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Investigation of the Inter- and Intrascanner
Reproducibility and Repeatability of
Radiomics Features in T1-Weighted

Brain MRI
Rosalind Nina Mitchell-Hay, MBBS,1,2* Trevor S. Ahearn, PhD,1 Alison D. Murray, PhD,2

and Gordon D. Waiter, PhD2

Background: Radiomics is the high throughput analysis of medical images using computer algorithms, which specifically
assess textural features. It has increasingly been proposed as a tool for the development of imaging biomarkers. However,
an important acknowledged limitation of radiomics is the lack of reproducibility of features produced.
Purpose: To assess reproducibility and repeatability of radiomics variables in brain MRI through a multivisit, multicenter
study.
Study Type: Retrospective.
Population: Fourteen individuals visiting three institutions twice, 10 males with the mean age of 36.3 years and age range
25–51.
Field Strength: 3D T1W inversion recovery on three 1.5-T General Electric scanners.
Assessment: Radiomics analysis by a consultant radiologist performed on the T1W images of the whole brain on all visits.
All possible radiomics features were generated.
Statistical Test: Concordance correlation coefficient (CCC) and dynamic range (DR) for all variables were calculated to
assess the test–retest repeatability. Intraclass correlation coefficients (ICCs) were calculated to investigate the reproducibil-
ity of features across centers.
Results: Of 1596 features generated, 57 from center 1, 15 from center 2, and 22 from center 3 had a CCC > 0.9 and
DR > 0.9. Eight variables had CCC > 0.9 and DR > 0.9 in all centers. Forty-one variables had an ICC of >0.9. No variables
had CCC > 0.9, DR > 0.9, and ICC > 0.9.
Data Conclusion: Repeatability and reproducibility of variables is a significant limitation of radiomics analysis in 3DT1W
brain MRI. Careful selection of radiomic features is required.
Level of Evidence: 4
Technical Efficacy Stage: 2
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Radiomics is the high throughput analysis of medical
images using computer algorithms, producing quantifi-

able texture features.1 It attempts to quantify features of an
image that humans use when assessing an image through gen-
erating the features using novel mathematical constructs.
These features have been shown to correlate with underlying
pathological and genetic findings.1,2 In glioblastoma, an

11-feature radiomics model derived from MRI data was
shown to outperform established predictive models.3 MRI-
based predictive models have also been developed in advanced
nasopharyngeal cancer and have been shown to improve
prognostic ability.4 A radiomics approach has similarly been
shown to correlate with clinical endpoints in multiple other
pathologies including gynecological and colorectal cancer.5
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Over the past few years, there has been an exponential rise in
the number of publications which involve radiomics with the
aim of developing clinically relevant imaging biomarkers,
highlighting the scientific interest in the topic.6

Important limitations of radiomics include its variable
and unknown reproducibility and repeatability in different
applications.7,8 In this paper, reproducibility refers to the abil-
ity to replicate radiomic features in a different center while
repeatability refers to the ability to replicate measurements
when taken under the same conditions in the same center.

There are multiple areas where variation can be intro-
duced within a typical radiomics workflow, including the ini-
tial image acquisition, the pre and postprocessing of images,
the segmentation, and the calculation of the radiomic features
themselves. The Image Biomarker Standardization Initiative
(IBSI) is an international collaboration which was established
in part to address these issues.9 The collaboration recently
published validated, consensus-based reference values for
169 features9 based upon an analysis of T1-weighted MRI
images, computed tomography (CT) and flurodeoxyglucose–
positron emission tomography (PET) images of 51 patients.
However, there is limited guidance on how to account for
any variation introduced into the radiomic workflow through
differences in hardware, software, and sequence parameters
employed to acquire the images used for analysis.

The acknowledged limitation of repeatability is likely to be
more pronounced within MRI when compared to other imaging
modalities due to inherent difficulties in its standardization. The
values assigned to voxels in MRI do not reflect defined substances
as is the case in other modalities such as in the Hounsfield scale
reflecting the atomic number in CT.When compared to the num-
ber of published radiomic analyses, there is a relative paucity of
studies investigating these limitations in MRI. In a test–retest and
image registration single center study ofMRI in patients with glio-
blastoma, it was reported that there were multiple confounders
within the image acquisition, including image registration and
field bias.8 Another study, using a publicly available prostate MRI
dataset, has shown that radiomic features vary in their reproduc-
ibility and that there are multiple factors affecting this.10 While
these studies have highlighted issues in reproducibility of radio-
mics, demonstrating the confounders within image acquisition,
they do not specifically discuss scanner variability. A clearer under-
standing of this will guide further research and aid in future clinical
applications of radiomics.

Thus, the aim of this study is to analyze the intra and
interscanner variability of radiomics features extracted from a
previously created high-resolution T1W dataset.

Methods
Image Acquisition
All participants gave signed informed consent and the study
received appropriate ethics approval, for the initial study,

which included future analysis. All participants were native
English speakers, right-handed (self-reported), met the stan-
dard MRI safety criteria and had no history of diagnosed neu-
rological disorder, major psychiatric disorder or treatment
with psychotropic medication, including treatment for sub-
stance misuse. The participants were not paid, but they were
reimbursed for expenses. All participants provided written
informed consent and the study was approved by the local
research ethics committee. The Calibrain study was initially
carried out to assess the inter and intrascanner repeatability of
functional MRI and to facilitate future standardized protocol
development for multicenter studies.11,12 Within this study,
14 individuals visited three centers twice within a time period
of 2 weeks. All participants each underwent two brain MRIs
on 1.5-T General Electric (GE) scanners with all parameters
remaining consistent across all sites, minor differences are
acknowledged and these exist due to variations within both
the scanner software and hardware. At center 1, a GE 1.5-T
Signa Nvi/CVi scanner (software version 9.1) was used; at
center 2, a GE Signa LX scanner (software version 9.1 M4),
and at center 3, a GE 1.5-T Signa scanner (software version
11M3/11M4SP1) was used. A standard quadrature head coil
was used at each site.11–13

From the sequences acquired, the high-resolution T1W
images were acquired using 3D inversion recovery prepared
fast gradient echo volume sequences. The parameters used are
shown in Table 1.13 The Oxford Centre for Functional Mag-
netic Resonance Imaging of the Brain Software Library (FSL)
brain extraction tool was used to remove all nonbrain tissue
from the acquired images and to create individual masks for
the entirety of the remaining brain tissue.14,15 The automatic
segmentation tool also removed the eye and optic nerve.

Radiomics Analysis
Radiomics analysis was performed using the open-source soft-
ware Pyradiomics16 using Spyder v3.3.617 within Anaconda
v1.18.18 The analysis was performed by a consultant radiolo-
gist with 8 years of clinical experience. All features which
were generated fall within the list defined in the IBSI refer-
ence manual.9 Pyradiomics allows for customization of the
output dependent on the imaging modality used. All studies
were processed in the same way. The code used was those
suggested within pyradiomics9 for evaluating MRI with
3-mm slices.16 The histogram of intensity values was normal-
ized to a scale of 100 with a fixed bin width of 5 applied.

Within the radiomics analysis, a number of image filters
were applied to the original images with radiomic features
then calculated from these postprocessed images as well as
from the original. The filters that were applied were wavelet
[this returns eight images covering all combinations of low
(L) and high (H) pass filtering across the imaged spectrum],
Laplacian of Gaussian (Log) with filter widths 2, 3, 4, and 5,
square, square root, logarithm, and exponential, respectively.
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In this study, the following features classes were calcu-
lated for each filtered image: first-order, gray level dependen-
cies matrix, gray level co-occurrence matrix (GLCM), gray
level size zone matrix (GLSZM), gray level run-length matrix
(GLRLM), and the neighboring gray tone difference matrix
(NGTDM).

Statistical Analysis
R studio version 4.0.019 was used for statistical analysis with
tidyverse, ggpubr, rstatix, car, broom, readxl, ggplot2, purrr,
lpsolve, ggpubr, knitr, QuantPsyc, irr, janitor, pysch, Des-
cTools, and DynRB packages used.

The concordance correlation coefficient (CCC) was ini-
tially calculated for individual centers to quantify the repeat-
ability between the two scans performed on each subject.20

In those found to have a CCC of >0.9, the normalized
dynamic range (DR) was then calculated. The DR quantifies
the intersubject variability: with a range from 0 to 1. Features
with a higher DR are more desirable as differences are more
discernable while still being repeatable. Within this study,
following work by Segel et al and Balagurunathan et al, the
thresholds of a DR > 0.9 and CCC > 0.9 were applied to
determine the variables with good repeatability.21,22

Intraclass correlation coefficients (ICCs) were calculated
based upon the subjects first visit, to investigate the repro-
ducibility of features across centers. The ICC was calculated
within the psych module of the statistical package and a two-
way random effects model was used. In accordance with Koo
et al, the reproducibility was defined as excellent if ICC was
>0.9; good if ICC was >0.75 and <0.9; moderate if ICC was
>0.5 and <0.75; and poor if ICC was <0.5.23 The ICC
results were then assessed according to the feature class and
the image filter applied in preprocessing.

Results
Of the 1595 radiomics features calculated, 22 from center
1, 57 from center 2, and 12 from center 3 had a
CCC > 0.9 and DR > 0.9. Eight features were common in
data analyzed from all centers. None of the radiomic fea-
tures calculated with the original, wavelet-LHH, wavelet-
HHL, wavelet-HHH, square root, or exponential image fil-
ters were found to have good test–retest repeatability. The
log-sigma image filters resulted in a higher number of fea-
tures (n = 8) with CCC > 0.9 and DR > 0.9, with image
filter log-sigma-5 mm the highest with three features. When
divided according to feature class, no features within the
NGTDM class had a CCC > 0.9 and a DR > 0.9. The
GLCM feature class had the highest number of features
with seven features with both CCC > 0.9 and DR > 0.9 in
the three centers individually and when combined. The
breakdown according to image type and feature class is
detailed in Table 2.TA
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The eight radiomic features which had a CCC > 0.9 and
DR > 0.9 across all centers are detailed in Table 3. GLCM cor-
relation appears four times with different filters, GLCM infor-
mation measure of correlation appears three times while the
first-order feature root mean squared appears once.

Within the cross-center ICC calculation from the 1595
radiomics features calculated, 3% were rated excellent (n = 40),
2% were rated good (n = 39), 12% were rated moderate
(n = 188), and 83% were rated poor (n = 1328). These results
are summarized in Fig. 1, while Table 4 lists all the features

TABLE 2. Breakdown of Features Obtained With a CCC > 0.9 and DR > 0.9 Split According to Image Filter Applied
and Feature Class of the Radiomic Variable

Number of Features With CCC > 0.9 and DR > 0.9 (Percentage %)

Center 1 Center 2 Center 3 Combined

Image filter (n)

Original (107) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

Wavelet-LLH (93) 0 (0.00) 2 (3.51) 1 (6.25) 0 (0.00)

Wavelet-LHL (93) 1 (4.55) 1 (1.75) 0 (0.00) 0 (0.00)

Wavelet-HLL (93) 1 (4.55) 4 (7.02) 0 (0.00) 0 (0.00)

Wavelet-HLH (93) 0 (0.00) 1 (1.75) 1 (6.25) 0 (0.00)

Wavelet-LHH (93) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

Wavelet-LLL (93) 4 (18.18) 4 (7.02) 0 (0.00) 0 (0.00)

Wavelet-HHL (93) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

Wavelet-HHH (93) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

Log-sigma-2 mm (93) 3 (13.64) 7 (12.28) 2 (12.50) 1 (12.50)

Log-sigma-3 mm (93) 3 (13.64) 12 (21.05) 4 (25.00) 2 (25.00)

Log-sigma-4 mm (93) 3 (13.64) 12 (21.05) 3 (18.75) 2 (25.00)

Log-sigma-5 mm (93) 7 (31.82) 13 (22.81) 4 (25.00) 3 (37.50)

Logarithm (93) 0 (0.00) 1 (1.75) 0 (0.00) 0 (0.00)

Square (93) 0 (0.00) 0 (0.00) 1 (6.25) 0 (0.00)

Square root (93) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

Exponential (93) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

Feature class

Shape (14) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

First order (18) 5 (22.73) 11 (19.30) 3 (18.75) 1 (12.50)

GLCM (24) 8 (36.36) 20 (35.09) 11 (68.75) 7 (87.50)

GLDM (14) 0 (0.00) 4 (7.02) 2 (12.50) 0 (0.00)

GLRLM (16) 7 (31.82) 17 (29.82) 0 (0.00) 0 (0.00)

GLSZM (16) 2 (9.09) 5 (8.77) 0 (0.00) 0 (0.00)

NGTDM (5) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

The final three letters L or H denote low or high, respectively.
CCC = concordance correlation coefficient; DR = dynamic range; GLDM = gray level dependencies matrix; GLCM = gray level co-
occurrence matrix; GLSZM = gray level size zone matrix; GLRLM = gray level run-length matrix; Log = Laplacian of Gaussian;
NGTDM = neighboring gray tone difference matrix.
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found to have an excellent correlation across all three centers.
There was no overlap between the features that had a CCC and
DR > 0.9 and those that had an excellent ICC.

When the ICC values were then separately analyzed by
feature class, the shape and first-order features had the highest
proportion of reproducible features classed as excellent. In

contrast, the GLCM had the highest proportion of poor fea-
tures. This is summarized in Fig. 2.

When divided according to the image filter applied in
preprocessing, there was a relatively even spread throughout
the different image filters, as summarized in Fig. 3. The origi-
nal image filter had both the highest proportion (5%) of

TABLE 3. List of Radiomics Features With CCC > 0.9 and DR > 0.9 Across All Three Centers and Their Respective
CCC and DR Values

Radiomic Feature

Center 1 Center 2 Center 3

CCC
Value

DR
Value

CCC
Value

DR
Value

CCC
Value

DR
Value

Log-sigma-2-0-mm-3D_glcm_Correlation 0.97 0.95 0.93 0.95 0.94 0.95

Log-sigma-3-mm-3D_glcm_Correlation 0.950 0.97 0.98 0.96 0.98 0.96

Log-sigma-3-mm-3D_glcm_Imc2 0.94 0.98 0.94 0.98 0.94 0.98

Log-sigma-4-0-mm-3D_glcm_Correlation 0.94 0.98 0.97 0.98 0.99 0.98

Log-sigma-4-0-mm-3D_glcm_Imc2 0.93 0.99 0.92 0.99 0.93 0.99

Log-sigma-5-0-mm-
3D_firstorder_RootMeanSquared

0.93 0.98 0.97 0.99 0.91 0.99

Log-sigma-5-0-mm-3D_glcm_Correlation 0.93 0.99 0.94 0.99 0.95 0.99

Log-sigma-5-0-mm-3D_glcm_Imc2 0.91 0.99 0.93 0.99 0.91 0.99

Radiomic features are listed in the form: Imagetype_Class_Featurename.
CCC = concordance correlation coefficient; DR = dynamic range; GLCM = gray level co-occurrence matrix; Log = Laplacian of
Gaussian; Imc2 = information of correlation measure 2.

FIGURE 1: Reproducibility of radiomic features across the centers using interclass correlation coefficient (ICC)
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TABLE 4. List of Radiomic Features With an Excellent Reproducibility Across the Different Centers and Their
Respective ICC Values

Radiomic Feature ICC Value

Original_shape_Maximum2DDiameterRow 0.95

Original_shape_Maximum3DDiameter 0.97

Original_shape_MeshVolume 0.93

Original_shape_VoxelVolume 0.93

Original_glrlm_RunLengthNonUniformity 0.94

Wavelet-LLH_firstorder_Energy 0.94

Wavelet-LLH_firstorder_TotalEnergy 0.93

Wavelet-LLH_glrlm_RunLengthNonUniformity 0.94

Wavelet-LHL_firstorder_Energy 0.93

Wavelet-LHL_firstorder_TotalEnergy 0.93

Wavelet-LHL_ngtdm_Coarseness 0.94

Wavelet-LHH_firstorder_Energy 0.93

Wavelet-LHH_firstorder_TotalEnergy 0.93

Wavelet-HLL_firstorder_Energy 0.93

Wavelet-HLL_firstorder_TotalEnergy 0.93

Wavelet-HLL_glrlm_RunLengthNonUniformity 0.95

Wavelet-HLL_ngtdm_Coarseness 0.93

Wavelet-HLH_firstorder_Energy 0.93

Wavelet-HLH_firstorder_TotalEnergy 0.93

Wavelet-HLH_glrlm_RunLengthNonUniformity 0.90

Wavelet-HLH_ngtdm_Coarseness 0.93

Wavelet-HHL_firstorder_Energy 0.93

Wavelet-HHL_firstorder_TotalEnergy 0.93

Wavelet-HHL_ngtdm_Coarseness 0.91

Wavelet-HHH_firstorder_Energy 0.93

Wavelet-HHH_firstorder_TotalEnergy 0.93

Wavelet-LLL_glrlm_RunLengthNonUniformity 0.97

Log-sigma-2-0-mm-3D_firstorder_Energy 0.93

Log-sigma-2-0-mm-3D_firstorder_TotalEnergy 0.93

Log-sigma-2-0-mm-3D_glrlm_RunLengthNonUniformity 0.91

Log-sigma-2-0-mm-3D_ngtdm_Coarseness 0.96

Log-sigma-3-mm-3D_firstorder_Energy 0.93

Log-sigma-3-mm-3D_firstorder_TotalEnergy 0.93

Log-sigma-4-0-mm-3D_firstorder_Energy 0.93

Log-sigma-4-0-mm-3D_firstorder_TotalEnergy 0.93
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features with an excellent ICC as well as the highest propor-
tion with a poor ICC (88%).

Discussion
In our study, >80% of the features calculated had a poor
reproducibility (ICC < 0.5) while only 3% had excellent
reproducibility. This demonstrates the variation that exists
within radiomic features acquired on 1.5-T scanners from the
same manufacturer. It reinforces the findings from a ground
truth simulation phantom study that highlighted the need for
care when combining studies to create large datasets when
those studies have been performed using different imaging
parameters and scanners.24 With the increasing use of large

datasets for radiomics analysis, heterogeneity within image
acquisition and variety of scanners used is to be expected. It
is important that this is addressed to produce clinically repro-
ducible parameters and that such variation is accounted for
within future analysis. This is particularly pertinent within
prognostic modeling in radiomics to prevent the inclusion of
features which are not true prognostic indicators.

Within the test–retest data in this study, <5% of fea-
tures showed excellent repeatability (CCC > 0.9 and
DR > 0.9) in all three centers. When comparing features with
a CCC > 0.9 and DR > 0.9, only 8 were repeatable across all
three centers. Of those eight features, two occurred more than
once with different image filters (correlation, lmc2) while root
squared mean appeared once. Both correlation and lmc2 fall

TABLE 4. Continued

Radiomic Feature ICC Value

Log-sigma-5-0-mm-3D_firstorder_Energy 0.92

Log-sigma-5-0-mm-3D_firstorder_TotalEnergy 0.92

Squareroot_glrlm_RunLengthNonUniformity 0.92

Exponential_firstorder_Energy 0.94

Exponential_firstorder_TotalEnergy 0.94

Features are listed in the form: Imagetype_Class_Featurename. The final three letters L or H denote low or high, respectively.
ICC = interclass correlation coefficient; Log = Laplacian of Gaussian; GLCM = gray level co-occurrence matrix; GLRLM = gray level
run-length matrix; NGTDM = neighboring gray tone difference matrix.

FIGURE 2: Reproducibility of radiomic features as split by feature class using interclass correlation coefficient (ICC)
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within the GLCM feature class which, with first-order fea-
tures, were shown to have the highest percentage of features
with both CCC and DR >0.9 across all centers. This is con-
sistent with a test–retest study in T2W images in rectal can-
cer that found features from the GLCM class and first-order
features had low measurement error when compared to the
higher order feature classes.25 Previous studies have acknowl-
edged and investigated variation within GLCM features pro-
viding recommendations for the standardization of GLCM
features: such as use of one quantization method,26 one
GLCM size,26 and use of invariant feature,27 There is how-
ever limited work examining the repeatability and reproduc-
ibility in MRI of all the large number of features produced by
radiomics analysis. This study aimed to investigate this and,
in doing so, highlight the need for further research. Efforts
were made to adhere to previous recommendations where fea-
sible, invariant features however were not calculated as they
were not standard within the open-source software. One
potential source for the large variation identified maybe inher-
ent field inhomogeneity. While further research should first
be carried out to reduce variation through other methods
such as intensity normalization it is a possibility that this
limits the application of all radiomics features in MRI.

In a previous test–retest study in giloblastoma multi-
forma using T2 fluid attenuated inversion recovery and T1W
imaging data, it was found that the wavelet and Log image fil-
ters had features with the highest ICC.8 This study concluded

that radiomic features may be helpful in differentiating
between progression and pseudo progression, provided that
the variables are carefully selected with appreciation of those
which are most reproducible.8 This finding is similar to our
results obtained in T1W brain images, which also demon-
strate that Log image filters have the greatest reproducibility.
This is different to a previous study looking at radiomics
applied to apparent diffusion coefficient (ADC) and T2W
images in prostate MRI that showed that wavelet features had
low repeatability.10 Within cervical cancer, the features
derived from images with filters applied were not found to be
substantially different to unfiltered images.28 These disparate
results highlight the need for increased understanding of the
variation which exists within radiomics. Care should be taken
to select not just the most reproducible radiomics features but
also whether to apply image filters.

In regard to the repeatability of different feature classes:
shape and first-order features were found have the highest
proportion of repeatable features. This finding is not surpris-
ing as the use of these features within image analysis is
established and well-documented with measurements of
tumor size often included in formalized oncological staging
criteria.29 When comparing these results across the three cen-
ters, the GLRLM feature, run-length nonuniformity, and the
NGDTM feature, coarseness appears multiple times across
different image filters with the remaining features belonging
to either the shape or first-order feature class. The relatively

FIGURE 3: Reproducibility of radiomic features divided by image filter applied using interclass correlation coefficient (ICC)
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increased repeatability of coarseness when compared to other
higher order features has also been noted in a study by
Gourtisoyianni et al.25 Coarseness is an indication of the spa-
tial rate of change in intensity of the area of interest.9,30 From
its mathematical formula, it is inversely related to the
first-order characteristic uniformity which may explain its rel-
atively higher repeatability when compared to the other fea-
tures from its class. Run-length nonuniformity reflects the
distributions of runs (adjacent voxels with same gray level
score) over the length of a matrix as defined by the area of
interest within the segmented image.9,31 The lower the value
the more equally distributed the run lengths are. Related fea-
tures, such as the normalized run-length nonuniformity, did
not show high values of repeatability in this study.

While the relative stability of features is required for imag-
ing biomarkers, it is not the only important characteristic: the
ability for the feature to discriminate is also important and is
not addressed here. Of note, and pertinent to this, the run
length nonuniformity which within our study was shown to
have excellent ICC across scanners was found to have poor dis-
crimination when measured on ADC images from sarcoma and
oropharyngeal carcinoma.32 In a study looking at radiomic fea-
ture robustness in nasopharyngeal carcinoma within PET CT,
it was shown that features could be highly clinically useful but
also have a poor ICC.33 The importance of this point was fur-
ther highlighted by Kim et al who demonstrated, in the context
of low grade gliomas, that when a lower threshold for concor-
dance was applied, the resultant model had improved diagnostic
accuracy.34 However, when considering the roadmap for the
development of imaging biomarkers, it is precision, including
repeatability and reproducibility, that needs to be proved.35

Within the context of the roadmap, a poor ICC suggests a poor
precision and the active exclusion of features with poor ICC
should be considered. A new selection-based approach has
recently been published which integrates the assessment of fea-
ture stability with the radiomics feature selection rather than as
separate process.36 When this approach was compared to a sep-
arated methodology in three different multicenter imaging
cohorts, this integrated approach was shown to yield improved
performance.36 This study highlights the need for consideration
of scanner variability within the developing methodology in
radiomics research.

Limitations
This study is limited by the small number of subjects and
single sequence; however, every effort was made to standard-
ize the imaging parameters and the multicenter nature makes
the results a useful addition to the research addressing the
reproducibility of radiomic features. However, this does mean
that comparison can only be made on broad terms with dif-
ferent sequences. In addition, this study did not include anal-
ysis of tissues containing any pathology, instead of normal
tissue. Most disease processes are known to demonstrate

heterogeneity and complexities that would not be present
within normal issues. Given the bias of radiomics toward
nonhomogeneous intensities, it would not be unreasonable
to argue that performance may improve when performed on
pathological tissues.

Conclusion
The repeatability and reproducibility of radiomics features is
an important limitation of radiomics analysis in MRI.
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