF manifold. Linear (nonlinear) models are for linear (nonlinear) trajectories. Recent studies have argued that
unidirectional predictive models fail to capture the movement pattern of local regions in the PS/PF, leading to
the development of multi-directional models [128]. Also, prediction-based approaches are not recommended for
unpredictable changes [79]. Memory-based approaches receive little attention in EDMO in spite of great success
in dynamic single-objective optimisation. One of the biggest concerns that hinder its wide application is the high
storage complexity for multiple trade-off solutions in an environment due to Pareto optimality. However, this ap-
proach can be very effective especially when environments are similar to past environments [116]. Local search is
effective especially when the solutions in the new environment are not far from those in the current environment.
However, how much local search should be applied is a question that is difficult to answer, since it can be problem
specific. Special-point based approaches focus on the use of preference or reference points to guide population
evolution. This way, limited computational resources are smartly allocated to track regions of interest rather than
the whole PS/PF. This approach eases the subsequent decision-making process but requires some high-level infor-
mation from decision makers to define ’special’ points. Robustness-based approaches are aimed to find solutions
tolerant to environmental changes such that systems do not have to be frequently adjusted. The strengths of this
approach lie mainly in the low cost (almost ignorable) in change response. The downside is, however, that they
are limited to systems with some tolerance to changes; for example, a system prefers robustness over optimal
performance in each single environment.

The above change response approaches are often not used in isolation from each other. Instead, hybridising
several approaches in a cooperative manner tends to be more effective than using a single approach, as evidenced
by numerous DMOEAs [18, 41, 59] in EDMO. For fresh DMOPs, algorithm developers can start with diversity-
based techniques and progressively add one type of change response approaches at a time until the performance
of the algorithm meets the requirement.
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Table 7: Performance measures for EDMO.
Category Measure (abbrev.) Description Year

Convergence

ex, ef [36] Convergence measure 2004
Gτ [111] Generational distance 2006
SCτ [111] Success ratio 2006
MIGD [170] Mean inverted generational distance 2007
CR [166] Convergent ratio 2008
VD [41] Variational distance 2009
VDwight [88] Weighted variational distance 2010
OSPA [139] Optimal subpattern assignment 2011

Diversity

PL [111] Path length metric 2006
AD [166] Average density 2008
CS [166] Coverage scope 2008
Co[166] Coverage rate 2008
MS [41] Maximum spread 2009
γ [19] Entropy-based diversity metric 2009
MSweight [88] Weighted maximum spread 2010
IM [4] Moment of inertia (genetic diversity) 2011
HN [4] Front diversity 2011
RMS [82] Revised maximum spread 2016
MSP [82] Mean spacing 2016
IGDα [38] Diversity-focused inverted generational distance 2017

Dynamics

reacε [16] Reaction time 2010
stb [16] Stability 2010
R [82] Robustness 2016
TPrate [132] True positive rate * 2016
sAvg [132] Average number of invoked sensors 2016
DT [78] Detection cost 2018
MDT [79] Mean detection timeliness 2019

Hybrid

MHV [170] Mean hypervolume 2007
acc [16] Accuracy ** 2010
vHV [15] Relative variability measure 2011
MHVD [169] Mean hypervolume difference 2014

* TPrate is the ratio of correctly identified changes to the total number of changes.
** Accuracy accmeasures the proximity of solutions found to the true PF, which is different from the definition
of accuracy in the machine learning classification field.

The majority of the approaches surveyed have a time complexity of O(N2) (where N is the population size),
as time complexity is largely dominated by the underlying static multi-objective optimisers. Some approaches
with a reliance on MOEA/D optimiser [163] have a smaller time complexity O(NT ) (where T , often less than
N , is the neighbourhood size used in MOEA/D). However, a few approaches have a time complexity larger than
O(N2), particularly for those relying on machine learning techniques. Those approaches require the training
of machine learning models and subsequent adjustments, whose time complexity is determined by the sample
size and other parameters of the machine learning models. We have observed that some machine learning based
approaches like [73] and [169] are noticeably slower than some low-complexity approaches like DNSGA-II [29]
when their programming environments are similar, but this disadvantage can be outweighed by the better quality
of solutions they can provide.

7 Performance Measures
Performance measures are important for algorithm evaluation as they are indicators of how well algorithms per-
form in problem solving. Depending on their characteristics, performance measures for EDMO can be roughly
categorised into three groups as shown in Table 7: convergence measure, diversity measure, and dynamics mea-
sure. Note that, there are hybrid measures that can quantify multiple aspects of performance in a compact form,
and this is also discussed in this section. The mathematical definitions of popular measures can be found in the
supplementary material. Fig. 8 shows the primary framework of measuring performance in EDMO.
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Figure 8: An illustration of performance evaluation: optimisation (minimisation) in environment t; (b) learning
curve indicated by a performance measure p (the smaller, the better) during environment t. (c) learning curve of
p across T environments (the average is pavg).

7.1 Convergence Measure
Convergence measure focuses on evaluating the convergence of algorithms (see Fig. 8(b)). In the context of
EDMO, it is aimed to indicate how well algorithms converge toward the PF before the environment changes.
So far, several convergence measures have been developed by borrowing ideas from their static counterparts
[41, 111, 170]. A popular approach to developing such measures is to measure the convergence of an algorithm at
the end of each time frame of environments by a static convergence measure and then take the arithmetic average
value to indicate the algorithm’s convergence performance in dynamic environments. Mathematically speaking,
suppose CM is a convergence measure in static multi-objective optimisation, the ‘average’ version of CM for
EDMO, denoted as CMavg is defined as:

CMavg =
1

T

∑T

t=1
CM(t), (6)

where CM(t) is the CM value at time instant t calculated just before a change occurs, and T is the total number
of environmental changes. This is graphically illustrated in Fig.8(c).

The above ‘average’ approach has adapted several static convergence measures, including generational dis-
tance [111], inverted generational distance [170], and success rate [111] for use in EDMO. Goh and Tan [41] used
the averaged generational distance in the variable space, which was further modified by the work [88] for specific
purposes.

Apart from the easy ‘average’ approach, there are also some new ways of measuring the convergence of
DMOEAs. In [36], a normalised generational distance was used to measure convergence in the variable space and
objective space. Zhang developed convergent ratio CR [166] based on coverage [172] as a statistical indicative
of convergence. Tantar et al. [139] proposed to use the optimal subpattern assignment (OSPA), which can be
regarded as an extension of the Hausdorff distance, to measure the closeness of the approximate PF to the true PF
in terms of localisation and cardinality.

7.2 Diversity Measure
Diversity measure quantifies the extent to which approximate solutions are diversified in the variable space or ob-
jective space (see Fig. 8(a)). The above-mentioned ‘average’ approach can again be used to adapt static diversity
measures available for EDMO. Indeed, the spacing measure [82] that evaluates the uniformity of solutions has
been extended in this way in several EDMO studies [148, 166]. Another example is the maximum spread [41, 88]
that measures how well approximate solutions cover corners of the true PF, and this measure is further improved
in [82] to avoid false-positive errors.

Some diversity measures are developed in a different way. A distribution metric – the PL-metric [111] – was
developed to take into account the shape and structure of problems’ PF, offering higher accuracy for diversity
assessment. The concept of information entropy was introduced to develop a diversity measure in [19]. Azevedo
et al. [4] proposed two diversity measures of approximate solutions during the search. A recent study [38]
modified the inverted generational distance to estimate population diversity.

27



7.3 Dynamics Measure
EDMO features diverse dynamics that cause problems to change over time. Thus, it is important to have measures
that can analyse the ability of algorithms to handle such dynamics. For this reason, various dynamics measures
have been proposed. One of the earliest investigations in this direction is Camara’s work [16], which presents two
measures with one measuring the reaction time required for an algorithm to adapt itself to changes and another
measuring the stability of the algorithm. Jiang and Yang [82] proposed to measure the robustness of algorithms
in dynamic environments.

There are also studies focussing on change detection due to its importance to DMOEAs. Dynamics measures
around change detection investigate the success rate of detection [132], the associated cost [78, 132], and the
timeliness [79].

7.4 Hybrid Measure
Sometimes, a measure may be able to quantify multiple aspects of algorithms’ performance, and we call such
measure as a hybrid measure, although it can belong to several of the above measure categories. One of the most
well-known hybrid measures is the hypervolume [170] metric which computes the area enclosed by nondominated
solutions and a reference point. Hypervolume measures both diversity and convergence in a compact form, so
it is very popular in static multi-objective optimisation. Similarly, the ‘average’ approach can be applied to
hypervolume [170] and hypervolume difference MHVD [169] to quantify the average performance of algorithms
over a number of environmental changes. In contrast, the studies [15] and [16] make use of hypervolume to
investigate algorithms’ performance following an environmental change.

7.5 Discussion
Despite years’ community effort, measuring the performance of algorithms in EDMO effectively is still a chal-
lenging problem. Some issues mentioned in [55, 56] have not yet been fully addressed. Here, the widely used
‘average’ approach is the simplest way to make static performance measures applicable for EDMO. Two repre-
sentative examples are the mean inverted generational distance (MIGD) and mean hypervolume (MHV) [170]
which have been widely adopted in the EDMO community. However, as noted in [82], averaging indication val-
ues over a number of changes may not effectively reflect the true performance of algorithms with regard to the
measure considered. Consequently, algorithmic comparison based on arithmetic average measure values may be
biased. Particularly, when an algorithm handles one change extremely well but has poor performance in the rest of
changes, it arithmetic average of performance measure values over all the changes may be still good, thereby not
reflecting the average performance of the algorithm. This can be further compounded by the fact the performance
measure values come from different environmental changes, i.e., the data samples do not come from the same
distribution. To reduce the bias, arithmetic average values can be used together with other descriptive statics,
including the maximum and minimum values. It is recommended to consider variance in addition to average
values.

Let pt be the value of a certain measure p at time t. An algorithm dealing with a problem with T environmental
changes will have a list of pt values in one run. We can denote it in the vector form as P = (p1, p2, . . . , pT ).
Suppose we want to compare two algorithmsA andB by the measure p, i.e. PA vs PB , then they may be directly
incomparable, especially when T is large indicating a high-dimensional nondominated scenario.

To address this challenge, we put forward some workarounds as follows:

• Hypervolume-based comparison: If we choose a reference point R dominated by both PA and PB , then
the algorithms A and B can be compared via their respective hypervolume values, i.e. HV (PA, R) and
HV (PB , R).

• High-dimensional statistical testing: It may happen that the two algorithms’ p values are not comparable in
a single run but can be clearly distinguishable in multiple runs. Indeed, we often need multiple executions
to estimate the stability of algorithms, which provides the samples required for statistical testing. Instead of
one-dimensional testing that is usually used for static multi-objective optimisation, we now need to perform
high-dimensional statistical testing [23] on P samples to discriminate algorithms.
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Table 8: Applications of EDMO.
Application # objectives

(dynamic?)
Constraints
(dynamic?)

Variable type Change handling

Power plant scheduling[29, 167] 2 (no) Yes (yes) Integer Diversity introduction/maintenance
Mission planning [14] 2 (yes) Yes (yes) Mixed-integer Diversity introduction and memory
Railway junction rescheduling [32] 2 (no) Yes (yes) Integer Archive retainment
Vehicle routing [46] 3 (yes) Yes (yes) Integer Robust over time
Machining [129] 2 (yes) No (NA) Real-valued Population prediction
Magnesia grain manufacturing [87] 2 (yes) Yes (yes) real-valued Memory retrieval
Greenhouse control [166] 3 (no) Yes (yes) Real-valued Memory retrieval & diversity increase
Plant control [67] 3 (yes) Yes (yes) Real-valued Restart strategy
Welded beam design [167] 2 (yes) Yes (yes) Real-valued Diversity maintenance
Speed reduce design [167] 2 (yes) Yes (yes) Real-valued Diversity maintenance
War resource allocation [10, 121] 4 (no) Yes (yes) Integer Diversity maintenance
Hospital resource management [71] 3 (yes) Yes (yes) Integer Restart strategy
Multi-period portfolio selection [42] 2 (yes) Yes (no) Real-valued Multi-population strategy
Distributed deployment selection [141] 2 (yes) Yes (yes) Integer Diversity introduction and memory
UAVs system identification [72] 2 (yes) No (NA) Real-valued Re-evaluation

• Generalised scalarisation: In a way similar to the “average” approach, we can define generalised scalarisa-
tion to map the T -dimensional P into a scalar value. A number of scalarising functions used in decomposition-
based algorithms [163] can be employed for this purpose, and the resulting scalar values of PA and PB
would be immediately comparable so as to distinguish between algorithms A and B.

In addition, it is important to take into account computational complexity while evaluating DMOEAs. Com-
pared with static multi-objective optimisation, DMOEAs have additional computational costs due to change-
related components unique to EDMO. The additional time complexity Tadd(N) (N , population size) consists
mainly of the runtime complexity in change detection (Tdetect(N), the number of function re-evaluations to check
fitness discrepancies), and change response (Tresponse(N), the number of function evaluations required to handle
changes). Therefore, Tadd(N) = Tdetect(N) + Tresponse(N). Tdetect(N) and Tresponse in most DMOEAs are
unneglectable, since change detection is constantly monitored in every generation of evolution in order not to miss
any changes and change response often involves a significant number of function (re)evaluations or time-costly
response procedures, such as training complex predictive models. Space complexity is negligible in most change
detection techniques. However, the memory cost is often significant in change response, especially for memory-
based approaches that rely on a large number of past solutions and for prediction-based approaches which use
a memory pool to store the trend of environmental changes. For storage efficiency, a good practice is to limit
memory size, as witnessed in [41, 124].

8 Applications
Although the primary focus of the EDMO research so far has been on artificial benchmark DMOPs, numerous
real-world applications have increasingly emerged. In particular, we found in the literature the application of
EDMO focuses on the following five areas: scheduling/planning, control/design, manufacturing/production, re-
source allocation & management, and data science, with the first being most popular. In this section, we will
discuss these applications with a focus on their problem characteristics and the algorithms by which they were
investigated.

Table 8 provides a summary of applications in the most cited papers (with at least 30 citations) among nearly
40 applied publications which are listed in the supplementary material. The “Application” column shows the
optimisation task solved in the corresponding paper. The “# objectives (dynamic?)” column indicates the number
and dynamicality of objectives of the target task. The “Constraints (dynamic?)” column indicates whether the
task has constraints and whether its constraints are dynamic if there is any. The “Variable type” column shows the
type of decision variables. Finally, the “Change handling” column indicates the key change response approaches
employed by optimisers. The details of these applied research studies are discussed below.

Scheduling & planning. The studies [29] and [167] investigated power scheduling in hydro-thermal gen-
eration systems, in which the problem involves the optimisation of fuel cost of all thermal units and nitrogen
oxide emission subject to three equality constraints in the hydraulic and power system networks. The problem
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changes over time due to dynamic power demand in different scheduling periods. In [29], NSGA-II with ran-
domly replaced individuals (DNSGA-II-A) was used to increase population diversity when a change occurs. In
[167], changes were addressed by a diversity maintenance scheme in artificial immune systems. Bui et al. [14]
investigated mission planning with time-varying duration of tasks, availability of resources, and precedence of
tasks. The optimisation objectives were to minimise makespan and cost of reallocating capabilities. The dy-
namics was tackled by a centroid-based adaption approach, which reuses previous centroids of nondominated
solutions in memory to improve convergence if they are feasible for the current environment, and to randomly
mutate previous population to increase population diversity otherwise. Eaton et al. [32] studied railway junction
rescheduling due to train delays. The optimum of the problem minimised two objectives, i.e., timetable deviation
and additional energy expenditure, subject to dynamic constraints in a railway network simulator. The problem
was solved by ant colony optimisation, which addressed the changes by retaining an archive of nondominated
solutions between changes and updating the pheromones to reflect the new environment. The work of Guo et al.
[46] investigated a vehicle routing problem with dynamic consumers. The problem involved the minimisation of
carbon emission, vehicle waiting time, and the total number of dispatched vehicles. The presence of new cus-
tomers dynamically makes both the objectives and vehicle travelling constraints change over time. To address the
dynamics, the concept of robust optimisation over time was applied, together with a local optimisation strategy,
in PSO.

Control & design. The work of Zhang [166] investigated controller design in greenhouses, in which the
objectives are to maximise crop yield and minimise energy cost and carbon emission. The objectives stay static
whereas the greenhouse climate constraints are time-dependent. Zhang [166] applied an artificial immune system
with several change handling techniques, including adaptative reproduction, hypermutation, and memory pool, to
this design problem. Farina et al. [36] studied controller design having time-dependent parameters. The DMOP
involves optimisation of a PID controller to minimise rising time, maximum overshooting, and settling time.
Similarly, the controller design problem was studied in the context of unstable plants [67]. In both studies, the
restart strategy was employed to handle environmental changes.

Manufacturing & production. Roy and Mehnen [129] studied dynamic machining gradient materials with
time-varying workpiece dimension. This is an unconstrained bi-objective problem that needs to minimise wear
VB and surface roughness. They solved the problem using a modified NSGA-II with a forecasting approach. The
modified NSGA-II discards parent population when a change occurs. The work of Kong et al. [87] attempted a
dynamic power supply problem in magnesia grain manufacturing, in which the objectives are to maximise yield
and grade of magnesia grain. The manufacturing process oscillates among six operations, causing the objectives
and constraints change over time. This problem was addressed by NSGA-II with case-based reasoning. The
changes were handled by retrieving and reusing historical solutions in a memory pool for past environments that
are similar to the new environment.

Resource allocation & management. Palaniappan et al. [121] studied resource management in simulated
war scenarios, focusing on optimising the war resource allocations of sorties with the following objectives: min-
imisation of the territory that the friendly side losses, minimisation of the aircraft lost in the friendly side, maximi-
sation of the number of enemy side strategic targets killed, and maximisation of the number of enemy side armour
killed. To handle the stochastic nature of the war simulation, a genetic algorithm (GA) with diversity maintenance
throughout the search was proposed. This war resource allocation problem was further analysed in [10], in which
an advanced GA parameter adaption was proposed to enhance diversity maintenance. The work of [71] studied
hospital resource management, considering the stochastic nature of patient arrival and treatment processes. That
work investigated three optimisation objectives, i.e., maximisation of mean total throughput of patients, minimi-
sation of the mean total resource costs and mean total weighted back-up capacity usage. An offline estimation
of distribution algorithm with a restart strategy for each environmental change was proposed for this problem.
In the work of Gong et al. [42], a multi-period portfolio selection problem was investigated with the expected
return rate being maximised and risk loss rate being minimised. This problem was handled by a multi-population
strategy using similarity-based grouping, and dynamic changes were responded by linear prediction to improve
the tracking of PS/PF.

Data science. Vinek et al. [141] studied distributed deployment selection problem – the selection of a service
to respond to a given request – in dynamic cloud computing environments where resources and deployments can
be dynamically added and attributes can change over time. The problem was modelled with two objectives: one is
to maximise the quality of single requests, and the other is to minimise the variance of the quality. This problem
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was solved by a memory-based GA, in which the initial population for each new environment consists of solutions
from similar environments and randomly generated candidates. The work of Isaacs et al. [72] investigated a
system identification problem of unmanned aerial vehicles (UAVs) using neural networks. The problem was
equivalent to minimising the mean square error and absolute maximum error in online neural networking training
such that the dynamic behaviour of UAVs is well approximated. The authors proposed a memetic algorithm for
this problem, in which dynamic changes were handled by population re-evaluation.

9 Conclusion
This paper have presented an extensive survey of research progress on EDMO. The survey methodology we used
was to provide a whole, clear picture of key EDMO topics. For this reason, we decided to focus on dynamic
multi-objective environments, trying to avoid results and outputs from dynamic single-objective optimisation
which has been extensively surveyed. We surveyed EDMO in new ways by making it comprehensive and well
structured, conducting insightful discussions, making suggestions and recommendations for tackling open issues,
and making it intuitive through graphical illustrations. The survey of articles and results for key topics, including
problem benchmarking, algorithmic design, and performance assessment, was intentionally made chronological
so the interested readers can see how the field evolves over the years.

9.1 Lessons Learnt from the Development of EDMO
EDMO has undergone rapid development over the years, from which we can learn so much. The following
summarises the lessons learnt from three key topics of EDMO.

9.1.1 Benchmark problems

The benchmarking methodologies have evolved significantly over the last two decades. Early approaches relies
on the addition of simple dynamic features to static multi-objective problems available in the literature, which do
not seem to bring about sufficient challenges to EAs. Dynamic features used to be limited in terms of their impact
on EAs. In recent years, dynamic features have been constructed with a higher level of complexity and diversity
that are likely to present in real-word scenarios [79, 80]. These improvements have led to an increasing interest
in a broader range of dynamics handling techniques, since the use of a single technique is now unlikely to handle
effectively a diverse range of dynamic features. There is also growing awareness to the relationship between
dynamics and multi-objective optimisation when benchmarking DMO environments. It is increasingly realised
that static properties of multi-objective optimisation can obscure dynamic features [79]. Thus, benchmarks should
be made to help us understand effectively dynamics and its impacts on optimisation processes.

9.1.2 Algorithmic design

There are several important lessons learnt from the development of EDMO algorithms, which are summarised as
follows. 1) A mixture of change response approaches generally work better than a single approach, since mixed
approaches have the ability to address more diverse dynamic features than single ones. This is demonstrated from
the increasing use of mixed strategies in recent studies [2, 66, 147], in comparison to that of single approaches in a
few studies [29, 52, 170]. 2) Population prediction is useful and multi-directional prediction performs better than
single-directional prediction. Population prediction is a powerful change response approach when high-quality
historical search information is collected [169]. Multi-directional prediction recognises that population individu-
als may not have the same search direction as the population centroid, therefore increasing the prediction accuracy
of individual search directions [105, 128]. 3) Machine learning models improve change response. Transfer learn-
ing [73, 149] is one of the machine learning techniques that have proven to learn from dynamic environments
effectively and respond to environmental changes to a great standard. 4) Preference/reference-driven approaches
simplify the search for solutions to DMOPs and therefore alleviate the complexity of change response by focus-
ing on special points of interest to decision makers [175]. It helps EAs to use limited computational resources
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optimally to obtain a small number of solutions that are really important to decision makers in dynamic environ-
ments. Thus, under resource-constrained conditions, incorporating preferences/references into change response
mechanisms is a good way to address DMOPs.

9.1.3 Performance measures

The majority of performance measures for EDMO are those from static multi-objective optimisation and with
slight modifications to suit the assessment of solutions to DMOPs. Such modifications are not always effective
in practice, since they lack the ability to comprehensively measure algorithms’ response and adaptation to envi-
ronmental changes. Several newly-proposed performance measures, including reaction time [16], detection cost
and timeliness [78, 79], have started to focus on the dynamics of algorithms in response to changes, comple-
menting the conventional performance measures borrowed from static multi-objective optimisation. However,
performance evaluation is still a big open topic, and there is pressingly a need for a diverse set of dynamics-based
measures to facilitate sound evaluation of DMOEAs.

9.2 Algorithmic Design Recommendations and Guidelines
Algorithmic design is the most actively investigated topic in EDMO. The survey indicates that multiple different
research directions have been defined for this topic, yielding fruitful outputs of algorithmic design. While algo-
rithms are different from each other, they do share some common characteristics/design steps. Here, we attempt
to make some recommendations and guidelines for designing DMOEAs:

1. Check if there needs to detect environmental changes. If so, choose a change detection technique to deter-
mine when algorithms should handle changes.

2. Start with simple change response approaches like diversity-based techniques. The would help to under-
stand if the challenge in addressing the considered DMOPs is diversity loss.

3. Add progressively one kind of change response approaches at a time, according to problem properties (e.g.,
prediction-based approaches are chosen if changes exhibit a regular pattern) until the resulting algorithm
meets performance requirements.

4. Prune the change response approaches used in the algorithm to get a minimal set of approaches in a single
algorithm. This will not only reduce the complexity of the designed algorithm but also improve computa-
tional costs.

5. Choose a multi-objective optimisation framework that work seamlessly with the above steps and produce
high-quality solutions to DMOPs.

6. Conduct iterative improvement on the algorithm by evaluating it systematically through diverse testing
environments.

9.3 Practical Implications of EDMO
DMO arises frequently from real-world applications. Therefore, the investigation of EDMO has profound prac-
tical implications, ranging from scientific research to applied disciplines that involve DMO. Firstly, EDMO is
an interesting research topic where investigations advance our knowledge and understanding of DMOPs and the
solution to them. Secondly, EDMO helps to establish a testing and evaluation environment of DMOPs to study
algorithms. More importantly, EDMO can be particularly beneficial to practitioners who face DMOPs in real-
world applications and look for solutions to their problems. The algorithms from EDMO can be used by the
practitioners who may or may not have much knowledge of EDMO. The examples listed in Table 8 are just some
of many potential applications with regard to EDMO, and we believe more success stories of EDMO are coming
on the way.
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9.4 Opportunities
Despite the growing EDMO community and progress on open topics, EDMO is still in its infancy and more effort
needs to be invested. Several key challenges identified in [54] five years ago still remain to be addressed. In what
follows, we highlight future research opportunities that help to address these challenges.

Benchmarking. Despite significant advancements on unconstrained continuous DMOPs, little has been done
on benchmarking other types of DMOPs [54]. For example, constrained DMOPs are only investigated in a
few studies [6, 21, 161]. To benchmark constrained scenarios, some constrained problems [171] in static multi-
objective optimisation can be used as a starting point, and appropriate dynamic features are then added. Discrete
DMOPs receive less attention than it should have. Whatever problem type interests us, future benchmarking
studies need to address at least three challenges. Firstly, there is still a need of an appropriate set of dynamic
features that indeed challenge DMOEAs. Secondly, problem features including dynamics and multi-objectivity
should be well balanced. Only the study [79] has suggested to balance the difficulty of handling environment
changes and handling multi-objective optimisation though problem benchmarking. Thirdly, benchmark problems
should be a good representative of real-world scenarios, meaning that a clear link between artificial synthetic
problems and applications should be established in benchmarking [79, 82]. Further investigations are needed to
understand the performance of algorithms in achieving this trade-off at different levels.

Performance measure. Most of performance measures for EDMO are borrowed from their static coun-
terparts, with a few exceptions [16, 78, 132] evaluating the ability of dynamics handling. The use of static
performance measures results in the focus of performance assessment on the quality of trade-off solutions ob-
tained for each environmental change, neglecting the evaluation of algorithms’ response to changes. More diverse
dynamics-based performance measures are required to allow a systematic analysis of algorithms’ performance.
The development of new performance metrics can also help design indicator-guided approaches which are pop-
ular in static multi-objective optimisation but do not exist yet in EDMO. As discussed in the survey, EDMO has
a sequence of performance values which can be considered multi-dimensional data. For ease of comparison, the
multi-dimensional data can be made comparable by either a scalarisation technique or high-dimensional statistical
testing. Further investigations on this can be an interesting research direction in the future. In addition, there is a
lack of effective graphical representation to help inspect the performance of algorithms. Displaying multiple PFs
resulting from a sequence of environmental changes in a single figure is ineffective and reduces readability. Better
ways of graphical inspection are greatly needed, especially when the number of PFs to display is high.

Software. A good and free software platform for EDMO studies provides much added values to the commu-
nity. However, there is a lack of open platforms for implementing, running, comparing and analysing general-
purpose DMOEAs, although special frameworks [9] exist for some specific topics. The absence of such platforms
has significant implications on the research of EDMO. Many algorithms were implemented in different program-
ming environments and run under different execution settings, making it difficult to have a direct and fair compar-
ison between algorithms. Also, there is more likely to have implementation errors when some common functions
in algorithms are implemented differently by different authors. Thus, developing a standard algorithm develop-
ment and testing platform is a high-priority research direction which can significantly promote the development
of EDMO. Perhaps such platform can be built on existing ones from static multi-objective optimisation.

Change handling. Change detection has not been well investigated. While most of EDMO studies simply use
a re-evaluation method to detect changes, it remains unclear how effective this method is and what consequences
can be if there is a failure of detection. Open topics in change detection include optimal sensor placement, statis-
tical detection, and resource allocation for change detection. Similarly, change response is not fully investigated.
Population prediction has been a prominent change response approach, largely due to the predictability of change
patterns in majority of test suites. The study [79] shows unpredictable changes aggravate algorithms significantly.
But this issue is worth further investigation, and perhaps developing a test suite with various unpredictable changes
(random or semi-random) is a good start.

Asynchronous and time-linkage dynamics. The study [61] presents an interesting type of dynamics which
makes the objective functions of DMOPs change asynchronously. Asynchronous changes influence EAs signif-
icantly, according to the study. More work can be done along this research direction, including asynchronous
changes in constraints and/or environmental parameters. In addition, time-linkage dynamics where decisions
taken now could affect problem states in future are understudied in EDMO [67]. Some findings in DSO studies
[13, 117] may help future investigations in this topic.
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Scalability. Scalability refers to the (time-dependent) increase in the number of objective functions and deci-
sion variables that DMOAs can handle. Currently, only a few studies [22, 45] have investigated DMOPs with more
than 3 objectives. Specially, the theoretical analysis of EDMO with objective replacement [45] has improved our
understanding of the effects of changes in the number of objectives on algorithms. Due to the availability of scal-
able test suites [79], the scalability of existing DMOEAs for dynamic many-objective problems can be studied in
the future. In addition, to the knowledge of the authors, the scalability of DMOEAs in terms of the number of de-
cision variables is not yet explored. Scalability brings about new challenges, just like many-objective optimisation
and large-scale optimisation, but in dynamic environments.

Preference. Special points that represent the decision maker’s preference has been explored to guide DMOEAs
in a few studies [75, 92, 175]. This line of research can be further investigated to create a concrete guideline as
to when and how special points should be applied. Currently, most special point based approaches treat knee
points as special points. However, knee points that are computed within a short search period for a change may
not be the true knee points on the PF of the environment associated with the change. It remains unclear what
the maximum capability knee points can provide if the (approximately) true knee points are correctly identified.
In addition, only a few studies [107, 115] have investigated preference incorporation in EDMO to ease decision
making challenges [54]. This research direction can be further studied.

Robustness. This concept is frequently mentioned in various optimisation and learning studies but is not so
often well defined [50]. In the context of EDMO, robustness can be understood as the ability to maintain good
optimisation results across numerous environmental changes. Robust optimisation over time (ROOT) [46, 68] has
been introduced to solve DMOPs from this point of view. This eases the search by avoiding algorithms being
frequently asked to adapt to different environmental changes. ROOT requires keeping just one single solution
in dynamic single-objective environments but a set of trade-off solutions in DMO environments, suggesting a
significant increase in the level of complexity. In order to study ROOT for EDMO, ROOT problems should be
benchmarked. Nevertheless, this research direction is promising and therefore can be further investigated.

Machine learning. The use of machine learning techniques to enhance the search of algorithms in dynamic
environments has been a new trend. Regression models [143, 169] have helped to deal with predictable changes.
The success of transfer learning in EDMO [73, 76] will inspire further investigation of other advanced machine
learning models to handle complex environmental changes. Note that, the population-based search process gener-
ates a high volume of data, but how to use such data smartly is not yet explored for EDMO. The smart use of data
is especially important with regard to computational complexity since machine learning models require training.
Most machine learning models used in EDMO train models from scratch for each environmental change, which
increases the computational time of DMOEAs significantly. This issue could be solved by improving the reusabil-
ity of trained models for future environments. We believe that the era of machine learning based DMOEAs has
arrived, and there are exciting opportunities to close the gap between EDMO and machine learning.
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[49] R. P. Hämäläinen and J. Mäntysaari, “Dynamic multi-objective heating optimization,” Euro-
pean Journal of Operational Research, vol. 142, no. 1, pp. 1–15, 2002. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S037722170100282X

[50] T. Harada and E. Alba, “Parallel genetic algorithms: A useful survey,” ACM Computing Surveys (CSUR),
vol. 53, no. 4, pp. 1–39, 2020.

[51] M. M. Hasan, K. Lwin, M. Imani, A. Shabut, L. F. Bittencourt, and M. A. Hossain, “Dynamic multi-
objective optimisation using deep reinforcement learning: Benchmark, algorithm and an application to
identify vulnerable zones based on water quality,” Engineering Applications of Artificial Intelligence,
vol. 86, pp. 107–135, 2019.

[52] I. Hatzakis and D. Wallace, “Dynamic multi-objective optimization with evolutionary algorithms: a
forward-looking approach,” in Proceedings of The 8th Annual Conference on Genetic and Evolutionary
Computation, 2006, pp. 1201–1208.

[53] ——, “Topology of anticipatory populations for evolutionary dynamic multi-objective optimization,” in
11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2006, p. 7071.

[54] M. Helbig, K. Deb, and A. Engelbrecht, “Key challenges and future directions of dynamic multi-objective
optimisation,” in 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016, pp. 1256–1261.

[55] M. Helbig and A. P. Engelbrecht, “Analysing the performance of dynamic multi-objective optimisation
algorithms,” in 2013 IEEE Congress on Evolutionary Computation. IEEE, 2013, pp. 1531–1539.

[56] ——, “Performance measures for dynamic multi-objective optimisation algorithms,” Information Sciences,
vol. 250, pp. 61–81, 2013.

[57] ——, “Benchmarks for dynamic multi-objective optimisation algorithms,” ACM Computing Surveys
(CSUR), vol. 46, no. 3, pp. 1–39, 2014.

[58] ——, “Heterogeneous dynamic vector evaluated particle swarm optimisation for dynamic multi-objective
optimisation,” in IEEE Congress on Evolutionary Computation (CEC), 2014, pp. 3151–3159.

[59] ——, “Population-based metaheuristics for continuous boundary-constrained dynamic multi-objective op-
timisation problems,” Swarm and Evolutionary computation, vol. 14, pp. 31–47, 2014.

37



[60] M. Helbig et al., “Solving dynamic multi-objective optimisation problems using vector evaluated particle
swarm optimisation,” Ph.D. dissertation, University of Pretoria, 2012.

[61] D. Herring, M. Kirley, and X. Yao, “Investigation of asynchrony in dynamic multi-objective optimization,”
in IEEE Congress on Evolutionary Computation (CEC), 2019, pp. 3165–3172.

[62] ——, “Dynamic multi-objective optimization of the travelling thief problem,” arXiv preprint
arXiv:2002.02636, 2020.

[63] C. Hu, Q. Liang, Y. Fan, and G. Dai, “Multi-swarm co-evolutionary paradigm for dynamic multi-objective
optimisation problems,” International Journal of Intelligent Information and Database Systems, vol. 5,
no. 6, pp. 618–641, 2011.

[64] W. Hu, M. Jiang, X. Gao, K. C. Tan, and Y.-m. Cheung, “Solving dynamic multi-objective optimization
problems using incremental support vector machine,” in IEEE Congress on Evolutionary Computation
(CEC), 2019, pp. 2794–2799.

[65] Y. Hu, J. Ou, J. Zheng, J. Zou, S. Yang, and G. Ruan, “Solving dynamic multi-objective problems with an
evolutionary multi-directional search approach,” Knowledge-Based Systems, vol. 194, p. 105175, 2020.

[66] Y. Hu, J. Zheng, J. Zou, S. Jiang, and S. Yang, “Dynamic multi-objective optimization algorithm based
decomposition and preference,” Information Sciences, vol. 571, pp. 175–190, 2021.

[67] L. Huang, I. H. Suh, and A. Abraham, “Dynamic multi-objective optimization based on membrane com-
puting for control of time-varying unstable plants,” Information Sciences, vol. 181, no. 11, pp. 2370–2391,
2011.

[68] Y. Huang, Y. Ding, K. Hao, and Y. Jin, “A multi-objective approach to robust optimization over time
considering switching cost,” Information Sciences, vol. 394, pp. 183–197, 2017.

[69] Y. Huang, Y. Jin, and K. Hao, “Decision-making and multi-objectivization for cost sensitive robust opti-
mization over time,” Knowledge-Based Systems, p. 105857, 2020.

[70] S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiobjective test problems and a scalable
test problem toolkit,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477–506, 2006.

[71] A. K. Hutzschenreuter, P. A. Bosman, and H. La Poutré, “Evolutionary multiobjective optimization for dy-
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