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Abstract

Computational tools have been widely adopted for strain optimisation in metabolic

engineering, contributing to numerous success stories of producing industrially relevant

biochemicals. However, most of these tools focus on single metabolic intervention strate-

gies (either gene/reaction knockout or amplification alone) and rely on hypothetical op-

timality principles (e.g., maximisation of growth) and precise gene expression (e.g., fold

changes) for phenotype prediction. This paper introduces OptDesign, a new two-step

strain design strategy. In the first step, OptDesign selects regulation candidates that

have a noticeable flux difference between the wild type and production strains. In the
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second step, it computes optimal design strategies with limited manipulations (combin-

ing regulation and knockout) leading to high biochemical production. The usefulness

and capabilities of OptDesign are demonstrated for the production of three biochemicals

in E. coli using the latest genome-scale metabolic model iML1515, showing highly con-

sistent results with previous studies while suggesting new manipulations to boost strain

performance. Source code is available at https://github.com/chang88ye/OptDesign.
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Introduction

A growing population and fast economical development are leading to an increasing demand

of various daily products and industrial raw materials, many of which are derivatives of oil

and petroleum. Over the past decades, important efforts are being made to develop sustain-

able production processes that convert biomass or other renewable resources to bio-products

through cell platforms.1 A key challenge in this respect is the design of high-performance

strains with efficient metabolic conversion routes to desired products. Recent advances in

genome-scale metabolic modelling (GSMM)2 has made it possible to have a system-level

understanding of cell physiology and metabolism, leading to rational prediction of metabolic

interventions for strain development. Systems strain design1 has helped to improve the pro-

duction of numerous biochemicals, including lycopene,3 malonyl-CoA,4 alkane and alcohol,5

and hyaluronic acid.6

A number of tools have been developed for strain design.7,8 OptKnock,9 which was de-

veloped to block some reactions in metabolic networks, is one of the earliest such tools.

OptKnock identifies the knockout targets that leads to maximal biochemical production in
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the context of flux balance analysis2 that is subject to mass balance and thermodynamic

constraints. This results in a bilevel optimisation problem which can be solved through

mathematical reformulation into a standard mixed-integer linear program (MILP).9 The

OptKnock model was latter extended to consider gene up/down-regulation,10 swap of cofac-

tor specificity,11 and introduction of heterologous pathways12 for biochemical production. It

was also adapted to identify synthetic lethal genes for anti-cancer drug development.13 Some

improvement strategies, such as GDBB14 and GDLS,15 have been proposed to improve the ef-

ficiency of OptKnock in solving the bilevel problem. There also exist numerous approximate

solutions to the OptKnock model, including genetic algorithms16 and swarm intelligence.17

Designing strains that couple production to growth has received increasing attention in recent

years, mainly due to the great production potential of growth-coupled strains in adaptive lab-

oratory evolution.18 Consequently, a number of computational tools along this direction have

been developed to design strains with various growth-coupled phenotypes.19,20 OptCouple20

simulates jointly gene knockouts, insertions, and medium modifications to identify growth-

coupled designs, although gene expression regulation is not considered. In addition, game

theory has been introduced into metabolic engineering.21,22 NIHBA22 considers metabolic

engineering design as a network interdiction problem involving two competing players (host

strain and metabolic engineer) in a max-min game enabling growth coupled production

phenotypes, and the problem is solved by an efficient mixed-integer solver. Furthermore,

there are also some studies which do not rely on optimality principles for phenotype pre-

diction. Among these, the minimum cut set (MCS) based approach,23,24 which aims to find

the smallest number of interventions blocking undesired production phenotypes, has been

extensively studied. Despite high computational complexity, MCS-based approaches have

successfully predicted strain design strategies leading to in vivo biochemical production.25

Another important approach of the same kind is OptForce, which identifies metabolic in-

terventions by exploring the difference in flux distributions between the wild type and the

desired production strain.26 OptForce has showed good predictions for in vivo malonyl-CoA
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production.4

The use of computational tools is of undisputed importance to strain development in

metabolic engineering.27 However, there are several limitations which may prevent the wide

applicability of the above-mentioned approaches. First, most of the tools focus on predic-

tion of either knockout targets or regulation targets alone, with a few exceptions that are

capable of predicting both interventions, such as OptForce26 and OptRAM.28 These excep-

tions highlight that a combination of knockout and up/down-regulation often leads to higher

biochemical production compared to a single strategy. OptForce encourages the use of flux

measurements while identifying optimum design strategies. OptRAM considers regulatory

networks from which transcriptional factors can be optimised for biochemical production.

However, both OptForce and OptRAM rely heavily on precise expression level of regulation

targets; for example, desired production phenotypes can only be achieved at the exactly sug-

gested flux values (OptForce) or up/down-regulation fold changes (OptRAM). It is known

that gene expression is a complex process with many uncertainties. The underlying strict

expression requirements in these approaches may miss theoretically non-optimal but practi-

cally feasible design strategies. In addition, both approaches rely on a reference flux vector

of the wild type, which can be incorrectly chosen from many steady-state flux distributions

if it cannot be uniquely determined. Second, many existing strategies rely on the assump-

tion of optimality principles, e.g. maximal growth in OptKnock9 and derivatives, in cell

metabolism. However, this assumption is not always an accurate representation of how cells

respond to metabolic perturbations or environmental changes.29 NIHBA22 showed that re-

ducing unnecessary surrogate biological objectives helps to identify many non-optimal but

biologically meaningful knockout solutions.

This paper introduces a new computational tool, called OptDesign, that uses a two-step

strategy to predict rational strain design strategies for biochemical production. OptDesign

has the following capabilities:

(C1) overcomes uncertainty problem as there is no assumption of exact fluxes or fold
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changes that cells should have for production. As a result, non-optimal but good

feasible solutions are not missed.

(C2) allows two types of interventions (knockout and up/down regulation).

(C3) disregards assumption of (potentially unrealistic) optimal growth in production mode.

(C4) can use with or without reference flux vectors.

(C5) guarantees growth-coupled production (if desired up/down-regulations are achievable

in vivo).

OptDesign is the only tool that combines these five capabilities, as shown in Table 1. In

the remainder of this paper, we describe OptDesign and benchmark it considering three case

studies, demonstrating high consistencies of predicted design strategies with previous in vivo

and in silico studies.

Table 1: A comparison of different strain design tools.

Tool C1 C2 C3 C4 C5
OptKnock *9 7 7 7 3 7

OptForce26 7 3 7 7 7

OptCouple20 7 7 7 3 3

OptReg10 7 3 7 3 7

OptRAM28 7 3 7 7 7

NIHBA22 3 7 3 3 3

OptDesign (this study) 3 3 3 3 3

(C1) overcomes uncertainty problem as there is no assumption of exact fluxes or
fold changes that cells should have for production.

(C2) allows two types of interventions (knockout and up/down regulation).
(C3) disregards assumption of optimal growth in production mode.
(C4) can use with or without reference flux vectors.
(C5) guarantees growth-coupled production (if desired up/down-regulations are
achievable in vivo).

* The original OptKnock may not always achieve growth-coupled production, but
its derivative RobustKnock30 is guaranteed to achieve this.
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Materials and Methods

A metabolic network of m metabolites and n reactions has a stoichiometric matrix S that is

formed by stoichiometric coefficients of the reactions. Let J be a set of n reactions and vj the

reaction rate of j ∈ J , Sv represents the concentration change rates of the m metabolites.

The flux space FS is defined as the space spanned by all possible flux distributions v for the

system subject to thermodynamic constraints at steady state (i.e, the concentration change

rate is zero for all the metabolites). Mathematically, FS can be described as:

FS = {v ∈ Rn|Sv = 0, lbj ≤ vj ≤ ubj, j ∈ J}, (1)

where lbj and ubj are the lower and upper flux bounds of reaction j, respectively. We use

the notation FSw for the wild type and FSm for the mutant strain. Flux balance analysis

(FBA) determines a single solution in FS when a surrogate biological objective is provided

for (1).

OptDesign recognises metabolic changes from the wild type to production (mutant)

strains. Let v ∈ FSw denotes a flux vector of the wild type and ∆v denotes the flux

change needed for v to transition into a desired production state. Obviously, v + ∆v repre-

sents a flux vector of the production strain, and it needs to satisfy mass balance and some

production requirements, i.e., v + ∆v ∈ FSm. Note that flux measurements can be used

to customise the flux bounds in FSw and FSm if available; otherwise, the flux bounds can

be set according to flux variability analysis (FVA) predictions. For example, FSm can be

constrained by imposing production requirements on the lower bounds of the production

reaction and biomass.

OptDesign introduces the concept of noticeable flux difference δ (mmol/gDW/h) between

the wild type strain and the production strain in reactions. OptDesign uses this concept to

identify an optimal set of manipulations leading to the production phenotype FSm. To do

so, OptDesign performs two key steps of optimisation. First, OptDesign identifies a minimal
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set of reactions that must deviate from their wild-type flux with at least δ in order to achieve

FSm. This set of reactions form candidate regulation targets. Second, OptDesign searches

through regulation candidates, together with knockout candidates, for the optimal combina-

tion of manipulations to maximise biochemical production. The following two subsections

are devoted to presenting these two steps in detail.

Selecting up/down-regulation reaction candidates

This step of OptDesign is to identify the minimum number of reactions whose flux must

have a noticeable change if cellular metabolism shifts from the wild type to the required

production state. A reaction is considered a candidate for up-regulation if its flux in the

mutant is at least δ units more than that in the wild type. On the contrary, this reaction

is considered for down-regulation if its flux in the mutant is at least δ units fewer than

that in the wild type. Note that the above directional up/down-regulation definition is used

for computational convenience, and final regulation targets identified from OptDesign will

be rationally grouped by contrasting the wild type to the mutant strain by their absolute

flux values (which will be detailed later in section Materials and Methods). In any other

situations, this reaction is not considered as a candidate for genetic manipulation. Fig. 1

illustrates the above concept with a toy network of five reactions. Suppose δ is set to 2 units

for all these five reactions, R4 and R5 are considered for down-regulation and up-regulation

respectively. However, R1, R2 and R3 are not selected as regulation candidates since their

flux changes from the wild type to the mutant are within the predefined threshold δ.

An MILP procedure is employed to minimise the number of reactions that must change

their flux from the wild type to the mutant by at least δ units. This can be expressed as the
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Fig. 1. Toy metabolic network (A) and flux distributions of the wild type and mutant
(B). Symbols in Fig. 1(A) are as follows: S, carbon source; X, biomass; P, product; Mi
(i = 1, 2, 3), metabolite name; Ri (i = 1, . . . , 5), reaction name. Each axis in Fig. 1(B)
represents the absolute flux for a reaction.

following MILP problem:

Step 1: min
y+j ,y

−
j

∑
j∈J̄

(y+
j + y−j ) (2a)

s.t. ∆vj ≥ δjy
+
j + ∆vminj (1− y+

j ), j ∈ J (2b)

∆vj ≤ δj(1− y+
j ) + ∆vmaxj y+

j , j ∈ J (2c)

∆vj ≤ −δjy−j + ∆vmaxj (1− y−j ), j ∈ J (2d)

∆vj ≥ −δj(1− y−j ) + ∆vminj y−j , j ∈ J (2e)

y+
j + y−j ≤ 1, j ∈ J (2f)

v ∈ FSw, vj + ∆vj ∈ FSm (2g)

where y+
j and y−j are binary variables representing the flux of reaction j increases and de-

creases by at least a noticeable level δj > 0 from the wild type to the production phenotype,

respectively. Equivalently, y+
j = 1 (y−j =1) implies ∆vj ≥ δj (∆vj ≤ −δj). Constraints

(2b)-(2c) and (2d)-(2e) are for flux increase and decrease, respectively. ∆vminj and ∆vmaxj
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are the lower and upper bounds of flux change ∆vj, respectively. Special reactions in which

fluxes are not allowed to be decreased (increased), e.g., non-growth associated maintenance,

should have a zero value for the lower (upper) bound of their corresponding ∆v components.

A reaction cannot increase and decrease flux simultaneously, which implies the constraint

(2f). Constraints (2g) describe the flux space of the wild type and mutant strain at steady

state, where FSw and FSm are constrained differently by specifying a minimum growth rate

and a minimum target production rate, respectively. It is worth noting that the minimum

target production is not a requirement for the producing strain. Instead, it is mainly used

to identify the set of reactions that must change their flux in order to produce the target

compound. In practice, we can fulfil this purpose by setting the minimum target production

rate to the maximum theoretical production rate (computed by FBA with an objective to

maximise the flux through the reaction acting on the target product).

Note that this procedure does not need a known reference flux vector for both the wild

type and the mutant, instead it takes into account all possible wild-type and mutant flux

distributions that meet engineering requirements (e.g., growth rate, production/yield). How-

ever, it is recommended to make use of flux measurements for the wild-type and mutant

strains if possible, in order to select a rational set of regulation targets effectively.

Identifying optimal manipulation strategies

The solution to the MILP (2) results in a flux-increase set F+ (corresponding to reactions

with y+
j = 1) and a flux-decrease set F− (corresponding to reactions with y−j = 1), in

addition to the suggested flux change ∆v. However, these two sets are not the minimum

number of manipulations needed for the required production state as the effects of some

manipulations can be propagated to the whole metabolic network.26 In addition, there is

an engineering cost in manipulating reactions (through gene-protein-reaction associations),

and therefore it is assumed there is a limit on the number Km of genetic manipulations,

including up/down-regulation and knockout. We allow gene/reaction knockout in this step
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for two reasons. Firstly, reactions having an unnoticeable flux change (below δj and thus

not in F+ or F−) may sometimes be good manipulation targets, especially when there

are involved in completing pathways. Taking them as potential knockout targets could

improve biochemical production (essentially a relaxation of optimisation models). Secondly,

there may be reactions in the regulation candidate set that carry near-zero fluxes in the

production strain. From a practical point of view, completely deactivating them by gene

knockout is easier than regulating their gene expression precisely to the suggested minute

fluxes. Reaction knockout candidates (denoted by set F×) can be selected by a preprocessing

approach,22 which excludes reactions that are essential, irrelevant or unlikely to be good

knockout targets.

Here, we treat the strain design task as a network interdiction problem22 that maximally

force cells to violate their wild-type phenotypes for production. That is to choose the op-

timum manipulations from F+ ∪ F− ∪ F× in favour of biochemical production regardless

of what the wild-type flux distribution is. As a result, we develop the following network

interdiction problem:

Step 2: max
y+,y−,y×

min
v,∆v

cTP (v + ∆v) (3a)

s.t. ∆vj ≥ δjy
+
j + ∆vminj (1− y+

j ), j ∈ F+ (3b)

∆vj ≤ −δjy−j + ∆vmaxj (1− y−j ), j ∈ F− (3c)

lbj(1− y×j ) ≤ vj + ∆vj ≤ ubj(1− y×j ), j ∈ F× (3d)

y+
j + y−j + y×j ≤ 1, j ∈ J (3e)∑

j∈F×
yj ≤ K× (3f)∑

j∈F+
y+
j +

∑
j∈F−

y−j +
∑

j∈F×
y×j ≤ Km (3g)

v ∈ FSw, vj + ∆vj ∈ FSm (3h)

where cP is a coefficient vector for the target biochemical. y×j = 1 represents the knockout

of reaction j, leading to zero flux in this reaction as illustrated by constraint (3d). Con-
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straints (3f) and (3g) limits the allowable number of knockouts and the total number of

manipulations.

The above statement is a special bilevel problem and can be formulated to a standard

MILP using duality theory9 (see reformulation in the Supplemental Data 1). The resulting

MILP can be handled either by a modern MILP solver or, if numerous alternative solutions

are desired in a single run, by the hybrid Benders algorithm.22

The solution to problem (3) contains some regulation-associated binary variables that

have a value of one, i.e., yj = 1, for some j ∈ F+ ∪ F−. The integer values represent the

reaction targets whose flux needs a change for biochemical production. In order to determine

how they are to be regulated in experimental implementation, the following classification rule

is applied:

reaction j ∈ Up-regulation Set⇐⇒ |vj| < |vj + ∆vj| AND yj = 1

reaction j ∈ Down-regulation Set⇐⇒ |vj| > |vj + ∆vj| AND yj = 1

The output of the model (3) predicts which reaction should be up- or down-regulated by

at least the chosen flux change threshold. It does not impose exact fluxes on the mutant

strain to guarantee the high production of target chemicals. In this sense, the resulting

manipulations suggested by OptDesign could be experimentally more feasible than those

obtained by existing tools.

Computational implementation

OptDesign relies on model reduction and candidate selection for computational efficiency.

Genome-scale metabolic (GEM) models can be significantly simplified by compressing lin-

early linked reactions and removing dead-end reactions (those carrying zero fluxes). Likewise,

many reactions can be excluded from consideration with a priori knowledge that, for exam-

ple, they are vital for cell growth or their knockout is not likely to improve target production.
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We followed the model reduction and candidate selection procedure22,31 (the detailed pro-

cedure can be found in the Supplemental Data 1), resulting in a much smaller knockout

candidate set for each target product in the latest E. coli GEM iML1515.32 The flux change

threshold δj = 1 mmol/gDW/hwas used throughout the paper unless otherwise stated. Al-

gorithm 1 presents the pseudocode of OptDesign. It was implemented in MATLAB 2018b

to be compatible with the Cobra Toolbox 3.0.33 All MILPs were solved by Gurobi 9.02.34

It is worth noting that a couple of minutes is enough for a modern optimisation software

like Gurobi to identify a reasonably small set of up/down-regulation candidates. The source

code is available for download at https://github.com/chang88ye/OptDesign.

Case Studies

The OptDesign framework was tested by identifying metabolic manipulations for the produc-

tion of three industrially relevant biochemicals using the latest genome-scale metabolic model

iML1515,32 for E. coli. Glucose was used as the sole carbon substrate and its maximum up-

take rate was set to 10 mmol/gDW/h. These biochemicals include a number of compounds

that have been experimentally studied in the literature. In particular, we focussed on the na-

tive succinate and non-native lycopene and naringenin26,35 in our case studies. A comparison

between OptDesign predictions and experimentally validated interventions for another nine

target biochemicals can be found in the Supplemental Data 2. The heterologous biosynthesis

pathway added to iML1515 for the production of two non-native biochemicals can be found

in the Supplementary Data 1. The newly added reactions were charge and mass balanced.

The growth conditions were the same as in iML1515 except a minimal cell growth of 0.1

h−1 was imposed on mutant strains for biochemical production.31 All the other parameters

remained the same as the original iML1515.32 At most 10 manipulations including no more

than 5 knockouts were allowed, and the restriction on knockout is to intentionally favour

gene expression manipulation over gene knockout. All optimisation problems in OptDesign
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Algorithm 1: The Overall OptDesign Procedure
Input: metabolic network (M), target biochemcial (cP ), noticeable flux change

threshold (δ), maniputation cost (maximum number of knockouts and
up/down-regulations).

Output: manipulation strategies for high biochemcial production.
1. Preprocessing: Perform model reduction on M using the approach.31

a) Remove dead-end reactions (carrying zero fluxes).

a) Merge linearly linked reactions.

2. Candidate optimisation: Select minimal set of up/down-regulation candidates.

a) Identify the smallest set of reactions that requires at least a flux change of σ from

the wild type to a production strain, i.e., FSw
|∆vj|≥δ−−−−→FSm, by solving the problem (2).

b) Exclude unrealistic/unlikely regulation targets (e.g., carbon uptake reactions,
ATPM, and excretion of target product).

3. Production optimisation: Identify optimal manipulation strategies.

a) Prune knockout candidate set by excluding essential reactions, non-gene associated
reactions, and other certain group of reactions according to the study.31

b) Create a network interdiction model (3) by imposing constraints on flux space for
both wild-type and mutant strains, manipulation targets from the knockout and
regulation candidate sets, and manipulation cost.

c) Solve the model (3) to get optimal manipulation targets.

d) Categorise manipulation targets into the down-regulation, up-regulation, and
knockout groups.

4. Post-optimisation analysis: Check the in vivo feasibility of the solution. If the
solution is not satisfactory, go to step 3 while excluding this solution (using integer
cuts) or restart OptDesign with a different value of δ.

were solved by Gurobi 9.02 on a MacBook with a 3.3 GHz Intel Core i5 processor and 16 GB

RAM. The optimisation process was terminated by multiple stopping criteria whichever was

met first , including time limit (104 seconds) and optimality gap (5%). Indeed, we observed

that the incumbent solution did not improve either after 3000 seconds or when the optimality

gap reached 5%.
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Case study 1: Succinate overproduction

As a starting point, we wondered which reactions are likely to be good regulation targets and

how they are distributed in metabolic networks. Therefore, we extracted the candidate regu-

lation targets from the first step of OptDesign and reorganised them into different metabolic

subsystems, as shown in Fig. 2. It can be observed that the majority of regulation candidates

are from the Krebs cycle and fermentation products (i.e., formate, acetate and ethanol) that

have the same precursor acetyl-CoA as succinate. It is suggested that all the reaction can-

didates from the Krebs cycle should increase their flux and those related to the formation of

formate, acetate and ethanol should lower their activity. This prediction is consistent with

many studies of succinate production.26,36,37 In addition to these two main subsystems, reac-

tions from glucose metabolism, pyruvate metabolism and cofactor conversion/formation are

also possible regulation targets. For example, the glucose transporter (GLCptspp) predicted

for down-regulation here has been a deletion target in another study38 to enhance succinate

production.

Fig. 3a shows a few final design strategies identified by OptDesign that can improve suc-

cinate production. It suggests eight primary manipulations, including the knockout of five

reactions, up-regulation of citrate synthase (CS) and pyruvate dehydrogenase (PDH), and

down-regulation of periplasmic ATP synthase (ATPS4rpp). Two crucial enzymes in the for-

mation of fermentation products lactate and ethanol, i.e., lactate dehydrogenase (LDH_D)

and acetaldehyde dehydrogenase (ACALD), are suggested to be deactivated as they are

considered as competing pathways consuming succinate precursors. These two manipu-

lation targets have been observed in several studies.39,40 The knockout of FAD reductase

(FADRx) increases the availability of NADH, which has shown to be an effective approach

to high succinate production.41 The methylglyoxal synthase (MGSA) pathway to lactate

is another primary knockout target predicted by OptDesign. The removal of this minor

pathway should result in pyruvate accumulation for succinate biosynthesis. Interestingly,

this knockout has been implemented in previous studies,37,40 resulting in increased flux in
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Fig. 2. Reactions identified as up/down-regulation targets by OptDesign for succinate
overproduction. Abbreviations of reaction names are borrowed from the iML1515 model
definitions. Up-regulation and down-regulation reactions are in green and blue ovals, respec-
tively. These reactions have been classified into different subsystems represented by orange
rectangles.

the Krebs cycle. The ribulose-phosphate 3-epimerase (RPE) is another manipulation target

identified by OptDesign, whose knockout blocks the conversion of ribose-5-phosphate(R5P)

to D-xylulose 5-phosphate (xu5p-D) in the pentose phosphate pathway.42 Therefore, it is

expected that primary glycolytic flux flows into the precursors, e.g., phosphoenolpyruvate

and pyruvate, of succinate.

OptDesign suggests to overexpress two enzymes in the succinate biosynthetic pathway,

i.e., PDH and CS, which are intuitively straightforward to understand. In anaerobic E.

coli, the PDH activity is either low or undetectable in order to maintain redox balance.43

However, it is observed that an E. coli mutant with activation of PDH for extra NADH

improves succinate production.40 Overexpression of CS, which is also suggested in another

study,26 has been observed to increase flux in the Krebs cycle in a malic acid production E.
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Fig. 3. Design strategies identified by OptDesign for biochemical production in E. coli.
Reaction names and their arrow symbols in same colour mean they must be manipulated
in mutant strains. Reaction names coloured only (i.e., red, green, or blue) mean they are
alternative manipulations. Dashed arrows represent a merge of multiple conversion steps
to metabolites. Design strategies are summarised in boxes above the simplified metabolic
maps. Abbreviations of metabolite names are as follows: g6p, glucose-6-phosphate; f6p,
D-fructose 6-phosphate; g3p, glyceraldehyde-3-phosphate; 13dpg, 3-phospho-D-glyceroyl
phosphate; 3gp, 3-phospho-D-glycerate; 6pgc, 6-phospho-D-gluconate; ru5p-D, D-ribulose
5-phosphate; r5p, alpha-D-ribose 5-phosphate; xu5p-D, D-xylulose 5-phosphate; dhap, dihy-
droxyacetone phosphate; mthgxl, methylglyoxal; pep, phosphoenolpyruvate; pyr, pyruvate;
lac-D: D-lactate; dxyl5p, 1-deoxy-D-xylulose 5-phosphate; ipdp, isopentenyl diphosphate;
frdp, farnesyl diphosphate; ggdp, geranylgeranyl diphosphate; phyto, all-trans-Phytoene;
ppi, diphosphate; pi, phosphate; gly, glycine; mlthf, 5,10-methylenetetrahydrofolate; flxso,
flavodoxin semi oxidized; flxr, flavodoxin reduced; accoa, acetyl-CoA; cit, citrate; icit, isoc-
itrate; akg, 2-oxoglutarate; succ, succinate; fum, fumarate; mal-L, L-malate; oaa, oxaloac-
etate; hom-L, L-homoserine; thr-L, L-threonine; dhor-S, (S)-dihydroorotate; orot, orotate;
malcoa, malonyl-CoA; cma, coumaric acid; cmcoa, coumaroyl-CoA; chal, naringenine chal-
cone; fad, flavin adenine dinucleotide oxidized; fadh2, flavin adenine dinucleotide reduced.
Abbreviations of reaction names are referred to the iML1515 model definitions.16



coli strain.44

OptDesign further predicts that high succinate production requires either up-regulation

of glucokinase (HEX1) or down-regulation of a phosphoenolpyruvate-dependent phospho-

transferase system (PTS) related reaction (GLCptspp), both of which have the same effect

that glucose transport is favourably through the ATP-consuming HEX1 rather than the

more efficient but phosphoenolpyruvate-dependent PTS route. Consequently, it improves

the availability of PEP that is a precursor for biomass formation and many biochemicals

including succinate. Both manipulation approaches have been observed to improve succi-

nate yield.36 However, the increased ATP demand due to glucose transport via HEX1 has

to be mediated by increased ATP production by other means. For this reason, OptDesign

suggests down-regulation of ATPS4rpp to reduce cleavage of ATP to ADP in order to meet

metabolic energy requirements. This prediction has been also suggested in another study.45

OptDesign also identifies a number of additional modification targets such as pyruvate for-

mate lyase (PFL), phosphotransacetylase (PTAr) and acetate kinase (ACKr) that have been

widely used as knockouts to increase flux towards the Kreb cycle in succinate-focused stud-

ies.37,40 However, here OptDesign suggests to down regulate these enzymes instead of deac-

tivating them completely. In addition, phosphoenolpyruvate carboxylase (PPC) and malate

dehydrogenase (MDH) are also predicted as promising overexpression targets. This result

is consistent with experimental studies that show increased succinate production through

up-regulating these two enzymes.40,46

Case study 2: Naringenin production

A three-step pathway for naringenin was introduced into the metabolic network E. coli (see

Fig. 3b) and unlimited coumaric acid (cma) was supplemented in the growth medium.35

OptDesign predicts that naringenin production requires four primary knockouts, one up-

regulation and two down-regulations. The first two primary knockouts are dihydroorotic

acid dehydrogenases (DHORD2 and DHORD5) that catalyse the oxidation of dihydrooro-
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tate to orotate in the pyrimidine biosynthesis pathway. The knockout of the underlying

gene pyrD for these two reactions results in a reduced growth rate,47 which might save car-

bon source for naringenin biosynthesis. The knockout of succinate dehydrogenase (SUCDi)

creates a surplus of the biosynthetic precursor acetyl-CoA for naringenin, which has been

experimentally observed in a previous study.35 Phosphoenolpyruvate carboxylase (PPC), a

metabolic shortcut for the conversion of phosphoenolpyruvate to oxaloacetate and a byprod-

uct phosphate, is also listed as a primary knockout. We postulate that, in addition to avoid

the accumulation of phosphate, its deletion could not only direct flux through pyruvate to

acetyl-CoA but also reduce the consumption of acetyl-CoA in the Krebs cycle for the media-

tion of oxaloacetate. In fact, PPC mutants were found to have a flux increase from pyruvate

to acetyl-CoA in a 13C-labelling experiment.48 Two linear reactions, i.e., threonine synthase

(THRS) and homoserine kinase (HSK) , which are involved in the formation of L-threonine

from L-homoserine, are predicted as down-regulation targets. This manipulation is expected

to reduce carbon consumption in competing pathways, which therefore increases the car-

bon flux towards naringenin. Another down-regulation target is the inorganic diphosphatase

(PPA) that catalyses the conversion of one ion of pyrophosphate to two phosphate ions. This

manipulation is not intuitively straightforward and believed to create a combined effect with

other manipulations to boost naringenin production. Since PPA down-regulation produces

less phosphate which is needed in the added naringenin biosynthesis pathway, phosphate

has to be balanced through an increase in its transport channel, i.e., phosphate transporter

(PItex).

Aside from the above primary manipulations, it is also predicted that naringenin pro-

duction strains must block at least one of the following reactions: two reactions on the

Entner-Doudoroff pathway (EDD/EDA), pyruvate synthase (POR5), isocitrate lyase (ICL)

and PDH. Blocking EDD/EDA might increase the use of glucolycosis, producing more ATP

which is needed in the heterologous naringenin pathway. The removal of POR5 or PDH forces

E. coli to use alternative conversion routes from pyruvate to acetyl-CoA without depleting
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coenzyme A (CoA), another primary precursor for naringenin biosynthesis. The knockout

of ICL prevents the malate synthase reaction from consuming acetyl-CoA. In addition, Opt-

Design also predicts that the up-regulation of acetyl-CoA carboxylase (ACCOAC) helps to

increase the production of naringenin, which has been implemented in another study.35

Case study 3: Lycopene production

A non-native lycopene biosynthetic pathway consisting of three key reactions were added

to the metabolic network of E. coli (see Fig. 3c). A preliminary execution of OptDesign

predicted the need of only one modification which is the overexpression of the gene en-

coding dimethylallyltranstransferase (DMATT) or the one encoding geranyltranstransferase

(GRTT). While this manipulation intuitively makes sense, gene overexpression only in the

upstream biosynthesis pathway of lycopene does not lead to high lycopene production due

to low concentration of precursors, as experimentally illustrated in another study.49 There-

fore, we run our tool again while disallowing DMATT/GRTT to be valid regulation targets.

Consequently, a variety of design strategies were identified, as shown in Fig. 3c. Specifically,

all the design strategies are combinations of seven manipulations, consisting five knock-

outs, two up-regulations and one down-regulation. However, they differ from each other

in only two knckout targets. The three primary knockouts, i.e., ribose-5-phosphate iso-

merase (RPI), triose-phosphate isomerase (TPI) and PDH, are linked to two precursors (i.e.,

glyceraldehyde-3-phosphate and pyruvate) of lycopene biosynthesis. The knockout of RPI

reroutes the carbon flux flowing into the lycopene precursors using more effective metabolic

routes (e.g., glycolysis) rather than the non-oxidative pentose phosphate pathway, which is

consistent with the study,3 in addition to slowing down cell growth due to reduced ribose-

5-phosphate formation for RNA and DNA synthesis. Both TPI and PDH knockouts should

immediately increase the availability of the lycopene precursors, with the latter for increased

lycopene biosynthesis being already confirmed experimentally in another study.50 Apart

from glyceraldehyde-3-phosphate and pyruvate, acetyl-CoA is also an important precursor
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to form isopentenyl diphosphate, a building block for lycopene, using a different pathway.

Therefore, it is expected that increasing the availability of acetyl-CoA should also improve

lycopene. Unsurprisingly, POR5 is predicted as an up-regulation target in compensation for

the loss of PDH for acetyl-CoA formation. Also, reducing the amount of acetyl-CoA flowing

into the Krebs cycle was found to increase the flux towards isopentenyl diphosphate.51 This

is fulfilled by either removing fumarase (FUM) or SUCDi in this study. Each of these two

knockouts has to be paired with an additional knockout outside the Krebs cycle. This leads

to three most frequent pairs, i.e., glycine leavage system (CLYCL) with FUM, CLYCL with

SUCDi, and SUCDi with EDD/EDA. The predicted CLYCL knockout is believed to help

reduce the cleavage of 3-phospho-D-glycerate into the glycine biosynthetic pathway so that

more pyruvate can be accumulated. Alternatively, blocking the Entner-Doudoroff pathway

allows more flux into glycolysis, leading to a higher production of the two precursors (i.e.,

glyceraldehyde-3-phosphate and pyruvate) for lycopene.

The NADPH-dependent flavodoxin reductase (FLDR2) is another primary up-regulation

target predicted by OptDesign. Overexpressing FLDR2 is thought to balance the signifi-

cantly increased ratio of NADPH to NADP+ caused by the last step of the lycopene biosyn-

thetic pathway. Lastly, it is predicted that reducing the phosphate uptake rate improves

lycopene production. This is probably because two out of the three reactions added for

lycopene biosynthesis produce diphosphate that can be converted to phosphate, and a flux

decrease in this uptake reaction rebalances phosphate in the system.

Discussion

This paper has presented a new computational tool, called OptDesign, to aid strain devel-

opment through rational identification of genetic manipulations including reaction knockout

and flux up/down-regulation. This tool has been benchmarked via three case studies of

different biochemicals, demonstrating its capability of identifying high-quality strain design
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strategies to improve biochemical production.

OptDesign predicts well in its first computational step a set of candidates that can be

potentially used as experimental regulation targets, as shown in the succinate case. In a sec-

ond computational step the algorithm further prunes this set to a realistically acceptable size

while optimising biochemical production. Interestingly, many of the predicted manipulations

have been experimentally implemented in previous studies. Taking succinate production as

an example, ten out of fourteen manipulations (MSGA, ACALD, LDH_D, HEX1, PDH,

PFL, PTAr/ACKr, GLCptspp, PPC, MDH) suggested by OptDesign have been employed

in succinate-producing strains.36,37,40,46 Specifically, it has been shown that engineered E. coli

strains KJ060 and KJ073 produce succinate yields of 1.2–1.6 mol/mol glucose after remov-

ing completing pathways that lead to by-products ethanol, acetate, formate and lactate.40

These strains were developed through added acetate in culture media because the deletion of

PFL causes acetate auxotrophy under anaerobic conditions.37 However, OptDesign suggests

there is no need to completely deactivate PFL. Instead, down-regulating it avoids acetate

auxotrophy while still achieving high succinate production 1. Additionally, it is observed

that glucose transport favouring glucokinase over pep-dependent PTS yields higher succi-

nate production.52 Furthermore, the overexpression of PPC in E. coli for increasing succinate

yields has been confirmed in a previous study.46

OptDesign also suggests a few new modifications, such as the deletion of FADRx and

RPE, the up-regulation of CS and down-regulation of ATPS4rpp, which to our best knowl-

edge have not been experimentally implemented for succinate production. While up-regulation

of CS has been shown to increase malic acid production,44 it remains unclear whether this

manipulation is also useful for succinate production. The suggested flux modifications on

FADRx and ATPS4rpp reconfirm the importance of ATP and redox balance in succinate-

producing strains.40 Deletion of RPE showed low flux in the Krebs cycle,53 suggesting that

metabolic bottlenecks may exist upstream of the Krebs cycle. The design strategies predicted
1It is worth noting that the desired down regulation sometimes may not be achievable when the selective

pressure to increase gene expression results in increased fitness.
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by OptDesign imply that a synergistic effect of RPE knockout with the other identified flux

modifications can lead to a high production of succinate. Similar observations can be also

found for the production of two non-native biochemicals naringenin and lycopene studied in

this paper.

We have so far assumed that regulation targets can be selected only from the minimal

regulation set derived from the first computational step of OptDesign. Under this assump-

tion it ensures that regulation manipulations are used as few as possible, since suggested

regulation levels cannot be exactly guaranteed in experimental implementation. However,

in the case that multiple metabolic routes exist between two metabolites, the minimal reg-

ulation set will have only one of them included. In view of this, we have also computed

the maximal regulation set by maximising the number of reactions that can have noticeable

flux changes. Taking lycopene as an example, the number of regulation candidates increases

sharply to 119 in the maximal regulation set from 43 in the minimal regulation set (see

Supplemental Data 1). Consequently, the resulting larger solution space makes it possible to

identify design strategies with a better minimum guaranteed flux for lycopene (see Fig. 4).

In both cases, the design strategies identified by OptDesign couple lycopene production with

growth, although the strategy from the maximal regulation set yield higher production rate

than that from the minimal regulation set.

OptDesign has two key parameters, i.e., the flux change δ and the minimum required

growth rate, which influence the quality of solutions for high production. Fig. 5 shows the

sensitivity of OptDesign to these two parameters on identifying design strategies for succinate

production (sensitivity analysis of these parameters for lycopene and naringenin production

can be seen in the Supplemental Data 1). It is observed that high succinate production is

achieved near the antidiagonal line in the 2-D parameter space. Low production strategies

are seen when both parameters have either a small or big value. This is because when

the minimum required growth is high, there is little room to adjust flux for biochemical

production; On the contrary, when the minimum required growth is small, large flux changes
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Fig. 4. Production envelopes of different growth-coupled design strategies consisting of no
more than 5 manipulations for lycopene. Production envelope illustrates the minimum and
maximum production rate a production strain can achieve at different growth rates com-
pared to the wild type. The solid blue production envelope is for the design strategy using
the minimal regulation set: ALCD19 (knockout), TKT2 (knockout), DXPS (overexpressed),
PItex (overexpressed) and TPI (underexpressed). The dashed red production envelope is
for the design strategy using the maximal regulation set: FUM (knockout), R1PK (knock-
out),ADK3 (overexpressed), PItex (overexpressed) and ADK1 (underexpressed). Reaction
names are consistent with the genome-scale metabolic network model of E. coli iML1515.

(and more regulation candidates to choose as indicated in the Supplemental Data 1) can be

made to boost biochemical production. δ impacts on production too as it not only affects the

candidate regulation set but also the flux of candidate reactions for regulation on metabolic

networks (see details in the Supplemental Data 1). In practice, it requires careful selection

of δ and growth threshold to yield optimum design strategies.

In addition, OptDesign can be used with a reference flux vector v∗ easily, by binding the

flux bounds of the wild type to v∗ in equation (3). Fig. 6 shows the production envelopes of

the design strategies, identified with/without the use of in silico reference flux vectors, for

three target products. It can be observed that the use of reference flux vectors increases the
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Fig. 5. Influence of δ and minimum growth on succinate production.

size of production envelopes, and the maximum growth rate of reference-guided mutants is

higher than that of reference-free mutants. This may be explained by the fact that fixing

the wild-type flux vector v in equation (3) at v∗ reduces the room for flux adjustments,

hence impacting less on growth rate. The production envelopes for succinate also suggest

reference-guided design sometimes could lead to better solutions. Fig. 6 also demonstrates

the capability of OptDesign to create (strongly) growth-coupled producing strains whose

(minimum) target production increases with growth regardless of reference flux vectors.

Furthermore, OptDesign highlights the benefit of flux regulation in strain design. For

example, with a limit of 5 manipulations (including knockout and flux regulation), Opt-

Design found numerous design strategies for naringenin, with the best having a minimum

guaranteed production flux of 1.73 mmol/gDW/h. In contrast, some existing strain design

tools (e.g., OptKnock9 and NIHBA22) using knockout only did not identify any strategies

leading to naringenin production. Like OptDesign, there also exist a few tools, e.g., Opt-

Force26 and OptReg,10 that can identify both flux regulation and knockout targets. We
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Fig. 6. Comparison of production envelopes obtained by OptDesign with and without a
reference flux vector for three target products. The reference flux vector for the wild type
was computed using parsimonious FBA (pFBA) which minimises the sum of squared flux in
the network.54

compared OptDesign with OptForce and OptReg in terms of manipulation targets. For suc-

cinate production (see Fig. 7), it is noticed that there is a large overlap between the design

strategies predicted by these tools, and the common interventions which tend to increase

the flux flow towards succinate are all from the core central metabolism, highlighting that

intervention of these common targets is effective to increase the availability of succinate pre-

cursors. In addition, Fig. 7 also shows that OptDesign can find more novel manipulations

than the other two tools, demonstrating its capability C1 (Table 1) that enables the search

for near-optimal alternatives. OptReg identified fewer regulation targets than the others as

it tends to couple the maximum growth rate with target production. OptForce eliminated

possible near-optimal but important manipulations by restricting its overproduction target,

thereby producing fewer intervention targets than OptDesign.

Finally, OptDesign has been developed to identify metabolic manipulations regardless of

whatever the wild-type flux distribution looks like, and it can be used with flux measure-

ments if available. Indeed, a measured wild-type flux vector can help refine the manipulation

candidates leading to a more accurate prediction of design strategies. In addition, the thresh-

old for noticeable flux change defined in this work can be further adjusted with measured

data, and different reactions can have distinct values for this parameter. Dedicated thresh-

old values allow for a better prediction of rational flux modifications. Although OptDesign

has been implemented for reaction-level phenotype prediction, it can be easily modified to
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Fig. 7. Comparison of different strain design tools without reference flux vectors for succi-
nate overproduction. The intervention targets were identified by using the default genome-
scale metabolic network model of E. coli iML1515.32 A 100% theoretical succinate yield was
used in OptForce, and the regulation parameter C in OptReg was set to 0.5. Reaction names
are consistent with the iML1515 model.

predict design strategies at gene level. For example, OptDesign can be applied to metabolic

network models with an advanced stoichiometric representation of gene-protein-reaction as-

sociations,55 from which design strategies consisting of gene targets can be identified.
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