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“If you use your finger to point something out to a cat, it will sniff your finger – it won’t
get the point, so to speak. But human babies point at things before they walk or talk,
and apparently with the intention of getting another to focus on the same item (...). This
little piece of human behaviour could be seen as the essence and beginning of reference.
(...) it lies at the very heart and soul of human language.” [Abbott, 2010].

”A simple working system that displays some properties of human memory may suggest
other properties that no one ever thought of testing for, may offer novel explanations
for known phenomena, and may provide insight into which modifications the next gen-
eration of models should include.” [Hintzmann, 1990] (writing about models of human
memory, and of human cognition more generally)
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Preface

To communicate, speakers and writers need to make it clear what they are talk-
ing about. Reference anchors their words to people, animals, places, events,
and so forth. The act of referring – also known as the production of referring
expressions – is thus fundamental to communication. It has been studied so
extensively that it might be called the fruit fly of language: just as geneticists
have long studied the humble Drosophila melanogaster (alias the fruit fly),
more than a few cognitive scientists have turned to the seemingly simple phe-
nomenon of reference, hoping that the lessons learned in the study of reference
would prove to have wider significance (see section 16.3 for elaboration).

My main aim with this book is to demonstrate that referring is an even more
interesting and many-facetted phenomenon than has often been thought, and
that computational models of reference offer attractive tools for capturing some
of this new-found complexity. To support this claim, the models discussed in
this book cover many issues beyond the basic idea of referring to an object,
including reference to sets, approximate descriptions, descriptions produced
under uncertainty concerning the hearer’s knowledge, and descriptions that
aim to inform or influence the recipient.

To get the richness of reference across to a broad audience of researchers
interested in Cognitive Science is the primary aim of this book. I have tried to
make each chapter self-contained, presenting algorithms in a uniform way that
emphasizes the similarities between them; a glossary of frequently occurring
terms and abbreviations is offered at the end of the book. As much as I can, I
have written in a manner understandable to a range of cognitive scientists. Part
III of the book (“Generating a Wider Class of REs”) uses some Formal Logic
and set theory, but readers who are less interested in technical details will be
able to skip this Part without loosing the thread.

Naturally, the book can be swallowed whole. Other recommended reading
strategies include the three in Figure 1: a Psychology and Linguistics path
(chapters 1-5, 7, 10.7, and 12-16, skipping most of Part III), a Computer Sci-
ence path (chapters 1, 4-6, 8, 9, and 12-16, skipping theory and experiments),
and a Logic and Philosophy path (chapters 1, 2, 4, 6, 8-11, and 16, skipping
psychology, experiments, and Part IV).

My secondary aim is to use referring as an example of the computational
modelling of a human ability. Computational models of referring belong, first
and foremost, to Computational Linguistics, but the study of referring bene-
fits if a range of perspectives is brought to bear, with input from philosophy,
experimental psychology, Formal Logic, and Artificial Intelligence. To tell this
broader story of reference production as an area of Cognitive Science, and to
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Figure 1
Recommended reading strategies for three types of readers.

discuss the value, and the limitations, of theories and algorithms in this area is
the secondary aim of this book.

This monograph focusses on computational models of referring, an area
variously known as Generation of Referring Expressions (GRE) or Refer-
ring Expression Generation (REG). We are primarily concerned with semantic
issues, paying less attention to details of word choice. Moreover, we will focus
on aspects of reference that do not rely on what was said before; “one-shot” ref-
erences take centre stage. The upshot is a book that can be placed within what
might be called the Scottish School of reference generation because its focus,
though well represented around the globe, coincides with that of a remarkable
number of researchers at Scottish universities; the book will focus on research
to which my direct colleagues and I have contributed.

Herman Bouma, as a director of Eindhoven’s Institute for Perception
Research (IPO), nudged me, some 25-30 years ago, towards research that joins
up different academic disciplines. For this, and for his wisdom more gener-
ally, I dedicate this book to him. At the time, Bouma was a declared advocate
of brevity – a notion central to the study of referring – and he liked scientific
offerings to be as concise as possible. I have tried to take his lessons to heart.
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Preface 3

The word “we” can refer to any set of individuals that includes the speaker.
This book is full of “we”. Sometimes “we” is Albert Gatt, Emiel Krahmer,
Roger van Gompel, and I, a gang of four who are endeavouring to create a
computational psycholinguistics of reference production. I have learned a great
deal from each of the three other gang members, as I have from Ellen Bard,
my companion on the REFNET project. Sometimes “we” includes the people
in the TUNA project or some of the PhD students I have had the good fortune to
supervise. Sometimes “we” includes my colleagues at Aberdeen. I am indebted
to all these “we”, as colleagues, co-authors, and much more. To shed further
light on everyone’s role, the introduction to many chapters contains a footnote
listing related publications that were jointly authored. Regina Fernandes drew
the cartoons for the book: I trust that they will clarify the message, and I hope
that readers will enjoy them as much as I do.

This book has benefitted from my teaching at postgraduate courses in Trento
(ESSLLI 2002), Tilburg (LOT 2008), Guangzhou (SELC 2010), Harbin (HIT

2010 and 2012), Edinburgh (REFNET 2014), and Aberdeen (NLG Summer
School 2015). I am grateful for comments and suggestions from reviewers
and the teams at MIT Press and diacriTech. Comments from Robert Dale
and Graeme Ritchie have helped me enormously. Other valuable advice was
received from Christian Brodbeck, Ronnie Cann, Paul Dekker, Michael Frank,
Albert Gatt, Bart Geurts, Roger van Gompel, Matt Green, Frank Guerin, Gerry
Hough, Juta Kawalerowicz, Imtiaz Hussain Khan, Alexander Koller, Emiel
Krahmer, Wufaldinho Kudde, Roman Kutlák, Vivien Mast, Judith Masthoff,
Chris Mellish, Margaret Mitchell, Jeff Z. Pan, Ivandré Paraboni, Paul Piwek,
Richard Power, Ehud Reiter, Yuan Ren, Advaith Siddharthan, Melissa Spilioti,
and Alice Toniolo. Their help reminds me that “the academic community” can
be a community indeed.

Finally, I thank the UK’s Engineering and Physical Sciences Research Coun-
cil, the Cognitive Science Society, the Scottish Informatics and Computer
Science Alliance, and the European Science Foundation for supporting the
research that underlies this work. The variety of these benefactors speaks to
the many aspects of reference.

Kees van Deemter
Aberdeen, January 2016
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1 Aims and Scope of This Book

The Battle of Balaclava is a well-known episode in Britain’s history of warfare,
culminating in the notorious charge of the light brigade. The charge has been
the subject of many paintings and poems.

The battle took place in 1854 during the Crimean War, when Russian armies
had captured a large collection of guns from the British troops. The Russians
were trying to carry away the guns, which is something the British commander,
Lord Raglan, wanted to prevent. From his high vantage point, Raglan was able
to oversee the battlefield and decreed, on a sheet of paper carried to the cavalry
by a messenger, “Lord Raglan wishes the cavalry to advance rapidly to the
front; follow the enemy and try to prevent the enemy carrying away the guns”.1

The reference “the front” was fatally misunderstood. Lord Raglan intended
it as referring to an area known as the Causeway Heights, where Russian
troops had gathered and where the guns were being transported (Figure 1.1).
The recipient of the message, Lord Lucan, was less well positioned, however,
and could see far less of the battlefield. Based on his limited view, the only
front that he knew of was an area at the end of a long valley, overlooked from
both sides by Russian artillery. Lucan found it difficult to believe that he was
asked to cross this valley, because this would expose his men to cannon fire,
so he asked the messenger for clarification. The messenger, however, a Cap-
tain Nolan, was eager to get on with things and responded irritatedly “There is
your enemy. There are your guns”, waving vaguely in a direction that was too
unclear to be helpful. The rest is history: Lord Lucan followed his comman-
der’s order as he understood it: against his better judgment, he led his cavalry
through the valley, where Russian cannon were waiting to kill almost the entire
brigade (see e.g., [Woodham-Smith, 1954]).

Reference plays a key role in this episode, as when Lord Raglan wrote about
“the front”. The episode contains many of the issues that will feature in this
book. For example, what is being referred to here is not a simple object, but
more like a geographical area. Furthermore, the sender and the receiver of
the message share much information (where the light brigade is, where the
enemy soldiers are), and this allows them to communicate; on the other hand,
they have subtly different understandings of some of the facts (e.g., where the
guns are, and where there are areas that could be described as a front) and
these differences have the potential to compromise communication. Many of

1 The role of communication in this episode was brought to my attention by the legal philosopher
Timothy Endicott during the conference Dealing Reasonably With Blurred Boundaries, Hannover,
Germany, April 2013.
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Figure 1.1
The Charge of the Light Brigade at Balaclava, 25 October 1854

the same issues plague everyday conversation. We often give directions, for
example, we often don’t know (or don’t realize) what our hearers know, and
we are often misunderstood, albeit usually with less grave consequences.

In the remainder of this chapter, let me explain why reference is important,
and what the aims of this book are.

1.1 Aims and Main Thesis

The central thesis of this book is that reference is an even more interesting
and many-facetted phenomenon than has often been thought, and that compu-
tational models of reference offer attractive tools for capturing this new-found
complexity. To support this thesis, the models discussed in this book cover
many issues beyond the basic idea of referring to an object, including ref-
erence to sets, approximate descriptions, descriptions produced under uncer-
tainty concerning the hearer’s knowledge, and descriptions that aim to inform
or influence the recipient. Work on these issues, with colleagues in Aberdeen
and elsewhere, has been at the centre of my attention for a good ten years, and
it is our joint work that will form the core of the book.

My secondary aim is to use referring as an example of the way in which the
study of language can be a collaborative affair in which different intellectual
approaches come together. I shall show that the study of reference production
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benefits if a range of perspectives is brought to bear, with input from philos-
ophy, experimental psychology, Formal Logic, and computing science. To tell
this broader story of reference production as an area of Cognitive Science is
the secondary aim of this book. Consistent with this aim, I am trying to explain
matters in a way that is accessible to researchers across the Cognitive Sciences
and Artificial Intelligence.

Reference appears to be a simple idea, yet it is difficult to pin down. John
Searle, the philosopher of language, offered a starting point:

Any expression which serves to identify any thing, process, event, action, or
any other kind of individual or particular I shall call a referring expression.
Referring expressions point to particular things; they answer the questions
Who?, What?, Which? [Searle, 1969]

Searle knew that this characterization has some counterintuitive consequences
and that it leaves other cases undecided. He therefore opted “to examine
those cases which constitute the centre of variation of the concept of refer-
ring and then examine the borderline cases in light of their similarities
and differences from the paradigms”. This is what was done in the survey
[Krahmer and Van Deemter, 2012]; it will also be the starting point of the
present book, which will end up arguing for a considerable widening of what
REG should be.

To see some of the limitations of Searle’s definition, consider a quantified
noun phrase (NP) such as “No-one”. This NP can answer a “Who” question
(e.g., Who decided to let the deadline pass?), so, according to Searle’s defi-
nition, it refers. Yet, it would be difficult to say who the NP refers to. Similar
problems affect NPs of the form “only ..”, as in “Only one person at a time
can pass through this door”, which is not about one particular person. Chap-
ter 2 will devote space to a more elaborate – though not entirely conclusive –
discussion of these issues.

This book, which covers an area of Natural Language Generation (NLG, e.g.,
[Reiter and Dale, 2000]), will use the term “referring expression” (RE) loosely,
talking sometimes about English NPs and sometimes about the semantic con-
tent of such NPs, which linguists might call a Logical Form. Where there is a
need to be more explicit, I will use less ambiguous terminology, using terms
like “Logical Form”. I follow a long tradition of using the word “description”
to refer to a wide class of Noun Phrases (NPs), including both definite NPs
(which in English tend to use the definite article or a genitive) and indefinite



CMR-web-July-2017 2017/7/12 12:14 Page 10 #20

10 Part I

ones (which tend to use the indefinite article or a bare plural). I follow Robert
Dale in using the term distinguishing description (and analogously a distin-
guishing Logical Form) when I want it to be clear that an RE denotes a referent
unambiguously [Dale, 1989a]. Referents can be very different kinds of things,
which we variously call objects, entities, or individuals.

The book focusses on models of what it is that speakers and writers do when
they refer. Because these models take the form of computer programs that gen-
erate referring expressions (henceforth, REs), this research area is known as
Referring Expressions Generation (REG), or Generation of Referring Expres-
sions (GRE). The present chapter will explain why we study computational
models and why we focus on speaking and writing, rather than hearing and
reading. But first a few words about reference itself.

Reference is a key component of communication, affecting almost every utter-
ance. For whenever we communicate about specific things, reference anchors
our utterances to these things, making it clear that it is them we are talking
about. Almost every linguistic subtlety can occur as part of an RE. In fact,
practically any sentence of English can be transformed, by means of a simple
syntactic operation, into an RE that retains all the complexities of the original
sentence. For example, given any sentence S, we can form the complex RE

“the idea that S”; presumably if we were able to generate all REs of this form,
then we could also generate every sentence S by itself (i.e., without the pre-
fix “the idea that”). If this is true, then being able to generate all REs would
mean being able to generate all sentences; apart from issues relating to the
supra-sentential structure of text, NLG would be a solved problem.2 To borrow
some technical terms from computational complexity theory, one might say
that the (enormous) problem of generating all English sentences reduces to the
problem of generating all English REs; thus, REG is “NLG complete”, because
solving REG would mean solving all of NLG. It follows that, in practice, the
study of reference production has to focus on a small part of the problem: the
problem as a whole is simply too large.

2 Here is another way to derive the same conclusion: any sentence of the form NP VP (noun phrase
followed by verb phrase) can be transformed automatically into the RE The so-and-so who/that
VP. For example, “John walked home because his bicycle broke down” would be transformed into
“The person who walked home because his bicycle broke down”.
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Let’s see what this all means in practice. Suppose you were carrying on
a conversation in the infirmary of a small zoo, which contains three injured
animals, from different countries, having known weights and injuries, as in
Table 1.1. We assume that the facts in the table are complete as far as the
properties listed are concerned, an assumption known as the Closed World
Assumption. For example, lion b has no injuries to his teeth, because this injury
is not listed. Which of the listed properties (excluding the identifier, which has
been added here merely for convenience) would you employ in an RE? Please
try to produce an RE for each of the three animals.

First, consider referent a. Presumably, when you described a, you do not
list all its properties. It would suffice to say “The 102kg lion”, for example,
because the other two animals – the distractors, as we shall say – have different
body weights. On the other hand, the difference with the weight of b is so small
as to be practically negligible. Maybe you preferred to say “The Kenyan lion”,
unless you felt that the medical nature of your visit makes it more relevant
to say “The lion whose teeth are injured”. This, however, gives the mistaken
impression that the animal has no other injuries, so maybe it would be better to
say “The lion that has injured paws and teeth”, or “The doubly injured lion”.
None of all these REs is minimal, in the sense of offering no information that
is surplus to the requirement of identifying the referent uniquely: they contain
the property “lion”, which is unnecessary given that the other properties suffice
to rule out both distractors. Note, finally, that even an incorrect description can
sometimes work well: if you said “the Tanzanian lion”, getting the animal’s
origin slightly wrong, your audience would probably understand you correctly,
though the seed of future misunderstandings would have been sown.

Next, let’s turn to b and c. As for b, you could focus on the country of origin,
saying “The Chinese lion”. As for c, you can simply say “the tiger”, though
this time the animal’s weight stands out enough to make it worth highlighting,
as in “The tiger that weighs over 300kg”, or even “The huge tiger”, suppressing
detail. Alternatively, you might prefer to mention what’s most relevant in the
context of the infirmary, saying “The tiger with the injured back”.

Your referential options become even more varied if your task is to refer
to a and c together: you could mention them individually. If you wanted to
be brief, you could say “The Kenyan and the tiger” (or “The Kenyan animal
and the tiger”, because the noun makes the reference more felicitous), though
the asymmetry between the two halves of this RE might lead you to opt for the
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IDENTIFIER SPECIES ORIGIN WEIGHT INJURIES

a lion Kenya 102kg paws, teeth
b lion China 100kg paws
c tiger China 310kg back

Table 1.1
Information shared by speaker and hearer

lengthier “The Kenyan lion and the Chinese tiger”. If animals from other coun-
tries were added, you could find yourself aggregating species and geographical
regions, as in “the Asian mammals”.

Each of these expressions succeeds in singling out the target referent, by
saying something that’s true of the referent but false of the other animals. Yet
the choice between these expressions matters. Some are more fluent, or clearer,
than others. Moreover, each RE highlights a subtly different aspect of the ani-
mals in question. Understanding all these differences is the ultimate aim of
researchers who construct computational models of referring.

1.2 Reference in Practical Applications of Computing

Reference affects not only communication between people, but some of the
oldest applications of computing as well. It will be instructive to take a quick
look at a few of them, because they form the context in which many REG

algorithms were (and still are) designed. For although these algorithms can
be seen as computational models of a human ability (see the Epilogue of this
book), they are also practical tools.

In database management, reference lies at the heart of entity resolution
[Newcombe et al., 1959], [Elmagarmid et al., 2007]. One version of this prob-
lem is to decide, for two items, in two different databases, whether they repre-
sent the same real-world entity. In [Croitoru et al., 2011], a librarian wants to
enter the authorship of a book into a database. If another book in the library
was written by the same person, then the new book should be entered into the
database in such a way that both items are shown to have the same author. But
two different authors may have the same name. To decide whether two books
have the same author can be difficult. For example, if someone has written a
book on mathematics in 1990, is she likely to have written a book on biology
in 2015 (Figure 1.2)?
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Figure 1.2
Entity resolution: Is this the same Jane Smith or a different one?

Another source of reference problems is Information Extraction (IE), where
structured information is gained from a text, by means of a limited kind of text
interpretation. Suppose the input to IE is a text about corporate mergers:

“Bridgestone Sports Co. said Friday that it has set up a joint venture in
Taiwan (...) The joint venture, Bridgestone Sports Taiwan Co., capitalized
at 20 million new Taiwan dollars, will start production in January 1990”
[Grishman and Sundheim, 1995], see also [Jurafsky and Martin, 2009].

A typical aim is to fill the slots in a template, for example:

Initiating company: Bridgestone Sports Co.
Joint venture: Bridgestone Sports Taiwan Co.
Starting date: January 1990

This involves a number of tasks that have reference at their heart: Named
Entity Recognition means figuring out the intended referent of names like
“Bridgestone Sports Taiwan Co.” This is challenging because companies may
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be known under different names, and similar names may denote different enti-
ties (Bridgestone Sports Co. is not Bridgestone Sports Taiwan Co.). Another
task is coreference resolution, that is, determining which parts of a text are
about the same things. This can mean, for example, finding out that the joint
venture introduced in the opening sentence is identical to the one that started
up in January 1990. IE programs do this by working out that the two italicized
NPs (“a joint venture” and “the joint venture”) refer to the same entity.

Reference is equally crucial in Natural Language Generation (NLG). An
example is the new “Robot Journalism”, in which newspaper articles are con-
structed wholly or partly by computer programs: such articles routinely refer to
people, companies, and so on. Another example are intelligent interfaces, such
as SIRI, Apple’s personal assistant for mobile phones. SIRI conducts multi-turn
conversations, adjusting references to information assembled on the fly. If the
user says “Meet with Jamie for coffee at 2”, the system may respond “OK, I
scheduled your meeting with Jamie Chen at 2PM today”, declaring its inter-
pretation of references to a person and a time. SIRI works with panache yet, at
the time of writing, struggles to interpret the REs produced by users.

Data Anonymization [Raghunathan, 2013], finally, is the opposite of REG:
whereas the former tries to make it easy for a recipient to identify something
or someone, the latter tries to make this hard. For example, a medical data-
base may contain information about patients suffering from certain conditions,
the operations that they underwent, and so on. Often it is a legal requirement
that the database does not give away the identity of any patient. To meet this
requirement, it does not suffice for the patients’ names to be omitted: a combi-
nation of their date of birth and current address, for example, would give away
their identity just as effectively. To figure out what information the database
should be permitted to contain is a problem that echoes REG in many ways.

1.3 Computational Models of Reference Production

This book will focus less on applications and more on the challenge of under-
standing how reference works, using computational models as our tool. Its
subject may be seen as an area of theoretical NLG, as opposed to the type of
NLG that sees the construction of practical systems as its be-all and end-all.

Psycholinguists study reference using an approach based on experiments
with human participants (see chapter 3). Theoretical linguists and philosophers
of language analyse how definite descriptions contribute to the meaning of the
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sentences in which they occur (chapter 2). The present book aims to demon-
strate that an algorithmic perspective has much to add to, as well as learn from,
these accounts because the construction of algorithms forces one to be explicit
where others can wave their hands. This point is worth explaining in more
detail, because its relevance extends far beyond the study of reference.

A growing number of researchers are becoming aware that algorithms can
bolster theory [Poesio et al., 2004] [van Deemter et al., 2012c]. For example,
in a theory article, one might read that a speaker should identify the intended
referent using “one or more of its contextually salient properties”, where it is
left unspecified what the context is, how the salience of a property (section 4.9)
should be measured, and how the properties in question are selected. Although
it is legitimate to leave such matters unspecified, and letting experiments con-
centrate on clear cases, other issues come to the fore when we are forced to be
more specific. Algorithms can help us make our ideas precise.

Reference is associated with two different processes. The first is known by
psycholinguists as production of language, whereas computational linguists
usually speak of generation. The second process concerns the role of reference
in hearing and reading; this is known as comprehension. Both processes have
been modelled algorithmically, with computer programs taking the place of a
person. Generation algorithms take the domain, and an intended referent in it,
as their input and deliver an RE as their output. Interpretation algorithms take
the domain and an RE, and deliver a referent as their output.

Until recently, language production and generation were studied far
less often than interpretation, but this is changing, based on a grow-
ing body of accepted methods [Levelt, 1989], [Reiter and Dale, 2000],
[Bateman and Zock, 2002], [Krahmer and Theune, 2010]. The computational
generation of REs has been studied especially in recent years (see
[Krahmer and Van Deemter, 2012] for a survey). Generation focusses our
attention on the issue of expressive choice: for example, there are typically
many ways in which a given referent can be identified in principle, yet some
of these come much more naturally to speakers and some are more useful to
hearers. We shall see that expressive choice is a rich and rewarding research
topic; in fact, there are many cases (studied particularly in Parts III and IV of
this book) in which it seems a miracle how any speaker is able to choose a
halfway decent RE from among the myriad of awful ones. As we shall also
see, algorithms in this area are increasingly regarded as interesting – though
imperfect – models of human reference production.
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Stages Psycholinguistics Computational Models Task
Stage 1 Conceptualization Content Determination What to say
Stage 2 Formulation Linguistic Realization How to say it
Stage 3 Articulation Speech Synthesis Saying it

Table 1.2

Three stages often distinguished in human speech production, with their approximate
computational counterpart. (For the process known as self-monitoring, see text.)

Perhaps the deepest theoretical question on which the computational study
of reference production touches is the question of rationality in language use.
Some models of reference production have been motivated by an appeal to
rationality – in the form of the Maxims, for example (chapter 4), or in terms of
making the referent easy to find by an idealized hearer – whereas other models
are best seen as heuristics that work well in some cases but that can also misfire
(cf., [Kahneman, 2012]). Once again, the Battle of Balaclava is a reminder of
the irrationality of human behaviour: Lord Raglan, the author of the disastrous
message, should have realized that the recipient could not know where the guns
were; Captain Nolan, when asked for clarification, should have realized that a
terrible error was about to be committed. And yet they did not.

1.4 Determining the Information Content of an RE

Psychologists believe that human speech production involves three consecu-
tive stages: before speaking, a speaker first has to decide what to say, then
how to say it. Details of what each stage comprizes can differ, and so can
the terminology that is used [Garrett, 1984], [Levelt, 1989], [Dell et al., 1997],
[Levelt et al., 1999], [Vigliocco and Hartsuiker, 2002]. The decision what to
say, however, is frequently referred to as conceptualization; the decision how
to say it is sometimes known as formulation (this includes lexical access and
planning of the surface structure of the utterance); the process that produces
actual speech is called formulation (Table 1.2).

Computational models tend to mirror these three stages: models of Stage 1
are known as Content Determination; models of Stage 2 as Linguistic Real-
ization; and models of Stage 3 as Speech Synthesis. Similar to psycholinguis-
tic models, the output of Content Determination is usually fed into Linguistic
Realization (although alternative architectures exist, which interleave the two
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components, see section 6.6), whose output is fed into Speech Synthesis. When
components are daisy-chained in this way, we obtain what is sometimes known
as the standard NLG pipeline [Reiter and Dale, 2000]. Elaborations and vari-
ants of both pipelines have been proposed, but these three stages can usually
be discerned. In psycholinguistics, a fourth component is often added, namely,
self-monitoring, in which a speaker examines the output of one of the three
stages; subsequently, the output may be modified ([Levelt, 1989], chapter 12).
Interesting though it is, computational models have so far had little to say about
this fourth stage, and we shall only rarely refer to it (see sections 8.5 and 12).

This book will focus on computational models of Conceptualization. Specif-
ically, because we are interested in reference, the book will focus on the con-
ceptualization of referring expressions, an area known as “Content Determina-
tion for REG”, where the last two words are omitted when they can be inferred
from the context. In practice, this means that our discussion will focus on the
semantic core of reference production, often disregarding details of syntactic
structure and word choice; this explains the dearth of syntax trees in the book.

In the simplest cases, the output of Content Determination can be a set of
properties, all of which hold true of the referent. For example, Content Deter-
mination can produce a Logical Form such as {car, blue}, which will be under-
stood as the logical conjunction of the two properties. In Part III of the book,
we shall be needing increasingly complex Logical Forms, in order to match
the content of more elaborate REs. At that stage, the convenient shorthand of
sets of properties will no longer serve us, so we shall be using more elaborate
notations (e.g., from Description Logic) to express negation, relations, quanti-
fiers, and so on. At that point, the term “Logical” Form will no longer feel like
a misnomer.

I am focussing on Content Determination because once a set of properties
has been selected, expression of these properties by means of English words
is a task that is not specific to REG: a very similar Linguistic Realization task
is relevant to the generation of all Noun Phrases (NPs), and Verb Phrases too.
Linguistic Realization requires that suitable words are found to express each
concept, and to arrange these in a linguistically appropriate order – it is usu-
ally much better to say “large blue car” than “blue large car” – and to decide
which concepts are realized as pre-modifiers, and which as post-modifiers, for
example; realization solutions that work well for REs include [Malouf, 2000]
and [Mitchell et al., 2011a]. I will only discuss Linguistic Realization of REs
where a bad realization decision threatens to create referential ambiguity – the
cardinal sin of reference production (section 8.8).
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A considerable amount of research is invested in finding out how REs
are realized in speech, as a function of the context in which they occur
[Bard and Aylett, 2004], and in combination with gestures [de Ruiter, 2000].
A considerable proportion of this work has reference as its focus, and much
of it is linked with speech science and embodied conversational agents (e.g.,
[Cassell et al., 2000]). These issues will not be covered here; doing justice to
them would deserve a separate book.

Work on reference production is often conducted under the pretence that
findings in this area must always be language independent. This is not a thor-
oughly tested assumption – to put it mildly – but it is more plausible if one
focusses on Content Determination (i.e., on concepts rather than words).3

Future work will almost certainly lead to more nuanced insights but, for better
or worse, we will be focussing primarily on English REs.

In view of my decision to focus on Content Determination, it will be con-
venient to commit a slight abuse by using the term “referring expression” (and
the abbreviation RE) ambiguously: on some occasions it will denote an actual
linguistic expression (usually an NP), but on others it will denote a Logical
Form that can be expressed by different English NPs.

1.5 Focus on Speakers or Hearers?

The focus on this book will be on computational models of a human ability.
In the Epilogue (section 16.1), we shall ask what we can learn from looking
at this enterprize through the prism of Computational Cognitive Modelling. A
few things are worth saying in advance.

Not long ago, researchers in Natural Language Generation were content to
produce “felicitous” output without saying clearly what this means. Today, we
tend to be clearer about our aims, and consequently about the manner in which
a model should be tested. As it happens, our aims can differ: some studies ask
what RE a speaker would be most likely to say, whereas others ask what REs
are most effective in terms of their utility for hearers or readers. In both cases
the outcome is a model. Where the work is motivated by practical applications

3 Occasionally, languages are compared. An example is a set of studies reported in
[van Gompel et al., 2012], where our interest in the TYPE attribute led us to compare REs pro-
duced in English and Dutch (where we had reason to expect a smaller preference for types); as it
happened, any differences turned out to be subtle. See also [Koolen et al., 2009]; and [Khan, 2015]
for reference in Arabic.
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(e.g., section 1.2), the latter types of models (which focus on utility for hearers)
are more relevant than the former (which aim to mimic speakers). Where the
work is motivated by theoretical considerations, the emphasis can be on either
type of model, though the former type is studied more often than the latter.

The book will try to do justice to both types of research. Models that mimic
speakers will take centre stage in the first two Parts, because the bulk of the
work on simple REs (what I call the classic REG task) has predominantly taken
this perspective. Parts III and IV will switch back and forth between the two
perspectives. Occasionally the two perspectives will merge, because in trying
to find an effective way to speak, it can be useful to seek inspiration from
human language production. Conversely, a model of what is optimal for hearers
can shed light on speakers’ failure to communicate optimally.

1.6 Referring in One Shot

Linguistic context can affect reference, for instance, by facilitating the use of
personal pronouns and demonstrative NPs. A vast amount of work in linguis-
tics ([Ariel, 1988], [Gundel et al., 1993], [Kamp and Reyle, 1993]), psycholin-
guistics [Arnold, 2008], and computational linguistics (e.g., [Mitkov, 2002],
[Stoia et al., 2006], [Siddharthan et al., 2011]) is devoted to these phenomena.
To do justice to them would have distracted attention away from what I take
to be the core of the phenomenon of reference. There are systematic reasons
also for leaving them aside: the modelling of contextual phenomena requires
mechanisms that tend to be strongly language dependent, for example, because
different languages have different sets of pronouns (e.g., with or without gen-
der; with or without null pronouns).4 In fact, these mechanisms are so bound
up with specific words (“he”, “it”, “herself”, “those”, etc.) that our focus on
Content Determination (section 1.4) would have been very difficult to uphold.

In recent years, increasing attention is being devoted to the fact that speak-
ers and hearers can actively collaborate to refer (see section 3.6): the speaker
may start out with a description that is not quite clear enough, but further
interactions with the hearer may clinch the deal. Psycholinguists have rightly
asked attention for these phenomena (e.g., [Clark and Wilkes-Gibbs, 1986a],
[Di Eugenio et al., 2000]).

4 See also [Piwek, 2008] on the differences between demonstratives in English and Dutch.
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Clark and Wilkes-Gibbs explained the matter by defining a class of REs that
meets the following conditions:

The RE is expressed with a proper name, a definite description, or a pronoun;

The speaker uses the RE intending the addressee to be able to identify the referent
uniquely against their common ground;

The speaker satisfies her intention by the issuing of that NP; and finally,

The course of the process is controlled by the speaker alone.

The mistaken idea that all REs function in this way was called “the literary
model of definite reference”. The role of collaboration is now so well appreci-
ated that a new orthodoxy appears to be taking hold; at its boldest, it asserts that
conversation is the only legitimate site of language use, and that collaboration
is what reference is all about. There is no doubt that reference can involve col-
laboration and negotiation, just like a sales transaction can involve bargaining.
Yet there are many situations in which collaboration is not necessary or not
possible (just as we can buy something without bargaining). Examples occur
when we write an email or a journal article. Lord Raglan’s reference to “the
front”, written in a letter during the Battle of Balaclava, is another case in point,
because time did not permit his addressee to respond.

For these reasons, I do not subscribe to the new orthodoxy. I will argue
that “literary reference” is still only very partially understood and that, in
fact, research in this area has become increasingly interesting in recent years.
Readers curious about the computational modelling of referential collaboration
are invited to read [Heeman and Hirst, 1995], [Engonopoulos et al., 2013],
[Garoufi and Koller, 2014], and [Fang et al., 2014]; they will find there much
that is of interest; moreover, they will find that all the issues discussed in the
present book remain relevant when collaboration is taken into account.

Despite our focus on “literary reference”, we will discuss the notion of
salience, because it affects virtually all of our REs. Broadly speaking, an entity
is salient for a person to the extent that it attracts this person’s attention. In
many cases, speaker and hearer attend to the same things, but sometimes they
do not, as in the notorious Battle of Balaclava (chapter 1), where Lord Raglan
and Lord Nolan look at a battle field from different vantage points, so different
things were salient for the two of them. The role of salience in REG is discussed
in sections 4.9 and 9.7.
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ID SPECIES ORIGIN WEIGHT INJURIES LOCATION

a lion Kenya 102kg paws, teeth cage
b lion China 100kg paws ?
c tiger China 310kg back ?

Table 1.3
Shared knowledge (expanded). New information is shown in boldface.

1.7 A Perspective on Reference: Information Sharing

Theoreticians have long debated the logical analysis of definite descriptions. In
later chapters, I shall argue that most computational work on reference can be
aligned with the insights of theoreticians who, in the wake of Peter Strawson,
regard sentences that contain failed references as being neither true nor false
[Strawson, 1950] (see section 2.4 for details). These theoreticians regard “The
so-and-so is P ” as consisting of two different parts, which contribute to com-
munication in different ways. Implicit in this account is a distinction between
information presupposed (i.e., shared or given) and information asserted (i.e.,
presumed new to the hearer, e.g., [Levinson, 1983], chapter 4). This distinc-
tion is fundamental to much theorizing about language but it is often ignored
by computational linguists; it will play an important part in this book.

Our zoo may help to convey the idea. Suppose I have information about an
animal a, for example, the fact that it is in the cage. If I want to communicate
this information to you, and if our shared information is represented in the
Knowledge Base depicted in Table 1.1, then I can make clear what animal
I have in mind by saying, for example, “the Kenyan lion”, making use of our
shared knowledge. Suppose I choose this RE, then after my full utterance, “The
Kenyan lion is in the cage”, my privileged information has shrunk a little but
our shared information has increased because the fact that a is in the cage is
now a part of it. The result is an expansion of Table 1.1 that can be represented
as Table 1.3.

We shall see in section 3.1 that it takes more for information to be shared
than for this information to be known by all the people involved: information
only counts as shared (also known as “common knowledge”, or in “common
ground”) if all the people involved know that it is shared. A dramatic example
is depicted in Figure 1.3, which shows a run on the banks, caused by the fact
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Figure 1.3
A dramatic example of Information Sharing: a newspaper article causes a run on the banks.

that a newspaper report (“banks go bust!”) becomes shared information. Cru-
cially, a run on the banks does not result if every reader believes himself to be
the only one to know that the banks are about to go bust: we will only run if
we believe that others possess, or will soon possess, the same information.

Reference relies on information shared between speaker and hearer. This has
interesting consequences. For example, if the speaker and hearer have different
beliefs about a tiger’s country of origin, then its country of origin is not in the
Knowledge Base; only by “backing off” to a level at which the information is
shared (e.g., the fact that the animal comes from Africa) can the origin of the
tiger contribute to fixing the identity of the referent.

The interplay between shared (also called given) and privileged (also new)
information, which Rodger Kibble and I once called Information Sharing
[van Deemter and Kibble, 2002] for want of a more generally accepted term, is
crucial to communication. In information sharing, information shared between
speaker and hearer is exploited to enable the speaker to pass on her privileged
information into the store of information that she shares with the hearer, as
when she says “The Kenyan lion is in the cage”.
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Distinctions between given and new information come in different varieties
(topic vs. comment; theme vs. rheme; topic vs. focus [Hajičová et al., 1998];
see also section 2.4 of the present book). It plays a role in a large variety of
linguistic structures, involving not just REs but also factive verbs, cleft sen-
tences, and counterfactual constructions. The distinction is also important to
speech synthesis because new information tends to be marked by pitch accents
that make the item in question stand out in the perception of the hearer (e.g.,
[Pierrehumbert and Hirschberg, 1990], [Gibbon et al., 2000]).

Researchers from a number of disciplines have contributed to our under-
standing of Information Sharing. The philosophers Stalnaker and Lewis, for
example, offered a formal explication [Stalnaker, 1973], [Stalnaker, 1978],
[Lewis, 1979], [Beaver, 1997]. David Lewis asked attention for situations in
which a RE can add information, which may then be “accommodated” by the
hearer; for example, I might say “My wife will be waiting” to someone who
did not know that I am married (cf., section 7.4). In other cases, comprehension
requires deduction: suppose we modify the example of Table 1.3 by assuming
that the hearer does not know whether c is a tiger. Now the fact that is c is
a tiger is not shared, yet if the speaker says “The tiger is in the cage”, the
hearer can combine the RE with the information in the knowledge base and
understand which of the three animals is the referent. Such situations, in which
accommodation or deduction is needed to make sense of an RE, will not be
discussed in this book because they are, for the time being, beyond the state of
the art of computational models of referring.

1.8 Summary of the Chapter

I have defined the scope of the book and the main assumptions behind it. We
have seen that reference is central to communication, and illustrative of one
of the key mechanisms underlying all communication, namely, information
sharing (section 1.7). The following points are worth stressing:

• The book concentrates on the production of referring expressions; this will
force us to ask why certain expressive choices are – or should be – made.
The inverse problem, of understanding (i.e., interpreting) REs, will only be
discussed where it is relevant for production; after all, by and large, speakers
attempt to produce REs that are clear for hearers. [Section 1.3]

• We focus on issues specific to reference. This means that determining the
semantic content of an RE will take precedence over finding the words
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that express this content, because the latter happens in much the same way
throughout language production. [Section 1.4]

• In much of the book, REs will be studied individually, in isolation from any
linguistic context. This choice for “one-shot” REs will allow us to focus on
some of the core mechanisms of reference. [Section 1.6]
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2 Theories of Reference

Reference has featured in debates about language at least since Plato’s exam-
ination of the concept of knowledge1 and became an area of lively debate
around 1900, when Gottlob Frege and Bertrand Russell started to use Formal
Logic to shed light on the meaning of natural language.

This chapter will summarize some theoretical debates in this area. We
will not cover all of these (cf., the full-length treatments of [Hawkins, 1978],
the famous [Kripke, 1980]; [Bach, 1987], [Neale, 1990], [Recanati, 1993],
[Reimer and Bezuidenhout, 2004], [Elbourne, 2005], [Abbott, 2010],
[Kabasenche et al., 2012], and [Hawthorne and Manley, 2012]) but focus on
what is most relevant for reference production instead. Later chapters will often
ask whether the challenges posed by theoreticians have been adequately tack-
led by computational models.

The plan of this chapter is as follows. After discussing what may be meant
by the term “referring expression” (section 2.1), we shall reflect on the key
notions of unique identification (section 2.2), denotation, and connotation (sec-
tion 2.3). We shall discuss the famous debate between Russell and Strawson on
the proper analysis of definite descriptions (section 2.4), after which we shall
reflect briefly on substitutivity in intensional contexts (section 2.5). Attributive
descriptions and misdescriptions will be introduced (section 2.6), after which
we turn to proper names (section 2.7) – a topic that looms large in philosophi-
cal studies of reference – and the Gricean Maxims (section 2.8).

2.1 What Makes a Referring Expression?

The difficulty of pinning down the notion of an RE can be illustrated aptly
using an episode when researchers in Information Extraction proposed a
scheme for allowing annotators of language corpora to say which expres-
sions refer to the same entity [Hirschmann and Chinchor, 1997]. Annotations
of this kind are necessary if you want to create a “gold standard” for testing

1 Plato’s Theaetetus dialogue asks what it means to be able to “mention some mark which dif-
ferentiates the object in question from everything else. (...) Take the sun for example, if you like:
I think you’d be on safe ground with the idea that it is the brightest of the heavenly bodies which
travel around the earth (sic!) (...) if you get hold of what uniquely differentiates something from
everything else, you will arguably get a rational account of just that thing; but if the feature you
get hold of is shared, your account will be concerned with however many things share this feature”
([Waterfield, 1987], section 208b). As we shall see in the next chapter, Plato’s focus on uniquely
differentiating properties echoes contemporary concerns.
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coreference resolution programs (see section 1.2). Drawing up a good anno-
tation scheme requires a clear understanding of the phenomena annotated.
As it happens, the Hirschmann-Chinchor scheme, which came with a writ-
ten explanation known as a task definition, was riddled with inconsistencies
[van Deemter and Kibble, 2000]. For instance, the task definition encouraged
annotators to disregard the role of time in the interpretation of REs. For exam-
ple, in the sentence

Henry Higgins, who was formerly sales director of Sudsy Soaps, became
president of Dreamy Detergents,

annotators were asked to mark sales director of Sudsy Soaps as corefer-
ential with both Henry Higgins and president of Dreamy Detergents (cf.,
[Cristea et al., 1999]). But because coreference is an equivalence relation
(reflexive, symmetrical, and transitive) this implies that the sales director of
Sudsy Soaps and the president of Dreamy Detergents must be the same per-
son. Clearly this cannot be right, and a reasonable conclusion is that, of the
three NPs, only Henry Higgins refers [van Deemter and Kibble, 2000]. The
other two NPs, which are predicatively used, do not.

How can we tell whether an NP is an RE? Linguists have devised syntactic
tests to distinguish between different kinds of NPs, but these appear to be of
limited use. Milsark, for example, stipulated that NPs are weak if they can fill
the NP slot in sentences of the form “There exist(s) NP” and strong if they
cannot [Milsark, 1977]. Might the notion of a strong NP help us to define the
notion of an RE? Clearly, definite descriptions are strong, and so are NPs of
the form “every so-and-so”. On the other hand, Milsark’s criterion also makes
NPs of the form “most so-and-so’s” strong, yet, by themselves, they do not
refer to any specific set of so-and-so’s. In fact, one should be skeptical of any
purely syntactic criterion, given that one and the same NP can be used both
referentially and nonreferentially. Consider, for example,

One German bank is on the verge of collapse.

This may be a statement about the number of German banks that are at risk,
but it could also be about a specific bank. A purely syntactic test would not be
able to tell the difference between these two different interpretations.

Approaches oriented towards Formal Logic have more to offer, but tend
to fall short as well. Perhaps most notably, Barwise and Cooper proposed
a perspective in terms of the formal theory of Generalized Quantifiers
([Barwise and Cooper, 1981]; see [Peters and Westerstahl, 2006], section 4.6,
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for discussion). Informally, the theory of Generalized Quantifiers lets an NP

denote a set of sets. For example, the NP “two people” denotes the set of all
sets that contain (any) two people, the NP “the red circles” denotes the set of
all sets that contain all the red circles, and so on. Using this perspective, an
NP is semantically definite if it can be characterized by the algebraic concept
of a nontrivial principal filter. A set of sets is a nontrivial principal filter if it
can be described as {X : Y ⊆ X} (i.e., the set of all supersets of Y ), for some
nonempty set of entities Y .

To see the implications of this definition, consider “President Obama”.
This noun phrase is semantically definite because, in all domains in which
it denotes, it denotes the set of all subsets of the domain that contain President
Obama, which can be written (verbosely) as {X : {Obama} ⊆ X}, which is a
principal filter. Similarly, “the red circles” is definite, because when it denotes,
it denotes the principal filter {X : C ⊆ X}, where C is the set of all red circles
in that situation. An NP like “two people”, however, is not semantically defi-
nite, because the set of all sets that contain (any!) two people is not a principal
filter. The same is true for “most people”, as one can easily see.2

Formal analyses can be intellectually pleasing yet difficult to apply to con-
crete cases. In the example (above) of the expression “one German bank”, for
instance, consider a situation in which the speaker has a specific bank in mind.
Now some might argue that the NP is semantically definite, hence referen-
tial; after all, it denotes an entity b that the speaker would be able to describe
uniquely, hence the NP denotes the set of all sets that contain b as an element,
which can be written as {X : {b} ⊆ X}. On the other hand, the hearer would
not be able to identify b on the basis of the utterance above, therefore oth-
ers might argue that the NP does not refer. There is no unanimity on these
matters, although it seems that in recent years most theoreticians have taken
the former position [Dekker, 1998], [Schwartzschild, 2002], [Breheny, 2008]
[Hawthorne and Manley, 2012].

Despite these difficulties, one might regard semantic definiteness as a neces-
sary condition for being an RE. For instance, NPs like “no-one”, “most people”,
“fewer than five people”, and “at least five people” are not semantically def-
inite; and indeed, it would be difficult to say which precise individuals they
refer to. Similarly, bound anaphors are not semantically definite; and indeed, it

2 A different perspective is offered in [Kamp and Reyle, 1993], chapter 4, where the subject of
“Most linguists use a parser” refers to the set of those linguists who use a parser. Their perspec-
tive captures what entities are introduced into a discourse by a sentence as a whole and become
available as antecedents for anaphora. See also [Constant, 2012].
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would be unusual to say that “it”, in “Every TV network reported its profits”,
refers. Whether semantic definiteness should be seen as a sufficient condition
for being an RE seems more doubtful; universally quantified NPs, and generic
NPs, are semantically definite, for example, but it seems doubtful that they refer
in the everyday sense of the word (pace [Shaw and McKeown, 2000]).

Ultimately, however, quibbling over definitions is not productive. After all, a
definition cannot be true or false – it can only be more or less useful (and more
or less in accordance with existing usage). In chapter 4, I will offer a definition
of the classic REG task (section 4.3), and this purely stipulative definition will
guide our discussions for a while. In Part IV of the book, we shall open up
to a much wider range of “reference” tasks, each of which will be introduced
not by means of a formal definition but by means of a concrete scenario of
communication between people.

2.2 Knowing What Something Is

Searle wrote, “Any expression which serves to identify any thing, process,
event, action, or any other kind of individual or particular I shall call a referring
expression”, but what does it mean to identify something? Entire treatises have
been devoted to this question (e.g., [Strawson, 1959]). To see what’s at stake,
let’s consider an example from [Aloni, 2002]. An Ace of Spades and an Ace
of Hearts are laid out in front of you, one to the left of the other. The cards are
lying face down, so you do not know which one is which:

♠ ♥ , or

♥ ♠

You’re told that one of these cards is worth a large sum of money, leaving you
to guess which one. There are two types of knowing which card wins you the
money: one can know this in terms of the position of the cards or in terms
of their suit. Aloni calls these types of knowing conceptual perspectives. For
example, you may know that the Ace of Spades wins, or you may know that the
card on the left wins. Different situations favour different conceptual perspec-
tives. In the situation at hand, it’s no use knowing that the Ace of Spades wins,
but it’s extremely useful to know that the card on the left wins. If, however,
you asked a friend, “Which card wins?”, then an answer that used the perspec-
tive of suits would be uninformative. If, instead of asking which card wins,
you asked, “Which card is that?” (pointing to the card on the left), then a third
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conceptual perspective would be preferred, as in “It’s the winning card”. A
speaker’s choice between these perspectives can have important consequences.

Conceptual perspectives are not restricted to games. In fact, the first system-
atic study of this topic, by the philosophers Boër and Lycan, focussed on the
identification of people in real-life settings [Boër and Lycan, 1986]. Suppose
I’m interested in knowing who has won the presidential elections that took
place, in a certain country that I do not know much about, yesterday. Which of
the following situations guarantees that I know who has won?

• I know the person’s full proper name and address. I know nothing else about
the person, not even their gender, age, and position on the political spectrum.

• I’ve seen the person in an elevator and remember the person’s appearance. I
know nothing else about the person, including the person’s name.

• I know that this person was the leader of a protest movement that swept
aside the previous government. I know nothing else about the person.

The information in each of these situations may be so specific that it can only
apply to one person. Yet, it is unclear which of the above lets me know who
won. Examples of this kind show that “identifying the referent” isn’t always
the same thing: the referent needs to be identified using information of “the
right kind”, and no single kind is always right.

Boër and Lycan thought that in choosing a conceptual perspective, the pur-
pose of the identification matters especially ([Boër and Lycan, 1986], pp. 33-
37). This purpose suggests a particular category (e.g., the address or the portrait
or the political party of the referent) and a particular format (e.g., in the case
of an address, the answer should provide a street name and number).

The computational literature contains echoes of these issues. For instance,
[Appelt, 1985b] proposed that to refer successfully is to produce a description
D such that there exists another description D′ such that the hearer knows
that D = D′ and D′ is, prima facie identifiable. The author stipulated that
such terms “meet certain syntactic criteria for being the ‘right kind’ of term”
(echoing Boër and Lycan’s “format”). For example, suppose I am the postman,
and I ask you to whom I should deliver a letter. You respond, “deliver it to
the person whose name is on this envelope”, while the envelope has both the
name (“Mr. so-and-so”) and the address “41 Malvedere Crescent, Aberdeen”.
Then D = “the person whose name is on this envelope” and D′ = “the person
named Mr. so-and-so, living at 41 Malvedere Crescent, Aberdeen, UK”. The
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reference is successful provided the combination of the name and the address
meets the syntactic criteria set by the post office.

An ability to always choose the right perspective might be seen as the Holy
Grail of REG, and as such it is a topic that runs through most chapters of this
book. For example, in sections 3.4 and 8.7, we shall see how the notion of
an attribute, as a conglomerate of related features, implements the notion of a
conceptual perspective; in chapter 13, we shall explore how questions of the
form “Who is ...?” may be answered by a computer program. Before we delve
deeper into these issues, it will be useful to see how philosophers of language
have analysed the meaning of REs and the sentences containing them.

2.3 Denotation and Connotation

The 19th-century economist and philosopher John Stuart Mill appears to have
been the first to distinguish between the denotation and the connotation of an
expression [Mill, 1843]. The Millian denotation of a word like “animal” is
simply the set of all animals. Its connotation is the set of those properties that
something needs to have in order to count as an animal: locomotion, procre-
ation, metabolism, and so on. Similarly, the denotation of “even number” is
the set of numbers {0,2,4, ..}; the connotation is “being divisable by 2”. By a
slight extension of Mill’s usage, we also speak of the denotation of a property.

Mill’s term “denotation” is still in use; Rudolf Carnap’s word “extension”
is often used as a synonym [Carnap, 1947]. In fact, most REG algorithms can
be described entirely in Millian terms: they search for a combination of prop-
erties whose denotations are such that, when these denotations are intersected,
the resulting set contains the referent and nothing else. In discussing REG, we
shall frequently use the notation [[x]] to talk about the denotation of x. We shall
do so when x is a word or a linguistic expression but also when x is a seman-
tic construct that is used to represent a word or an expression. Usually, we
take [[x]] to be limited to some particular domain of discourse. For example,
[[zebra]] might stand for the set of zebras in a particular zoo. If the intersection
[[zebra]] ∩ [[pregnant]] happens to be a singleton set, then the combination of
the properties “being a zebra” and “being pregnant” is suitable for building an
RE. This RE would refer to the set containing only the one pregnant zebra and,
by an obvious extension, to this zebra itself.

At the end of the 19th century, the philosopher and logician Gottlob Frege
wrote extensively about the way in which the meaning of a sentence depends
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on the meanings of its syntactic parts [Frege, 1960], a perspective that has
come to be associated with the term compositional semantics. Following in
the footsteps of Mill, Frege distinguished between the Sinn (henceforth: sense;
similar to Mill’s connotation) and the Bedeutung (henceforth: reference; simi-
lar to Mill’s denotation) of an RE. The latter is simply the referent, whereas the
former can be described loosely as the way in which the referent is presented.

Frege’s examples include expressions like the morning star and the evening
star: both refer to the planet Venus, but in different ways, using different defini-
tions, one might say. Frege observed that, usually, the truth of a sentence does
not depend on the sense of the REs in it but only on their reference. For exam-
ple, if it is true that “the morning star is a solar planet composed of rock”, then
the sentence “the evening star is a solar planet composed of rock” must also
be true. The context “x is a solar planet made of rock” is normal in this regard.
Crucially, however, some contexts – which came to be known as intensional
contexts – are different in that their truth depends not just on the reference of x
but on its sense. An example is the context created by “Homer Simpson knows
that x is a solar planet composed of rock”. The sentence that results from let-
ting “the morning star” take the place of x might be true, whereas the result of
letting “the evening star” take its place might be false.

To vary on this theme, consider the context “Homer Simpson knows that
x is dangerous”. This may be true for x = “the rocket launching button” yet
false for “the red button at the top of the console”, even if the rocket-launching
button is the red button at the top of the console. Contexts like this, whose
truth value depends on the sense (not just the reference) of the REs in them,
are called intensional. Later theorists speak of hyper-intensional contexts in
situations where even the sense of the REs does not suffice to determine the
truth value of the utterance.

Frege was able to offer an elegant account of the compositional semantics of
sentences that contain intensional contexts, as well as ones that do not. Later,
more detailed work by Rudolph Carnap, Richard Montague, and others can be
seen as making Frege’s ideas precise. Many of these ideas still stand, though
numerous refinements and additions have been proposed. Some of the most
important refinements are associated with the names of Russell and Strawson.
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2.4 The Russell-Strawson Debate

In a famous study, Bertrand Russell applied Predicate Logic to the analysis
of English sentences [Russell, 1905]. In order to get a clear perspective on
the role of definite descriptions, he asked how one should analyse sentences
that include a description where “the so-and-so” fails to pick out one unique
individual. Examples include sentences such as “The King of France is bald”,
“The King of France is not bald”, and so on. Are such sentences false, or does
there arise a “truth value gap” (i.e., a situation in which the sentence is neither
true nor false)? Russell offered an account of such sentences that does not
allow for truth value gaps. To him, “The King of France is bald” asserts that
there exists a unique King of France: withK as short for “is a King of France”,
this can be expressed by the Predicate-Logical formula

∃x(K(x)∧ ∀y(K(y)→ y = x))

(“there exists exactly one King of France”). The sentence “The King of France
is bald” can now be rendered as follows, with B as short for “bald”:

∃x(K(x)∧ ∀y(K(y)→ y = x)) ∧ ∀z(K(z)→ B(z))

(“there exists exactly one King of France, and all Kings of France are bald”).
Russell regarded the pattern displayed here as so important that he introduced
a specific logical symbol, the iota (ι) operator, to abbreviate it. Just like the
meaning of “a King of France” can be rendered directly using the existen-
tial quantifier, writing ∃xK(x), the meaning of “the (unique) King of France”
could now be rendered directly using the iota operator, writing ιxK(x). The
meaning of the sentence as a whole can be rendered as [ιxK(x)]B(ιxK(x)),
in which the description occurs twice.3

Russell’s analysis allows him to shed light on more complex sentences, and
the iota operator allows this analysis to be stated succinctly. For example,
Russell analyses “The King of France is not bald” as ambiguous between a
true and a false sentence: it can either mean [ιxK(x)]¬B(ιxK(x)), which
is false (because it asserts the unique existence of a King of France), or
¬([ιxK(x)]B(ιxK(x))), which is true (because the assertion as a whole is

3 Russell used a special logic notation that is no longer in use. As is common practice, we explain
his ideas by mixing his ι operator with modern notations.
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negated). The legitimacy of this interpretation becomes clear when we con-
sider “The King of France is not bald, because France is a republic”. Similarly,
using � as the possibility operator of Modal Logic, “The King of France may be
bald” is ambiguous between [ιxK(x)] �B(ιxK(x)) (which asserts the exis-
tence of the King of France) and �([ιxK(x)]B(ιxK(x))) (which only asserts
the possibility of his existence), both of which are genuine interpretations of
the sentence. The fact that Russell was able to offer attractive analyses of prob-
lematic sentences like these is one of the reasons why it is justly famous.

Despite its virtues, Russell’s account is sometimes regarded as linguistically
crude, because it fails to distinguish between assertion and presupposition. In
Peter Strawson’s view, “the King of France” does not assert the existence of
a king: it presupposes it [Strawson, 1950]. Strawson therefore regarded “The
so-and-so is P ” as consisting of two parts, which contribute to communication
in different ways: the first part, “The so-and-so”, nods towards a store of infor-
mation assumed shared between speaker and hearer, whereas the second part,
“is P ”, adds to this information by making an assertion.

As was noted in section 1.7, the computational literature has generally
accepted the Strawsonian viewpoint as crucial to the task of computation-
ally generating REs. This same division of labour occurs in a variety of
linguistic constructs, loosely associated with the term presupposition (e.g.,
[Levinson, 1983], chapter 4; see also our section 1.7). They include factive
verbs (like “regret” and “realize”), change-of-state verbs (like “stop”), and so
on. For example, consider the sentence “Alice stopped nagging her husband”.
A broadly Russellian analysis would have this mean that Alice used to nag her
husband and now she does not. Strawson would say that this misses a nuance,
namely, that the speaker doesn’t so much assert the nagging but presupposes
it. The same is true for definite descriptions such as “The King of France is
bald”: such descriptions treat the existence of a unique King of France as a
given. Other objections have been raised against the Russellian analysis,4 but
the inability of the Russellian analysis to do justice to the distinction between
assertion and presupposition stands out as the most important one.

In recent years, researchers have argued that it may not be necessary
to choose between Russell’s and Strawson’s accounts [Donnellan, 1966],

4 One issue is that, taken literally, the Russellian formula [ιxφ(x)]ψ(ιxφx) requires that there
is only one x with the property φ(x) in the entire model (i.e., without restricting to x that are
contextually salient), which is often implausible. This issue is no longer regarded as a deep prob-
lem for the Russellian analysis [Reimer and Bezuidenhout, 2004], [Neale, 1990] [Dekker, 1998],
however. For a discussion in the context of REG, see section 9.7.
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[Neale, 1990], [Dekker, 1998]. Some have argued that each account matches a
particular use of definite descriptions (see section 2.6). It is this position that
we shall take. In Part IV, for example, we shall encounter expressions that,
while referring in some situations, play a Russellian role in others.

Where do these discussions leave indefinite descriptions? One answer is
that indefinite descriptions are very different from definite ones, because they
are existential quantifiers, asserting that there exists at least one object that
has a certain property. Consider a sentence discussed by [Dekker, 1998]: “A
painting is missing from the museum.” According to the standard account, this
expresses the proposition

∃x(P (x)∧M(x)),

where P stands for Painting andM for Missing. On closer reflection, however,
“A painting” may be uttered in two different types of situation. In a scenario of
type A, it is uttered by a policeman who checks the walls of the museum and
notices an empty spot on the wall. This is a nonspecific use of the indefinite if
the speaker does not know which painting is missing. This usage is captured
adequately by the account above. But consider a scenario of type B, where the
sentence is uttered by an art lover who has discovered that his beloved Who’s
afraid of Red, Yellow and Blue II is no longer on the walls of the hall that it once
adorned. This is known as a specific use of an indefinite, because the speaker
has a concrete painting in mind. Expressions of this kind may be thought of as
REs without the uniqueness presupposition.

Others have called the existence of specifically used indefinites into ques-
tion, arguing that the difference between the two scenarios mentioned above
is not as dramatic as it seems [Dekker, 1998]. After all, bearing in mind the
conceptual perspectives of section 2.2, there is a perspective that does let the
policeman of scenario A identify the painting: it is the painting that hung at
location x, where x is a specific space on the wall (e.g., where the wallpaper
stands out as slightly lighter than elsewhere). Surely this is a unique reference
to the painting.

Theoreticians today believe that definite and indefinite NPs have much in
common, so they are often discussed together, as different sides to the same
coin [Hawkins, 1978], [Neale, 1990], [Reimer and Bezuidenhout, 2004]. To
use the same nautical analogy that we made at the start of the book, both
types of NPs can “anchor” words to things. Some authors have even denied
that there exists a systematic difference between the two types of descriptions.
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This school of thought denies that definite descriptions express uniqueness,
citing examples such as

John went to the dentist.
John was hit in the eye.
Let’s go to the pub.
She is my student.

as evidence, because they contain a definite description that does not express
uniqueness (see [Ludlow and Segal, 2004]; also [Ludlow and Neale, 1991]).
Ludlow and colleagues argue that uniqueness is only imparted by our back-
ground knowledge. For example, the fact that “the King of France” is inter-
preted as describing a unique king of France does not stem from the definite
article – which many languages do not express – but from our background
knowledge about kings (i.e., the fact that there tends to be only one of them in
any given country at any given time).

I will not pass judgment on these matters. Instead, we shall focus on algo-
rithms that single out a referent by finding semantic properties that allow a
recipient to single out the intended referent; we shall have much less to say
about the way in which these properties are to be put into words, including
the choice between the definite/indefinite article. In fact, we shall see that
the distinction between the two kinds of descriptions can become even more
blurred when it is difficult to determine whether a given description singles out
a unique referent or not (chapter 15).

2.5 Intensional Contexts

A venerable strand of theoretical research studies the logical properties of
modal, temporal, and epistemic contexts (e.g., [Linsky, 1971], [Neale, 1990],
[Groenendijk et al., 1996]) and a significant amount of this work focusses on
descriptions. A typical question is what other descriptions one can substitute
for a given description without risking a change of truth value (i.e., salva ver-
itate). One might think that if two descriptions have the same denotation (i.e.,
they are co-extensive) they can always be substituted for each other salva ver-
itate; in the words of Stephen Neale,

Principle of Substitutivity: If (i) a = b is a true identity statement, (ii) α is
a true sentence containing one or more occurrences of a, and (iii) β is the
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result of replacing at least one occurrence of a in α by b, then (iv) β is also
true. ([Neale, 1990], section 4.3.)

This Principle does not always hold, however. Consider the following sentence,

Next year, the round button will be located at the top of the console,

uttered in the cockpit of an airplane, which is full of buttons and dials; the red
button is round, and there is only one red button on the console, and only one
round one. Consequently, the red button = the round button. Yet if we substi-
tute “the red button” for the subject of the sentence, then the truth value of the
sentence may change. Contexts like this, in which the Principle of Substitutiv-
ity fails to hold, are called intensional (also referentially opaque), in contrast
to extensional contexts, where the Principle does hold. They include:

1. Contexts created by temporal and modal operators: “Next year, the red but-
ton will be at the top of the console.” “The button must be red”.

2. Contexts created by epistemic contexts: “The manager believes that button
is at the top of the console”. “Everyone knows that the button is at the top”.

Some substitutions into these contexts do preserve truth, but these require
equalities stronger than in clause (i) of the Principle of Substitutivity. Suppose,
for instance, that round buttons are also known as dials, so “round button” and
“dial” are synonymous. Suppose we substitute the latter for the former; this
substitution preserves the truth values in intensional contexts.

Does this work have consequences for computational models?
First, as the story of this book unfolds, it will become clear that generation

in intensional contexts is beyond the reach of existing REG algorithms. This is
understandable, given that in these contexts, the notion of reference is prob-
lematic: if the descriptions in them refer at all, then it is not to an object in the
real world but to an object in some other (future, imagined, etc.) world. The-
ories have interesting things to say about these contexts, but they do not yet
offer the detail and precision required by computational REG models. This is
no coincidence: as we shall see, computational models tend to lag behind pure
theory, with theories exploring issues long before they are addressed by means
of algorithms and computer programs.

Second, intensional contexts highlight the importance of choosing an appro-
priate conceptual perspective (section 2.2). Consider the choice that a speaker
might face between two descriptions in a simple extensional context:
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The round button / The rocket-launching button is dangerous.

Suppose the two REs are co-extensive, so the truth of the sentence does not
depend on the choice between them. Yet they cannot be used interchangeably.
For example, in response to the question, “Are there any dangerous buttons
in the cockpit?”, the latter choice (which indicates the function of the but-
ton) will tend to be more felicitous than the former. On the other hand, syno-
myms can usually replace each other: for example, any context that makes “the
round button” felicitous makes “the dial” felicitous as well, and conversely.
More generally, it seems reasonable to hypothesize that two descriptions can
be used interchangeably “salva felicitate” in extensional contexts only if they
are interchangeable salva veritate in intensional contexts. In this roundabout
way, intensional contexts might be relevant to present-day REG after all.

To sum up, problems usually associated with intensional contexts plague the
generation of REs in extensional contexts as well. The risk, in the extensional
case, is not that sentences may be generated that are false. The risk is that
sentences may be generated that are uninformative, infelicitous, or clumsy.

2.6 Attributive Descriptions and Misdescriptions

It is time to introduce a distinction between two ways in which descriptions of
the form “the so-and-so” can be used. The precise demarcation between them
is a matter of debate (see [Abbott, 2010], section 6.3, for discussion), but there
are clear cases on either side of the distinction.

Consider the sentence “The green button (is at the top of the console)”, as
spoken to someone who can see the button. The subject NP is used referen-
tially. The NP doesn’t contribute to the meaning of the utterance, except by
contributing a referent (see [Recanati, 1993] for extensive discussion of this
idea of direct reference). A simple test confirms that my description was refer-
ential: if I were told that my perception of the colour of the button is mistaken
(e.g., because of temporarily strange lighting conditions in my room), then I’d
want to revise my description, ascribing the correct colour (e.g., blue) to the
button. Referential descriptions are captured well by Strawson’s account (sec-
tion 2.4), and it is them that most REG algorithms try to produce.

But definite descriptions can also be used in another type of situation. Sup-
pose I say “The rocket-launching button is dangerous”, speaking from a gen-
eral knowledge of rocket launchers. The gist of my utterance may be conveyed
as saying that whatever button is used for launching rockets, it is dangerous.
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In situations of this kind, the NP is used attributively. This time the test that
was used above confirms that my description was not referential: suppose you
told me that the button on the panel in front of me, which I thought to be the
rocket launching button, actually serves a different purpose. This new informa-
tion would not cause me to want to revise my original description, because it
remains correct. Attributive descriptions are captured well by Russell’s account
(section 2.4), which makes the descriptive content an essential part of the asser-
tion made by the sentence containing it.

Attributive descriptions were discussed in [Donnellan, 1966], [Grice, 1969]
and elsewhere. To use an example from Donnellan, if we say “The murderer
of Smith is insane”, this can be used referentially, to denote a concrete indi-
vidual believed to have murdered Smith, but it can also be used attributively,
even before anyone knows who has murdered Smith. The circumstances of the
murder may have led the speaker to deduce that the murderer, whoever she is,
must have been insane.

Attributive descriptions require a deep understanding of the domain of dis-
course and an ability to reason. Computationally modelling the production of
such descriptions is challenging but potentially rewarding as well. After all,
attributive descriptions embody an even more interesting aspect of language
than referential ones: the latter can be replaced by pointing, so the use of lan-
guage could be argued to be, in some sense, incidental. Attributive descrip-
tions, by contrast, are essentially linguistic and closely tied up with the ability
(which is often thought to be specifically human) to think and talk about things
that are not “here and now”. In section 10.6, we will indicate how attributive
descriptions can be modelled.

In another example from [Donnellan, 1966], a speaker talks about a man at a
cocktail party who is holding a glass, saying, “The man with the Martini is the
murderer of Smith”. Suppose the name of the man she intends to refer to is
Jones, but Jones drinks wine. No one at the party drinks a Martini; crucially,
however, Jones did murder Smith. Clearly, something has gone wrong, but has
a falsehood been uttered? Many researchers believe that the sentence is true
even though it misdescribes Jones. The Russellian analysis disagrees, because
it understands the sentence as stating, among other things, that exactly one per-
son at the party drinks a Martini, which is false. The Strawsonian analysis has
less difficulty with the situation, allowing “The man with the Martini” to refer
to Jones, even though the manner in which it does so (i.e., by presupposing that
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Jones was drinking a Martini) is incorrect. According to the Strawsonian anal-
ysis, the assertion contained in the utterance (although not the presuposition
contained in it) is true.

Another problematic class of descriptions involves metonymy, as in the fol-
lowing example from [Nunberg, 1978]: a waitress says this to a colleague,
referring to a customer whose proper name she doesn’t know but who is
waiting for his sandwich to arrive: “The ham sandwich is getting restless”.
Although the intended referent is not himself a ham sandwich, he has ordered
one. This fact is used by the waitress to produce a succinct description of
the man in a situation where a description that is literally correct would have
tended to require more words (e.g., “The man who has ordered a ham sand-
wich”, “The man who is sitting on his own, near the exit”).

I have little to say about misdescriptions, but there is scope for computa-
tional models here. A good model would embody a theory of why and when a
misdescription makes a natural and effective RE. For example, the question is
whether Donnellan’s utterance can ever be the speaker’s best option. Perhaps it
can: if all that is known is the look of the drink, then the man with the Martini
may be the most succinct RE that identifies the drink in a useful manner. An
analysis along these lines may have something to add to existing theories (e.g.,
by shedding light on the difference between semantic and pragmatic reference
[Kripke, 1977], [Neale, 1990], [Devitt, 2004]).

Metonymic descriptions may yield to the same method. For although Nun-
berg’s “the ham sandwich” is not literally correct, it may be the speaker’s best
way to identify the referent. The challenge for computational models, in all
these cases, is to exploit nonliteral meaning, deviating from the literal truth
where this makes communication more effective.

2.7 Proper Names

A remarkable proportion of philosophy research on reference concerns proper
names.5 The most widely discussed question can be worded in Fregean terms:
do proper names have a sense? Mill (cf., section 2.3) believed that proper
names do not have a sense at all (using his terminology: they do not have con-
notation), but only a reference (Mill: they only have denotation) [Mill, 1843].
This position was challenged by Frege, who provided examples such as

5 See e.g., [Cumming, 2013], from whose exposition this section will borrow freely.
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Homer believed that the Morning Star was the Evening Star.
Homer believed that the Morning Star was the Morning Star.

The second of these sentences can only be true, of course, but the first is false.
If “the Morning Star” and “the Evening Star” are proper names, and if the
sense of a proper name equals its referent (as Mill claimed), then both sen-
tences should have had the same truth value given that both names denote the
planet Venus. The argument does not hinge on the choice of these particular
REs: if we replace the first one by Phosphorus (another name for the Morn-
ing Star) and the second by Hesperus (another name for the Evening Star),
then Frege’s argument still goes through. Most later theoreticians have largely
accepted Frege’s criticism of Mill’s position, although they have differed in
terms of their preferred solutions.

A once-popular solution, which still has considerable appeal, is to regard
proper names as implicit descriptions. “The Evening Star”, for example, might
be shorthand for “The first star to light up in the evening”. Similarly, the proper
name “Aristotle” might abbreviate something like “the last great philosopher
of antiquity”. In this way, proper names inherit their sense from the descrip-
tion that they abbreviate, thereby evading the problem noted by Frege. If it is
countered that these descriptions are too arbitrary – why, for example, does
“Aristotle” not mean “Plato’s most famous pupil” instead? – then one might
resort to regarding a name x for a person as abbreviating the description “the
person named x”.

The theory that proper names are implicit descriptions came under attack
when Saul Kripke’s famous Naming and Necessity provided a range of counter-
examples and proposed an alternative account [Kripke, 1980]. His counterex-
amples include contrasting pairs like this:

Aristotle might not have been the last great philosopher of antiquity.
Aristotle might not have been Aristotle.

The first of these sentences states a perfectly plausible fact, because Aristotle’s
life could have taken a different course or because antiquity might have pro-
duced another great philosopher after him. The second sentence, however, is
plainly false. It follows that “Aristotle” does not mean “the last great philoso-
pher of antiquity”.

Kripke believed that even simple sentences can be affected by these issues.In
the Preface to [Kripke, 1980], for example, he hints at an imaginary written his-
tory whose author devotes a section to what would have happened had Aristotle
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never become a philosopher, so Plato would have been the last great philoso-
pher of antiquity. If the author wanted to elucidate this story with a picture of
Aristotle, then surely he should have used a picture of “our” Aristotle, not one
of Plato. Yet if “Aristotle” meant “the last great philosopher of antiquity”, then
a picture of Plato would have been more appropriate.

Counterfactuals led Kripke to observe that proper names have a constancy
– they refer to the same individual in each possible situation – that descrip-
tions lack: for this reason, he called them rigid designators. Constancy can
be modelled elegantly in Modal Logic. Constancy also led Kripke to propose
that proper names acquire their meaning through an act that can be likened to
baptism. According to Kripke’s proposal, the fact that you and I were absent
when the name “Aristotle” came to be associated with Aristotle is irrelevant: if
we use the name correctly, then we use it to refer to the person with whom it
came to be associated.6 Crucially, this relation between a name and the thing it
denotes remains constant even in sentences that consider states of affairs that
differ from the actual world, as in “Aristotle might not have been ...”, or “If he
had accepted Apartheid, Nelson Mandela would have been long forgotten”.

The analysis of proper names is still a matter of debate (e.g.,
[van Langendonck, 2007]), to which various types of evidence have been
brought to bear, including data from pathology [Semenza and Zettin, 1989]
and neuroscience. I shall ignore these issues until demonstrating, in chapter
7, how proper names can be incorporated into computational REG.

2.8 The Gricean Maxims and Relevance Theory

We feel we understand a person’s action if we can see that the action was cho-
sen for a good reason. Accordingly, academic theories of human action often
hinge on the idea that actions take place for a reason. One of the most cele-
brated theories of human communication, embodied in the Gricean Maxims, is
of this type [Grice, 1975]. Grice proposed four Maxims, known by the names
of Quality, Quantity, Relation, and Manner, which jointly implement the idea
that communication is normally meant to be cooperative (Grice called this the
Cooperative Principle), and which we render here in his own words.

6 An analogous theory was proposed by Hilary Putnam to account for the meaning of natural kind
terms such as water, aluminum, etc., which can be regarded as referring as well [Putnam, 1975].
See Kripke [Kripke, 1980], lectures I and especially III, for a comparison with Putnam’s views.
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Quality. The Maxim of Quality requires two things:
1. Do not say what you believe to be false.
2. Do not say that for which you lack adequate evidence.

Quantity. The Maxim of Quantity:
1. Make your contribution as informative as is required.
2. Do not make your contribution more informative than is required.

Relation. The Maxim of Relation contains just one requirement:
1. Be relevant.

Manner. The Maxim of Manner says:
1. Avoid obscurity of expression.
2. Avoid ambiguity.
3. Be brief (avoid unnecessary prolixity).
4. Be orderly.

Grice notoriously did not formalize his Maxims, which are consequently open
to different interpretations. Importantly, the Gricean Maxims come into their
own when they are “honoured in the breach”: they help speakers to convey
information by violating them (or appearing to violate them). One of Grice’s
own examples is a situation in which someone says, “Mrs. Jones made some
sounds which approximated the score of Home Sweet Home”. By violating
brevity (an aspect of the Maxim of Manner), the speaker conveys the infor-
mation – known as a conversational implicature – that Mrs Jones wasn’t very
faithful to the original song. Another example involves a reference letter for
an academic, which says, “The applicant has attended my lectures punctually
and has a nice clear handwriting” and nothing else. By not saying how bril-
liant the candidate is, thereby appearing to breach the Cooperative Principle,
the author of the reference letter makes it clear that the candidate should not
be hired. Interestingly, once the recipient of the letter has “joined the dots”, the
Cooperative Principle has been restored again, because all the required infor-
mation (i.e., that the application lacks the necessary academic qualities) has
been conveyed. Exactly why the intended implicatures are derived (instead of
e.g., that the recipient of the message knows the academic qualities of the can-
didate already) is a matter for debate.



CMR-web-July-2017 2017/7/12 12:14 Page 43 #53

First Part: Setting the stage 43

One development from the Gricean Maxims has to be mentioned here,
namely, Relevance Theory [Wilson and Sperber, 2004]. This theory empha-
sizes the importance of relevance, arguing that the Maxim of Relation, properly
understood, can do the work of all the Maxims combined, and even more than
that. The core idea is a notion of utility: speakers maximize the number of
“relevant” inferences that can be drawn from an utterance:

When is an input relevant? Intuitively, an input (a sight, a sound, an utter-
ance, a memory) is relevant to an individual when it connects with back-
ground information he has available to yield conclusions that matter to him:
say, by answering a question he had in mind, improving his knowledge on
a certain topic, settling a doubt, confirming a suspicion, or correcting a
mistaken impression [Wilson and Sperber, 2004].

Applying this idea to reference, [Wilson, 1991] gives the following example:

(a) I switched from linguistics to geography.
(b) The lectures were too/less boring.

Wilson argues that if the (b) sentence says “too boring”, the intended referent
of “the lectures” must be the linguistics lectures, but if it says “less boring”,
the referent has to be the geography lectures. This is difficult to understand
without reasoning about the utility of the interpretations considered (which is
to be maximized), and about the cognitive effort required by the reader (which
needs to be minimized). The potential implications for NLG are obvious: if
(b) is the utterance that allows the hearer to draw the relevant inferences with
minimal cognitive effort, then presumably it is preferable over an alternative
utterance such as “The linguistics lectures were too boring”, because this is
over-elaborate. Although these particular examples concern relatively compli-
cated (“bridging”) REs, we shall see in section 4.9 that similar considerations
apply to simple REs.

2.9 Summary of the Chapter

The Philosophy of Language has produced a terminology – including the oppo-
sition between extension and intension, and between attributive and referential
descriptions – that will stand us in good stead in later chapters, where psy-
cholinguistic experiments and computational algorithms are discussed. Addi-
tionally, a number of lessons contained in this chapter are worth highlighting:
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• The phrase “identify the referent” suggests a clarity that does not always
exist [Appelt, 1985b], [Boër and Lycan, 1986], [Aloni, 2002], because iden-
tification can serve different purposes, and different purposes can involve
different conceptual perspectives. [Section 2.2]

• The majority of work on computational REG relies on a distinction between
given and new information (cf., section 1.7), thereby making Strawson’s
position, in his famous debate with Russell about the meaning of definite
descriptions, concrete. [Section 2.4].

• Although definite and indefinite descriptions differ in some respects, there
may be more that the two classes of descriptions have in common than there
is that separates them. [Section 2.4].

• Intensional contexts teach us a lesson that has implications in extensional
contexts as well, namely, that two REs are rarely identical in terms of the
communicative situations in which they can be used. [Section 2.5]

• Attributive descriptions are occurrences of NPs whose descriptive content
is more important than their referent; utterances that contain an attributive
description are best seen as being about whoever, or whatever, meets the
description (section 2.6). Although REG has rarely focussed on them, recent
work (see chapter 10.2)) on REG from formal ontologies can be understood
as generating attributive descriptions. [Section 2.6]

• Proper names pose difficult challenges to the theory of reference,
because of their behaviour in modal contexts and counterfactuals con-
texts [Kripke, 1980] (section 2.7). Computational work on REG has usually
bypassed proper names, but we shall argue in chapter 7 that they should be
treated as first-class citizens. [Section 2.7]
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Once upon a time, the dividing line between psycholinguistics and computa-
tional linguistics was sharp: psycholinguists designed and conducted experi-
ments with human speakers and hearers, whereas computational linguists con-
structed algorithms and computer programs. These days, the line is not always
so easy to draw, because many computational linguists – and theoretical lin-
guists as well – now conduct experiments with human participants as well, to
inform and validate their algorithms. Conversely, some psycholinguists express
their models in terms of computational algorithms. Still, there are differences
in outlook between these tribes, for instance because psycholinguists aim to
understand how and why people communicate, whereas many computational
linguists have the construction of practically useful systems as their foremost
aim (see e.g., section 1.2).

This chapter offers an overview of some of the main insights in reference
production that have emerged from experiments with human speakers. Far
from covering this entire research area, I will focus on concepts that will be
important in later chapters. These concepts include: common ground (section
3.1), audience design (section 3.2), the role of rationality and the Gricean Max-
ims in communication (section 3.3), and the idea that some properties appear
to be psychologically more “preferred” than others (section 3.4). I shall also
discuss a recent experiment that compares some of these concepts, pitting pref-
erence against one of the Gricean Maxims (section 3.5). Concluding the chap-
ter, I will briefly highlight the role of collaboration in reference (section 3.6)
and discuss the important question of ecological validity (section 3.7).1

3.1 Common Ground

We have seen in section 1.7 that speakers keep track of the information that
they share with their audience. This theme, often treated as peripheral by com-
putational linguists, has been explored in great depth by logicians and game
theorists (e.g., [Fagin et al., 1995]) and by psychologists, and we shall briefly
summarize how it has been treated by the latter group of researchers who have
tended to call it “common ground”, or “common knowledge”. Note, for a start,
that common knowledge is not simply knowledge that the speaker and hearer

1 The discussion in this chapter draws on relevant parts of [van Deemter et al., 2012b],
[Paraboni et al., 2007], [Paraboni and van Deemter, 2014], [Mitchell et al., 2013c], and
[van Gompel et al., 2014].
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both possess. The matter can be explained by contrasting common knowledge
with a weaker concept, which has sometimes been called mutual knowledge.2

“Suppose each student arrives for a class meeting knowing that the instruc-
tor will be late. That the instructor will be late is mutual knowledge,
but each student might think only she knows the instructor will be late.
However, if one of the students says openly, ‘Peter told me he will be
late again’, then the mutually known fact is now commonly known.”
[Vanderschraaf and Sillari, 2009]

In these authors’ terminology, mutual knowledge is simply knowledge that
each member of a group of two or more people possesses. Common knowledge
(also known as common ground) might be informally characterized as knowl-
edge that is publicly shared by a group of people. A and B have mutual knowl-
edge of a proposition p if and only if A knows p and B knows p. They have
common knowledge of p if they have mutual knowledge of p, and A knows that
B knows p, and B knows that A knows p, and A knows that B knows that A
knows p, and so on, ad infinitum. Logicians and game theorists have proposed
various mathematically precise definitions of common knowledge (including
cases where there are more than two knowers), which get rid of the impre-
cise words ad infinitum in different ways [Vanderschraaf and Sillari, 2009], the
details of which do not matter here.

Common knowledge, in its strict sense, involves an infinite number of levels
of epistemic embedding (x1 knows that x2 knows that x3 knows that, etc.). To
see why, it is worth following the reasoning in [Clark and Marshall, 1981], a
piece of work remarkable not only for its cogency but also because – uncharac-
teristically for a psycholinguistics paper – it does not rest on experimentation
but on commonsense reasoning. Let us dive into the middle of their paper,
focussing on a moderately high level of epistemic embedding. They observe
that, in order for an NP to be felicitously used as an RE referring to r, at least
the following condition needs to hold:

Condition: The hearer knows that the speaker knows that the hearer knows
that NP = r.

It will be useful for us to agree on some terminology, so let p be a proposition
that does not involve anyone’s knowledge, such as the proposition NP = r,

2 Terminology differs across authors: what VanderSchraaf and Sillari call common knowledge,
Clark and Marshall call mutual knowledge (e.g., [Clark and Marshall, 1981]).
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for example. Then let us call an expression of the form “so-and-so knows that
p” an epistemic expression of level 1, an expression of the form “so-and-so
knows that so-and-so knows p” an epistemic expression of level 2, and so on,
making the condition above an epistemic expression of level 3. Now here is
the example used by Clark and Marshall to show that the Condition above is
necessary. A confusion between two Marx Brothers’ movies lies at the heart
of the example.

On Wednesday morning Ann and Bob read the early edition of the news-
paper and discuss the fact that it says that A Day at the Races is playing
that night at the Roxy. Later, Ann sees the late edition, notes that the movie
has been corrected to Monkey Business, and marks it with her blue pen-
cil. Still later, as Ann watches without Bob knowing it, he picks up the
late edition and sees Ann’s pencil mark. That afternoon, Ann sees Bob
and asks, “Have you ever seen the movie showing at the Roxy tonight?”
([Clark and Marshall, 1981], version 4 of the basic scenario.)

Bob knows that “the movie showing at the Roxy” = Monkey Business, because
he saw the late edition of the newspaper. Ann knows he knows this because
she watched him reading. Bob, however, does not know that she knows that he
knows, because he doesn’t know that she watched him. How will Bob interpret
Ann’s utterance, “Have you ever seen the movie showing at the Roxy tonight?”
If you think the situation through, you will realize that Bob – if he is rational
and alert – believes that Ann assumes Bob to think of A Day at the Races as the
referent of her NP (“the movie showing at the Roxy tonight”), not of the other
movie; a misunderstanding results. In real life, Ann might add, “I watched you
reading the late edition”, thereby restoring the truth of the Condition.

This example involves only 3 levels of epistemic embedding, but common
knowledge can break down at any level of embedding, which is why a more
general Condition is needed that covers them all (as when the clause ad infini-
tum is used). Although it is possible to use increasingly complex versions of
the scenario above (as Clark and Marshall did), it will be convenient to switch
to a different scenario, which generalizes more easily: Ann and Bob are using
a flaky electronic mail connection to arrange a meeting. Initially they agree
to meet in cafe c, but then Ann realizes that cafe c′ would be even nicer, and
she communicates this change of plan to Bob in an email. Unfortunately only
about 10% of messages arrive, so after an important email, the recipient would
be wise to send an acknowledgment. This acknowledgment, however, could
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also fail to arrive.3 We focus on the RE “the cafe where Ann wants to meet”
(abbreviated t), which might play a role in a discussion between Ann and Bob.
The proposition whose epistemic status we shall explore is: t = c′.

Suppose in each situation Ann and Bob can send only one email, and all
messages sent so far have actually arrived. We can sum up the first few levels
of knowledge, writing “S : yes” for “the Speaker knows for sure that t = c′”
and “H : no” for “it is not the case that the Hearer knows for sure that t = c′”;
in the same way, HS abbreviates “the Hearer knows that the Speaker knows
that”, and so on. We number the messages so 1 is the email in which Ann tries
to tell Bob about the change of plan and 2 is Bob’s first acknowledgment.

1. H has received message 1:
S:yes. H:yes. HS:yes. SH:no.

2. S has received acknowledgment concerning arrival of message 1:
S:yes. H:yes. HS:yes. SH:yes. SHS:yes. HSH:no.

3. H has received acknowledgment concerning arrival of message 2:
S:yes. H:yes. HS:yes. SH:yes. SHS:yes. HSH:yes. SHSH:no.

4. S has received acknowledgment concerning arrival of message 3:
S:yes. H:yes. HS:yes. SH:yes. SHS:yes. HSH:yes. SHSH:yes. HSHSH:no.
Etcetera

H and S share more and more information after each message, yet there is
always at least one epistemic embedding missing. At level 1, for example,
we have SH:no because, before an acknowledgment has reached her, S has
no way of knowing for sure that H knows that t = c′; for all she knows (at a
90% likelihood), H might believe that Ann wants to meet in cafe c (i.e., t = c).
Something analogous is true at each of the four levels: the acknowledgment
received by an agent a at a given level gives certainty that the last message sent
by a has reached the other agent, b, but it creates a new uncertainty because b
is left uncertain as to whether b’s acknowledgment has reached a – unless and
until this uncertainty is removed by a new acknowledgment received at the next
level. This pattern can be expanded to any finite number of levels, where each
new situation shows a breakdown in common knowledge, although always at
an increased level of epistemic embedding (using an increment of 1).

3 My email scenario is a variant on the theme of two generals, each of whom will attack if and
only if he knows that the other one will attack (e.g., [Lewis, 1969] on coordination games).
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In situation 1, S believes there to be a 90% likelihood that her message
has failed to arrive. Consequently, she believes there to be a 90% likelihood
that Bob believes “the cafe where we have agreed to meet” = c (as originally
agreed) and a 10% likelihood that Bob believes “the cafe where we have agreed
to meet” = c′ (as Ann ultimately intended). In other words, Ann and Bob may
well find themselves in different cafes. The more complex situations (2,3,4,
etc.) are analogous. I don’t know how Ann and Bob should act in each of
these, because this depends, for example, on Ann’s degree of preference for c′

over c. We do observe that anything short of common knowledge risks misun-
derstandings. Common knowledge is never attained, unless Ann and Bob pick
up the phone and establish direct contact.

These arguments show that common knowledge is a highly complex kind
of meta-knowledge. Clark and Marshall understood that it is unlikely that
all the different levels of epistemic embedding are considered by speakers
and hearers. Indeed, given that there are infinitely many such levels, of ever
greater complexity, common knowledge in its strict sense is often unattain-
able.4 The authors concluded that some psychological shortcuts have to exist.
They briefly discuss the possibility that speakers and hearers might simplify
matters by making estimations based on a limited number of levels of epis-
temic embedding – say, the first two or three. Their article, however, is a plea
for a different set of heuristics, based on general characteristics of the situa-
tion in which REs are uttered. They observed that, in many situations, com-
mon knowledge is enforced by “triple co-presence”: situations in which the
speaker, the hearer, and the entities under discussion are all physically present
[Clark and Marshall, 1981]. For example, consider the innocent start of Clark
and Marshall’s original scenario, where Ann and Bob are jointly reading the
early edition of the newspaper. Had this been the end of the story, then this
joint reading would have guaranteed that Ann and Bob have it as common
knowledge that “the movie showing at the Roxy tonight” denotes A Day at the
Races: all, infinitely many, levels of embedding would have been underpinned
by this one single event. The beauty of this shortcut is that it does not just offer
a rough approximation, but the real thing: common knowledge itself.

Clark and Marshall contrast this situation (which they call personal common
ground with linguistic common ground, where information has been shared
through verbal communication, and with communal common ground, which

4 See [Fagin et al., 1995], chapters 6 and 11, for logical and game-theoretical analysis and for
applications in computing.
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arises from being in a shared community of some sort (e.g., psycholinguists,
stamp collectors, or people living in Aberdeen).

An example of linguistic common ground arises in the example above from
Vanderschraaf and Sillari, when one of the students says, for everyone to
hear, “Peter told me he will be late again”, making Peter’s lateness commonly
known [Vanderschraaf and Sillari, 2009]. An example of communal common
ground arises in Aberdeen, whose residents have direct acquaintance with a
large grey building known as “Marischal College”. The assumption that others
in Aberdeen are similar to themselves in this respect allows them to assume
that the most obvious features of the building, including its name, are in
(communal) common ground. This is what allows them to point out the loca-
tion of a convenience store to each other by saying “the shop right opposite
Marischal College”, assuming this to be understood. When speaking to some-
one unfamiliar to Aberdeen, they might decide to include more information to
ensure that they are understood. Later research has confirmed that speakers are
broadly able to distinguish between knowledge that is available to members
of their own community only and knowledge that is also available to others
[Jucks et al., 2008, Nickerson et al., 1987], even though there does exist a ten-
dency to overestimate the likelihood that information known to them is known
to others [Fussell and Krauss, 1992]. In chapter 13, we shall show how large
knowledge resources such as the world-wide web can help us estimate the like-
lihood that a given fact may be in communal common ground.

3.2 Audience Design and the Egocentricity Debate

When children start communicating, one of the first things they learn is how
to refer to objects [Bruner, 1983], [Matthews et al., 2007], often initially by
pointing. (You point at a toy, and your mother will understand that you want it.)
However, toddlers are not very good yet at understanding what exactly other
people know or understand: their “Theory of Mind” – their ability to reason
about other minds and common knowledge – is not yet fully developed. Well-
known experiments involve a child, a mother, and a cup that is hidden inside a
cupboard while the child and the mother look on. Then the mother goes away.
In her absence, the cup is moved to another cupboard. Now the experimenter
asks the child “When Mommy comes back, where will she look for the cup?”
Below a certain age, children believe that their mother will look inside the
second cupboard, where the cup actually is, but where the mother has no way
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of expecting it to be. The lack of Theory of Mind evinced by these experiments
shows up in children’s REs, as when the child asks its mother, without further
clarification, to “give me the cup”.

The story of the Battle of Balaclava, with which this book opened, suggests
that children are not the only ones to suffer from a lack of Theory of Mind:
Lord Raglan was insufficiently aware of the knowledge of Lorn Nolan, and this
caused Nolan to misunderstand Raglan’s words, causing a military disaster.
Some psycholinguists have argued that flaws of this kind are common, causing
what is sometimes known as the egocentricity debate. On one side of the debate
are those, including Herb Clark and Susan Brennan, who emphasize common
ground and its role in human communication. On the other side is a group of
researchers around Boaz Keysar who have sowed doubt about adults’ ability
to reason about other minds [Horton and Keysar, 1996], [Keysar et al., 2003],
[Lane et al., 2006]. Let me sketch a few of their experiments before discussing
one of them in more detail.

Keysar, Barr, Balin, and Brauner describe an experiment that focusses on
speakers [Keysar et al., 2000]. In this experiment, which makes use of eye-
tracking and other metrics, pairs of people are looking at rows of objects of
different sizes. The hearer sees three candles, for example, but the speaker sees
only the larger ones, because the smallest candle is hidden from his view. It is
made abundantly clear to the hearer that the speaker cannot see the smallest
candle. Yet, when the speaker says “get the small candle”, the hearer will tend
to look at the smallest of the three first even though, rationally, he knows that
this one cannot be intended. In about a quarter of cases, the hearer’s hand
starts moving towards this impossible referent, and in about three quarters of
these cases, the hearer actually moves this object instead of the “correct” one;
in the remaining cases (about 5% in total), the initial hand movement gets
“corrected”, and the hearer reaches for the correct referent. In other words,
hearers sometimes behave “egocentrically”, as if they had no Theory of Mind.
Keysar and colleagues have argued that Theory of Mind may be a bit like a
fancy espresso machine that you have been given as a present: you own the
machine, yet you may not use it very often [Keysar et al., 2003]; in the same
way, the authors argue, adults possess the ability to reason about other people’s
knowledge, yet we often fail to use this ability.

A number of experiments in this “egocentric” tradition have focussed on
speakers rather than hearers, making these experiments particularly relevant
for the present book. An experiment, reported in [Horton and Keysar, 1996],
which puts speakers under time pressure, compares speakers in two different
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conditions. In both conditions, a speaker and a hearer are both looking at two
computer screens. What they see is, for example, a circle that moves slowly
from one screen to the next. The speaker is asked to describe what she sees. In
both conditions, she sees one other circle on her screen, of a different size than
the target, which allows her to think of the target as “the small circle” or “the
large circle”, depending on the size of the other circle. In one condition, the
hearer sees exactly the same as the speaker. In the other condition, the hearer
sees only the target circle, without another one to compare it to; this makes
expressions like “the large circle” incomprehensible to the hearer, because the
degree adjective “large” is meaningless to him. It is made abundantly clear to
the speaker that the hearer can see only one circle. Therefore, speakers with
good Theory of Mind would be much more cautious in the informationally
asymmetric condition than in the condition where speaker and hearer see the
same things. Yet, the authors found that there was essentially no difference
between the (very substantial) number of degree adjectives used in the two
conditions. Expressions such as “the large circle” were used equally often in
both situations. Speakers, in other words, did not make any allowance for the
fact that hearers were unable to make size comparisons.

The amusingly titled article Don’t Talk About Pink Elephants!: Speakers’
Control Over Leaking Private Information During Language Production, by
Lane, Groisman, and V. Ferreira, reports on an experiment that focusses on
the same phenomenon, asking to what extent speakers are able to control their
Theory-of-Mind use [Lane et al., 2006]. Speakers were shown four shapes, one
of which was occluded from the view of the hearer. In the crucial condition,
the shapes presented to the speaker included a smaller or larger version of the
target shape. Two conditions were used: a baseline condition in which par-
ticipants were simply asked to refer, and a test condition in which they were
asked to refer without providing addressees with information about the hidden
shape. Speakers in this condition, in other words, were instructed not to “leak”
private information. Curiously, the authors found that information was leaked
more often in the test condition! It appears that when speakers’ attention was
drawn to the forbidden shape, they became more likely to mention it, and this
is what led the authors to the title of their paper.

Another study has given rise to an interesting debate. The study focussed
on speakers’ choices between names and descriptions [Wu and Keysar, 2007].
Participants were shown unfamiliar complex shapes and taught equally unfa-
miliar names for these shapes (e.g., one shape was called Abypit). Shapes were
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named consistently, so speakers and hearers would never learn to associate dif-
ferent names with the same shape. However, some objects were not named, so
these objects could only be described, not named. Crucially, not every partic-
ipant learned the same number of names, so some shapes could be named by
some but not all participants. Participants were grouped in pairs, each of which
contained a speaker and a hearer. The speaker’s task was to allow the hearer to
single out the target shape (which the speaker saw on his monitor) on a monitor
that showed three shapes, namely, the target shape and two distractor shapes.

Pairs of speakers/hearers were distributed over two conditions. In one con-
dition, pairs shared a name for as many as 60% (high overlap) of shapes; in
the other condition, this was only 20% (low overlap). The experimenters were
curious to see whether this information about the likelihood of sharing a name
would affect speakers’ choice between names (e.g., “Abypit”) and descrip-
tions (e.g., “circle on the top, and then two sort of arrows, so that makes it a
little neck”). Names, if shared, are highly efficient, so when names are almost
always shared, one might expect them to occur frequently, even in those situ-
ations where speakers could have realized that the name was unknown to the
hearer. And this was indeed what the authors found: high-overlap speakers
used three times as many privileged names (i.e., names that the hearer had not
learned) as low-overlap speakers.

Wu and Keysar appeared to give new ammunition to researchers who stress
the “egocentric” perspective, because once again (cf., [Keysar et al., 2000] and
[Keysar et al., 2003]), a situation had been identified in which common ground
takes a backseat. A hint of paradox adds interest to these findings because
sharing more information (i.e., being in the high-overlap condition) also meant
experiencing more misunderstandings. Conditions of high overlap appear to
invite risky behaviour.

However, in a follow-up to [Wu and Keysar, 2007], Heller and colleagues
took a close look at Wu and Keysar’s experiment, making it the basis for
a new study whose aim is to find out whether the cases in which Wu and
Keysar’s speakers used names for privileged shapes were actually egocen-
tric [Heller et al., 2012]. First of all, the authors wondered whether the use of
names in these situations was as risky as the authors of the study interpreted
them to be. To find out, they divided these utterances into five categories:

Name alone (e.g., “Uhm cortlog”)
Name-then-description (e.g., “inta, you havent seen it, its four arrows”)
Description-then-name (e.g., “a box and triangle, its a molget is the name of it”)
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Description-with-name (e.g., “it looks like the chicapee one except with a long tail”)
Description (e.g., “Um its two triangles kissing”)

Assigning utterances to these five categories, it turned out, first, that in situa-
tions where the hearer knew the name, most of the utterances with names were
Name alone utterances. But, second, in situations where the hearer did not
know the name, Name alone utterances were rarely used: separating between
High Overlap and Low Overlap, the figures were: Shared (High 0.64 vs. Low
0.48), Privileged (0.05 vs. 0.01), and New (0.05 vs. 0). Shared situations are
defined as ones in which the name is known to both speaker and hearer, Priv-
ileged ones are ones where only the speaker knows the name, and New situa-
tions are ones where neither knows the name.

The Name alone form was used more often in Shared situations than in Priv-
ileged ones, but Privileged and New situations did not differ. If one focusses on
uses of names that do not contain additional descriptive content (which could
potentially help the matcher identify the intended referent), then these were
basically limited to situations where they would be understood. Given these
new findings, it is suddenly starting to look as if Wu and Keysar were wrong
to focus on names without looking at the way in which they were used.

Having found that Wu and Keysar’s speakers appeared to be well aware
of the distinction between shared and privileged information, Heller and col-
leagues wondered whether hearers might be able to understand by listening to
these speakers’ utterances, which ones were uttered by someone who believes
the name to be known by the hearer. So, the authors asked naive hearers to
judge, for every name in the speakers’ spoken utterances, whether they thought
the speaker assumed that the hearer knew that name. The results were striking:
of the Name alone trials, 97% were judged as assumed shared and only 1%

were judged as assumed privileged. Of the Name-then-description trials, by
contrast, only 14% were judged as assumed shared and 86% were judged as
assumed privileged. Why names were used as often as they were in cases where
the hearer wouldn’t have come across them before is not entirely clear, but the
authors sensibly hypothesize that this was done to “teach” the hearer the name,
in case the shape in question would come up in the future.

The jury is still out on many of the questions in this area. Even before
Heller et al.’s results, egocentric findings had been questioned. Some argued,
for example, that egocentricity may be an artefact of a particular type of exper-
imental setup [Brown-Schmidt, 2009]. Heller and colleagues have added to
these questions, yet the work of Keysar and colleagues makes it plausible
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that Theory-of-Mind use is subject to important limitations, particularly when
participants are under time pressure [Horton and Keysar, 1996]. Much is still
unknown about the depth and sophistication of speakers’ and hearers’ mod-
elling of each others’ knowledge and how this relates to established findings
about “thinking fast” (cf., [Kahneman, 2012]).

3.3 Rationality and the Gricean Maxims

In section 2.8 we briefly introduced the Gricean Maxims of Quality, Quan-
tity, Relation, and Manner. Even though these Maxims have attracted con-
siderable interest from psychologists, and despite some promising stud-
ies, it is not yet clear to what extent Grice’s claims in this area hold up
to psycholinguistic scrutiny [Bott and Noveck, 2004], [Breheny et al., 2006],
[Huang and Snedeker, 2009]. In a survey article, July Sedivy wrote the follow-
ing about the relationship between real-time language processing and conver-
sational implicature: “(...) systematic study of this relationship is still in its
very early stages and (...) we are very far away from having a good general
understanding of the nature of pragmatic processing.” [Sedivy, 2007]. Despite
a recent upsurge in psycholinguistic work on issues in linguistic pragmatics,
Sedivy’s assessment appears to be valid still. In particular, psycholinguists are
unclear which types of implicatures are “calculable” in actual language use.
We leave these issues aside here, turning to the question of what the Gricean
Maxims say or imply about reference. Precisely this question was the start-
ing point of [Dale and Reiter, 1995], which has long dominated computational
REG. The consequences of this article will occupy us for much of the next two
chapters, but first we shall offer a general perspective on what the Maxims
might mean in connection with reference. We discuss them one by one.

The Maxim of Quality. Few computational or psycholinguistic studies have
focussed on the Maxim of Quality. The philosophical literature, however,
abounds in example utterances in which Quality is, or appears to be, breached.
Some of these were discussed in the previous chapter. In one type of breach,
the speaker ascribes a property to the referent that is not true of the referent
but of something associated with it. This happens when a waitress says (in an
example due to Nunberg) “The ham sandwich is getting restless”, referring not
to a consumer product but a person [Nunberg, 1978]. Only the most pedan-
tic would call such utterances incorrect: their apparent incorrectness can be
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explained away as using metonymy in order to shorten an otherwise cumber-
some description (“the person who ordered a ham sandwich”).

In another breach of Quality, someone might say The man with the Mar-
tini is happy, where the intended referent drinks wine instead of Martini (sec-
tion 2.6). Different explanations are possible: perhaps the speaker was honestly
mistaken, in which case Quality was not breached after all; or the speaker was
unsure whether the drink was wine or Martini, and realized that as long as the
look of the drink is consistent with it being a Martini, the description the man
with the Martini will work well. The speaker might reason (using remarkably
complicated Theory of Mind; cf., section 3.2) that the hearer is likely to be as
ignorant of the content of people’s glasses as she is and that, confronted with
the utterance “the man with the Martini”, the hearer must scan the room for
people who may be thought by the speaker to be drinking a Martini. The con-
clusion that these utterances breach Quality, however, is difficult to avoid.

The Maxim of Quantity. Quantity has always played a central role in psy-
chologists’ thinking about reference (e.g., [Olson, 1970]). Its application to
reference seems straightforward: REs should contain the minimum amount of
information that makes the identification of the referent possible. Before we
proceed, how should “amount of information” be measured? Should proper-
ties simply be counted, or should their (implicit) internal structure be taken
into account? Consider being a bachelor. Suppose there is only one unmar-
ried male in the domain, who happens to be adult. Does this make the RE “the
unmarried male” nonminimal, because the expression “the bachelor” would
have sufficed? Or should one argue in the opposite direction, that BACHELOR
contains more information (given that a bachelor must be adult), concluding
that it is “the bachelor” that is overspecified? The literature contains little dis-
cussion of such matters, despite the centrality of the notion of brevity, so the
question must be left unresolved here (cf., section 5.9).

UNMARRIED,MALE > BACHELOR
= =

UNMARRIED,MALE < UNMARRIED,MALE,ADULT

Grice’s Maxims differ in interesting ways. Quality, for instance, avoids
requiring that speakers speak the truth: they should merely avoid saying “what
you believe to be false”. The Maxim of Quantity, by contrast, does not contain
such a hedge: it requires that speakers should not give too much information;
a more cautious formulation would ask merely that speakers avoid producing
what they believe to be too much information. Perhaps, given the limitations
of human perception and reasoning, this cautious formulation would have been
preferable. Years of research on human information processing, including the
Nobel prize-winning work of Kahneman and Tversky, has taught us how, in a
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wide variety of situations, people rely on “cheap heuristics” rather than care-
ful thought (e.g., [Kahneman, 2012]). In view of this large body of work, it
would be a miracle if people’s spontaneous speaking allowed them to always
flawlessly calculate the minimum number of properties that identifies a refer-
ent. For although a referent can stand out from a large set of distractors, if the
referent differs from all distractors in terms of one and the same property –
for example, the referent might be the only red shape in a sea of green ones –
this “pop-out” effect is far weaker if the referent differs from some distractors
by one property (e.g., its colour) and from others by another property (e.g., its
shape) [Treisman and Gelade, 1980].

Experiments with human speakers (starting with [Ford and Olson, 1975],
[Whitehurst, 1976], [Pechmann, 1989]) consistently show up considerable per-
centages of overspecified REs – defined as REs from which one or more prop-
erties can be removed without causing ambiguity regarding the intended refer-
ent of the RE – and a few percentage points of underspecified REs, which fail
to identify the intended referent. Thus, even if “full” brevity were something
speakers try to achieve, they do not always succeed. Where they produce a non-
minimal RE, it would be misguided to draw Gricean implicatures (i.e., inferring
that they intend to convey additional information), because such implicatures
rest on the assumption that deviations from the Maxims are intentional.

Many researchers have taken these insights onboard. A useful concept in
this connection is the Discriminatory Power of the properties considered for
inclusion in an RE. Suppose M is a set of domain elements not yet ruled out,
P is a property defined over M , and r is the referent. We abbreviate the set of
distractors, M − {r}, as Dis. Now we take the Discriminatory Power (DP) of
P to be the number of distractors removed by P as a proportion of the total
number of distractors (cf., [Dale, 1992], section 5.2). This can be written as
follows, where ‖.‖ stands for the number of elements in a set. As before, [[.]]

stands for the extension of a property.

DP(P,M) = ‖[[P ]] ∩ Dis‖
‖Dis‖

Consider the example domain of Table 3.1 (repeated from chapter 1). Let
“zoo” be the property of being an animal in the infirmary of this zoo. Now if
the referent is a lion, we have DP(lion, zoo) = 1/2 (because the property “lion”
removes 1 of the 2 distractors). If the referent is a tiger, then DP(tiger, zoo) = 1

(because “tiger” removes each of the 2 distractors). The idea can also be used
when the context has already been narrowed down. For example, in the context
C that results from using the property “lion”, DP(Kenya,C) = 1. The exact role
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IDENTIFIER SPECIES ORIGIN WEIGHT INJURIES

a lion Kenya 102kg paws, teeth
b lion India 100kg paws
c tiger China 310kg back

Table 3.1
Information about the animals in a zoo, shared by speaker and hearer.

of Discriminatory Power can vary, but one possibility is to say that where there
is a choice between properties that do not have equal DP, the property with the
highest DP should be chosen. We shall see in chapter 4 how this idea can be
interpreted computationally.

Recent experiments have investigated the impact of overspecification on
hearers’ and readers’ comprehension of REs. [Engelhardt et al., 2006], for
example, presented experiments in which speakers overspecify almost one-
third of the time; interestingly, hearers do not judge overspecifications to be
any worse than minimal descriptions. On the other hand, the paper also reports
on an eye tracking study showing that overspecification causes comprehen-
sion to take longer in some types of cases. Similar findings were reported in
[Engelhardt et al., 2011], where overspecified descriptions (as in “look at the
red star” in a context in which there is only one star) took longer to be inter-
preted than minimal descriptions(“look at the star”).

An overspecified RE can be useful because it contains a (logically super-
fluous) property that allows the hearer to focus on a particular part of his
visual field. [Arts, 2004], for example, who let speakers refer to buttons on
electronic equipment, found that when a noun alone would suffice for dis-
ambiguation (as in “the button”), lower recognition times result if speakers
use spatial overspecification (as in “the button on the top”). Similar things
were found in [Paraboni et al., 2007] and [Paraboni and van Deemter, 2014].
By showing that speakers prefer the same overspecified expressions as hearers
[Paraboni et al., 2007], this work suggests that, in the situations at hand, human
speakers take the hearer’s perspective seriously, designing their descriptions in
such a way that certain types of problems for their audience are avoided.

The effects of overspecification on the recipient of an RE are not yet well
understood. Of particular interest, at the moment, is the question of whether
speakers tend to produce the kinds of overspecified REs that have benefits for
hearers (and whether they do it for the benefit of their hearers: this is known
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as the question of Audience Design). After all, if overspecification is merely
an unintended consequence of speakers’ cognitive limitations, then there is no
reason to assume that the resulting expressions are of particular benefit to the
recipients of their REs. We shall return to these difficult issues in chapter 12,
where some of the experiments mentioned above are described in more detail.

Communication involves risks [Carletta and Mellish, 1996a]. The primary
risk associated with REs is for the recipient to misunderstand what the intended
referent of an RE is. A key finding of Kahneman and Tversky’s Prospect The-
ory is that people tend to be risk averse: experiments reveal that most of us
prefer the certainty of a small loss over a small chance of a more substantial
loss, even if the probabilistically expected loss is greater in the former case
than in the latter (in which case standard decision theory would predict the
latter choice). These results are well established across a large area of tasks.
Suppose now that verbosity (i.e., the use of a non-minimal description) implies
a small loss; this seems reasonable, given that verbosity takes time and effort.
Suppose, furthermore, that referential misunderstandings imply a substantial
loss. Then Prospect Theory predicts that speakers will tend to prefer overspec-
ification (certainty of a small loss; possibility of a large gain) over underspec-
ification (certainty of a small gain; possibility of a big loss). Broady speaking,
this prediction is borne out by the facts.

The Maxim of Relation. Relevance has rarely been studied in connection with
reference, except by theoreticians (see section 2.2), who were aware that the
properties that constitute an RE are not chosen for their denotation alone. A
study on weather predictions went into some computational detail (cf., chapter
14), where this work will be discussed): the issue came up when describing
where on the map a particular weather phenomenon occurred: “Changes in
precipitation type are more commonly seen in higher elevation areas where
the air temperature is generally lower, so a spatial description of such an
event should make use of a reference frame that reflects this interaction”
[Turner et al., 2008]. Hence, to say “Precipitation was high in urban areas”
would be odd, and it is better to describe this area in terms of a different ref-
erence frame, such as elevation. Turner et al.’s position is that, where possible,
properties should be mentioned that have a causal bearing on the proposition
expressed. For them, in other words, relevance meant causal relevance. Section
16.2 will discuss other elements of a computational solution to the problem of
relevance in REG.
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The Maxim of Manner. This Maxim advises against anything that can make
an expression cumbersome or unclear. The Maxim warns against verbosity,
against syntactic and lexical ambiguity, and against the kind of messiness
that can make a text difficult to understand. Focussing on reference, the most
obvious implication is that clear words and unambiguous syntactic constructs
should be chosen to express the logical content of an RE. Issues of this kind
have been studied far less often in REG than issues of Content Determination
(cf., chapter 1), but some recent work has started to explore these issues, asking
how ambiguity should be understood in this context and how clarity (advocated
by the Maxim of Manner) should be traded off against brevity (advocated by
the Maxim of Quantity) ([Khan et al., 2012], see section 8.8).

The Gricean Maxims will play a role throughout this book, and at the end
of the book, we shall revisit them to see how they should be viewed in light of
our present understanding of reference (section 16.2). But despite their promi-
nance, the Maxims alone do not suffice to understand reference: rationality
alone is not enough.

3.4 Intrinsic Preference for Certain Attributes

In some areas of psycholinguistics, computational models have become a well-
established tool. An example is lexical access, which seeks to predict what
word will be triggered in a speaker by a picture of an object and how quickly
(see e.g., [Dell et al., 1997], and the Weaver++ model of [Levelt et al., 1999]
for computational models). However, until recently psycholinguists seldom
constructed computational models of the process on which we focus in this
book. For example, the results discussed in section 3.2 were never expressed
by means of a computational model. By and large, they have left the construc-
tion of algorithms to computational linguists and language engineers.

But imagine you had to outline, in broad algorithmic terms, how the seman-
tic content of REs can be determined, aiming to find a semantic content in each
situation that resembles the kind of content that a human-produced RE might
possess. Suppose that all you had to go by was the Gricean Maxims. How
would you do it?

Painting with a broad brush, the Maxim of Quality would tell us to find all
those properties that can truthfully be ascribed to the referent; call this set of
properties S. Relation would advise us to select from S the properties that
are relevant to the situation in which the utterance is made, resulting in some
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S′ ⊆ S. Quantity would tell us to choose from S′ a minimally sized subset
S′′ ⊆ S′ that manages to single out the referent. Manner, finally, would tell
us to be careful when conveying this combination of properties S′′ in actual
words, avoiding ambiguity, verbosity, and other problems that can arise at this
level. Could this possibly be the right account?

A long tradition of psycholinguistic studies says that this cannot be the
whole story. In a nutshell: the Maxims are not enough, because there are things
that the Cooperativity Principle (which the Maxims are designed to implement)
does not capture. These additional things have little to do with what is ratio-
nal or cooperative a priori, but everything with the peculiarities of the human
mind. Let me summarize some of the findings in this area.

Pechmann, when focussing on visual domains, made use of the well-
established idea that properties can be clustered into closely related groups
that share the same “attribute”. For example, each of the properties red, green,
and brown can be seen as values of the attribute COLOUR, predicting that they
play similar roles in communication and that they might be processed in simi-
lar ways by the human brain. Attributes can be thought of as implementing the
philosophers’ notion of a conceptual perspective, which we discussed in sec-
tion 2.2. (Diagrams such as 3.1 assume attributes as well when they use labels
such as the SPECIES and ORIGIN of an animal in the zoo.)

Pechmann claimed that perceptually salient attributes, such as colour, tend
to be selected for inclusion in an RE before other attributes, such as size, caus-
ing them to be used even when they have no contrastive value. They appear
to be intrinsically (i.e., because of what they are, and not just in terms of
what they achieve in a particular situation) “preferred”, an established word
that we shall continue to use despite its unintended overtones of intentional-
ity. Later work confirmed that speakers, faced with a visual domain, have a
strong tendency to use the COLOUR of the referent (Schriefers and Pechmann,
1988; Pechmann, 1989, Viethen et al., 2012), frequently resulting in overspec-
ification and, consequently, an infringement of the Maxim of Quantity. Size is
common as well, particularly when the domain contains several salient objects
of the same colour [Brown-Schmidt and Tanenhaus, 2006].

At least in English, one attribute stands out as even more highly preferred
than colour, namely, the TYPE of the referent. The notion of a type is not easy
to define, but it captures the intuition – going back at least to Aristotle’s cate-
gories – that although a referent may have various properties (black-and-white,
large, possessing a short tail and sharp teeth), at a more general level it is a
particular type of thing. Linguistically, types are often encoded as nouns, and
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this fact in itself might add to their centrality. Consider Fido, a large black-
and-white Scottish sheepdog. REs typically contain a TYPE, even when none
is required for singling out the referent: we may call Fido “the black outdoor
dog”, for example, even in situations where the Logical Form {black, outdoor}
would suffice to identify the referent. Once again, an Intrinsic Preference for
an attribute (i.e., the TYPE attribute in this case) causes infringements of the
Maxim of Quantity.

If something is a sheepdog, it must be a dog as well, of course, and a
mammal and an animal. There is often one particular level along this hier-
archy, known as the basic level, which is psychologically most important (e.g.,
[Rosch, 1978]) and contributes most to the Gestalt (i.e., the mental representa-
tion) of the referent; in the example at hand, DOG is probably at this basic level.
Basic-level nouns are learned by children first, and they are manipulated with
greater speed than other nouns, for example as reflected by subjects’ response
times following questions like “Is this a so-and-so?” Some nonbasic values
may be so dispreferred that using them would make a strange impression. For
example, it would be odd to call Fido “the black outdoor entity”.

Why some attributes are more highly “preferred” than others is an interest-
ing question. The centrality of types is understandable on functional grounds,
because they are crucial in affording inferences about the referent. In animals,
types are often species. Cats and dogs, for instance, may differ along a num-
ber of dimensions, but the fact that some animals are cats and others dogs
(from which other differences follow) seems more fundamental than all oth-
ers. In other cases, the root cause of the preference degree of an attribute
may be different. It has been suggested, for example, that size is less pre-
ferred than colour because the assessment of size requires more cognitive
effort, given that it requires comparison to other objects, something that is
less obvious for colour. Colour appears to be central to the speaker’s mental
representation of an object in a way that most other properties are not. Colour
is thought to be the first property that our visual system processes, followed
by size [Murray et al., 2006], [Fang et al., 2008], [Schwarzkopf et al., 2010].
These findings have been interpreted in terms of the codability of an attribute,
that is, the ease with which that attribute can be included in a mental represen-
tation of an object [Belke and Meyer, 2002].

Despite the evidence behind Intrinsic Preference, there are reasons for cau-
tion. Decades ago, [Hermann and Deutsch, 1976] showed that the size of the
contrast between the referent and its distractors matters. In experiments involv-
ing candles of different heights and widths, for example, if the referent is both
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the tallest and the fattest candle, subjects tended to say “the tall candle” when
the tallest candle is much taller than all others while the same candle is only
slightly wider than the others; if the reverse is the case, speakers switch to
“the fat candle”. Later, Sedivy found that when the colour of a referent is pre-
dictable – as when we speak about bananas, which are normally yellow – then
speakers’ inclination to use colour drops sharply [Sedivy, 2003]; conversely,
attributes that are normally dis-preferred can become preferred when they are
situationally meaningful. Recent experiments show that when the difference in
size between the referent and its distractors is huge, speakers no longer “pre-
fer” colour over size [van Gompel et al., 2014] (see also section 6.3). In short,
Intrinsice Preference is not absolute. Soon we shall see how Intrinsic Prefer-
ence has affected REG algorithms (section 4.6); at the end of the book we shall
review these issues in light of all the evidence (section 16.2).

I have discussed Intrinsic Preference separately because it is different from
the Gricean Maxims. Admittedly, given a hearer’s preference for certain
attributes over others, she may well produce and comprehend such REs with
particular ease, and her hearers may share this trait. This will mean that speak-
ing in accordance with Intrinsic Preference fits the Cooperativity Principle
because hearers are attuned with it. If this is the complete story, however, there
is nothing inherently cooperative in taking Intrinsic Preference into account;
one Preference Order is as good as the next one, as long as all speakers share
it – a bit like driving on the left side of the road.

3.5 Comparing Preference with Discrimination

We have identified a number of factors that affect reference production. The
Intrinsic Preference for certain attributes over others was the topic of the pre-
vious section; the others can be derived from the Cooperativity Principle:

a. Truthfulness (related to the Gricean Maxim of Quality)
b. Discriminatory Power (related to the Gricean Maxim of Quantity)
c. Clarity of Formulation (related to the Gricean Maxim of Manner)
d. Relevance (related to the Gricean maxim of Relation)
e. Intrinsic Preference or Codability
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Figure 3.1
A domain as shown to participants in the experiment of [Gatt et al., 2013a]. The target referent
appears in a black frame. The black shapes on the bottles are called “patterns”.

We have seen that conflicts can arise among these factors. Let us focus on
Intrinsic Preference and Discriminatory Power, the two factors that have influ-
enced computational work more than any others (see chapters 4 and 5), sum-
marizing a study reported in [Gatt et al., 2013a]. My co-authors and I were
aware of the importance of Intrinsic Preference and wanted to know whether
the DP of a property really does play an additional role. We performed a study
in which the strength of the latter factor was varied. Subjects were shown
domains containing 6 objects, which differed in terms of their colours, sizes,
and/or patterns, as in Figure 3.1.

Colour was chosen because, as we have seen, it is thought to be highly pre-
ferred. Size was chosen for the same reason, and because it is assumed to be
less highly preferred than colour. Additionally, we chose pattern (implemented
as a black mark on the face of the bottle) because we were looking for an
attribute that is easily visible yet unlikely to be highly preferred. Domains were
selected in such a way that each bottle could always be minimally identified
using any two of the three attributes (i.e., colour and size, colour and pattern,
size and pattern). There were three conditions, depending on which of the three
attributes has the highest DP. In the domain of Figure 3.1, for example, colour
and size would each remove 3 of the 6 distractors, resulting in a DP of 1/2,
whereas pattern removes 4 of the 6 distractors, a DP of 2/3.

Analysis of the data revealed that colour, size, and pattern were used with
very different frequencies, but that the proportions of descriptions that con-
tains colour, size, and pattern was almost completely unaffected by the ques-
tion of which of these three had the highest DP. The experiment, reported in
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Colour Size Pattern
MDP = Colour 0.99 0.73 0.57

MDP = Size 0.99 0.76 0.55
MDP = Pattern 0.99 0.73 0.59

Table 3.2

Proportion of descriptions containing colour, size, and pattern (columns) in each con-
dition (rows). MDP stands for “most discriminatory property”, that is, the property that
rules out the largest number of distractors in a given situation.

[Gatt et al., 2013a], does not tell us why colour, size and pattern behave so
differently, but it does demonstrate that there are crucial differences between
them that have nothing to do with what their DP is in the situation at hand.
Traditional experiments of the kind discussed so far in this chapter can be
instructive, because they answer a precise question. It is difficult to see, how-
ever, how they can give us a generic insight into the role of different attributes.
The study discussed in this section is a case in point. It tells us something about
the likelihood that an RE displays a certain feature (e.g., expressing a value of
the COLOUR attribute), given a certain kind of domain. There are, however,
things these studies cannot do:

1 They cannot predict how “preferred” a given attribute or property is.

2 They cannot tell us how Discriminatory Power and Intrinsic Preference
should be combined or traded off against each other.

3 They cannot tell us, for all domains and all referents in them, what attributes
to use.

Later chapters will use a computational approach in an attempt to get closer
to answering these questions. This will be done by counting frequencies of
attribute uses in specifically designed corpora (addressing point 1), formulating
algorithms that propose specific ways to produce REs in specific situations, and
organizing open competitions in which these algorithms are experimentally
compared (addressing points 2 and 3).
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3.6 Insights from Dialogue

Even though our emphasis is on production of “one-shot” REs, studies based
on dialogue can teach us a lot. Up to about 15 years ago, most psycholinguis-
tic work on reference was concerned with either the speaker or (more often)
the hearer, because it is difficult to perform tightly controlled experiments that
involve both. But as pointed out in [Brown-Schmidt and E.Konopka, 2011],
the increasingly sophisticated and affordable use of new experimental tech-
niques based on eye-tracking has changed this. Some of the resulting work has
focussed on spontaneous dialogue, for instance by letting a participant interact
with another person, who is a confederate of the experimenters; in this way, the
participant can be observed in a setting whose parameters can be controlled in
detail, yet she is involved in a genuine dialogue.

The study of reference in dialogue are starting to show, as we saw in section
1.6, that dialogue partners often create REs jointly. Moreover, participants align
their utterances with each other in terms of the form and content of the utter-
ances [Pickering and Garrod, 2004], [Brown-Schmidt and Tanenhaus, 2004],
varying from the phonetic and prosodic properties of their speech to the syn-
tactic structures and the words that they use and the way in which they organize
their ideas. The effect on the content of an RE is summarized in [Arnold, 2008]
(drawing on [Glucksberg et al., 1966], [Clark and Wilkes-Gibbs, 1986b], and
on experiments in [Fussell and Krauss, 1989], [Brennan and Clark, 1996], and
[Metzing and Brennan, 2003]):

“In Clark and Wilkes-Gibbs’s (1986) classic tangram study, pairs of participants
performed a referential communication task (see also Fussell & Kraus, 1989;
Glucksberg, Krauss, & Weisberg, 1966), in which one participant described geo-
metric shapes so their partner could put them in order. As pairs of participants
repeated the task, they developed shared terms of reference. This facilitated later
trials, in which descriptions became increasingly shorter and more effective. Bren-
nan and Clark (1996) proposed that speakers and addressees form conceptual pacts
– an implicit agreement about how to conceptualize objects – and that these con-
ceptual pacts determine their references to objects that can be described in multiple
ways, for example pennyloafer or shoe (for comprehension evidence see Metzing
& Brennan, 2003).” [Arnold, 2008]



CMR-web-July-2017 2017/7/12 12:14 Page 67 #77

First Part: Setting the stage 67

Regarding attributes other than TYPE, it has been found that speakers’ tendency
to reuse an attribute that has featured in an earlier RE can be strong enough to
overwhelm Attribute Preference [Goudbeek and Krahmer, 2012].

Dialogue-based studies are placing earlier findings in a broader perspec-
tive. One example is the finding, in [Beun and Cremers, 1998], that a distrac-
tor may be disregarded when the meaning of the sentence makes it an unlikely
referent. For example, speakers happily said “the yellow block” when sev-
eral yellow blocks were clearly in evidence, as long as the intended block
was the only one that could be picked up (without first removing objects on
top of it); hearers had no difficulty comprehending utterances of this kind.
Another striking example is the finding, in [Sedivy et al., 1999] (also discussed
in [Brown-Schmidt and E.Konopka, 2011]), that hearers are highly sensitive to
what we have called Intrinsic Preference. We conclude this section by summa-
rizing this remarkable study in more detail.

Imagine conditions A and B; in the former, the attribute of interest was a
gradable adjective like “tall”, which is not very highly preferred; in the latter,
the attribute was a colour adjective such as “yellow”, which is highly preferred.
In both conditions, the adjective was used when the adjective was applicable
to the referent and another object; also, in both conditions, a third object was
present, to which the adjective could not be applied. Thus in condition A, with
the RE “The tall pitcher”, the scene could look as follows:

tall pitcher
tall glass
small glass

The experiment used a visual world paradigm, in which eye-tracking was
employed to find out how participants were scanning the scene. The authors
found that after hearing the word “tall”, hearers paid more attention to the tall
glass than to the tall pitcher, presumably because they know that an adjective
like “tall” is not used superfluously (as would have been the case in “the tall
pitcher”). In condition B, the RE could be “The yellow pitcher”, in which case
the scene could look as follows:

yellow pitcher
yellow glass
red glass

The two situations are structurally the same, with “yellow” playing the same
role in B as “tall” in A. Yet hearers processed the RE differently: after hearing
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“yellow”, hearers did not pay more attention to the yellow glass than to the
yellow pitcher. Apparently, hearers are attuned to the fact that colour terms can
be used for other purposes than ruling out distractors, whereas gradable adjec-
tives cannot, and they are able to use this to speed up their comprehension of
REs, using the type of the adjective as “an early cue to the speaker’s refer-
ential intent” [Brown-Schmidt and E.Konopka, 2011]. To put the icing on the
cake, Sedivy and colleagues found that when they turned to a third condition
C, which resembledB except that the referent had a predictable colour (e.g., it
was a yellow banana), the colour adjective behaved as if it were not preferred.
Thus, when hearers saw a visual scene representing the following situation:

yellow apple
yellow banana
brown banana

and heard “the yellow ...”, they looked more at the yellow banana than at the
yellow apple, presumably because they are attuned with the fact that “pre-
dictable” colour terms are only used when their use aids comprehension.

3.7 Ecological Validity of Experiments

Before moving on to the computational study of reference production, it is
important to highlight an area of debate that has accompanied research in
experimental psychological at least since the 1940s (e.g., [Brunswik, 1943]),
namely, the question of “ecological” validity. Generally speaking, an experi-
mental study of a particular type of behaviour is ecologically valid to the extent
that it gives us information about that type of behaviour as it occurs in real
life, as opposed to merely the type of situation created by the experimenters.
Ecological validity is now understood to come in several distinct dimensions,
including the experimental setting, the stimuli, and the task of the experiment
[Schmuckler, 2001]. Applied to our subject of study:

experimental setting and task: are the situation in which participants are
placed, and the task they are given, similar to the ones people are most
likely to encounter in real life? – Or are they contrived and unusual?

experimental stimuli: are the referent, the distractors, and the domain of
which they are a part, naturalistic? – Or are they somehow artificial and
unlike the ones most commonly occurring in real-life language use?
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Other things being equal, the more ecologically valid a study on reference
production is, the more able it should be to shed light on reference produc-
tion in real life. However, a strong emphasis on ecological validity can some-
times reduce the amount of control that the experimenter has over the situa-
tion, because it can mean placing participants in realistic situations that are so
complex that it is not feasible to control all their facets. There is often, in other
words, a trade-off between ecological validity and control over the experiment.

Traditionally, most experiments on reference production have stressed con-
trol. More specifically, they have tended to focus on artificially stylized (some-
times purely geometrical) shapes in a domain with a handful of distractors,
involving a reference task in which reference is isolated from the participants’
wider goals and actions: in essence, they are simply asked to refer to a given
object, for no particular reason. The study of section 3.5 illustrates each of
these shortcomings. In later chapters of the book, however, we shall encounter
studies that aim for greater ecological validity.

3.8 Summary of the Chapter

We have discussed some of the main themes emerging from years of research
on human reference production:

• An important concept is that of common ground, a key component of Infor-
mation Sharing (cf., section 1.7). In its simplest form, this concept is used
as follows: an RE of the form “the X” can only be uttered successfully if the
information that there exists only one X in the common ground is shared by
the speaker and hearer. [Section 3.1]

• It can be difficult to determine whether a given proposition is in common
ground, for example, under time pressure [Horton and Keysar, 1996], or
when communicating with an audience that is largely unknown. [Section
3.2] We shall turn to this problem in chapter 13.

• A number of notions that govern the production of referring expressions
can be grouped under the Gricean Maxims. These we have called Truth-
fulness, Discriminatory Power, Clarity of Formulation, and Relevance. Dif-
ferent interpretations of these notions are possible, however, and conflicts
between them are frequent. [Section 3.3]
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• The notion of Intrinsic Preference is of at least equal weight. However, a
given attribute is not always equally preferred (e.g., a large size contrast
may be more preferred than a small colour contrast), and attributes may be
preferred to different degrees depending on the referent. [Section 3.4]

• Computational models discussed in later chapters will aims to offer precise
versions of these ideas.

At a general level of research methodology, this chapter has shown how differ-
ent disciplines of Cognitive Science have started to merge: the notion of com-
mon ground, widely studied in both Formal Logic and Game Theory, has been
approached here from the viewpoint of psychology; a computational and sta-
tistical perspective will be brought to bear in chapter 13. Similar observations
can be made about the Gricean Maxims, which originated in the philosophy of
language (recall section 2.8), and which have been investigated by psycholo-
gists and Computational Linguists alike (cf., section 3.3).



CMR-web-July-2017 2017/7/12 12:14 Page 71 #81

II SECOND PART: SOLVING THE CLASSIC REG PROBLEM



CMR-web-July-2017 2017/7/12 12:14 Page 72 #82

72



CMR-web-July-2017 2017/7/12 12:14 Page 73 #83

4 Getting Computers to Refer

Present-day computational research on Referring Expressions Generation
(REG) differs significantly from work done in the 1970s and 1980s, both in
terms of the questions that are asked and the methods that are employed in
order to answer them. This chapter will start with a summary of the earliest
REG programs, after which we focus on the phase, between 1985 and 1995, in
which Robert Dale and Ehud Reiter embarked on a new direction, focussing
on a simpler version of the REG problem.

We shall show how, once the problem had been framed in a novel way, new
research questions emerged: Do human speakers approach it as essentially a
logic puzzle, trying hard to find the most effective way to individuate a refer-
ent? Or do they rely on quick-and-dirty heuristics, oblivious to the disadvan-
tages that these heuristics might have? The present chapter will draw the battle
lines.1 Efforts to decide these questions using experiments with human partic-
ipants are left for the next chapter. Later algorithms, which address a wider
class of reference problems, are discussed in Parts III and IV of the book.

We begin by digging up some of the oldest computational work on REG,
starting with Winograd and Davey in the 1970s (section 4.1), followed by
Appelt and Kronfeld in the 1980s (section 4.2). Then we turn to the work of
Dale and Reiter, in the 1990s, which resulted in the classic REG task (sections
4.3 and 4.4); some classic algorithms addressing this task are presented in sec-
tions 4.5 and 4.6. The question of logical completeness, which will loom large
over Part III of this book, is introduced in section 4.7. Section 4.8 discusses
the computational tractability of REG algorithms, and we conclude the chap-
ter with a discussion of the way in which salience can be given a place in the
classic REG algorithms (section 4.9).

4.1 Computational Pre-history of REG

From the early days of artificial intelligence onwards, reference generation
played a role in the work of practitioners. Some of them were not specifically
interested in reference, but their work required the construction of REG algo-
rithms. Let us do some archaeology and dig up their ideas.

1 The discussion of the completeness of REG algorithms in this chapter goes back to
[van Deemter, 2002] and [van Deemter and Halldórsson, 2001]. The discussion of Appelt and
Kronfeld’s work owes a debt to [Krahmer and Van Deemter, 2012]. Most other parts of this chap-
ter, including the analysis of the classic REG task, are new.
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Referring in a world of blocks: Winograd (1972). The book “Understanding
Natural Language” did much to put Computational Linguistics on the intellec-
tual map [Winograd, 1972]. The program described in the book aimed primar-
ily at offering a level of natural language understanding but performed lan-
guage generation as well, as exemplified by the following dialogue fragment2:

Person: What does the box contain?
Computer: The blue pyramid and the blue box.
Person: What is the pyramid supported by?
Computer: The box.
Person: How many blocks are not in the box?
Computer: Four of them.
Person: Is at least one of them narrower than the one which I told you to pick up?
Computer: Yes, the red cube. (...)
Person: Can a pyramid be supported by a block?
Computer: Yes (...)
Person: Stack up two pyramids.
Computer: I can’t.
Person: Will you please stack up both of the red blocks and either a green cube or a
pyramid?
Computer: OK. (does it)
Person: Which cube is sitting on the table?
Computer: The large green one which supports the red pyramid. (etc.)

On a good day, SHRDLU was able to display remarkable feats of language
understanding, but it used a relatively primitive REG algorithm. Where a full
definite reference was required, the algorithm worked roughly as follows3: If
the target referent’s “type” makes it unique in the domain under discussion,
then a noun is used that describes this type (e.g., “the box”). If an object
had previously been assigned a proper name (as in “Call the biggest block
‘Superblock’”), then the name would be used. Otherwise, the colour would be
used (“the red cube”) and, if this was insufficient to individuate the target ref-
erent, the size of the object as well (e.g., “the large green one”). If type, colour
and size still did not individuate the referent, then SHRDLU checked whether
the object physically supported one or more other objects, in which case these
were all mentioned (e.g., “which supports a red pyramid, and ...”). If this wasn’t
enough, the program added a postmodifier saying “which is to the right of ...”,

2 The example is taken from http://hci.stanford.edu/winograd/shrdlu/. The
same questions, concerning the same domain, also feature in [Winograd, 1972], section 1.3.
3 For source code of SHRDLU’s generation component, see http://hci.stanford.edu-
/winograd/shrdlu/code/newans, especially the function NAMEOBJ. See also
[Winograd, 1972], section 8.3.3, Naming Objects and Events.
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naming all the objects located to its left. If the resulting description still did
not characterize the referent uniquely, SHRDLU would generate a definite NP

nonetheless.
SHRDLU’s REG program had many limitations, yet it embodied some deci-

sions that have withstood the test of time. In essence, if we abstract away
from the use of proper names and indefinite NPs, SHRDLU’s behaviour can
be summarized as follows: a number of attributes are considered in a fixed
order. These attributes are: the TYPE of the object, its COLOUR, its SIZE,
the things it SUPPORTS, and the things to which it is NEAR. Each of these
attributes, except the TYPE, is only included in the description if the com-
bined attributes included so far are unable to characterize the referent uniquely.
Once an attribute is included in the description it is there to stay (and note that
SHRDLU includes an attribute even if it does not contribute to singling out the
referent.) Later, Douglas Appelt would adopt a more sophisticated version of
these ideas. Robert Dale and Ehud Reiter were to formulate them more explic-
itly, modify them, and defend them systematically.

Exploiting symmetries: Davey (1974). Sometimes when we appear to refer
to an object, we really refer to a more general class of objects. This happens,
for example, when we say “I need that screw”, but what we really need is any
screw of those dimensions. In other words, sometimes, we are interested not
so much in a particular object r but in the equivalence class of all objects that
are similar to r in some important respect. One of the earliest RE algorithms
focussed on a version of this phenomenon [Davey, 1974], [Davey, 1978].
Anthony Davey’s program, reconstructed ten years later in [Ritchie, 1986] and
implemented by Helen Buchanan, generated textual descriptions of games of
tic-tac-toe (i.e., noughts and crosses). For example,

I started the game by taking a corner and you took an adjacent one. I
threatened you by taking the middle of the edge opposite to the corner you
had just taken and adjacent to the corner I took first but you blocked and
threatened me by taking the end of my edge. I forked you by taking the
centre and you blocked and threatened me by taking the end of my line. I
won by completing my diagonal.

In Davey’s algorithm, equivalence classes arise from symmetries on the board
of the game. The starting point for the reference “a corner”, in the description
above, for example, is one specific square, for instance, the one in the top left of
the 3-by-3 grid of the game. The reason why “a corner” suffices as an RE, even
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though the grid has three other corners, is that these three are game-equivalent
to the one in the top left. If the same move was made in a situation where not all
four corners are game-equivalent (for example, because the square b1, adjacent
to a1, was occupied whereas all other squares were empty), then more infor-
mation would have been required (e.g., “a corner next to the square occupied
by you”). The idea of grouping referents into equivalence classes has many
applications: we often say things like “he put his hand on his knee”, for exam-
ple, without bothering to say which hand and which knee (cf., the discussion
of Ludlow’s ideas in section 2.4).

NPs like “my edge” and “the end of my line” make a subtle use of the
history of a game. If we disregard these and other embellishments, Davey’s
algorithm works by computing, for each target referent and for each target
line r, which entities are game-equivalent to r, then adding attributes, such
as “corner”, “centre”, and “line” that are true of r but false of everything not
game-equivalent to r, until the equivalence class of r has been characterized
uniquely. Having accomplished this, the algorithm asks whether r is the only
element of its equivalence class or not, and it uses this information (lines 4-
7 in Algorithm 1) to choose between a definite and an indefinite description.
To clarify the working of an algorithm we shall often use an informal style of
pseudo-code, as in 1. Pseudo-code can leave out many details; for instance, the
pseudo-code below does not say how actual NPs were constructed (lines 5 and
7), because this is not important from our present point of view.

Algorithm 1 Davey’s symmetry-aware REG algorithm
Input: A representation of a tic-tac-toe board; a target cell r on the board.
Output: An NP that singles out the equivalence class of r; the NP is definite if this
class contains only one element, and indefinite otherwise.

1: Find a description D such that:
2: D is true of r and
3: D is false of all items outside equivalence-class(r)
4: if D is only true of r then
5: make a definite NP based on r
6: else
7: make an indefinite NP based on r

REG programs designed in the early 1970s were clever, but they were not
intended to address the main theoretical issues surrounding reference. This
was to change in the next decade.
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4.2 The California School

The computational generation of referring expressions was studied in the con-
text of such dialogue systems as HAM-ANS, which were able to conduct
limited conversations, which were nonetheless sophisticated in their ability
to prevent the user from misunderstanding the utterances generated by the
system (e.g., [Jameson, 1983], [Wahlster and Kobsa, 1989]; cf., our chapter
12). We will here focus on a group of researchers who used algorithms to
explore issues that had been studied more informally by philosophers and
linguists, including many of the questions discussed in chapter 2. Following
[Krahmer and Van Deemter, 2012], I call this group of researchers the Califor-
nia School. A number of computer programs resulted from their work, and the
principles underlying these programs live on.

Computational Linguistics research practices in the 1980s differ consider-
ably from what they are at the moment. The California School views ref-
erence as a speech act formalisable in terms of the framework that models
human communication using a combination of Epistemic Logic and compu-
tational planning [Cohen and Levesque, 1985]. Doug Appelt (personal com-
munication) described the intellectual climate very well: “(...) the research
themes that originally motivated our work on generation were the outgrowth
of the methodology in both linguistics and computational linguistics at the time
that research progress was best made by investigating hard, anomalous cases
that pose difficulties for conventional accounts.” In the Preface I suggested
that reference may be seen as the fruit fly of language (see also section 16.3).
By analogy, the research Appelt was referring to may be likened to studying
“black swans” (cf., [Taleb, 2010]), that is, phenomena that fascinate because
of their rarity. The advantage of this approach is that it zooms in on interesting
phenomena from the start; as we shall see, there are disadvantages as well.

In Apple’s KAMP system, speech acts are generated as part of a planning sys-
tem. Suppose a computer is given the goal of repairing a machine. To meet this
goal, it generates a plan in which a person removes a pump from a platform.
To meet this sub-goal, the person has to be told to use a particular wrench.
To allow the hearer to find it, the system offers as much information about
the wrench as is required, saying for example that it is a wrench and that it is
located in the toolbox [Appelt, 1985a]. Concepts and words are at the heart of
this approach, but the system might also decide to point.
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Choosing properties. Appelt and Kronfeld were interested in high-level ques-
tions concerning the nature of REs and their role in communication. Yet they
must have thought hard about strategies for individuating a referent. The refer-
ent will tend to have many different properties; which ones should be included
in the RE? Appelt and Kronfeld’s starting point in this matter are the Gricean
Maxims (see section 2.8). Appelt observed that the Maxims militates against
overly elaborate REs [Appelt, 1985a]. Although he outlines an algorithm that
is guaranteed to choose the shortest description always, he ends up arguing
for a more relaxed interpretation. Using the word “descriptors” instead of our
word “properties”, he writes:

“KAMP chooses a set of basic descriptors when planning a describe action
to minimize both the number of descriptors chosen, and the amount of effort
required to plan the description. Choosing a provably minimal description
requires an inordinate amount of effort and contributes nothing to the suc-
cess of the action. KAMP chooses a set of descriptors by first choosing a
basic category descriptor (see Rosch 1978) for the intended concept, and
then adding descriptors from those facts about the object that are mutu-
ally known by the speaker and the hearer, subject to the constraint that
they are all linguistically realisable in the current NP, until the concept has
been uniquely identified. (. . . ) Some psychological evidence suggests the
validity of the minimal description strategy; however, one does not have to
examine very many dialogues to find counter-examples to the hypothesis
that people always produce minimal descriptions.” [Appelt, 1985a] (p. 21)

This tantalizingly brief description contains three themes that later research has
elaborated on: the non-minimality of human-produced REs, the role of Rosch-
style basic categories [Rosch, 1978], and the idea that properties may be added
one by one until the referent has been identified. Computational linguists have
used the word “incremental” to characterize this procedure. All these themes
will be revisited when we discuss later algorithms.

Adding information. So far, we have been talking as if it were the sole goal
of an RE to single out a referent. Appelt and Kronfeld recognized, however,
that reference can serve several purposes and sought to explain how this can
happen. In particular, they showed how an RE can add information about a
referent, saying things about it that the recipient does not yet know. Using
the perspective proposed in section 1.7, they demonstrated computationally
how Information Sharing can work in two directions at the same time, namely,
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from shared information to the intended referent (the normal direction), and
from the intended referent to shared information (the direction discussed by
Barwise and Perry). By pointing to a tool, for example, we can identify the tool.
If, in addition to pointing, we also say “the wheelpuller”, then the descriptive
content of the RE may serve to inform the hearer about the function of the tool.

To see how an RE can add information, consider the reference to a
wheelpuller r. The action by the speaker S of describing r to the hearer H
using a conjunction of properties P1 ∧ ...∧ Pn, or simply by pointing, is sub-
ject to a set of preconditions (which we simplify slightly here):

(1) S believes P1(r)∧ ...∧ Pn(r)

(2) ¬ (H believes ¬(P1(r)∧ ...∧ Pn(r)))

(3) ∀x(¬(H believes ¬(P1(x)∧ ...∧ Pn(x)))→ x = r)

In plain English, (1) the speaker believes that the properties expressed are true
of r, (2) the hearer does not believe the conjunction of properties to be false
of r, and (3) r is the only object x such that the hearer doesn’t believe the
conjunction of properties to be false of x. Note the subtle use of double nega-
tion: the hearer need not believe that all of the properties in the description are
true of r, as long as she doesn’t believe that any of them are false of r. This
means that the preconditions for referring to r as “the wheelpuller”, while also
pointing at it, are fulfilled as long as the speaker believes r to be a wheelpuller
and the hearer doesn’t have reasons to believe it isn’t. It is this double negation
that allows referring speech acts to smuggle in information that is not yet in
mutual knowledge (cf., [Appelt and Kronfeld, 1987]). Epistemic embeddings
in the style of Clark and Marshall (section 3.1) are not considered.

There is something frustrating about research papers from the California
School (cf., [Krahmer and Van Deemter, 2012]). On the one hand, they con-
tain genuine insights into the complexities of communication. On the other
hand, it is remarkably difficult to find out how the programs described actu-
ally worked, since code was lost and much of what was written about it is
pitched at a high level of abstraction. Most important of all, these insights
were not tested empirically. As we shall see in the next chapter, this style
of work has gone out of fashion, at least in Computational Linguistics, giv-
ing way to a skepticism about methods that require a “deep” modelling of
a speaker’s or hearer’s knowledge. We shall also see, however, that many of
these authors’ basic ideas have survived. Moreover, it is worth realizing that
these researchers had to code all deductive mechanisms from scratch. Given
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the substantial progress in computational theorem proving in the last decades
(e.g., [Robinson and Voronkov, 2001]), the time may have come to re-assess
these ideas. The investigations in our chapters 10 and 11, where we look at
logic and theorem proving, are a step in this direction.

Relevance. Kronfeld saw that different utterance situations favour differ-
ent descriptions. He gives the example of the sentence “The city with the
world’s largest Jewish community needs more policemen”, whose subject NP

is intended to refer to New York [Kronfeld, 1989]. This NP is conversation-
ally irrelevant, unless the speaker wants to suggest that the ethnic make-up
of the city explains the need for more police. Even though no computational
mechanism was offered for avoiding irrelevant REs, Kronfeld’s insistence on
conversational relevance is well taken. Kronfeld’s challenge has seldom been
discussed in the literature on REG, yet I will argue that some promising inroads
into this difficult area have been made (see e.g., section 16.2). In fact, we shall
see that some aspects of this issue lend themselves well to statistical methods.
For example, the preceding context of an RE may be used (e.g., employing n-
grams or a more semantics-aware mechanism) to rate some properties as more
relevant than others and to favour their selection in REG.

4.3 The Classic REG Task

In recent years, the California School has been largely superseded by a new
research tradition. The issues studied by Appelt and Kronfeld are still dis-
cussed from time to time [Heeman and Hirst, 1995, Stone and Webber, 1998,
O’Donnell et al., 1998, Koller and Stone, 2007]. A different approach gained
prominence, however, not because the earlier approach had been falsified,
but rather because it was so ambitious that it was difficult to falsify. Two
authors played a particularly important role in this shift, namely, Robert Dale
and Ehud Reiter. Somewhere around 1990, these authors started re-focussing
on the smaller problem of determining what properties an RE should use if
identification of the referent is the central goal [Dale, 1989a, Reiter, 1990a].
This line of work culminated in the seminal article Computational Interpre-
tations of the Gricean Maxims in the Generation of Referring Expressions
[Dale and Reiter, 1995]; in this work, other aspects than identification were
temporarily disregarded, not because they were deemed unimportant, but in
order to concentrate on simple things first.
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We shall examine the algorithms that came out of this period of re-focussing,
paying particular attention to their underlying assumptions. It will be helpful
to use some terminology introduced by philosophers of language (section 2.3)
calling the set of elements that share a property P the denotation or extension
of P , abbreviated [[P ]].

Given is a communicative situation involving a finite domain M of entities
and an element rεM , which is the target referent. Given are also one or
more other elements of M , the distractors; furthermore, a finite set P of
atomic properties (i.e., properties without logical structure, or whose logi-
cal structure is ignored), each of which holds true of one or more elements
of M . Thus, for every property Pε P , the extension [[P ]] of this property is
a non-empty subset of D.

Unless stated otherwise, the remainder of this section will use the term
“properties” as denoting atomic properties. To see how the reference genera-
tion task may be understood, continuing to focus on Content Determination, let
us first examine its most straightforward version. The well-known correspon-
dence between set-theoretical operations like set union (which applies to exten-
sions of properties) and propositional logic connectives like disjunction (which
applies to propositions) will allow us to mix the two terminologies.4 Thus, I
shall freely speak about “conjoining” or “intersecting” properties depending
on which of the two perspectives suits me.

Consider the following perspective on REG:

The classic REG Task (naive version). If there exists a set of properties
{P1, .., Pn}, where each Pi is an element of P , and where the conjunction
of all the Pi in the set singles out the referent r (i.e., [[P1]]∩ ...∩ [[Pn]] =

{r}), then find such a set and conjoin its elements. If no such set of prop-
erties exists, then say so.

This task, however, is suspiciously easy. A simple solution would be to collect
all the properties that are true of the referent r, as in Algorithm 2 below. In
practice, researchers do not focus on what we called the naive REG task; they
employ an additional constraint that is often left implicit. As we saw in section
1.5, sometimes the (somewhat vague) idea is to produce a “felicitous” RE but,
increasingly, researchers are becoming more specific. For example, they may

4 When we speak about “conjoining” propertiesP andQwe mean, logically speaking, conjoining
the atomic properties λx.P (x) and λx.Q(x), forming the complex property λx.(P (x)∧Q(x)).
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Algorithm 2 The Total Reference Algorithm for conjunctive REs
Input: A domain of objects, containing a target referent r and a non-empty set of dis-
tractors. A set P of properties defined over the domain.
Output: A distinguishing description D of r that uses conjunctions of properties in P ,
if such a distinguishing description exists.

1: Let P ′ be the set of all properties in P that are true of r
2: Let D be the conjunction of all elements of P ′
3: if [[D]] = {r} then
4: return D
5: else
6: return “No distinguishing description of r exists”

be aiming to generate RE that have optimal utility for hearers; more often, the
aim is human-likeness:

The classic REG task (main version). If there exists a set of properties
{P1, .., Pn}, where Pi ε P , and where the conjunction of all the Pi in the
set singles out the referent r (i.e., [[P1]]∩ ...∩ [[Pn]] = {r}), then find such
a set and conjoin its elements. If no such set of properties exists, then say
so. Furthermore, make sure that {P1, .., Pn} are collectively as similar as
possible to the set of properties that human speakers would use if they were
to refer to r in the situation at hand.

This task definition5 is in line with a view of REG as mimicking human
behaviour. Note that verifying the second requirement cannot be done with-
out hard (e.g., experimental) graft; the same would be true if the task definition
focussed on properties that are of optimal benefit to hearers (cf., section 1.5).

To see what’s at stake, consider a well known problem in Artificial Intelli-
gence, namely, computer chess. It’s challenging to make a program that plays
chess strongly; it’s much harder to make a program that also plays in a human-
like style: to do that, difficult questions need to be answered: What strategies
are preferred by human players (e.g., when two moves are equally strong)?
Moreover, playing “like a human” is, pending further specification, not a well-
defined goal because people differ in terms of their abilities and inclinations
(e.g., a disposition towards defence or attack). Issues of this nature will occupy

5 From now on, we shall often omit the part of an algorithm that specifies what happens if no
distinguishing description is found (e.g., lines 5 and 6 of Algorithm 2). This will allow us to focus
on the core of the algorithm.
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us in the next chapter, where we shall be concerned with the empirical val-
idation of REG algorithms. Finally, the task definition could be even more
radically empirical, using human-likeness as its only criterion, regardless of
whether human speakers manage to single out the referent:

The classic REG task (radically empirical version). Find properties
{P1, .., Pn} in P that are collectively as similar as possible to the set of
properties that human speakers would use if there were to refer to r in the
situation at hand.

In the remainder of this chapter and the next, we shall focus on the second task
definition, but there will be echoes of the third one in Part IV of the book.

4.4 Assumptions Behind the Classic REG Task

Before discussing algorithms that address the classic REG task, it will be useful
to state some ideas that are implicit in this task. Some are best seen as simplify-
ing assumptions, whereas others are genuine preconceptions about the goal of
REG (henceforth, presuppositions). In what follows, we will make these ideas
explicit. Parts III and IV of this book will explore what happens when some of
these assumptions and presuppositions are abandoned. Readers who are eager
to see the classic REG algorithms could jump to section 4.5 directly.

Assumption 1: Reference is always to a single individual. The task defi-
nition presupposes that the target of an RE is always just one object, not a
larger set. As long as this assumption is made, plural NPs (e.g., “the black
poodles”, “cats and dogs”) are not generated. As we shall see in chapter
8, reference to sets turns out to be more difficult than reference to singular
objects, giving rise to many new research questions.
Assumption 2: All domain objects are equally salient. Things present
themselves to us with different degrees of urgency. Suppose you and an
academic colleague are talking. Other things being equal, the people in
your department are more salient than the ones in other parts of the School;
these in turn are more salient than most other people. All these people are
referable in principle, but the more salient ones take less verbal effort. For
example, to refer to your own Head of Department, you might say “the
Head”, but in other cases the name of the department needs to be stated
(e.g., “the Head of Maths”). The classic REG task definition says nothing
about differences in salience. See section 9.7 for discussion.
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Assumption 3: Context-dependent and vague properties are not used. It is
evident from the classic task definition that a property must either apply
or not apply to a given domain object. Properties must be crisp and well
defined, without depending on context. Yet vague properties (like “old” or
“large”) are notoriously context-dependent, and so are crisp properties like
“leftmost”: a book on a shelf may be leftmost when only the volumes of
an encyclopaedia are considered, but not if the entire shelf is taken into
account. Chapter 9 will address these issues.
Assumption 4: REs do not express complex properties. The properties
accumulated by classic REG algorithms are not themselves composed of
logically simpler properties, as when we say “the cow that is not brown”.
Thus, in Dale and Reiter’s work, conjunction is the only logical operation
permitted, to the exclusion of operations like negation.
Assumption 5: REs do not express relations. The task definition precludes
the use of relations. We shall see in section 6.4 that some types of REs that
make use of 2-place relations (e.g., “the cup on the table”) are nonetheless
generated by some early algorithms (section 6.4) and by the approach dis-
cussed in section 6.5. More complex relational descriptions are discussed
in chapter 10. REs that use relations with more than 2 argument places (“the
present given by Joey to Marc”) have yet to be addressed.
Assumption 6: Sets are finite. Reference is not limited to finite domains.
It is possible, for example, to refer to a natural number (e.g., “the only
even prime number”), using all other numbers as distractors. In practice,
however, REG has focussed on finite M , P , and L, as we have seen. Thus,
in practice, REG algorithms deliver a finite set of properties {P1, .., Pn}
whose intersection denotes the referent. Infinite sets are discussed briefly
in section 4.7 and chapter 10.
Assumption 7: Content Determination precedes realization. In most REG

algorithms, the semantic content of the description is chosen at the out-
set, with other NLG tasks – such as Lexical Choice and Linguistic Real-
ization – only starting once Content Determination is finished. This setup
only makes sense if there exists a suitable Linguistic Realization for every
property. Problems arise if no words can be found for expressing a given
concept, causing what is known as a generation gap [Meteer, 1991]. This
assumption is shared by most algorithms; for exceptions see section 6.6.

In Part III, where extensions of the classic REG problem are discussed, we
shall see what happens when some of these assumptions are abandoned. At a
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more fundamental level, the REG task relies on the following presuppositions,
relating to the type of Information Sharing that the speaker engages in:

Presupposition 1: REs always identify the target referent. In Part IV of the
book, we shall encounter situations where precise identification is not fea-
sible, so at best only approximate descriptions can be produced, which (for
example) fail to exclude certain distractors. Perhaps the clearest examples
arise when speakers verbally describe a geographical region, which can
often only be done approximately. Approximate descriptions (discussed in
chapter 14) are precluded by the present task definition.
Presupposition 2: Identification is the only goal of reference. This is
implicit in the REG task definition, yet various authors have argued that
REs can serve other functions as well. Dale and Reiter offered the example
“Don’t sit at the newly painted table”, where the description of the table
may not only serve to identify the referent, but to explain the reason for the
advice. To let REG algorithms focus on identification alone is an abstraction
of reality: reference serves other purposes as well. We shall turn to these
issues in chapter 15.

Perhaps the trickiest presupposition underlying Dale and Reiter’s framing of
the reference task pertains to its wider context. The crucial concept in this con-
nection is the concept of common knowledge, which we discussed in chapter
3. After all, why compose a set of properties if you cannot be sure that the
hearer shares your understanding of these properties, in terms of what their
extensions are? We distinguish two aspects of this issue.

Presupposition 3: P represents speaker and hearer’s common ground. It
is widely thought that a property can only enter an RE if its meaning is in
the speaker and hearer’s common ground. Details have typically been less
clear; Dale and Reiter, for example, offered no computational mechanism
for distinguishing information in common ground from other information.
In chapter 13, we shall argue that common ground is frequently problematic
and investigate what this means for REG.
Presupposition 4: The extensions of the properties in L are obvious. The
task definition is limited to situations where hearers have direct access to
the extensions of all the properties in L. In chapter 12, we discuss situations
in which hearers need to work hard to discover the extensions of some
crucial properties of the referent, such as its location in a room.

Part IV investigates what happens when these Presuppositions are abandoned.
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4.5 Exploring the Gricean Angle Computationally

Having proposed a re-framing of the REG problem, Dale and Reiter went on
to explore a range of REG algorithms. In doing so, they used many of the
same ideas as their predecessors, starting from the assumption (also invoked
by Doug Appelt) that the content of an RE is best understood in terms of the
Gricean Maxims [Grice, 1975], whose Maxim of Quantity we re-state here:

1. Make your contribution as informative as is required (for the current
purposes of the exchange).
2. Do not make your contribution more informative than is required.

This Maxim came to be associated with an approach known as Full
Brevity (FB). This approach, discussed in [Appelt, 1985a] and formalized in
[Dale, 1989a], says that the number of properties in the Logical Form need
to be minimized. Dale proposed the mechanism described in Algorithm 3 for
enforcing FB. The first step checks whether there is a single property of the
target that rules out all distractors. The second step checks whether any combi-
nation of two properties does this, and so on, until the referent has been singled
out or until conjunctions of all possible lengths have been attempted. Note that
this does not tell us what Logical Form is generated if, for example, step (1)
can choose between two distinguishing descriptions of equal length. To turn
the procedure into a complete algorithm, a tie-breaking rule would need to be
added.

Algorithm 3 Dale’s Full Brevity (FB) algorithm
Input: A domain of objects containing a target referent r and a non-empty set of dis-
tractors. A set P of n properties true of r.
Output: A distinguishing description D of r that uses conjunctions of properties in P ,
if such a distinguishing description exists. If D is found, then no purely conjunctive
distinguishing description of r exists that uses fewer properties.

1: Look for a description that distinguishes r using one property
2: if a description D is found then
3: return D
4: else
5: Look for a description that distinguishes r using two properties
6: if a description D is found then
7: return D (else Etcetera, using up to n properties)
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It is possible to believe that brevity is the key factor in the quality of an
RE, but to take it with a pinch of salt. One way to do this would be to seek
inspiration from information theory [Shannon, 1948]: select properties one by
one, always choosing a property that divides the set of distractors as evenly
as possible between those individuals that have the property and those that do
not. If it’s always possible to find a perfectly “even” property (i.e., one that is
true for exactly 50% of the remaining distractors), then a mere n properties
distinguish 2n different individuals, hence 20 properties would suffice to nail
down any individual within a domain of 220 individuals.6 One could use this
idea in REG, always choosing properties that can be expected to do well. But
it is possible to do better, because the speaker knows who she intends to refer
to. So, rather than selecting a property that is expected to do best on average,
the speaker can select the property that is certain to do best for this particular
referent. The name of this algorithm is the Greedy Algorithm.

The Greedy Algorithm ([Dale, 1989a], henceforth GR) selects properties one
by one, always choosing the property that is true of the intended referent and
excludes the greatest number of distractors. GR does not always produce a
minimal description, because a property that removes the maximum number of
distractors at the time of its inclusion might not remove the maximum number
of objects in combination with properties that will later be added (because
these are not known yet). Recall that the REG Task Definition requires the
domain to contain the referent, and one or more other entities as well. The
algorithm starts by initializing the description D to be empty. At the core lies
step 3, where a property is selected whose Discriminatory Power (DP) is second
to none: it removes the maximum number of distractors, in other words. Once
again, the literature does not specify how to choose if there is a tie (i.e., when
several properties remove the same number of distractors).

In the Greedy Algorithm, properties are added to the description one by
one, and never retracted. Since this will prove to be a common feature of many
algorithms, I shall give it a name: the monotonic approach to REG.7

6 This idea brings to mind the parlour game known as Twenty Questions, where one player has to
ask a series of yes/no questions to identify, as quickly as possible, an individual the other player
has in mind: “A politician?” Yes. “A Democrat?” No. “Been a President?” Yes. Etc.

7 The term monotonic REG, an allusion to (non)monotonic logic, was chosen because the term
incremental REG (which would have been apt in some ways) has come to be associated with one
particular type of monotonic approach, as we shall see.



CMR-web-July-2017 2017/7/12 12:14 Page 88 #98

88 Part II

Algorithm 4 The Greedy (GR) Algorithm
Input: A domain of objects containing a target referent r and a non-empty set of dis-
tractors M . A set P of properties true of r.
Output: A distinguishing description D of r that uses conjunctions of properties in P ,
if such a distinguishing description exists.

1: Start out with an empty D
2: while Not all distractors have been ruled out and P 6= empty do
3: Select a new property P from P , choosing one whose DP is maximal
4: if P is false of some distractors then
5: Add P to D
6: Remove P from P
7: Remove from M all distractors ruled out by P

Using a more formal set notation, the algorithm can be rendered as follows:

1: D := φ
2: while M 6= ∅ do
3: Select a new property P from P , (...)
4: if M 6⊆ [[P ]] then
5: D := D ∪{P}
6: P := P −{P}
7: M := M ∩ [[P ]]

I have used dots to replace the basis on which a new property P is chosen,
revealing an algorithmic “skeleton” that the Greedy Algorithm shares with
other algorithms. We shall soon encounter another way in which the dots may
be filled. For ease of reading, however, we shall stick with the informal style
displayed in algorithm 4, always assuming that phrases like “Add so-and-so to
D” are interpreted in accordance with the set-theoretic explication above.

To see how these algorithms behave, let’s look at a specially constructed
domain. We separate each property into an attribute (like COLOUR) and a value
(like RED), grouping properties into clusters. Suppose our domain contains
the dogs {a, b, c, d, e, f, g}. We use five different attributes, each of which has
two values, denoted as val1 and val2. We choose values that are each other’s
complement, so the choice between them is obvious once the referent is given:

HAIRINESS val1 = {c, e, f} (HAIRY), val2 = {a, b, d, g} (SHORT-HAIRED)
COLOUR val1 = {a, b, c, e} (BLACK), val2 = {d, f, g} (WHITE)
CLASS val1 = {a, b, e, f} (MONGREL), val2 = {c, d, g} (PUREBRED)
HARDINESS val1 = {d, e, f, g} (OUTDOOR), val2 = {a, b, c} (INDOOR)
TAIL-STATUS val1 = {a, b, c, d, e, f} (WITH TAIL), val2 = {g} (WITHOUT TAIL)
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Consider the target referent a. The easiest way to see that a cannot be sin-
gled out using the ten properties at hand is by pondering the Total Reference
algorithm of section 4.3. This algorithm would conjoin all properties true of
a, generating {a, b, d, g} (HAIRY) ∩ {a, b, c, e} (BLACK) ∩ {a, b, e, f} (MON-
GREL) ∩ {a, b, c} (INDOOR) ∩ {a, b, c, d, e, f} (WITH TAIL), and this intersec-
tion equals the set {a, b}. No intersection of properties that includes a can be
smaller, so a cannot be individuated by conjoining atomic properties. The rea-
son is that every property whose extension includes a includes b as well: as we
shall say, b is a satellite of a. Similarly, b cannot be individuated, because a is
a satellite of b. Satellites [van Deemter and Halldórsson, 2001] will take on a
life of their own in chapter 10.

To see how FB and GR can produce different outcomes in this situations,
consider the target referent e, starting with the Full Brevity algorithm. FB will
combine 〈COLOUR: val1〉 (BLACK, which is true of the dogs {a, b, c, e} only)
with 〈HARDINESS: val1〉 (OUTDOOR, which is true of {d, e, f, g}), because
these two properties jointly single out e while all other Logical Forms that
manage the same feat happen to contain three or more properties. The output
thus consists of the properties BLACK and OUTDOOR, which may be realized
as “the black outdoor dog”, “the only black dog”, and so on. We are adding the
word “dog” to fill the position of the noun, even though it does not contribute
to distinguishing the referent. We shall return to this issue later, when the TYPE

attribute is discussed.
Although GR often produces the same Logical Form as FB, this is not

the case in the present example. GR will start by selecting the property
〈HAIRINESS: val1〉 (HAIRY, corresponding to the set {c, e, f}), because it is
the property that excludes the most distractors. Even though only two distrac-
tors are left, namely, c and f , no single property manages to remove both of
these. As the next step, GR will select either 〈COLOUR: val1〉 (BLACK, remov-
ing f ) or 〈CLASS: val1〉 (MONGREL, removing c), but in each case a third prop-
erty is required to remove the last remaining distractor. The example shows
that GR leaves some issues undecided: it allows e to be described using either
the Logical Form {HAIRY, BLACK, OUTDOOR} or the Logical Form {HAIRY,
BLACK, MONGREL}, for example. The FB algorithm doesn’t always decide
either: the individual c, for example, can either be described minimally using
{INDOOR, PUREBRED} or using {HAIRY, PUREBRED}.
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4.6 The Incremental Algorithm

It is time to introduce the algorithm proposed by Dale and Reiter, which
has come to be known as the Incremental Algorithm (IA). Around the
end of the last century, Helmut Horacek wrote that “the incremental algo-
rithm is generally considered best now” [Horacek, 1997]; Jon Oberlan-
der added that it “clearly achieves reasonable output much of the time”
[Oberlander, 1998]; and Emiel Krahmer wrote “the Incremental algorithm has
become more or less accepted as the state of the art for generating descrip-
tions” [Krahmer and Theune, 2002]. It is still the best-known REG algorithm,
and our own experiments (e.g., chapter 5) confirm that it is doing something
right, although we shall also raise problems, which will ultimately cause us
to regard it with reservation (see 16.2; and from a viewpoint of understanding
variation in language production, section 6.3).

We have seen in chapter 3 that some properties are more “preferred” than
others, and that these differences in preference make themselves felt in the REs
that human speakers produce. Though difficult questions can be asked about
the reasons behind these differences, we have seen that their effects can be
modelled by listing properties in order of their importance. Given such a list,
the algorithm examines its properties one by one, starting with the most “pre-
ferred” one. A property is added to the Logical Form if the property helps
with the identification of the referent (i.e., if it removes one or more distrac-
tor objects). The algorithm halts when no more progress can be made (i.e.,
when none of the properties in the list has anything further to contribute to the
identification of the referent). This, in a nutshell, is the Incremental Algorithm;
details and examples will be offered presently.

Before we proceed, it should be noted that the order in which properties are
examined does not necessarily have any bearing on the order in which they
are realized linguistically into a noun phrase (cf., sections 1.4 and 9.5). Note,
furthermore, that not too much should be read into the word “preferred”: to
regard the first property in the list (also known as a Preference Order) as the
most preferred one is little more than a manner of speaking (cf., section 3.4).

Dale and Reiter offered two arguments for the IA. The first is of a purely
computational nature: it argues that the problem of finding a Logical Form that
contains the minimum number of properties, as required by the Full Brevity
algorithm, is computationally intractable; we shall later devote a separate sec-
tion (section 4.8) to this argument, which history appears to have almost
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forgotten. The second argument, which has attracted more attention, is the
well-known fact that people often produce non-minimal descriptions (e.g.,
[Pechmann, 1989]). These ideas were rooted in the earlier literature on the
subject, as we have seen (e.g., [Appelt, 1985a]).

It is worth comparing the idea of the Incremental Algorithm to the Greedy
Algorithm, with which it has much in common: both algorithms operate mono-
tonically, adding properties one by one until the referent has been singled out,
without ever withdrawing a decision. The difference is that GR decides on the
basis of Discriminatory Power, whereas IA decides on the basis of Intrinsic
Preference (cf., section 3.5). Thus, the Greedy Algorithm (GR ) is entirely moti-
vated by logical considerations to do with the extension of properties, whereas
IA is blind to the extension of a property. Using the terminology of chapter 2,
this makes GR extensional and IA intensional. Suppose, for example, the things
that have lungs are the same as those that have kidneys; this does not prevent
IA from distinguishing between the properties “has lungs” and “has kidneys”.
The flip side of this situation is that GR can be seen as having greater explana-
tory power, because it offers a reason why one property is chosen instead of
another. The IA is unsystematic by comparison, unless it can offer a reason
why one property is preferred over another.

Because IA is structurally so similar to GR, it can be presented in much the
same way. We can use the same pseudo-code, except that the choice in line 3
is guided not by Discriminatory Power (which varies during the course of the
Greedy Algorithm’s execution) but by a fixed Preference Order.

Algorithm 5 IAProp: the Incremental Algorithm based on properties
Input: A domain of objects, containing a target referent r and a non-empty set M of
distractors. A set P of properties of r. A linear Preference Order defined on P .
Output: A distinguishing description D of r that uses conjunctions of properties in P ,
if such a distinguishing description exists.

1: Start out with an empty D
2: while Not all distractors have been ruled out and P 6= empty do
3: Select a new property P from P , choosing the most preferred one
4: if P is false of some distractors then
5: Add P to D
6: Remove P from P
7: Remove from M all distractors ruled out by P

The algorithm finds better and better approximations of the target set {r} by
adding more and more properties to D. There is no backtracking, so if some
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property Pi in D is made redundant by later additions, then Pi is retained as a
member of D nevertheless.

However, what Dale and Reiter proposed is not quite IAProp, but a slightly
more elaborate algorithm, which separates attributes and values, and which we
shall call IAAtt. The main intuition behind IAAtt is that attributes permit a nat-
ural way of grouping similar properties together, making it easy to generalize
over them, for example, by saying that all properties that express the COLOUR

attribute occur earlier in the Preference Order than any other attributes. Fur-
thermore, the use of attributes allows a closer approximation to GR, choosing
between the different values of a given attribute on the basis of (mainly) Dis-
criminatory Power.

IAAtt is presented schematically in Algorithm 6 (below). This time it is
attributes, not properties, that are listed in a Preference Order IA. If Ai pre-
cedes Aj in IA, then Ai is preferred over Aj ; as a consequence, Ai will be
considered before Aj by the algorithm. Given an attribute, FindBestValue
selects the value that removes most distractors while still including the target
r. In case of a tie (i.e., no value removes more distractors than all others),
FindBestValue chooses the least specific of the contestants. For example,
in a situation where the property of being a dog rules out as many distractors
as being a chihuahua, the latter cannot be chosen.

IA is the list of attributes; L is the set of attribute/value combinations returned
by the algorithm. A further notational convention will be useful: values will be
identified by two indices, the first of which identifies the attribute. Thus, to
denote value j of attribute Ai, we write Vi,j . This version of the algorithm,
which is schematized in Algorithm 6, will be called IAAtt. The initialization
of L is omitted for brevity. Note, once again, the restriction to distinguishing
descriptions that are conjunctions of properties in P; in the remainder of this
book, we shall omit this restriction to keep the presentation of algorithms read-
able; the issue will be discussed fully in chapter 8.

Following [Appelt, 1985a], Dale and Reiter added a provision to ensure that
each Logical Form generated contains a TYPE: if no TYPE is selected during
the normal course of their algorithm, it is added to the Logical Form at the
end. This treatment ensures that every Logical Form contains one property
realisable as a noun. We shall accept this with one qualification: to prevent
unnaturally lengthy descriptions, we also assume that the TYPE attribute is
placed at the head of the Preference Order, causing it to be considered before
all other attributes. Without this qualification (i.e., if the TYPE is always only
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Algorithm 6 IAAtt: the Incremental Algorithm based on attributes
Input: A domain of objects, containing a target referent r and a non-empty set M of
distractors. A set A of attributes at least one of whose values is true of r. A linear
Preference Order defined on A.
Output: A distinguishing description D of r that uses conjunctions of properties in P ,
if such a distinguishing description exists.

1: Start out with an empty D
2: while Not all distractors have been ruled out and A 6= empty do
3: Select a new attribute Ai from A, choosing the most preferred one
4: Vi,j := FindBestValue(r,A)
5: if Vi,j is false of some distractors then
6: Add Vi,j to D
7: Remove A from A
8: Remove from M all distractors ruled out by Vi,j

added as an afterthought), the IA can easily include properties in a Logical
Form that are made superfluous by the TYPE. As explained in chapter 5, types
can be treated similarly in all REG algorithms. At the end of the book, in section
16.3, we shall turn to the question of what types really are.

Let’s see how the IA behaves when applied to the example that we used in
order to exemplify FB and GR. We repeat the example for convenience.

HAIRINESS val1 = {c, e, f} (HAIRY), val2 = {a, b, d, g} (SHORT-HAIRED)
COLOUR val1 = {a, b, c, e} (BLACK), val2 = {d, f, g} (WHITE)
CLASS val1 = {a, b, e, f} (MONGREL), val2 = {c, d, g} (PUREBRED)
HARDINESS val1 = {d, e, f, g} (OUTDOOR), val2 = {a, b, c} (INDOOR)
TAIL-STATUS val1 = {a, b, c, d, e, f} (WITH TAIL), val2 = {g} (WITHOUT TAIL)

The outcome depends on the Preference Order. If the attributes are attempted
in the order in which they were listed, then HAIRINESS is attempted first, fol-
lowed by COLOUR, in which case a version of GR is mimicked. But if COLOUR

is attempted first, followed by HARDINESS, then the same Logical Form is gen-
erated as the one produced by FB. In other cases, much lengthier Logical Forms
can result, for example when TAIL-STATUS is attempted first (narrowing down
the set of possible referents to {a, b, c, d, e, f}), and then COLOUR (narrowing
it down to {a, b, c, e}), followed by HAIRINESS (resulting in {c, e}) and finally
HARDINESS (resulting in the set {e}). The resulting Logical Form might be
realized as the hairy black dog with a tail, who sleeps outdoors. The ability of
IA to mimic other algorithms will complicate the assessment of its ability to
mimic human production, as we will soon see.
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Unfortunately, IAAtt is affected by problems that call into question the rea-
sons for separating properties into attributes and values, and even the idea of a
fixed Preference Order itself (see also sections 3.4 and 6.3). For example, IAAtt
makes the dubious assumption that all the values of a given attribute must be
preferred to the same degree. But the colour of a blue strawberry is more likely
to be noted than that of a red one, because the prototypical strawberry is red;
similarly, a three-legged dog will have a higher chance of having its number
of legs noted than a four-legged one [Mitchell et al., 2013b]. Different consid-
erations point in the same direction, suggesting that the different values of a
given attribute may differ sharply in terms of their degree of preference. Con-
sider attributes such as distance, weight, or price: if you bought this cadillac
for only $500, wouldn’t this make you more likely to mention the price than if
you had paid a more normal price? Surely, the extremity of a property should
be taken into account when determining whether the property is worth men-
tioning. These issues are discussed in chapter 9 and more fully in Part IV.

Chapter 5 will discuss systematic empirical evaluation of the IA. Like all
other empirical studies that I am aware of, and despite first appearances, this
evaluation will essentially focus on the simpler IAProp, not the better known
IAAtt. For although the discussion will be framed in terms of attributes, the
focus will be on situations in which no two values of the same attribute can
apply to any given object; consequently, the algorithm is never faced with a
choice between different values. Choosing an Attribute, in these situations, is
equivalent to choosing a property.

Before we go there, however, it will be interesting to explore some of the
formal properties of the IA. Our first question will be straightforward: Is the
algorithm always able to produce a distinguishing description? More precisely,
does the algorithm produce a distinguishing description whenever one exists?

4.7 Logical (In)completeness

Let’s call a REG algorithm successful with respect to a given situation, charac-
terized by a Knowledge Base and a given target r, if the algorithm produces
a distinguishing description in that situation. We will call an algorithm (logi-
cally) complete if it is successful in every situation in which a distinguishing
description exists. Success is not always possible: the properties in the Knowl-
edge Base may not be sufficient for individuating a given object; such situa-
tions should not be held against an algorithm.
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There is one problem with this tidy perspective: what descriptions are possi-
ble depends on what logical operations are available. The algorithms discussed
in this chapter generate Logical Forms that contain logical conjunction (i.e., set
intersection) as their only Boolean operation. We therefore define a REG algo-
rithm to be intersectively complete if it has the following property: whenever a
referent can be individuated by intersecting a finite number of properties, the
algorithm will find such an intersection. We would like to prove the Incremen-
tal Algorithm to be intersectively complete, but we shall meet a few obstacles.
The first obstacle arises from overlapping values, the second from infinite sets.

Overlapping values. We start our formal investigation by considering a
problem for the attribute-based version of the Incremental Algorithm, IAAtt.
One assumption without which this algorithm cannot be proven to be intersec-
tively complete concerns the semantic relation between different values of a
given attribute: their extensions should not overlap. Values can overlap for dif-
ferent reasons. Colours can overlap, for example: some objects may count as
both red and orange. Also, values may derive from particular parts or aspects
of an object; for example, an object may be listed as both metal and plastic,
because it has parts made of metal and parts made of plastic. Other kinds of
examples arise if the Knowledge Base models relations through unanalysed
properties. For example, a desk, or a particular type of desk, can stand in a
given relation to more than one other company. To illustrate the problems aris-
ing from overlapping values, consider the following situation, in which com-
panies buy particular types of desks ({a, b, c, d, e, f}):

BOUGHT-BY: PHILIPS ({a, b, e}), APPLE ({a, c, d, f})
COLOUR: BROWN ({a, b}), YELLOW ({c, d, f})

Desks of type a were bought by two different companies, causing the values of
BOUGHT-BY to overlap. The first problem arises if a is the intended referent,
and BOUGHT-BY is more preferred (in terms of the IA’s Preference Order) than
COLOUR. The value PHILIPS (being the BestValue of BOUGHT-BY, because
it removes more distractors than the value APPLE) is chosen first, reducing
the initial set of desks to {a, b, e}. Now, having found a local maximum, the
algorithm is doomed to end in failure, because COLOUR is unable to remove
the unwanted b without also sacrificing a. None of this can be corrected, since
the algorithm does not use backtracking. Note that a distinguishing descrip-
tion of a would have been possible if only APPLE had been chosen instead of
PHILIPS, leading to a Logical Form that could be worded as “the brown desk
bought by Apple”.



CMR-web-July-2017 2017/7/12 12:14 Page 96 #106

96 Part II

The second problem is even more worrying. Suppose all desks have the
same colour. Now the only way to refer to a is to select two different values
of the same attribute, referring to it as the desk that’s bought by both Philips
and Apple. IAAtt does not allow this, because it will always find only one best
value. Once again, the algorithm fails when success is perfectly achievable.

How can these problems be remedied? If logical completeness is to be safe-
guarded, then what the algorithm needs to find is not the single best value
for a given attribute, but the best combination of values: in the example above,
selecting the values PHILIPS and APPLE is better than selecting either of them;
in situations where other combinations of values are possible, these combina-
tions can be compared in the manner proposed by Dale and Reiter. Applied to
our original example, the revised algorithm would produce “the desk bought
by Apple and by Philips”. Such descriptions appear to be quite natural. In fact,
it seems that identifying a simply as being bought by Philips can give rise to
the false implicature that a was not bought by Apple. This suggests that the
proposed algorithm might also be linguistically on the right track. Needless
to say, this hypothesis would need to be investigated empirically. Remarkably,
however, no empirical investigations into this area of the Incremental Algo-
rithm have been done: Dale and Reiter’s proposal for choosing between the
different values of an attribute has been effectively ignored. Be that as it may,
the algorithmic problems with IAAtt will appear in a different light when we
discuss the virtues of incrementality (section 16.2), where doubts will be cast
on the central idea of grouping together properties within attributes.

Infinity. To prove intersective completeness, some cardinality assumptions
need to be made. These assumptions are unlikely to cause problems for applied
NLG, but might have some interest if we aim to understand reference in gen-
eral. For example, suppose one wanted to refer to a Real number that does
not have a “proper name” (unlike, e.g., π); then the class of potentially useful
properties is so vast that no REG algorithm can hope to find the right prop-
erties. As long as the number of properties is denumerably infinite, then this
problem does not arise, although termination can become problematic: if a dis-
tinguishing description [[P1]]∩ ...∩ [[Pn]] exists, then the algorithm will find
such a description in finite time, because each of the n properties in the Log-
ical Form will be found in finite time; if no distinguishing description exists,
however, the algorithm never terminates. To be on the safe side, when we prove
completeness, we will assume that the set of properties is at most denumerably
infinite, whereas the set of distractors is finite.
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Proving Intersective Completeness With these considerations in mind,
it becomes possible to prove theorems about intersective completeness for
property-based IA. This proves that, unlike IAAtt, IAProp is as powerful as it
can be expected to be. (Of course this does not mean that the algorithm must
always generate an RE that is natural or useful; see chapter 5 for discussion.)

Theorem 1 Completeness of IAProp. Suppose there are at most denumerably many properties,
and finitely many (one or more) distractors. Then if an object can be individuated by intersecting
a finite number of properties, IA will find such an intersection.
Proof: Suppose [[Q1]]∩ ...∩ [[Qm]] = {r}, where properties Q1, ..,Qm occur in P in the order
indicated by the subscripts. Now either IA returns Success before it has inspected all of
Q1, ...,Qm, or it reaches the point where all of Q1, ...,Qm have been inspected. This does not
mean that all of Q1, ...,Qm have necessarily been included in L, since other properties in P may
have been selected which cause some of Q1, ...,Qm not to remove any distractors. Yet, when all
of Q1, ...,Qm have been inspected Success must have been achieved. To see this, let Desi be
the Logical Form that results after processing (i.e., inspecting and possibly including) Qi. Then a
proof by induction over i shows that [[Desi]] ⊆ [[Q1]]∩ ..∩ [[Qi]], for all i ≤m. It follows that
[[Desm]] ⊆ [[Q1]]∩ ..∩ [[Qm]] = {r}. But r ∈ [[Desm]], so [[Desm]] = {r}. 2

Now that we have achieved an understanding of the completeness properties
of the Incremental Algorithm, more fine-grained questions appear on the hori-
zon. In particular, we need to discuss how efficient the algorithm is. Efficiency,
after all, was one of the motivations behind the algorithm.

4.8 Computational Tractability of REG Algorithms

As was pointed out in the Introduction to this chapter, Dale and Reiter claimed
that the IA is superior to its competitors in two respects, namely, that the IA

generates more humanlike Logical Forms (see chapter 5), and that it generates
these faster. Let us assess the run-time complexity of these algorithms. Let

1. na = number of properties known to be true of the intended referent.

2. nd = number of distractors.

3. nl = number of attributes mentioned in the RE that is generated.8

8 The variable nl, from [Dale and Reiter, 1995], counts attributes rather than properties (i.e., com-
binations of an attribute and a value) reflecting Dale and Reiter’s tacit assumption that the values
of a given attribute cannot overlap (cf., our section 4.7). If this assumption is abandoned, nl should
count the number of properties.
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Under Dale and Reiter’s analysis, GR has a complexity of na × nd × nl,
because it needs to make nl passes through the problem, at each stage check-
ing at most na attributes to determine how many of the nd distractors they
rule out. By contrast, if we focus on the problem of finding attributes (leaving
the problem of finding an optimal value, and the above-mentioned problems
with overlapping values, aside), then IA has a complexity of nd × nl, because
it requires nl passes but does not look for the optimal attribute at each stage,
since this is fixed in the Preference Order. Dale and Reiter assessed the com-
plexity of FB as nnl

a , so the function grows exponentially. Note that, under a
conventional interpretation, this analysis does not so much set aside the IA, but
the FB: whereas the latter’s complexity is exponential, both GR and IA have
polynomial complexity. In other words, there are no strong computational rea-
sons for preferring IA over GR.

A more interesting question is whether computational complexity should be
a relevant consideration at all in the evaluation of REG algorithms – or com-
putational cognitive models more generally (cf., section 16.1), for that mat-
ter. First, let’s view an algorithm as a model of human behaviour. Current
REG algorithms seldom pretend to model the process (i.e., “How?”) aspects
of human reference production (section 16.1); at best, they offer a reason-
able approximation of the descriptions produced by a human speaker, or of
their usefulness. From this perspective, the factors that determine the choice
between two algorithms have nothing to do with the speed of these algorithms,
but only with the quality of their output. If algorithms aimed to capture the
how, then REG algorithms could be interpreted as making predictions about
speech-onset times, for instance, by tracing how much time each algorithm
takes in a given referential situation and comparing this with the time that a
speaker takes before starting to produce an RE in that situation.9 This man-
ner of analysing complexity would be interesting, but this analysis would be
starkly different from the type of analysis offered above: from the above per-
spective, slow means bad; from the suggested perspective, slow might be good
(namely, in situations where speakers are slow).

It might be argued that complexity is worth studying for practical reasons,
because an intractable algorithms can be too slow to be useful. However, this
is debatable as well. Probably no RE contains more than a hundred properties.
This realization instantly removes the variable nl from the complexity of FB,

9 See [Gatt et al., 2012] for a tentative analysis along these lines. See also section 16.3, where
some of these arguments are revisited.
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causing the algorithm to run in polynomial time. Moreover, a polynomial algo-
rithm whose constants have high values can take more time in actually occur-
ring situations than an exponential one whose constants have low values. It is
therefore difficult to assess the practical implications of theoretical complex-
ity results (i.e., ones that use broad complexity classes). Moreover, complexity
analyses can omit important aspects of an algorithm: the problem of finding
appropriate values (of a given attribute) is often left out of consideration, for
instance. Similarly, we shall see in the next chapter that finding a good Prefer-
ence Order for IA can be very difficult, and this task is not taken into account
in the above complexity analysis either.

Computational complexity analyses of REG algorithms have faded into the
background in recent years. For example, when REG algorithms were tested
in international competitions (as discussed in the next chapter), their run-time
behaviour was not assessed. Even though this might change in the future (see
section 16.3), this book shall follow the same practice, except where the com-
plexity implications of an algorithm are too stark to neglect.

4.9 Salience

Let us see briefly how REG algorithms can take salience into account. For sim-
plicity, we shall focus on situations in which the speaker and the hearer under-
stand the salience (cf., section 1.6) of each domain object in the same way.

Some accounts of salience treat it as a two-valued, “black-or-white” con-
cept. Algorithms such as the IA can produce reasonable REs “in context” when
the set of salient objects is limited in some way, for example, to those enti-
ties mentioned in the previous utterance [Passonneau, 1996], [Jordan, 2000c].
But it has long been acknowledged that it is more natural to think of salience
— just like height or width, for example — as coming in degrees (e.g.,
[Alshawi, 1987]). Accordingly, theories of linguistic salience do not merely
separate what is salient from what is not; they assign referents to different
salience bands, based on factors such as recency of mention and syntactic
structure (e.g., [Chiarcos, 2011] for a survey).

One popular approach is to model salience by means of a focus stack
in the style of Grosz and Sidner [Kronfeld, 1990, Dale and Reiter, 1995,
DeVault et al., 2004]: an RE is taken to refer to the highest element on the
stack that matches its description. Krahmer and Theune use a more flexible
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method, associating a salience weight (sw) with each object, and interpret-
ing an RE like the man as referring to the man with the highest salience weight
[Krahmer and Theune, 2002]. They keep the Incremental Algorithm of section
4.6 as it is, except for the start of the algorithm, where they limit the domain
to those entities that are salient enough that a generator needs to take notice of
them. To do this, they let the algorithm of section 4.6 start with a clause that
equates the set of distractors to those that are at least as salient as the referent.
The rest of the algorithm stays exactly the same. Given the problems that we
encountered with IAAtt, we take the property-based IAProp as the starting point
of the algorithm (Algorithm 7).

Algorithm 7 The Incremental Algorithm (based on properties and salience)
Input: A set of domain objects containing a target referent r and a non-empty setM of
distractors. The function sw assigns a salience weight to each element of the domain.
A set P of properties defined on the domain, where each element of P holds true of r.
Finally, a linear Preference Order defined on P .
Output: A purely conjunctive distinguishing description D of r if one exists.

1: Start out with an empty D
2: Remove from M all elements d such that sw(d) < sw(r)
3: while Not all distractors have been ruled out and P 6= empty do
4: Select a new property P from P , choosing the most preferred one
5: if P is false of some distractors then
6: Add P to D
7: Remove P from P
8: Remove from M all distractors ruled out by P

To see how the new clause causes the algorithm to work, suppose the domain
consists of 100 mice, with two of them, Minnie and Mickey, more salient
than the others. Assume sw(Mickey) = sw(Minnie) = 10, but sw(x) < 10

for all others, for instance, because the two named mice were encountered
more recently than the others. Suppose, furthermore, that Mickey is the tar-
get referent, so the relevant (i.e., sufficiently salient) part of the domain is
{Mickey,Minnie}. The task of the algorithm is then to set Mickey apart
from Minnie by finding a property that is true of Mickey but not of Minnie
(e.g., the property male). Other REG algorithms can be modified in the same
way, by limiting the domain that the algorithm pays attention to.10

10 Alternatively, it is possible to let the set M of distractors remain unchanged from section
4.6, but to modify the algorithm in such a way that insufficiently salient domain elements are
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Once differences in salience are taken into account, the question comes up
how to choose between different types of NP. When, for example, is it appro-
priate to use a demonstrative (“this man”, “that man”) or a pronoun (“he”,
“she”)? As for demonstratives, a body of work by Paul Piwek has shown it to be
remarkably difficult to know when these should be used (e.g., [Piwek, 2008]).
Regarding pronouns, Krahmer and Theune explored what would happens if
“he” was taken to abbreviate “the (most salient) man”, and “she” “the (most
salient) woman”, a move that would bring pronouns into the orbit of REG.
Because of their in-built preference for brevity, the resulting algorithms would
tend to choose pronouns whenever these can be interpreted unambiguously.
(For alternative analyses, see [McCoy and Strube, 1999, Henschel et al., 2000,
Callaway and Lester, 2002, Kibble and Power, 2004].)

Most work on REG takes its departure from a Knowledge Base.
By contrast, studies focussing on salience frequently use text as their
starting point [Poesio and Vieira, 1998, Belz et al., 2010, among others],
[Siddharthan and Copestake, 2004]. This perspective is also taken by the GREC

Evaluation Challenge [Belz et al., 2008] and [Belz et al., 2010], which invited
algorithms to choose the type of RE that suits a particular referent in a partic-
ular linguistic context. A detailed discussion of the choice between pronouns,
demonstratives, and full NPs is beyond the aims of this book (see e.g., sec-
tion 1.6), but it will be useful to return briefly to the effect of salience on the
Content Determination task for full NPs.

Although these approaches make sense, it is worth acknowledging their lim-
itations. It is possible, for instance, to question the claim that only those domain
elements need to be considered that are at least as salient as the referent: if the
domain contains two men, one of whom is just slightly more salient than the
other, then can we really refer to him as “the man”? Perhaps, in other words,
the clause sw(d) ≥ sw(r) in Algorithm 7 may need to be replaced by one that
allows d to have a slightly lower salience weight than r as well.

More importantly, a linguist confronted with Algorithm 7 will point out that
salience is not the only factor to be taken into account. Deirdre Wilson offers
the following example [Wilson, 1991]:

Sean Penn attacked a photographer. The man was quite badly hurt.

disregarded when the algorithm tests whether all distractors have been ruled out. This alterna-
tive version tests whether M ∩ {x | sw(x) ≥ sw(r)} = ∅. The two versions generate the same
descriptions in most, but not all, cases; I do not know which one is empirically most accurate.
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In this case, Sean Penn is at least as salient as the photographer, yet the lat-
ter is more likely to be the intended referent for “the man”. In Wilson’s view,
it is necessary to take into account such factors as (in some cases) the inher-
ent plausibility of the resulting interpretation and (in other cases) the ability
of an interpretation to yield inferences that are of interest to the hearer. Both
types of explanation, and particular the latter one, with its roots in Relevance
Theory (cf., section 3.3), would be extremely difficult to implement in a com-
puter program, because the details of the explanation have not been worked
out in sufficient detail. Yet Wilson has a point. At times like this, linguists and
computer scientists often part company.

Different standards of precision lie at the heart of many misunderstandings
between linguists and computer scientists: frequently the former fail to under-
stand why the latter can accept a relatively simple-minded account (which dis-
regards some important issues), whereas the latter wonder why linguists can
be satisfied with an explanation that computer scientists would regard as hand-
waving (because some crucial things are left undefined). Similar misunder-
standings can be found in many other areas of Cognitive Science.

4.10 Summary of the Chapter

We have introduced the classic REG task, which resulted from Dale and
Reiter’s focus on identification of the referent. We have also introduced some
of the best-known algorithms addressing this task, the classic REG algorithms,
namely: the Full Brevity (FB) Algorithm, the Greedy Algorithm (GR), and the
Incremental Algorithm; other approaches to the classic REG problem will be
discussed in chapter 6.

• The first REG algorithm appears to have been designed in the early 1970s
by Winograd. In the 1980s, Appelt and Kronfeld (the California School)
constructed REG algorithms addressing difficult questions about reference
in the context of formal speech act theory. [Section 4.2].

• Around 1990, Dale and Reiter proposed a slimmed-down reference task
that is more feasible than the tasks studied by Winograd and Appelt. The
new (“classic”) task focussed on reference in one shot, to one referent,
and by means of non-relational predicates only. Building on Winograd and
Appelt’s ideas of incremental generation and Rosch-style basic values, Dale
and Reiter’s Incremental Algorithm (IA) uses a fixed Preference Order to
select properties for inclusion into the generated RE. [Section 4.6]
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• The Greedy and Incremental Algorithms share a common monotonic struc-
ture, whereby properties are added to a Logical Form one by one and never
withdrawn. They differ in the manner in which they select the next prop-
erty to be examined by the algorithm. The monotonic approach to REG will
continue to play a role throughout the book. [Section 4.6]

• Unlike Full Brevity and the Greedy Algorithm, the Incremental Algorithm is
an intensional algorithm, because it is able to distinguish between properties
that are co-extensive. [Section 4.6]

• Under reasonable assumptions, both FB and GR are intersectively complete.
The same holds for the property-based version of the Incremental Algo-
rithm, IAProp. However, it does not hold for the published version of the
Incremental Algorithm, which can fail to refer even in situations where it is
possible to identify the referent using simple (i.e., logically atomic) proper-
ties. [Section 4.7]

• Here, as in other areas of Cognitive Science, analyses of computational
tractability have receded into the background in recent years, giving way
to empirical studies. [Section 4.8] One type of empirical study, involving
what we shall call a semantically and pragmatically transparent corpus, will
taken centre stage in the next chapter.

• Salience degrees can be incorporated into standard REG algorithms but it
is as yet unclear what is the empirically most accurate way to do this, and
linguistic observations in the tradition of Relevance Theory suggests that
existing accounts fail to take some crucial factors into account. [Section 4.9]
We shall have more to say about salience in section 9.7.

• The generation of relational descriptions, as in the RE “the cup on the table”,
was first addressed in [Dale and Haddock, 1991] but frequently disregarded
in later years. The generation of relational descriptions will be discussed in
section 6.4 and discussed in section 6.5 and chapter 10. More implicitly,
relational REs will play an important role in chapters 12 and 13.
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5 Testing REG Algorithms: The TUNA Experiment

Dale and Reiter’s discussion of REG, which was the topic of chapter 4, opened
the door to a very focussed study of reference production. By concentrating on
a specific version of the reference task, it became possible to test algorithms.
This chapter will discuss how their ideas came to be tested, and what one can
learn from these tests.1

Unlike other parts of the book, this chapter will offer a certain amount of
detail concerning experimental setup and statistical analysis: to convey the
spirit of empirically informed computational modelling, it seems important to
give the reader an impression of the experimental details at least once. Readers
who do not care for such things may want to move on to section 5.7, where we
draw conclusions from this experiment, or they may skip this chapter entirely.

Around 1990, statistical methods were starting to pervade computational
linguistics. These methods were becoming successful in Machine Translation
and Speech Recognition, so linguists started to ask themselves methodological
questions that had long been dormant, such as, “How do I know that my theory,
or my algorithm, is any good?” Such questions only become pertinent once
algorithms have reached a certain level of sophistication: to find flaws in a
shoddy piece of work, you don’t need extensive experimentation; but linguistic
theories and algorithms had matured, so evaluation became crucial.

The results of this change are stark. Pick up a conference proceedings in
Computational Linguistics around the middle of the 1980s and you’ll find
clever computing science, frequently linked with Formal Logic and theoretical
linguistics; what you will not find is systematic evaluation. Now fast-forward
to the year 2000, and Computational Linguistics had changed beyond recogni-
tion: conference papers lacking empirical evaluation had become a rarity. Few
would argue that this is a bad thing. However, links with logic and linguis-
tics had correspondingly declined [Reiter, 2007]. Computational Linguistics,
in other words, had taken a drastic “empirical turn”. Our chapter 10 will return
to these issues, arguing that logic has a crucial role to play in REG and other
areas of Computational Linguistics.

1 I am much indebted to Albert Gatt for providing me with statistical analyses that modify the
ones reported in journal articles and conference proceedings, by disregarding reference to sets.
The reasons for disregarding sets in the new analyses are explained in sections 5.1 and 5.3, which
build on [van Deemter et al., 2012b] and [van Deemter et al., 2012a]. Section 5.9 elaborates on
[van Deemter and Gatt, 2007]. The TUNA experiment was proposed in [van Deemter et al., 2006],
discussed in [Gatt et al., 2007] and [van der Sluis et al., 2007], and reported more comprehen-
sively in [van Deemter et al., 2012b].
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Evaluation is often conducted by means of coordinated public contests in
which, following an open call, algorithms are tested against the same data set,
using the same evaluation method. It is easy to see the appeal of this idea,
which came to be associated with the terms “evaluation campaign” and “eval-
uation challenge”. An evaluation campaign enables a research community to
compare the behaviour of a large number of algorithms in detail. Without a
campaign this is difficult to do, because researchers often do not have access
to the details of other people’s algorithms. A collective evaluation campaign
allows this to be done in an objective way, orchestrated by a committee repre-
sentative of the research area as a whole.

Evaluation campaigns involving a shared task had been held in many areas
of computational linguistics: The campaigns in Information Extraction (in the
MUC Message Understanding Conferences) started as early as 1987; the Infor-
mation Retrieval challenges (as part of the TREC Text Retrieval Conferences)
took off in 1992; in Text Summarization, a coordinated evaluation campaign
(associated with the DUC Document Understanding Conferences) was first held
in 2001. Around the same time, challenges focussing on Machine Translation
(the NIST OpenMT challenges) were starting up. These campaigns may not
always have been entirely uncontroversial – there is a risk of focussing too long
on one particular kind of data and one particular way of assessing the success of
an algorithm – but there is a wide recognition that evaluation campaigns have
contributed to the considerable successes achieved in these research areas.

Until 2007, however, no systematic evaluation campaign had ever been held
in Natural Language Generation (NLG). Conducting such a campaign is chal-
lenging, because NLG systems can take very different types of inputs, which
makes it difficult to compare systems on a level playing field. Extensive dis-
cussions took place, culminating in a special session at INLG-2006 in Syd-
ney and a workshop on Shared Tasks and Comparative Evaluation in NLG in
2007 [Gatt and Belz, 2010]. REG was singled out as particularly suitable for
an evaluation campaign because, thanks to the work of Dale and Reiter, most
researchers shared essentially the same assumptions about the enterprise, at
least in terms of what the input of the algorithms should be. Yet there were
doubters. Some feared that systematic evaluation campaigns would lead to
exaggerated competition, and that evaluation campaigns would cause a narrow-
ing of research questions and methods. The advocates of evaluation campaigns
won the argument but the doubters ensured that the enterprise was carried out
in a spirit of open-minded experimentation, and that subsequent campaigns
would use subtly different tasks and a variety of metrics to avoid stasis.
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The first NLG Shared Task and Evaluation Challenge took place in
2007, focussing on Attribute Selection for Referring Expressions Genera-
tion (ASGRE). They were largely based on the TUNA corpus and evaluation
method, on which we focus in this chapter, and known as the TUNA (or
ASGRE) challenges. Twenty-two algorithms were submitted to TUNA-REG’07
by 13 research teams [Belz and Gatt, 2007]. The TUNA corpus also featured
in some of the tasks organized for the second and third challenge, TUNA-
REG’08 and TUNA-REG’09, where the number of submitted systems was even
greater [Gatt and Belz, 2010]. A fourth challenge focussed on the generation
of referring expressions (REs) in linguistic context [Belz et al., 2008]. Recent
NLG evaluation campaigns tend to make reference part of a larger enterprise
(e.g., allowing a hearer to find her way in a room). We will focus on reference,
motivating and discussing in some detail the experimental study that stood at
the cradle of these developments, and whose outcomes, in terms of both anno-
tated corpora and evaluation metrics, lie at the heart of the Challenges.

The plan for this chapter is as follows. Section 5.1 explains the thinking
behind the TUNA experiment, after which section 5.2 compares this experi-
ment with its predecessors. Section 5.3 explains how a transparent corpus – a
corpus in which text is coupled with the data that it describes – resulted from
the experiment, which is analysed in sections 5.4, 5.5, and 5.6. The chapter
ends with two different sets of conclusions: one that arises from the original
TUNA experiment itself (section 5.7), and one that arises from the evaluation
campaigns that it gave rise to (section 5.8).

5.1 Why the TUNA Experiment?

Following earlier studies ([Passonneau, 1995], [Gupta and Stent, 2005]),
researchers in the TUNA project compared the IA to its main competitors, Full
Brevity and the Greedy Algorithm, using data elicited from human partici-
pants in a tightly controlled experiment. The TUNA experiment was set up to
test Dale and Reiter’s hypothesis, that the IA is superior. Dale and Reiter had
cited two reasons. One is that the IA is computationally tractable (cf., sec-
tion 4.8), and the other is that the REs generated by the IA are better than
the ones generated by the other algorithms. Although their paper was a little
ambivalent about what this means, it has usually been interpreted in terms of
the degree to which the generated REs resemble the ones produced by human
speakers. Following [Belz and Gatt, 2008], we shall call this the criterion of
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humanlikeness. It is humanlikeness of the Logical Forms generated on which
the present chapter focusses. (A different perspective, which emphasizes the
usefulness for a hearer, will be pursued in chapters 8 and Part IV.) In the foot-
steps of Dale and Reiter, we focus on the task of identifying the referent, tem-
porarily disregarding the fact that REs can serve other communicative purposes
[Jordan, 2002, Stone et al., 2003].

In one respect, our experiments were less conservative. As we shall see in
chapter 8, certain types of references to sets can be generated by variations of
the classic REG algorithms. The quality of the resulting REs was tested as part
of our general plan, so everything so far published on “the TUNA experiment”
has analysed reference to sets as well as reference to singular entities. But even
though we did our best to separate the two phenomena, I believe that clarity is
served most in this chapter by focussing only on reference to individuals; sets
will be discussed in chapter 8. This departure from previous analyses meant
that a number of statistical analyses have had to be done afresh.

For generality, we studied two different domain types, involving furni-
ture (the furniture corpus) and photographs of people (the people corpus).
The annotated TUNA corpus is available from the Evaluations and Language
resources Distribution Agency (ELDA).2 Our original evaluation focussed on
the classic REG algorithms, discussed in chapter 4. In a nutshell:

• Full Brevity (FB) minimizes the number of properties in the Logical Form
generated.

• Greedy Algorithm (GR) selects properties one by one, always choosing a
property that excludes the largest number of distractors.

• Incremental Algorithm (IA) selects attributes or properties one by one, using
a fixed Preference Order.

As noted in section 4.5, Dale and Reiter gave special treatment to the TYPE

attribute: if TYPE is not selected by the algorithm, then IA adds the property
to the Logical Form at the end of the search process. The same considerations
that make this a reasonable move in combination with IA make it a reasonable
move in combination with other algorithms as well. We therefore decided to
level the playing field by applying the same idea to FB and GR.

2 See also the web page http://www.abdn.ac.uk/ncs/departments/computing-
science/tuna-318.php.
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5.2 How to Test a REG Algorithm?

Psycholinguistic studies of reference production, which have typically sought
to test specific hypotheses, are discussed in chapter 3. Here we focus on efforts,
usually undertaken by computational linguists, to evaluate an algorithm as a
whole. To convey the flavour of this work and the issues that need to be con-
sidered, a considerable amount of detail will be necessary.

One of the first evaluations of REG was Passonneau’s work on the famous
pear stories of [Chafe, 1980], which compared a number of classic algorithms
with approaches based on Centering Theory [Passonneau, 1995]. Later, Jor-
dan and Walker used the COCONUT corpus (see chapter 6.6), focussing on
the role of dialogue history. Similarly, [Gupta and Stent, 2005] carried out
an evaluation on the COCONUT and the MAP TASK [Anderson et al., 1991],
[Bard, 2007] corpora.3 The MAP TASK corpus had resulted from an experi-
ment in which an instruction giver explains to a follower how to follow a
route, which is only shown on the map of the instruction giver. The instruc-
tion giver tends to use REs to refer to landmarks on the map. Originally,
landmarks were labeled with proper names (e.g., “The Pond”), but to facil-
itate the study of descriptions, a modified corpus called IMAP was created
[Guhe and Bard, 2008], in which landmarks were not labelled, so the instruc-
tion giver had to invent descriptions [Guhe and Bard, 2012], [Guhe, 2012].
Gupta and Stent used both corpora to compare the Incremental Algorithm
to the Greedy Algorithm [Siddharthan and Copestake, 2004]; their evaluation
took both Content Determination and Linguistic Realization into account,
using a single evaluation metric.

Although these studies offer important insights, they do not directly address
our questions. In the map task corpus, for example, most referents are named
entities. In the COCONUT corpus, identification was often not the only refer-
ential goal of interlocutors, as we have seen. Furthermore, the evaluation met-
ric used by Gupta and Stent incorporated syntactic factors, going beyond the
purely semantic task-definition that the IA sought to address. These issues, of
course, are only limitations from our present viewpoint.

One study offers a more straightforward comparison of the IA and GR

[Viethen and Dale, 2006a]. This study used identification as the sole com-
municative intention. Algorithms were tested against a small corpus of 118

3 For more about the COCONUT corpus, see section 6.6.
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descriptions, obtained by asking experimental participants to refer to drawers
in a filing cabinet, which differed on four dimensions, namely, COLOUR, ROW,
COLUMN and whether or not a drawer was in a corner. The primary evaluation
metric was recall, defined as the proportion of descriptions in the corpus that
an algorithm reproduced perfectly. The comparison of IA and GR revealed a
recall rate of 79.6% for the latter, compared to a 95.1% for the IA. The corpus
contained 29 overspecified descriptions, of which the IA was able (given the
right Preference Order) to reproduced all but five.

We decided to perform a more extensive evaluation of REG Content Deter-
mination in a setting where REs do not rely on linguistic context. A complicat-
ing factor is that the IA is a family of algorithms, because there are as many
versions of it as there are Preference Orders. Considering all of these orders
would have meant comparing a huge number of algorithms, with deleterious
effects on the reliability of any statistical results. We therefore opted to inves-
tigate only orders that are plausible. Where possible, plausibility was defined
in terms of earlier psycholinguistic work. The data against which we com-
pared the IA and its predecessors came from the TUNA corpus, which contains
descriptions of simple, well-defined objects (artificially constructed images of
furniture), and of more complex objects (photographs of people).

Given that Dale and Reiter’s claims focussed on Content Determination, our
comparison of REG algorithms should disregard differences in lexical choice
and Linguistic Realization. Suppose an intended referent has the properties
〈type : sofa〉 and 〈colour : red〉, and two people produce the descriptions “the
settee which is red”, and “the red sofa”, respectively. An algorithm that selects
each of the two properties above should be counted as achieving a perfect
match with both descriptions. In line with Dale and Reiter’s starting point, the
corpus-based evaluation on which we report here focusses on an assessment of
the humanlikeness of the Logical Forms generated by a given REG algorithm.
In other words, we ask how well an algorithm mimics speakers.

How to measure the success of a generated RE? A measure such as
recall does not take into account the degree of overlap between two descrip-
tions. Consider a case where a human-produced description expresses the
attributes {COLOUR, SIZE}, whereas an algorithm outputs {COLOUR} only.
Recall would simply count this as a mismatch, ignoring the overlap between
the two attribute sets. Instead, we adopted the Dice coefficient, a well-accepted
metric that computes the degree of similarity between two sets in a straight-
forward way. Dice is computed by scaling the number of attributes that two



CMR-web-July-2017 2017/7/12 12:14 Page 111 #121

Second Part: Solving the classic REG problem 111

descriptions have in common, by the overall size of the two sets:

Dice(DH ,DA) =
2× |DH ∩DA|
|DH |+ |DA|

(5.1)

DH is the set of attributes expressed in the description produced by a human
author and DA is the set of attributes expressed in the Logical Form generated
by an algorithm. Dice yields a value between 0 (no agreement) and 1 (perfect
agreement). As an indicator of the overall recall of an algorithm, I will also
report the perfect recall percentage (PRP), the proportion of times the algo-
rithm achieves a score of 1, agreeing perfectly with a human author on the
semantic content of a description. After all, one might take the view that to get
it slightly wrong is to get it wrong.

5.3 The TUNA Corpus and Its Annotation

The experiment was carried out over the internet over a period of three months,
yielding 2280 singular and plural descriptions by 60 participants. Later, two
smaller data sets have been constructed using the same overall methodology
for TUNA-REG’08. Algorithms were compared against human descriptions in
the original TUNA corpus. These results were subsequently validated against
one of the TUNA-REG’08 test data sets; because this validation did not reveal
any new insights, however, I will not discuss it in detail here, referring the
reader to [van Deemter et al., 2012b] for details. Another TUNA-REG’08 test
set, however, was used as development data, in a way that will become clear
soon. We let participants refer to objects in two domain types, yielding the
furniture corpus and the people corpus.

We had to find a setting in which large numbers of human descriptions could
be obtained, each referring to an object for the first time. We chose an experi-
ment in which each trial consisted of one or two target referents and six distrac-
tor objects, with the targets clearly demarcated by red borders, as illustrated
in Figure 5.1. Objects were displayed in a sparsely populated 3 (row) by 5
(column) matrix; their positioning inside this invisible matrix was determined
randomly at runtime, for each participant and each trial.

Participants were asked to identify the target in each trial. They were told
they would be interacting with a language-understanding program that would
interpret their description and remove the referents from the domain. The refer-
ent was automatically removed from the domain after a participant had entered
a description. For added realism, the system removed the correct referent(s) on



CMR-web-July-2017 2017/7/12 12:14 Page 112 #122

112 Part II

(a) Furniture trial (b) People trial

Figure 5.1
Trials in the TUNA elicitation experiment.

Attribute Possible Values
TYPE chair, sofa, desk, fan
COLOUR blue, red, green, grey
ORIENTATION front, back, left, right
SIZE large, small
X-DIMENSION (column number) 1,2,3,4,5

Y-DIMENSION (row number) 1,2,3

Table 5.1

Attributes and values in the furniture corpus

75% of the trials, but the wrong one(s) on a (randomly chosen) quarter of tri-
als. With hindsight, this setup may have introduced confounding factors in our
design. For example, participants’ referential behaviour may have altered after
the system “misinterpreted” a description, causing less risk-taking behaviour
[Carletta and Mellish, 1996b]. It was for these and other reasons that we used
the TUNA-REG’08 test data as a second, validating test set, in which this prob-
lem did not arise.

The furniture corpus consists of references in domains constructed using
pictures of furniture and household items obtained from the Object Databank,
a set of stylize, digitally created images developed by Michael Tarr and col-
leagues at Brown University. For each object, six pictures are provided, repre-
senting the same object at six different orientation angles. Four types of objects
were selected from the Databank. For each object, there were four versions
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corresponding to four different values of ORIENTATION. Pictures were manip-
ulated to create a version of each TYPE × ORIENTATION combination in four
different values of COLOUR and two values of size, as shown in Table 5.1.
As shown in the table, there are two additional attributes, X-DIMENSION and
Y-DIMENSION, which describe the location of an entity in the 3× 5 grid.

The people corpus consists of references elicited in domains consisting of
high-contrast, black-and-white photographs of people, which had been used
in [van der Sluis and Krahmer, 2004]. This corpus is more complex than the

Attribute Possible Values
TYPE person
ORIENTATION front, left, right
AGE young, old
BEARD 0 (false), 1 (true), dark, light, other
HAIR 0 (false), 1 (true), dark, light, other
HASGLASSES 0 (false), 1 (true)
HASSHIRT 0, 1
HASTIE 0, 1
HASSUIT 0, 1
X-DIMENSION (column number) 1,2,3,4,5

Y-DIMENSION (row number) 1,2,3

Table 5.2

Attributes and values used in the people corpus

furniture corpus, because a given portrait can be described using many different
attributes (e.g., “the bald man with the funny smile and the nerdy shirt”). In Van
der Sluis and Krahmer’s study, three attributes – BEARD, HASGLASSES and
AGE – had been particularly frequent, therefore we constructed each people
domain in such a way that the target(s) could be distinguished uniquely from
their distractors using a combination of these three.

The experiment consisted of 38 experimental trials, divided into 20 furniture
trials and 18 people trials, each with one or two targets and six distractors in
the sparse matrix. Each trial displays what we call a domain. For furniture, the
domains were constructed by taking each possible combination of attribute-
value pairs in each domain type, and constructing a domain in which that
combination was a minimally distinguishing description (briefly: the minimal
description) of the referent(s), by which we mean a distinguishing description
containing a set of n properties, where no distinguishing description of the ref-
erent exists that contains fewer than n properties. The available attribute-value
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pairs in a domain type were represented an approximately equal number of
times. For example, of the 12 furniture domains in which ORIENTATION was
part of the minimal description, a target faced front or back exactly half the
time, and left or right in the rest.

Table 5.3 summarizes the experimental design, which manipulated one
within-subjects and two between-groups factors. The within-subjects factor
manipulated the Cardinality and Similarity of objects. In the case of plural
domains with two target referents, the two referents may or may not be suf-
ficiently similar to be describable by means of the same minimal conjunction
of properties. Where this is not possible, one may have to split the description
in two parts, as in the red table and the blue sofa, for example. Accordingly,
Cardinality/Similarity had three levels:

1. Singular (SG): 7 furniture domains and 6 people domains contained a single target.

2. Plural/Similar (PS): 6 furniture domains and 6 people domains had two referents
with identical values for the attributes with which they could be distinguished from
their distractors. For example, two pieces of furniture might both be blue in a domain
where all distractors are red. In the furniture domain type, the two referents in this
condition had different values of TYPE (e.g., one was a chair, and the other a sofa),
but in the people domain type, they were identical (because all entities were men).4

3. Plural/Dissimilar (PD): In the remaining 7 plural furniture trials and the 6 plu-
ral people trials, the targets had different values for the minimally distinguishing
attributes. Thus, plural descriptions in this condition would always involve disjunc-
tion if they were to be distinguishing.

Furniture People
SG PS PD SG PS PD

-LOC (N = 30) 525 450 525 450 525 525
+LOC (N = 30) 210 180 210 180 210 210

Table 5.3

Experimental design and number of descriptions within each cell. SG stands for singu-
lar, PS for Plural/Similar, and PD for Plural/Different.

Half of the participants were discouraged from using locative expressions
(−LOC condition), whereas the other half (+LOC) were not. The former were
told that the language understanding program they were interacting with had
different information about the position of objects, so using locatives would

4 This design made Plural/Similar references to furniture more complex than to people. This
is another reason why the present analysis focusses on reference to singular entities, where this
problem does not exist.
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be counterproductive. Participants in +LOC were told that the system had
access to the complete domain of objects, including location. However, loca-
tives were not included in Dale and Reiter’s discussion of REG algorithms.
Moreover, location requires extensions to the original IA to deal with rela-
tions such as above [Gorniak and Roy, 2004, Kelleher and Kruijff, 2006b]. For
these reasons, locative descriptions will not be discussed here.

Participants were randomly assigned to a condition and read the correspond-
ing instructions. They were asked to complete the experiment (i.e., all 38 fur-
niture and people trials) in one sitting. The instructions emphasized that the
purpose of their descriptions must be to identify referents. Trials were pre-
sented in randomized order. Each trial consisted of a presentation of a domain,
as shown in Figure 5.1, where participants were prompted for a description
of the target referent(s). This was followed by a feedback phase, in which the
system removed the target referent. A total of 60 participants completed the
experiment, 15 in each group depicted in Table 5.3.

Figure 5.2 shows how our corpora were annotated. Each corpus descrip-
tion was paired with the domain in which it was produced. Each description
was represented in three different ways: (a) the original string typed by a par-
ticipant (the STRING-DESCRIPTION node); (b) the same string with all sub-
strings corresponding to an attribute, annotated using ATTRIBUTE tags (the
DESCRIPTION node); and (c) a simplified representation consisting only of the
set of attributes used by a participant (the ATTRIBUTE-SET node). Evaluation
required that the domains on which human and algorithm had produced refer-
ences be compatible whenever possible. The exception was when expressions
contained attributes that were not specified in the domain at all (e.g., where a
person was described as being serious), something that is unavoidable in com-
plex domains of this kind; these were tagged using name=’other’. In the
evaluations reported in Sections 5.4 and 5.5, these attributes were discounted
when algorithms were compared.

Two of the authors of the study annotated about 50% of the data, which
was then cross-checked by the other. Disagreements were discussed until
a consensus was reached. The annotated text was processed automatically
to produce the XML representation discussed above. The reliability of our
annotation scheme was evaluated by comparing a subset of 516 descriptions
in the corpus to the annotations made by two independent annotators who
used the same annotation manual. Our findings confirmed that the three sets
of independently annotated descriptions agreed substantially with each other
[van Deemter et al., 2012b].
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<TRIAL ID=’s2t3’ (...)>
<DOMAIN>

<ENTITY type=’target’>
<ATTRIBUTE name=‘type’ value=‘sofa’ />
<ATTRIBUTE name=‘colour’ value=‘red’ />
<ATTRIBUTE name=‘orientation’ value=‘right’ />
<ATTRIBUTE name=‘size’ value=‘large’ />
<ATTRIBUTE name=‘x-dimension’ value=‘1’ />

</ENTITY>
<ENTITY type=‘distractor’>

<ATTRIBUTE name=‘type’ value=‘sofa’ />
<ATTRIBUTE name=‘colour’ value=‘red’ />
<ATTRIBUTE name=‘orientation’ value=‘left’ />
...

</ENTITY>
...

</DOMAIN>

<STRING-DESCRIPTION>
the sofa facing right

</STRING-DESCRIPTION>

<DESCRIPTION>
the
<ATTRIBUTE ID=’a1’ name=‘type’ value=‘sofa’>

sofa
</ATTRIBUTE>
<ATTRIBUTE ID=’a2’ name=‘orientation’ value=‘right’>

facing right
</ATTRIBUTE>

</DESCRIPTION>

<ATTRIBUTE-SET>
<ATTRIBUTE ID=’a1’ name=‘type’ value=‘sofa’/>
<ATTRIBUTE ID=’a2’ name=‘orientation’ value=‘right’/>

</ATTRIBUTE-SET>
</TRIAL>

Figure 5.2

A corpus instance (“the sofa facing right”). Adapted from [van Deemter et al., 2012b].
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5.4 Analysis of the Furniture Corpus

Testing all Preference Orders would not be practical. For this reason, we used
our development data from TUNA-REG’08 to estimate the probability with
which different attributes are produced and we used these probabilities to deter-
mine a set of Preference Orders.

We start with the furniture corpus. As we have seen, the psycholinguistic
literature suggests that, of the three attributes in this domain, COLOUR will
tend to be strongly preferred, whereas SIZE is dispreferred [Pechmann, 1989,
Belke and Meyer, 2002]. The situation is far less clear with ORIENTATION.

Attribute Frequency (%)
TYPE 56 (31.6)
COLOUR 49 (27.7)
ORIENTATION 20 (11.3)
SIZE 20 (11.3)
Y-DIMENSION 16 (9)
X-DIMENSION 13 (7)
OTHER 3 (1.7)

Table 5.4

Frequency of attribute usage in the TUNA-REG’08 development data for the furniture
corpus. (Locative attributes and OTHER are ignored in the present study.) Frequency
says how often the different attributes occurred in the corpus as a whole, for instance,
31.6% of attribute occurrences in the corpus were types.

Frequencies computed from our development data set, displayed in Table
5.4, confirm the predicted trends, while showing a tie between SIZE and ORI-
ENTATION. We therefore expected that Preference Orders that put COLOUR

first will generally perform better (e.g., have higher Dice scores). We can test
these hypotheses by comparing all 6 possible IAs. The one with the order
COLOUR > ORIENTATION > SIZE (which we call IA-COS), the one with the
order COLOUR > SIZE > ORIENTATION (which we call IA-CSO), and so on.

Table 5.5 shows the performance of each algorithm; for completeness it
shows not only results computed on the original TUNA data set, but results
computed on the TUNA-REG’08 data as well; the mean Dice scores on the two
data sets are strongly correlated. (Comparing only the means obtained on the
singular descriptions, r9 = .985;p < .001.) The ranking of the algorithms is
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Original TUNA Data TUNA-REG’08 Data
Mean (SD) PRP Mean (SD) PRP

IA-COS 0.917 (.12) 60.9 0.916 (.16) 69.1
IA-CSO 0.917 (.12) 60.9 0.916 (.16) 69.1
RAND 0.840 (.15) 31.4 0.826 (.18) 34.6
IA-OCS 0.829 (.14) 25 0.829 (.15) 25.5
IA-SCO 0.815 (.14) 19.2 0.823 (.15) 18.2
IA-OSC 0.803 (.16) 22.4 0.801 (.17) 25.5
IA-SOC 0.780 (.16) 18.6 0.782 (.16) 18.2
FB 0.841 (.17) 39.1 0.845 (.17) 37.5
GR 0.829 (.17) 37.2 0.845 (.17) 37.5

Table 5.5

Mean Dice scores and standard deviations for the furniture corpus, in the original
TUNA Data and the TUNA-REG’08 Data set that was used for validation, with PRP

scores per algorithm. All figures are for singulars only. The letters C, O, and S stand for
colour, orientation, and size. PRP stands for perfect recall percentage. As before, FB is
the Full Brevity algorithm, GR the Greedy Algorithm, and IA the Incremental Algorithm
(with different Preference Orders).

largely the same for the two data sets, particularly for the top and bottom rank-
ings. The overall rankings of the algorithms on the TUNA data also correlated
significantly with the rankings on the TUNA-REG’08 data (focussing on the
singular descriptions ρ9 = .98;p < .001). This suggests that the two data sets
are largely compatible.

Note that the two top IAs are the ones that place COLOUR first. A univari-
ate ANOVA test was conducted to compare all the versions of the IA on the
original TUNA data. This analysis showed up a highly significant main effect
of ALGORITHM: F (6,1092) = 22.697, p < .001), so meaningful comparisons
between the different algorithms can be made. A standard way to do this is to
use Tukey’s Honestly Significant Differences.

Pairwise comparisons using this method yielded the four homogeneous sub-
sets of algorithms (A,B,C,D) displayed in Table 5.6. Algorithms in the same
subset (i.e., which share a letter) are statistically indistinguishable from each
other at the level α = .05, in other words, the differences between them that we
measured were small enough that they may have been accidental. (For exam-
ple, the difference between the Dice score of IA-RAND, at 0.840, and the Dice
score of IA-OCS, at 0.829 could be accidental.) Algorithms that do not share
a letter had scores that were significantly different from each other. The table
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IA-COS A
IA-CSO A
IA-RAND B
IA-OCS B
IA-SCO B C
IA-OSC C D
IA-SOC D

Table 5.6

Homogeneous subsets among versions of the IA in the furniture corpus. Algorithms that
do not share a letter are significantly different at α = .05.

shows a separation between the two IAs that prioritize COLOUR, and the other
algorithms. Clearly, even in a small domain with few dimensions of variation
among objects, the human-likeness of the output of the IA is affected by the
Preference Order. For the next part of our analysis, we will compare GR and
FB against an optimal IA, namely, IA-COS, and the non-optimal IA-SOC.

Table 5.5 shows that the brevity-oriented Greedy and Full Brevity algo-
rithms fall somewhere between the two top-scoring IAs that place COLOUR

first, and the others, with IA-RAND actually outperforming them by a small
margin in terms of mean scores. We conducted a separate univariate ANOVA

comparing the best and worst IAs to FB and GR, which showed up a significant
main effect of ALGORITHM (F (3,624) = 20.559, p < .001).

IA-COS A
FB B
GR B
IA-SOC C

Table 5.7

Homogeneous subsets among the best and worst IAs with FB and GR. Algorithms that
do not share a letter are significantly different at α = .05.

The post-hoc Tukey’s test (Table 5.7) shows that the two brevity-oriented
algorithms scored reliably worse than the best IA but reliably better than the
worst IA. In other words, Dale and Reiter’s prediction, to the effect that an
incremental strategy would improve humanlikeness, was only valid for a spe-
cific subset of all the possible IAs. These results suggest that Intrinsic Pref-
erence is an important component of any analysis that seeks to test Dale
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and Reiter’s claims. Good Preference Orders outperform all other algorithms,
whereas an order that reverses known human attribute preferences does far
worse than any other algorithm. Such statements also depend on the evalua-
tion metric used. With the exception of IA-SOC, the overall means in Table 5.5
range between 0.75 and 0.9. These differences seem intuitively small, which
might be explained by the simplicity of the domains.

5.5 Analysis of the People Corpus

To see what happens in a more challenging referential domain, we now turn
to the people corpus. Given that the number of attributes is greater than in
our previous analysis, it is even more crucial to have an a priori estimate of
what Preference Orders might constitute good IAs. This time, however, the
psycholinguistic literature provides little guidance: not a lot has been published
on the perceptual salience of attributes such as HASGLASSES. Therefore, we
have to rely on frequencies based on the development data set (Table 5.8).

Attribute Frequency (%)
TYPE 55 (29.6)
HASBEARD (B) 36 (19.4)
HASGLASSES (G) 25 (13.4)
HASHAIR (H) 22 (11.8)
AGE (A) 14 (7.5)
HASSHIRT (S) 4 (2.2)
HASSUIT (S) 3 (1.6)
HASTIE (T) 2 (1.1)
ORIENTATION (O) 1 (0.5)

Table 5.8
Frequency of attribute usage in the development data for the people corpus. (Locative attributes
and OTHER are ignored in the present study.) Frequency says how often the different attributes
occurred in the corpus as a whole, for instance, 29.6% of attribute occurrences were types.

The table suggests a gap between the three attributes BEARD, HASGLASSES,
and HAIR, and all the others.

To construct different versions of the IA, we took all possible permutations
of these three attributes, imposing a fixed order on the other six. Additionally,
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we again used a version of the IA that randomizes the Preference Order (IA-
RAND) and one that reversed the hypothesized best orders; this is our predicted
bad version, IA-SSTAOHGB:

IA-GBHOATSS: HASGLASSES > BEARD > HAIR > ... > HASSUIT

IA-GHBOATSS: HASGLASSES > HAIR > BEARD > ... > HASSUIT

IA-BGHOATSS: BEARD > HASGLASSES > HAIR > ... > HASSUIT

IA-BHGOATSS: BEARD > HAIR > HASGLASSES > ... > HASSUIT

IA-HBGOATSS: HAIR > BEARD > HASGLASSES > ... > HASSUIT

IA-HGBOATSS: HAIR > HASGLASSES > BEARD > ... > HASSUIT

IA-SSTAOHGB: HASSUIT > HASSHIRT > HASTIE > AGE > ... > BEARD

Original TUNA Data TUNA-REG’08 Data
Mean (SD) PRP Mean (SD) PRP

IA-GBHOATSS 0.844 (.17) 44.7 0.811 (.17) 33.9
IA-BGHOATSS 0.822 (.17) 36.4 0.797 (.17) 32.1
IA-GHBOATSS 0.776 (.21) 29.5 0.77 (.18) 26.8
IA-BHGOATSS 0.728 (.19) 15.9 0.792 (.17) 30.3
IA-HGBOATSS 0.688 (.18) 3.8 0.765 (.17) 25
IA-HBGOATSS 0.658 (.20) 4.5 0.752 (.17) 23.2
IA-RAND 0.598 (.23) 11.4 0.527 (.21) 0
IA-SSTAOHBG 0.344 (.11) 0 0.344 (.08) 0
FB 0.764 (.23) 34.1 0.642 (.23) 19.6
GR 0.693 (.20) 8.3 0.642 (.23) 19.6

Table 5.9

Mean Dice scores and standard deviations for the people corpus, with PRP scores per
algorithm. All figures concern singulars only.

Table 5.9 shows the overall Dice scores to be more broadly distributed than
before, with IA-RAND and IA-SSTAOHBG scoring at or below .6. The worst IA

has an extremely low PRP, scoring 0 in the singular data (so it does not match
with any of the descriptions). A univariate ANOVA again showed a highly sig-
nificant main effect of ALGORITHM: F (7,1056) = 96.691, p < .001).

Table 5.10 shows that the two best-performing algorithms differ signifi-
cantly from all other algorithms. At the bottom of the table, two distinct subsets
identify the worst-performing algorithms, one of which is IA-RAND. We con-
clude that, in the people corpus, there is a strong dependency of the IA on the
Preference Order. Once again, the versions of the IA that perform best are those
that prioritize frequent attributes.
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IA-GBHOATSS A
IA-BGHOATSS A
IA-GHBOATSS B
IA-BHGOATSS C
IA-HGBOATSS C D
IA-HBGOATSS D
IA-RAND E
IA-SSTAOHBG F

Table 5.10

Homogeneous subsets among versions of the IA in the people corpus. Algorithms that
do not share a letter are significantly different at α = .05.

As before, the means for GR and FB in Table 5.9 fall somewhere between
the best- and worst-performing IAs, with FB outperforming GR. We compared
these two algorithms to one of the best IAs (IA-BGHOATSS) and the worst
(IA-SSTAOHBG). A univariate ANOVA showed a main effect of ALGORITHM

(F (3,528) = 187.570, p < .001). The results confirm that FB outperformed
GR, and that both are significantly better than the worst version of the IA.

IA-BGHOATSS A
FB B
GR C
IA-SSTAOHBG D

Table 5.11

Homogeneous subsets among the best and worst IAs with FB and GR in the people
corpus. Algorithms that do not share a letter are significantly different at α = .05.

5.6 Modelling a Plurality of Speakers

We have so far judged an algorithm by its average Dice score, calculated over
all the expressions produced by all participants in the TUNA experiment. This
strategy masks important issues. It might be, for example, that an algorithm
with a poor Dice score offers a near-perfect model of some subjects (but a
terrible model of most of them), in which case such an algorithm could be
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argued to be better than its average score suggests. It might be well placed
to pass the Turing test, for instance (which is based on people’s ability to tell
whether a certain behaviour was produced by a real person or by a computer).
Here we address the issue by charting post hoc to what extent the answer to
our research question (i.e., how good a model of human referential behaviour
the IA is) depends on the speaker on which one happens to focus.

One reasonable question is: Did our participants differ in terms of which
algorithm matches them best? We write “s selects algorithm A” as short for
“algorithm A has an average Dice match to author s’s descriptions that is at
least as good as that of all other algorithms considered”. If several algorithms
have the same average match with a participant’s descriptions, then we will
say that all of them are selected by that participant. Thus, our question is: Do
different participants select different algorithms?

In the furniture corpus, variation between speakers were limited: 17 out of
19 select IA-COS and IA-CSO as their best algorithms. The remaining 2 select
IA-COS and IA-CSO as their (equal) second choice. More substantial differ-
ences were found in the people domain (Table 5.12): there is a clear majority
for IA-GBHOATSS, but as many as 7 of the authors select 4 other algorithms,
namely, FB, IA-GHBOATSS, IA-BGHOATSS, and IA-HGBOATSS. Interestingly,
FB matches a few authors better than any IA. This is only a post-hoc analysis,

Best 2nd Best Worst
FB 2
IA-GBHOATSS 14 5
IA-GHBOATSS 1 2
IA-BGHOATSS 2 10
IA-HGBOATSS 1
IA-SSTAOHBG 20
IA-BGHOATSS & IA-BHGOATSS 1
& IA-HGBOATSS

RAND & GR & IA-BGHOATSS 1
GHBOATSS & IA-BGHOATSS 1

Table 5.12

Numbers of subjects that had a particular algorithm as their best, second-best and
worst match in the people domain (singulars only). Algorithms that were neither the
best match nor the second-best match nor the worst match to any speaker are omitted.

yet it seems striking that even a simple reference task gave rise to such marked
differences between speakers. Variation between speakers will be discussed
further in section 6.3.
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5.7 Lessons from the TUNA Experiment

The research community has been able to learn some useful lessons from
the TUNA experiment, some of which are starting to be reproduced for lan-
guages other than English (for Dutch in [Koolen et al., 2009]; for Arabic in
[Khan, 2015]). Let us start by summarizing them.

The aim of the TUNA experiment was to test the hypothesis that the IA pro-
duces Logical Forms that are more “humanlike” than its main competitors.
The IA has undeniable strengths, but in the TUNA corpus, it proved to be dif-
ficult to confirm this hypothesis unambiguously. For although there always
existed a version of the IA that outperformed all other algorithms examined,
its success depended substantially on what Preference Order is chosen: a sub-
optimal Preference Order results in Logical Forms that are significantly worse
than those produced by FB and GR, for example. Some human speakers, in fact,
will be modelled more accurately by FB and GR than via any incremental gen-
eration strategy: in the people data, FB agreed perfectly with a human author
about 61% of the time. A practitioner in Language Technology who is looking
for a REG algorithm for an unfamiliar application domain might be forgiven
for choosing FB or GR, instead of an unproven version of the IA.

Although psycholinguistic findings can sometimes help to find good Pref-
erence Orders, in many domain types such principles are of limited help, as
we have seen. However, in the absence of psycholinguistic information, the
frequency of each attribute in a corpus can help. The TUNA corpus, and the
replication of it that we used to predict Preference Order (Section 5.3), give us
a relatively strong starting point, because these corpora result from a semanti-
cally balanced experiment, which guarantees that the most important types of
situations occur equally frequently. Most generally available corpora (such as
the BNC) are often not balanced in this way. An attribute may occur frequently,
in such a corpus, because it happened to have a high discriminatory value in
situations that occur often in the corpus domain. A frequency-based strategy
could cause this attribute to be over-used in situations where its discriminatory
value is lower.

We have seen that the shortcomings of the IA became particularly noticeable
in connection with the more complex of the two domain types (i.e., the people
domain). This should give pause for thought. In many ways, the people domain
was still comparatively simple. People in the real world, as opposed to mere
photographs, would have been identifiable in terms of their physical features,
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past actions, ideas, and so on. It is unclear whether any of the algorithms dis-
cussed here would do well in such situations. As we shall see in Part IV of
the book, there are domain types in which the IA performs poorly regardless
of Preference Order. These results suggest that future research in REG should
focus on the complexities posed by the large and complex domains that speak-
ers are often faced with in real life.

A Letter to the Editor of Cognitive Science that discussed our results
wondered how much data is needed to find a “good” Preference Order
[Krahmer et al., 2012]. Analogous to our section 5.5, the authors sought to
determine Preference Orders by counting the frequencies of attributes in the
TUNA corpus. They found that, for furniture, tiny samples suffice to construct
an IA that performs as well as their best-performing IA; for the people corpus,
the results were more varied, although small samples still tended to perform
well. Their procedure went like this: they computed Dice and PRP scores for
samples consisting of 1, 5, 10, 20, 30, 40, 50, and 150 descriptions, that is, at
8 different levels. Larger samples might be expected to lead to better IAs of
course, because they give a more accurate picture of language use. The authors
show that for the furniture corpus, a “ceiling” is reached with as few as 5
descriptions; for the people corpus, a Dice ceiling is reached at 10 descriptions,
whereas a PRP ceiling is reached at 40. The ceiling is defined as the lowest level
that did not score significantly worse than the IA associated with the highest
level (i.e., level 8). The fact that, at least in the TUNA domains, a few examples
suffice to find a “good” Preference Order does not tell us how much data would
be needed to allow IA to beat its competitors [van Deemter et al., 2012a]. The
findings of Krahmer and colleagues are useful nonetheless, because transpar-
ent corpora such as the full TUNA corpus are very labour-intensive to design.

5.8 Lessons from the TUNA Evaluation Challenges

We have seen that the TUNA experiment is closely connected to three concerted
evaluation campaigns. What can one learn from them?

On balance, the NLG evaluation challenges have been a force for good. The
community has not been torn apart by strife, and a perusal of the proceedings
of recent NLG conferences does not suggest an obvious narrowing of research
issues and research methods. Moreover, thanks perhaps to the doubters’ warn-
ings, no single evaluation metric has been treated as sacrosanct. It is reas-
suring to see what variety of metrics was used for the last GIVE challenge,
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which focussed on Direction Giving [Koller et al., 2010b]. The metrics ranged
from objective criteria (task completion rate, speed, distance travelled, instruc-
tions per second, etc.) to subjective criteria based on questionnaires, in which
respondents were asked to indicate their agreement with statements such as
“Overall the system gave me good instructions”, “I was confused about which
direction to go in”, “I could easily identify the buttons the system described
to me, “The system was very friendly”, and so on [Koller et al., 2011]. More
NLG evaluation challenges are being organized, addressing various NLG tasks.
At least for the moment, evaluation challenges are in vogue.

With hindsight, many aspects of the TUNA challenges have been vindicated.
In particular, statistical analysis of the results offers additional support for the
use of a plurality of quality metrics. As Belz and Gatt wrote, “our results raise
the possibility that automatic, corpus-based metrics of human-likeness focus
on very different aspects of the quality of human REs than those tapped into
by extrinsic, task-based measures.” [Gatt and Belz, 2010]). Yet, it seems to me
that TUNA’s reference task was too easy in terms of the number of distractors
and the number of properties that need to be taken into account, and this may
have caused researchers to over-rely on tried-and-tested methods. Reference in
real life is often far more complex than in the TUNA experiment: one wonders
how difficult it is to find “good” Preference Orders when we point out a person
in a crowd, or when two people talk about a place they once visited together,
or when a researcher talks about a linguistic phenomenon. Reference in such
cases is immeasurably more complex than the task of picking out one person
among just 6 distractors. To chart this complexity, Part IV of this book will
concentrate on situations that are a bit closer to real life.

The corpora that were used in the challenges should not be taken as the ulti-
mate yardstick by which any REG algorithm should be judged. First, when a
corpus has been around for a while, algorithms may be designed with these
corpora in mind, hence good performance on these same corpora is no guar-
antee for good performance in general. Second, these corpora may not contain
the data necessary for putting your algorithm to the test. Suppose, for example,
your algorithm was designed with the primary aim of producing good descrip-
tions of domain objects that cannot be identified uniquely. Under these circum-
stances, good performance on TUNA’s furniture corpus does not tell you any-
thing useful. To find out whether your algorithm has achieved its aim, you need
to conduct a new experiment. Indeed, you may want to test specific hypotheses
rather than compute average Dice scores; your work will come to resemble a
classic exercise in psycholinguistics (chapter 3).
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The evaluations discussed in this chapter have focussed on the extent to
which the Logical Forms produced by an algorithm match the ones that
employed by human speakers. This is an interesting perspective, which might
help computer programs to pass the Turing test [Turing, 1950]; moreover,
there is some evidence that, by making REs resemble the ones produced
by human speakers, the resulting expressions are more easily understood
[Campana et al., 2004]. However, there should also be room for alternative,
utility-driven evaluation methods. After all, (cf., section 1.5) human-likeness
is not necessarily the most practically useful criterion for judging a production
algorithm. Later chapters will often explore a different perspective, relating to
the utility of the descriptions generated.

5.9 A Note on Alternative Metrics

The Dice metric was a natural choice for measuring similarity between sets, yet
alternative metrics might suit future REG evaluations even better. One problem
is that Dice regards all properties as equidistant. Suppose a person referred to
an object as “the recently-published book”. Now suppose algorithm A referred
to it as “the recently-bought book”, whereas algorithm B referred to it as “the
book on the top shelf”. Dice would assess both algorithms as equally faithful
to the person’s utterance, although intuitively, A beats B, because the proper-
ties it selects are more closely related to the human choice. Future research
could seek to formalize this idea, perhaps by measuring the similarity between
properties in terms the similarity of their extensions, for which the Dice metric
might then be used once again.

Dice looks at properties individually, without taking their joint effect into
account. This is like regarding the choice of a car as if it consisted of a number
of independent choices: for the wheels, for the chassis, and so on. Like car
parts, the properties in an RE should fit together. This can sometimes be a mat-
ter of style, as when two properties represent different views of the referent
(section 8.7). In other cases, “fitting together” can have a more easily mea-
surable meaning. Suppose algorithms C and D refer to a target using different
descriptions, each deviating from a human-produced description by only one
property. But whereas C produces a distinguishing description, D produces a
description that fails to identify the referent. Dice would assign equal scores to
C and D yet, functionally, C resembles the human-produced description more
closely. Finding better metrics seems an important area for further research.
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5.10 Summary of the Chapter

We have discussed an empirical investigation of the classic REG algorithms,
asking how similar the output of these algorithms is to the REs produced by
people. The TUNA experiment was discussed in detail, and so was its role in a
series of evaluation campaigns. As for the TUNA experiment itself,

• The TUNA experiment dealt with the classic REG problem, focussing on one-
shot, one-referent REs with just one argument place. [Section 5.3]. More-
over, it focussed on small domains involving just one or two referents and 6
distractors, and this may have limited its “ecological validity” (section 3.7).

• Existing REG algorithms are good at mimicking human behaviour in simple
situations. [Section 5.4] However, comparisons between the furniture and
the people domain suggest that REG algorithms perform worse on the latter.
[Section 5.7]. This suggests that these algorithms might struggle in complex
referential situations. Parts III and IV of this book will turn to these.

In section 5.8 we have seen that, as for the TUNA evaluation campaigns,

• The TUNA evaluation challenges have helped create common ground
between research groups worldwide, although it is less clear that they have
boosted the development of new REG algoritms.

• Follow-ups to these evaluation challenges have started to investigate the role
of reference as part of a wider communicative task, such as Direction Giving
(in the GIVE task, cf., chapter 12).

• Recent evaluation challenges in Natural Language Generation show an
awareness that no single metric should be seen as the right one, necessi-
tating the open-minded use of a range of different metrics.

This chapter has shown in some detail how data can be employed to test an
algorithm. Data can also be employed to inspire an algorithm, for example by
means of Machine; we shall soon see that the TUNA corpus has been employed
in this way as well.
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The previous chapters have focussed on the mainstream of work on the gen-
eration of referring expressions, where a group of “classic” REG algorithms –
which operate by monotonically adding properties until the referent has been
identified – took up a central position. Yet a range of alternative approaches
have attracted attention in recent years. This chapter discusses some of them,
with emphasis on a group of probabilistic approaches that convert a given input
into a probability distribution on set of REs (rather than into just one RE). I
chose this focus because it raises questions that are not only pertinent to lan-
guage production, but to many areas of human behaviour, because variation is
(or appears to be) a feature of our behaviour in general.1

After discussing probabilistic approaches (sections 6.1 and 6.3), we turn to
a family of approaches based on Constraint Satisfaction (section 6.4). As part
of the same discussion we shall also introduce the generation of relational
descriptions, such as “the book on the table”, where the book is described via
its relation to a table. Relational descriptions are of independent importance but
they happen to have been addressed using Constraint Satisfaction first. Rela-
tional REs will feature again in section 6.5 and, finally, in chapter 10, where a
more general solution to their generation will be proposed.

Having briefly discussed Constraint Satisfaction, we examine an approach
to REG in which each property is associated with a cost, and which tends to
use directed graphs as an underlying representation framework (section 6.5).
The cost-based approach has inspired a fair amount of work in recent REG and
offers an important generalization of the idea of a Preference Order. Finally,
in section 6.6, we turn to a set of “dissident” approaches to REG, which beg to
disagree with Dale and Reiter’s research program (see section 4.3), insisting
that reference should be understood as part of a larger communicative task.

1 Material related to the discussion of probabilistic approaches in this chapter can be found in con-
ference papers such as [Gatt et al., 2011], [van Deemter et al., 2012c], [van Gompel et al., 2012],
[van Gompel et al., 2014]; a comprehensive article on the PRO algorithm of section 6.3 has been
submitted. Section 6.4 borrows some insights from [Krahmer and Van Deemter, 2012].
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6.1 Variations in Language Production

Given almost any experimental study of language production, participants’
responses vary substantially, even within a single experimental condition.2 We
saw an example in section 5.6, where some subjects were shown to be mod-
elled more accurately by some algorithms, whereas others were modelled more
accurately by others. Variation does not merely affect groups of speakers, but
also the utterances of one and the same person: we call these two phenom-
ena variation between and within speakers, respectively. Neither type of vari-
ations should come as a surprise, because they are reminiscent of what we
know about other areas of behaviour. A seminal example comes from ballistic
research around 1900, in which it was observed that the bullets of a skilled
target shooter do not always hit the target, but pile up close to the bull’s eye,
with fewer and fewer strikes further away from it, giving rise to a bell-shaped
probability distribution [Holden and van Orden, 2009].

The insight that within-speaker variation is an important factor in refer-
ence production was first made in [Gibbs and Orden, 2012], where variations
in speakers’ pragmatic choices are discussed, including the choice of whether
or not to express privileged information [Horton and Keysar, 1996]. Holden
proposed to explain these variations by assuming that “the bases of any par-
ticular utterance (...) are contingencies, which are to an under-appreciated
extent the products of idiosyncracy in history, disposition, and situation”
[Holden and van Orden, 2009]. Sociolinguists have long thought along similar
lines, believing that within-speaker variation can be caused by language change
and social register (e.g., dialects associated with different social strata); the
idea is that different grammars are represented in the head of a single individ-
ual at the same time [Kroch, 2000]; for each utterance, the individual is thought
to “choose” between different grammars, where the probability of choosing a
given grammar is affected by the recent history of the individual; for example,
who has she talked to recently?

At the time of writing, variations within and between people are starting to
attract increasing attention throughout Cognitive Science, and there is a wide
appreciation of the fact that variations in behaviour may have evolutionary
advantages, because a more varied population is less likely to succumb to an
environmental challenge. Yet there is no unanimity about how variability is

2 Variations in gestures are well attested too, see e.g., [de Ruiter et al., 2012].
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best modelled and whether variation between and within people should be
modelled by the same mechanism. For example, if a person’s language pro-
duction is influenced by recent utterances – as many researchers believe3 –
then this predicts both within-speaker and between-speaker variation. On the
other hand, to the extent that variations between speakers are caused by dif-
ferences in, for example, short-term memory (cf., [van Rij et al., 2013]), this
explanation applies to variation between speakers only.

Although one could seek to model the precise effects of each factor that
influences language production, in practice this may not be feasible. A small
but growing number of linguists and psychologists believe that language may
be best modelled probabilistically (e.g., [Chater and Manning, 2006]). Ran-
domized algorithms have long been studied in pure computing science and
mathematics, where they are valued for their speed and simplicity (e.g., see
[Motwani and Raghavan, 1995] on Monte Carlo and Las Vegas algorithms).
By nondeterministic algorithms we mean a generalization of this idea where
probabilistic choices are not always purely random (i.e., fair). In the modelling
of human behaviour, nondeterministic modelling is not a means to an end but
the very goal of the modelling (e.g., [Lewandowsky and Farrell, 2011], chapter
4). Similar ideas have occasionally been explored in NLG [Belz, 2007].4

By looking at variation through the prism of a nondeterministic algorithm, it
becomes possible to regard variation between and within speakers in the same
way. In fact, we shall often think of the modelling of variation as one single
task, without distinguishing between its two different flavours. Before present-
ing my own view of the matter, let’s see how differences between speakers
have been addressed in the past.

Many contributions to the TUNA challenges were data oriented, using cor-
pus frequencies to find an algorithm that performs well. Sometimes this was
done by hand, but sometimes, Machine Learning was employed to automati-
cally construct a model. The learning algorithm may use features such as the
number of distractors, the number of distractors having the same colour as
the target referent, the number of objects having the same type, and so on. A
number of researchers hit upon a natural extension of this idea: why not use

3 Some researchers even argue that retrieval of past instances of linguistic structure lies at the
heart of all language processing [Bod, 1998], [Daelemans and van den Bosch, 2005]
4 Belz [Belz, 2007] compares a number of probability-based NLG systems, one of which, called
greedy roulette-wheel generation, samples alternatives from a distribution, returning outputs in
proportion to their likelihood. Belz observes that the corpus-based evaluation metrics on which
her article concentrates do not do justice to this method.
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the identity of the speaker as another feature? Versions of this approach were
applied in [Bohnet, 2008], [Fabbrizio et al., 2008a, Fabbrizio et al., 2008b]
(see our chapter 5, section 5.2), in [Viethen and Dale, 2010], and in
[Mitchell et al., 2011b], [Mitchell, 2012]. We exemplify the issues by dis-
cussing the work of Viethen and Dale. Machine Learning is less popular in
some corners of Cognitive Science (e.g., psychology) than others (e.g., Com-
putational Linguistics), but it is a method that can coexist peacefully with other
methods. This is because when Machine Learning finds rules or algorithms,
this is not the end of the story: the rules can be tested in the same way as hand-
crafted rules or other hypotheses may be tested. Where this is done, it matters
little whether the rules were found by Machine Learning or in some other way.

Viethen and Dale looked at two corpora containing RE elicited in settings
showing scenes containing balls and cubes of different colours. The corpora
are known as GRE3D3 and GRE3D7; the former involves three 3D objects, the
latter seven. This makes the scenes even smaller than the TUNA domains, but
their being 3D gives rise to some interesting referential possibilities: one object
could be described as resting on another, for example. The authors used the
C4.5 decision tree learning algorithm as implemented in the Weka workbench
[Witten et al., 2011]. Applied in the usual fashion (and pruning decision trees
to avoid overfitting), they learned two extremely simple decision trees. The one
for GRE3D3 is representable as the following rule:

If some distractors have the same type as the target,
then use pattern R else use pattern D,

where pattern D contains just type and colour (e.g., “the blue ball) and R

contains size as well (e.g., “the small red ball”). These rules, however, had
very limited accuracy, defined as the number of instances predicted correctly
divided by the total number of instances.

When Participant-ID (i.e., the identity of the speaker) was admitted as a fea-
ture, a very different picture resulted. When this feature was added to the other
ones, the resulting participant-sensitive decision trees were much more com-
plex (using the Participant-ID feature again and again) but had much better
accuracy than before. In fact, Participant-ID was so powerful that even when
used as the only feature (i.e., without using any features of the scene), the accu-
racy of the resulting decision trees was broadly comparable to the accuracy of
the trees that were learned with all the other (i.e., nonparticipant) features.

Viethen and Dale’s experiments show that the identity of the speaker matters
greatly. Yet taken on its own, these investigations would be of little value for
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predicting the behaviour of a speaker whose utterances have not been observed.
Tantalizingly, Viethen and Dale suggest that future research may cluster speak-
ers into groups, and even work with speaker profiles, aiming to construct sep-
arate algorithms for each profile. If, in the future, profiles allowed one to auto-
matically classify a new speaker (maybe based on a few test utterances, or
based on other characteristics of the person), then this would mean a substan-
tial leap in our understanding of the differences between human speakers.

Unfortunately, this approach is not easily extendible to within-speaker varia-
tion (unless this could be linked to the moods of a speaker, essentially treating a
person as a conglomerate of personalities). Moreover, the rules that are learned
are fully deterministic, producing the same output always for a given input. It
is time for us to look at approaches to REG that have probability at their heart.

6.2 Bayesian Models of Reference

Bayesian models are thought to be suitable for modelling nondeterministic
mental processes, an idea that is sometimes referred to via the phrase prob-
abilistic brain [Pouget et al., 2013]. I will discuss here a model of reference
production by Frank and Goodman, which can be positioned within this tradi-
tion [Frank and Goodman, 2012], and I will suggest ways in which the model
may be modified to bring it in line with other experimental results.

Frank and Goodman’s model, which looks at comprehension and production
in tandem, assumes that language users are rational in the following sense:
speakers refer by choosing a property that has a high Discriminatory Power;
hearers comprehend an RE by choosing a referent that is probable given the
RE, maximizing P (r|w,C), the probability that a word w, uttered in context
C, denotes the referent r. Using standard Bayesian reasoning – which often
seeks to reverse the “direction” of a conditional probability – the idea is that
hearers accomplish this task by maximizing

P (w|r,C) ∗ P (r,C)∑
r′εC P (w|r′,C) ∗ P (r′)

. (6.1)

The denominator is a normalizing constant that compares r to all the objects
r′ in the domain. P (w|r,C) is the likelihood of the word w being chosen to
refer to r in context C. The likelihood term interests us particularly, because
it concerns reference production, representing the probability that w is chosen
to refer to the referent r (see below). P (r,C) is the prior probability that r is
the referent, estimated by asking subjects, in a TUNA-like setting involving just
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three objects, “Imagine someone is talking to you and uses a word you don’t
know to refer to one of these objects. Which object are they talking about?”
P (r,C) can be thought of as estimating the salience of r in the context C.

The likelihood term, P (w|r,C), is estimated using the Discriminatory
Power of w, much like the Greedy Algorithm of chapter 4. The prediction
is that speakers tend to choose words that rule out large numbers of distrac-
tors. This is modelled as a probability distribution over words; comprehension
is modelled as a distribution over REs. Probabilities of this kind allow two
interpretations: a knot cutting approach says that the RE with the highest prob-
ability should always be chosen; a nondeterministic interpretation says that
each output with non-zero probability may be chosen, in accordance with the
probability assigned to it by the model. I will assume that the authors had the
latter interpretation in mind.

The models were tested with human participants who saw a domain of three
objects. To test the comprehension model, participants were asked to bet on
each of the three objects, with the total of each participant’s three bets in a
given situation summing to 100 points (e.g., 80 for one object and 10 for each
of the other two), resulting in what can be interpreted as a probability distribu-
tion over the three referents (e.g., 0.8, 0.1, 0.1). Similarly, when they tested the
production model, the authors asked participants to bet on a word, resulting in
a probability distribution over words. Good correlations between predictions
and observations were reported in both cases.

The authors see themselves as modelling “a referential communication
game”, and it is by means of (betting) games that the model was tested
[Frank and Goodman, 2012]. Although the paper “synthesizes and extends
work on (...) systems for generating referrIng expressions”, it only deals with
extremely simple REs, which contain only one property. Moreover, the com-
munication game does not involve natural language; actual English NPs do not
play a role. Perhaps unsurprisingly given its exclusive emphasis on Discrim-
inatory Power (with no place for Intrinsic Preference), experiments suggest
that the production side of the model is inadequate as a predictor of people’s
production of REs. My colleagues and I confronted human speakers with situ-
ations that closely resemble Frank and Goodman’s, asking them to produce an
RE. In situations where colour and size were equally discriminating (see Figure
6.1), for example, their model predicts that size and colour are chosen with the
same likelihood, but we found that speakers used REs containing only colour
on almost 80% of cases, size only on fewer than 4% of cases, and both colour
and size in the remaining 17% [Gatt et al., 2013a] [Gatt et al., 2013b]. These



CMR-web-July-2017 2017/7/12 12:14 Page 135 #145

Second Part: Solving the classic REG problem 135

Figure 6.1
A domain from [Gatt et al., 2013b]. In this case the referent can be identified using either colour
(“green”) or size (“large”).

data suggest that a Bayesian approach based on Discriminatory Power alone
does not work well.

Frank and Goodman’s work can be seen in a more generous light if we
ignore their emphasis on Discriminatory Power, focussing on the broad archi-
tecture of their proposal, which elegantly combines production and compre-
hension into one model. Intriguingly, it predicts that hearers who calculate the
probability P (r|w,C) take P (w|r,C) into account in this calculation.

For example, suppose a domain contains three equally salient men, a, b, and
c. Suppose (only) b and c have a moustache, whereas (only) c wears glasses.
The model predicts that hearers tend to understand the word “(the man with a)
moustache” as referring to b rather than c, because c is more likely to be called
“(the man with) glasses”, because “glasses” has higher Discriminatory Power
than “moustache” in this situation. The implication is that it would be rational
for speakers to deviate from the production model based on Discriminatory
Power and refer to b saying “the moustache” even though, strictly speaking,
this leaves one distractor, c, to be removed.5

A promising model results if we turn Frank and Goodman’s model upside-
down, using Bayesian reasoning to derive P (w|r,C) from probabilities that it
might be easier to estimate. For example, one could use the following version
of Bayes’ Law,

P (w|r,C) =
P (r|w,C) ∗ P (w,C)

P (r,C)
, (6.2)

interpreting P (r|w,C) as the probability that a word w, uttered in context
C, denotes the referent r; this probability could be influenced not just by the

5 This type of reasoning, in which hearers and speakers take each other’s point of view into
account, is familiar from bi-directional Optimality Theory, see e.g., [Blutner, 2000].
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salience of r within C, but also by how typical a referent r is for w. The term
P (w,C) could be interpreted as the degree of preference of w, in the man-
ner of the Incremental Algorithm (or the cost-based approach of section 6.5).
In keeping with the spirit of Bayesian reasoning [Howson and Urbach, 1996],
various resources can be brought to bear on estimating each term including, for
example, insights from Prototype Theory, which say that properties are true of
objects to different degrees [Rosch, 1978], see our section 3.4 and elsewhere).
For example, a swallow is a more prototypical example of a bird than a duck,
so if rs is a swallow and rd is a duck, then P (rs|bird) > P (rd|bird). In the
same spirit, corpus frequencies could be employed to estimate P (w) (recall
sections 5.4 and 5.5, where corpus frequencies were employed to determine
the Preference Order of an Incremental Algorithm).

Algorithm 8 Sketch of a possible new Bayesian approach to REG

Input: A communication context C, which determines a domain containing a referent
r and a non-empty set of distractors. A candidate wordw for describing r in the context
C, and information about the following: Rosch-style prototypicality; the degree of
preference associated with w; and the salience weight of r.
Output: A predicted probability P (w|r,C) that w is chosen for describing r in C.

1: Use the degree of prototypicality of r for w to estimate P (r|w,C)
2: Use the degree of preference of w to estimate P (w,C)
3: Use the salience weight of r to estimate P (r,C)
4: Apply Bayes’ Law to the outcomes of (1)-(3) to compute P (w|r,C)

As it stands, the new Bayesian production model inherits Frank and Good-
man’s limitation to REs containing just one word; further modifications would
be needed to turn it into a complete REG model.

6.3 Probabilistic Referential Overspecification: the PRO Algorithm

Instead of designing a novel approach to REG, it would be possible to
keep what is good about the classic REG algorithms, while somehow adding
variation. One possibility, proposed in [van Deemter et al., 2012c] and tested
in [van Gompel et al., 2012, Gatt et al., 2013b, van Gompel et al., 2014], is to
turn current deterministic algorithms into nondeterministic ones. Consider the
Incremental Algorithm once again (chapter 4). The original, deterministic,
IA always generates the same RE in given situation. Yet even Pechmann’s
early data (which motived the IA) are not covered well by this approach.
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For example, in situations where Pechmann asked attention for overspecifi-
cation, minimal descriptions were produced on as many as one quarter of trials
[Pechmann, 1989]. One way to account for this type of variation would be
to use a nondeterministic approach that lets the Incremental Algorithm check
properties in different orders, each of which has a particular probability. Such
an approach would not directly tell us why these probabilities apply, but it
could plausibly be argued that frequencies in the language use to which speak-
ers have been exposed in the past may have something to do with it.

For concreteness, suppose when referring to a small black cup in the context
of a large white cup and a large red cup (so colour or size can be used to
uniquely characterize the target), speakers produce the black cup four times
more often than the small cup. In this case one might conclude there is a 80-
20% colour-size preference. A nondeterministic Incremental Algorithm could
explain this pattern by positing that speakers first check colour in 80% of cases,
but size in the remaining 20% (and the category cup is added to make sure that
the RE can be expressed by means of a noun phrase).

Having determined the colour-over-size preference, one can predict how
often overspecification occurs in other situations. When referring to a small
black cup in the context of a large white cup and a large black cup, the algo-
rithm initially chooses colour over size in 80% of cases, but because this does
not uniquely identify the target, it subsequently adds size, resulting in an over-
specified expression (the small black cup) in 80% of cases. In the other 20%,
it first checks size, and because this uniquely identifies the target, colour will
not be added. An 80-20% split is also predicted to occur when the same tar-
get (a small black cup) occurs in a context with a small white cup and a large
white cup (so colour is required). In 80% of cases, colour is checked first, and
because this uniquely identifies the target, the algorithm produces the black
cup. In the other 20%, size is selected first, but because it does not uniquely
identify the target, colour is added, resulting in the small black cup. Thus, the
Nondeterministic Incremental Algorithm makes clear quantitative predictions
that arise from the fact that colour is usually checked before size. Other algo-
rithms can be made nondeterministic in similar ways.

Existing metrics of humanlikeness (see chapter 5) were not designed to mea-
sure the extent to which an algorithm reflects the variation in a corpus. This
is as true for within-speaker variation as it is for between-speaker variation
[van Deemter et al., 2012c]. Consider an example involving just one reference
task, to which a speaker is exposed on two occasions: on occasion a she utters
NP1; on occasion b she utters NP2. Suppose these NPs are as different as they



CMR-web-July-2017 2017/7/12 12:14 Page 138 #148

138 Part II

(a) Colour suffices for identi-
fying the referent

(b) Size suffices for identify-
ing the referent

(c) Colour or size suffices for
identifying the referent

Figure 6.2
Three types of domains on which the PRO algorithm was tested. In each case, the candle in the
middle is the intended referent.

can be, so if a generated RE has a Dice score of 1 for one, it has a score of 0

for the other. Now consider two algorithms, each of which is run twice. One
algorithm is nondeterministic and generates the two human-produced NPs, but
the other behaves deterministically, generating NP1 on both runs:

Occasion a: NP1. Occasion b: NP2
Algorithm 1: NP1 (first run); NP2 (second run)
Algorithm 2: NP1 (first run); NP1 (second run)

Algorithm 1 captures the variation among the two occasions much better than
Algorithm 2 (which does not show any variation). Existing metrics, however,
attribute the same score to both algorithms, because these metrics compute
the extent to which the Logical Forms generated by a given algorithm match
the information contents of human-produced descriptions on average, compar-
ing each generated description with each human-produced one. Because both
descriptions, NP1 and NP2, match one human-generated description fully (lead-
ing to a score of 1) while failing to match the other one entirely (scoring 0),
both algorithms end up with the same averaged score of 0.5.
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Figure 6.3
Proportions of each of the three possible types of REs, in each of the three conditions (colour, size,
colour or size) and in both Dutch and English.

Trying out these ideas on simple domains that contained just three objects
(Figure 6.2), Roger van Gompel, Albert Gatt, Emiel Krahmer, and I found
that algorithmic models can be constructed that match variations in human
referential behaviour very closely [Gatt et al., 2011, van Gompel et al., 2012,
Gatt et al., 2013b, van Gompel et al., 2014]. References were elicited in both
Dutch and English under three different conditions (Figure 6.2): (1) the colour
(but not the size) of an object suffices to distinguish the referent; (2) the size
(but not the colour) suffices to distinguish it; and (3) both the colour suffices
and the size suffices (we call this the colour-or-size condition). The original
Incremental Algorithm, with a Preference Order in which colour precedes size,
makes the following predictions, as one can easily verify:

Condition 1 (colour suffices): select colour only (100% of cases).
Condition 2 (size suffices): select colour and size (100% of cases).
Condition 3 (colour suffices and size suffices): select colour only (100% of cases).

For example, in Condition 2, colour is selected first, because colour is the
most highly preferred attribute and colour does remove a distractor; however,
the referent has not yet been identified, therefore size needs to be added.
Human-generated REs showed a different picture. Figure 6.3 shows that the
preference for colour over size is far from absolute, in both Dutch and English.
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Figure 6.4
The PRO model applied to a small domain.

To model the data, we used the parameter x to denote the probability of
selecting colour as opposed to size. Given that the Preference Order of old is
now replaced with probabilities, let us call x the preference degree of colour.
We used y as a parameter that governs the likelihood of adding a second prop-
erty in a situation where the first property was already distinguishing; in prac-
tice y tends to be negative, so it is not itself a probability but a parameter
that is employed to change a given probability. Consider the colour-or-size
condition, for example. Figure 6.4 shows that the model, called Probabilistic
Referential overspecification (PRO), starts by choosing between colour (with
probability x) and size (with probability 1− x). Suppose it chooses colour.
Next, the algorithm chooses between adding size (with probability 1− x+ y,
causing overspecification) and adding no further property (with probability
x− y). Thus, the probability of choosing only colour, in this condition, equals
x.(x− y). Note that the other possibility, of using both colour and size in
this condition, can be reached via two different paths, hence its probability
is (x.(1− x+ y)) + (1− x).(x+ y).

Crucially, the values of the parameters x and y were based on held-out data:
their value, in a given condition, is determined by looking at the REs obtained
in the two other conditions. For example, the values of x and y in the colour-
only condition were predicted using the best-fitting values of x and y in the
size-only and colour-and-size conditions. In this way, training and test sets
were kept separate, and overfitting was avoided. By training on conditions that
differ from the test condition, this approach is arguably more thorough than
what is usually seen in Machine Learning. It might be argued that our proce-
dure was biassed in favour of PRO, because the algorithm was trained on data



CMR-web-July-2017 2017/7/12 12:14 Page 141 #151

Second Part: Solving the classic REG problem 141

that resemble the test data (because the three conditions were somewhat sim-
ilar). However, all the other algorithms with which PRO was compared were
given the same advantage, so this bias should apply to all algorithms.

Using values for the parameters x and y that were optimal for the train-
ing corpus, we arrived at a nondeterministic procedure that, faced with the
domains described above, produced a distribution of RE types that resembled
very closely the distribution that exists in human-produced REs. Evaluation on
the test corpus showed the resulting model to easily outperform its competi-
tors, including the Bayesian model of section 6.1 and a probabilistic version
of the Incremental Algorithm. Evaluation was performed using the Bayesian
Information Criterion (BIC), a standard approach in computational modelling
(e.g., [Lewandowsky and Farrell, 2011], section 5.4). The idea is to compute,
given a particular probabilistic model, the probability that the data are exactly
as observed.6 This basic idea is moderated by a mechanism that discounts the
number of free parameters of the model, a procedure sometimes known as a
Bayesian Occam’s Razor.

In a later experiment with Van Gompel, Gatt, and Krahmer, the same
approach to data modelling was applied to REs produced under two dif-
ferent conditions, namely, a condition under which the size contrast was
minor (as in Figure 6.2) and one in which this contrast was much greater.
[van Gompel et al., 2014] As expected, the two conditions gave rise to very
different preferences. In particular, when the size difference was large, PRO

used size much more often than before. This application of the training method
illustrates handsomely what sorts of insights it can generate, improving our
understanding of the idea of Intrinsic Preference, which plays such a key role
in REG algorithms (see e.g., section 3.4).

Extrapolating from the PRO model of figure 6.4, and taking additional exper-
iments into account, a full REG model emerged, which we will call the PRO

algorithm. The algorithm, which follows a broadly monotonic structure that
resembles the classic REG algorithms to some extent, uses a (simple) dedicated
mechanism for overspecification, and guarantees that if a fully discriminating
property exists (i.e., a property that, by itself, removes all distractors), then one
such property is selected. PRO (see Algorithm 9 below) extrapolates from our

6 Suppose, for example, your model asserts that a coin is fair. If you throw the coin twice, then,
assuming the model, the probability of throwing heads and tails equally often (i.e., once each)
equals 1/2 (i.e., 2 out of 4 possible outcomes). If you throw the coin four times, this probability
(i.e., throwing each of head and tail twice) is only 3/8 (i.e., 6 out of 16 outcomes), and so on.
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experiments in [Gatt et al., 2011, van Gompel et al., 2012, Gatt et al., 2013b]
by iterating through a number of steps, each of which either adds a property or
not. As in other monotonic algorithms, no attribute is ever withdrawn.

As usual, the pseudo-code below will focus on concrete properties, rather
than Attributes (which are essentially clusters of similar properties). This will
have three advantages. First, it simplifies the statement of the algorithm. Sec-
ond, it prevents the problems with overlapping values that we encountered in
section 4.7. Finally, it opens the door to treating the different values of an
Attribute differently, which may be desirable in light of section 3.4 (see also
section 16.2) – assuming that, unlike in the PRO model above, the parameters
x and y receive values per property, not per Attribute.

The pseudo-code below does not mention the TYPE of the referent because
it assumes that TYPE is always a part of the RE. As before, r is the target
referent. P is the set of all available properties that hold true of r; P shrinks
as properties are added to the Logical Form D that is generated. M is the set
of remaining domain objects, which likewise gets smaller. Updating does what
we have come to expect: suppose a property P has been chosen, then D is
updated by adding P as an element of D; P is updated by removing P from
P; and M is updated by intersecting M with the extension [[P ]]. First the aim
is to identify the referent (lines 1-10); overspecification is addressed after that
(lines 12-14). Line 5 ensures that a property is only added toD if, by doing so,
one or more distractors are removed from M .

PRO uses nondeterministic choice a number of times. Twice this is done by
P-choose, which chooses a property with a probability that equals its Pref-
erence degree. It is used when several properties remove all distractors and
when looking for a new property in a situation in which the Logical Form D
is not a distinguishing description. Probabilistic choice at line 12 is governed
by a subtly different device called P-choose+, a modification of P-choose that
chooses not only between the properties remaining in P (in accordance with
the Preference Degree of the property) but also between adding a property and
adding nothing (Stop), in which case the construction of D is terminated. If
a property is chosen, it is added to D, causing overspecification. P-choose+

can fire any number of times, until Stop is chosen. Overspecifications of any
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length are possible, but the greater the number of overspecifying properties in
a description is, the smaller the probability of this description is.7

Algorithm 9 Probabilistic Referential Overspecification (PRO)
Input: A domain containing a referent r and a non-empty set of distractors M . A set
P of properties true of r. Functions P-choose and P-choose+, as in the text.
Output: A distinguishing description D of r. D is chosen probabilistically.

1: Start out with an empty D
2: if there exists a property in P that removes all distractors (on its own) then
3: P-choose one such property, for example P
4: D := {P}
5: while True do
6: Remove from P all properties that are true of all elements in M
7: if P = ∅ then
8: return D
9: else if D is not distinguishing yet then

10: P-choose a property from P
11: Update D, P , and M
12: else
13: P-choose+ between Stop and the properties remaining in P
14: if one of the properties in P is chosen then
15: Update D, P , and M
16: else
17: return D

In the articles cited above, we describe an experimental comparison between
the PRO model and its main competitors, whose outcomes suggest that PRO’s
combination of Preference Degrees and Discriminatory Power (as in lines 1-3
of PRO) is on the right track. Yet, there may be room for improvement, espe-
cially in complex referential situations. For instance, Discriminatory Power
gets only one chance to make itself felt: after line 4, it plays no role. Maybe
Discriminatory Power should get a second chance if there exists a property that
removes all distractors once the first property has entered the Logical Form;
only further experimentation can tell. Likewise, there is no experimental evi-
dence concerning repeated overspecification (given that P-choose+ is embed-
ded inside the while True loop), so the fact that the algorithm permits any
amount of overspecification is only a guess.

7 This is because an overspecified description of lengthn+ 1 is constructed by building a descrip-
tion of length n first, then adding a further property, using P-choose+. This addition tends to
happen with a probability far less than 1, unless y is very large.
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Although some of these issues may be resolved, it is inevitable that some
untested predictions are made. This is part and parcel of what it means to
construct a model that covers unobserved situations (involving domains that
contain any number of objects, with any number of attributes). Computational
cognitive models can be general enough to make decisions in all possible cases,
but they cannot be complete unless they jump to conclusions sometimes.

Results of a similar nature to the ones that motivate PRO were obtained
in connection with the nondeterministic algorithm of Mitchell and col-
leagues [Mitchell et al., 2013c], which was evaluated on both the TUNA

and the GRE3D3 corpus. Another recent contribution to the debate is
[FitzGerald et al., 2013], where distributions of more complex types of REs
(i.e., Boolean REs, see chapter 8) are obtained using a statistical method called
density estimation. Although all three models were obtained in settings that
emphasize between-speaker variation, they lend themselves well for modelling
within-speaker variation too. It may be too early to choose one nondetermin-
istic algorithm over another, but it does appear that nondeterminism offers an
attractive range of possibilities for the modelling of within-speaker variation.

On a speculative note, within-person variation might one day lead to dras-
tically new models such as, for example, quantum models of human reason-
ing [Bruza et al., 2009]. Quantum models permit superposition states, origi-
nally invented for theoretical physics: “To be in a superposition state means
that all possible definite values (...) have potential for being expressed at each
moment” [Wang et al., 2013]. For instance, a speaker might be in a superpo-
sition state that is ambivalent between an inclination towards a low amount
and an inclination to a high amount of overspecification. The benefits and
drawbacks of quantum models are not clear to me yet, but it does seem that
behavioural variation offers scope for exciting new computational models.

6.4 Constraint Satisfaction for REG

We now move away from variations in language production and the models
that aim to justice to them, turning to two computational paradigms that differ
from the mainstream of REG and that contain lessons about reference and the
manner in which REs may be produced. We start with the paradigm of Con-
straint Satisfaction. We shall see that Constraint Satisfaction uses essentially
the same algorithm always: what is different, from one problem to the next, is
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the information that represents the problem. For this reason, the present section
will not show any algorithmic pseudo-code.

Constraint Satisfaction arose as a computational paradigm that allows
efficient solving of computationally intensive combinatoric problems
[van Hentenryck, 1989]. It allows an elegant separation between the declara-
tive specification of a problem (e.g., the problem of referring to a given individ-
ual in a given context) and the details of its solution (e.g., a particular REG algo-
rithm). Moreover, the approach has been shown to allow remarkably fast solu-
tions. Technically a constraint satisfaction problem involves variables, each of
which is associated with a range of permitted values and a set of constraints.
Solving the problem means finding an assignment of values to each variable
that is legal, meaning that each value is within the range associated with the
variable while, crucially, the assignment meets all constraints. Constraint Satis-
faction involves searching through the space of all possible assignments of val-
ues to variables and comes into its own when there are dependencies between
variables [Kumar, 1992].

An example that is often given to illustrate the power of Constraint Satis-
faction is the “eight queens” problem: find a way to position eight queens on
a chess board in such a way that no two queens can capture each other. Sup-
pose we analyse this problem using 8 variables, a, ..., h, each of which stands
for a column of the chess board, and each of which has 1, ...,8 as permitted
values, depending on which of the eight squares in this column hosts a queen;
more than one is impossible given that these would capture each other. The
constraints say that none of the queens on the board can capture each other
(i.e., share a column, row, or diagonal). Suppose we start our search by assign-
ing the value 1 to the variable a, tentatively placing the first queen on the first
square of the a column. Turning to the b column, in order to place the second
queen, only the values 3, ...,8 need to be considered, because squares 1 and 2

are under attack from the queen at a1. If we decide to place this second queen
on b3, then the set of permitted values has shrunk to just four values: 5, ...,8.
Pruning the search tree in this manner is an example of the kind of computa-
tional economy afforded by Constraint Satisfaction.

Relational descriptions. Constraint Satisfaction was one of the first frame-
works proposed for REG [Dale and Haddock, 1991], where it tackles a type of
RE that has so far been neglected in this book, and which are known as rela-
tional descriptions. A relational description refers to a referent r via an entity
other than r. For example, “the cup on the table” is a relational description
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because although its main purpose is to refer to a cup, it contains another NP,
“the table”, which helps to identify the cup. Given that this can go on indef-
initely (“the cup on the table in the corner of the ...”), one might speak of
recursive descriptions.

The construction of simple relational Logical Forms can be seen as a Con-
straint Satisfaction Problem in different ways. Dale and Haddock proposed an
approach in which predications (like “being a cup”, “being on top of ...”) are
constraints that can apply to each domain object, so REG is the search for a
set of constraints that jointly identify a given target referent. An alternative
approach in [Gardent, 2002] uses a variable V , which takes as values sets of
predications, where a predication can be a property P (x) (saying that x has the
property P ) or a relation R(x, y) (saying that x stands in the relation R to y).
If r is the target referent, solving the Constraint Satisfaction Problem means
assigning a value to V in accordance with two constraints, namely: (1) all pred-
ications in V are true of r, and (2) for each distractor d there is a property in
V that is false of d. In section 6.4, these ideas will be developed further.

Dale and Haddock’s article made a number of important observations: First,
it is possible to identify an object through its relations to other objects without
identifying each of these objects. Consider a situation involving two cups and
two tables, where one cup is on one of the tables. In this situation, neither “the
cup” nor “the table” is distinguishing, but “the cup on the table” succeeds in
identifying one of the two cups. Second, descriptions of this kind can have
any level of depth: in a complex situation, one might say “the white cup on
the red table in the kitchen”, and so on. To be avoided, however, are the kinds
of repetitions that can arise from descriptive loops, because these do not add
information. It would, for example, be useless to describe a cup as “the cup to
the left of the saucer to the right of the cup to the left of the saucer . . . ”.

The proposed handling of relations has a number of important strengths.
The approach does not run into the aforementioned descriptive loops, because
a set of properties (being a set) cannot contain duplicates. Moreover, it gen-
eralizes effortlessly to logically more complex situations, involving negation,
sets, and relations with arbitrary numbers of arguments (as in “the present that
John gave to Harry”). This does not mean, however, that it is the last word
on the generation of relational descriptions, for Constraint Satisfaction is com-
patible with many different search regimes (e.g., [Russell and Norvig, 2003],
chapter 5; [Kumar, 1992]), which enables this approach to emulate many of
the algorithms discussed in the previous chapters. What generation algorithms
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suit relational descriptions best is still an open question. As Emiel Krahmer
and I wrote in our survey in 2012:

Various researchers have attempted to extend the IA by allow-
ing relational descriptions [Horacek, 1996, Krahmer and Theune, 2002,
Kelleher and Kruijff, 2006a], often based on the assumption that relational
properties (like “x is on y”) are less preferred than non-relational ones (like
“x is white”). (...) It seems, however, that these attempts were only partly
successful. One of the basic problems is that relational descriptions (...) do
not seem to fit in well with an incremental generation strategy. In addition,
it is far from clear that relational properties are always less preferred than
non-relational ones [Viethen and Dale, 2008]. (...) On balance, it appears
that the place of relations in reference is only partly understood, with much
of the iceberg still under water. [Krahmer and Van Deemter, 2012]

Constraint Satisfaction has been applied to REG a number of times in recent
years. Two strands of work are worth singling out. One is Claire Gardent’s
work on the generation of references to sets. The other is a line of work by
Matthew Stone and colleagues, which seeks to connect REG with a wider class
of issues in the pragmatics of natural language. We start with the former.

Reference to sets. Constraint Satisfaction has also been used in connection
with reference to sets [Stone, 2000], a topic discussed more fully in chapter 8.
Here we focus on [Gardent, 2002], which aimed to generate REs that refer to
a set of objects distributively, that is, by means of properties that hold true of
each of the elements of the set but are false of everything else. In its simplest
form, the semantic content of an RE for a target set S is formalized as just
one variable P , which ranges over sets of properties. The challenge is to find
suitable values (i.e., sets of properties) for P . To be “suitable”, values need to
fulfil two REG-style constraints:

1. All the properties in P are true of all elements in S.

2. For each distractor d there is a property in P that is false of d.

This approach can be extended to address a variety of harder problems.
Matthew Stone, for example, applied a similar approach to the generation
of collective references, as when we say “the parallel lines at the top of the
screen” to refer to a set of lines that run parallel to each other. Stone showed
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that such logically more complex RE can be generated if P is permitted to con-
tain second-order properties, which are properties that hold true of a set (e.g.,
a set of two lines).

Gardent herself sought out another problem: following the work that will be
discussed in chapter 8, she allowed that properties may be used negatively, as
when we say, speaking of a chess board for instance, “the squares that are not
occupied”. The content of an RE is now formalized as a pair of variables:

〈P+
S , P

−
S 〉.

The first variable ranges over sets of properties that are true of the elements in
S and the other over properties that are false of the elements in S. The aim is
to find values for these variables, subject to three constraints:

1. All the properties in P+
S are true of all elements in S.

2. All the properties in P−S are false of all elements in S.

3. For each distractor d there is a property in P+
S that is false of d, or there is

a property in P−S that is true of d.

The third clause says that every distractor is ruled out by either a positive prop-
erty (i.e., a property in P+

S ) or a negative property (i.e., a property in P−S ), or
both. The approach is further extended to accommodate disjunctive properties
(as in “the squares that are occupied by a rook or a bishop”) [Gardent, 2002].

Gardent opts for a propagate-and-distribute strategy, first looking for sin-
gle properties, next for combinations of two properties, etc., increasing the
logical complexity of the RE stepwise. This amounts to a Full Brevity algo-
rithm. The “propagating” efficiencies of Constraint Satisfaction programming
are exploited, for example, by making sure that properties in P+

S are no longer
considered for inclusion in P−S .

The algorithms proposed in [Gardent, 2002] always yield a minimally dis-
tinguishing Logical Form for a target, provided one exists. In view of our ear-
lier discussions this may not be the best choice. However, as the discussion at
the end of her paper rightly suggests, her algorithm could be adapted to accom-
modate very different REG algorithms. Constraint Satisfaction does not force
one to opt for Full Brevity any more than the other approaches in this chapter:
its essence does not lie in brevity but in permitting a declarative statement of
the REG problem, and in the use of efficient search strategies.

Summing up, Constraint Satisfaction offers an elegant and powerful
approach to REG that is perhaps particularly suitable for tackling issues that
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go beyond the classic REG problem. It is not clear, however, that the method
can be generalized to the types of REs that will be discussed in chapter 10,
which call for the power of predicate-logical deduction, as we shall argue.

6.5 Krahmer et al.’s Cost-Based Approach

A relatively recent approach to REG is commonly known as the graph-based
approach [Krahmer et al., 2003]. Graphs are popular in Artificial Intelligence,
and fast algorithms for dealing them are widely available. However, I shall
argue that the use of graphs is a less important feature of Krahmer and col-
leagues’ approach to REG than the idea that the inclusion of a given property
in an RE comes at a certain precisely quantifiable cost, and that this cost may be
used to steer the generation process. It is possible to assume that all properties
associated with the same attribute have the same cost (cf., section 4.6), but it is
not necessary. Likewise, it would be possible to use a variant of the monotonic
approach to REG (section 4.5), adding properties one by one, always choosing
a property whose cost is least, but this is not what the authors proposed.

A graph-based definition of reference. The graph-based approach starts
with the idea that a referential domain and an RE can each be modelled as a
labelled directed graph: the Scene Graph and the Description Graph, respec-
tively. In both graphs, nodes (vertices) represent individuals in the domain of
discourse, whereas properties and relations are modelled as edges (arrows); a
label attached to an edge says what properties or relation this edge represents.

Before discussing the idea that REG can be defined as a compar-
ison between a Scene Graph and a Description Graph, we need to
explain how graphs can express atomic information. Figure 6.5 from
[Krahmer and Van Deemter, 2012] shows a Scene Graph involving two men
and one woman. Properties such as “man” are modelled as loops (edges begin-
ning and ending in the same node); relations such as “left of” are edges
between nodes. Given a Scene Graph and a Description Graph containing a
node r (the target referent), one asks whether the Description Graph can be
“placed over” r in the Scene Graph, in which case the Description Graph is
consistent with what the Scene Graph says about r. If this is the case, the cru-
cial question is whether there are any other vertices over which the Description
Graph can also be placed. If not, then the Description Graph refers uniquely to
r given the Scene Graph [van Deemter and Krahmer, 2007].
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Figure 6.5
A Scene Graph: a domain represented as a labelled directed graph.

Figure 6.6
Three description graphs that refer to node 1 in Figure 6.5. Two of the three refer to node 1
uniquely.

Figure 6.6 shows a number of referring graphs that can be placed over our
target referent d1. The pair consisting of the leftmost description graph and its
only node fails to distinguish the target in the Scene Graph, because it can be
“placed over” the Scene Graph in two different ways (over nodes 1 and 3).

Using graphs to compute a referring expression. The graph-based approach
can implement a variety of algorithms. In practice, algorithms have focussed on
finding the lowest-cost Description Graph that refers uniquely to the intended
referent. The algorithm of [Krahmer et al., 2003] uses “branch and bound”, a
fast search strategy familiar from a range of optimization problems. The orig-
inal algorithm constructs Description Graphs that are subgraphs of the Scene
Graph, and which contain the target referent, starting with just one node. New
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edges and vertices are added recursively, removing distractors in the process.
In its search for a minimal-cost RE, the algorithm stores the lowest-cost RE

that it has found so far in a variable called bestgraph; if and when an RE with
a lower cost is found, the current best graph is “dethroned”. Details of the
algorithm are principally motivated by speed [Krahmer et al., 2003].

Strengths and limits. By minimizing the cost of an RE, this algorithm gen-
eralizes the idea of minimizing the length of an RE. The two ideas coincide if
all properties have the same cost, but cost offers possibilities that length does
not. First, as observed in [Krahmer et al., 2003], the cost of a property can
depend on a variety of factors, including Intrinsic Preference: if more highly
preferred attributes have lower cost, then the algorithm resembles the Incre-
mental Algorithm; an alternative is to determine cost via frequencies in a cor-
pus [Theune et al., 2011]. Furthermore, cost is more fine grained than Intrin-
sic Preference, because it replaces the mathematical concept of a linear order
(i.e., one attribute being preferred over another) with a metric that tells us how
much more preferred one attribute is than another. This also makes it possible
to assign the same cost to two properties, or to assign a nil cost to a property, to
facilitate certain types of overspecification. Minimizing cost, in other words, is
a more flexible idea than minimizing length.

The main ideas discussed here could have been implemented without
graphs: most frameworks that permit the expression of properties and relations
permit the assignment of costs as well, and the use of search strategies such
as branch and bound. Conversely, a graph-based framework does not enforce
the use of costs or a particular search strategy: it would be a simple matter to
implement the classic REG algorithms directly (i.e., without using costs) using
graph-based knowledge representations.

Nonetheless, the ability to control both the cost of each property and the
order in which they are tried [Viethen et al., 2008] makes the graph-based
approach potentially powerful. Excellent results were obtained when variants
of the above-described algorithm were submitted to the TUNA evaluation chal-
lenges (see chapter 5) of 2007 and 2008; the best results were obtained using
a cost function based on corpus frequencies where some properties had a cost
of 0, and where properties were tried from cheapest to more expensive.8

8 The average Dice score of this algorithm was .71 for the furniture corpus and .67 for the people
corpus [Theune et al., 2007]. Later tests focussing on relational descriptions (which did not play a
role in the TUNA challenges) suggest good performance in that area as well.
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To see why it matters in which order edges are tried, suppose attributes such
as TYPE and COLOUR are assigned a cost of 0 (as in [Krahmer et al., 2008]).
Then consider a Description Graph G that does not contain colour and refers
uniquely to a referent r. Now compare the current best graph G with the graph
G′ that results from adding to G an edge representing the colour of the refer-
ent. Under the assumptions stated, G and G′ have the same cost, so G′ does
not de-throne G once G has become the current best graph; consequently, the
RE generated will not contain colour. If, however, the algorithm had started
with colour, then an RE would have been generated that does represent colour.
In other words, cost does not always completely replace preference. Hence-
forth, we shall assume that Intrinsic Preference, in the style of Dale and Reiter,
can be modified to have the same benefits as Krahmer’s cost, so attributes (or
properties) are associated with a numerical degree of preference.

Inherent in this approach is the idea that cost is bad, and that the production
of a distinguishing description is all that counts. Although, as we have seen,
these ideas do not preclude over-generation, they are at odds with the idea of
adding overspecifying properties in order to help the reader (section 12). To
do this, an algorithm would have to compare the trouble of adding a property
with any benefits that this brings for the reader. Approaches of this kind will
be discussed in Part IV of the book, and especially in section 14.

It might be thought that the graphs-based approach is also suitable for tack-
ling the harder REG problems that will occupy us in the coming chapters, but
this is doubtful on closer reflection. Labelled directed graphs as a vehicle for
REG have a number of limitations: their focus on logically simple (i.e., atomic)
knowledge makes them less suitable for generating logically complex REs,
such as “the woman who plays a flute or owns a piano”, “the man who loves all
dogs”, and so on [van Deemter and Krahmer, 2007]. REs of this kind will be
discussed in chapter 10, where REG is linked with Knowledge Representation
and automated reasoning.

6.6 Appelt’s Heirs: Reference as Part of a Wider Problem

The algorithms discussed so far focus squarely on the generation of REs. This
narrow focus reflects the methodology, discussed in chapter 4, which isolates
reference from other communicative goals and concentrates on determining
the semantic content of the REs to be generated. Although this methodology
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has allowed researchers to focus on a clear goal, some favour a more holistic
approach. Let us summarize the holists’ arguments briefly.

First, it is of little use to determine the semantic content of an RE unless
this content can be expressed through a grammatical sentence. A doctor who
is starting to write “You suffer from an inflammation of the ...” may realize that
the organ affected by the inflammation has no commonly known name. Once
she realizes this lexical gap, she might re-plan, writing “You suffer from x”, if
there happens to exist a commonly known name for the condition x. Matthew
Stone and Bonnie Webber conclude that REG has to be embedded into a wider
algorithm that includes at least lexical choice, and possibly other components
of the generation system [Stone and Webber, 1998].

Second, reference and other tasks can help each other. Reference can help
with other tasks, for instance, when a speaker says “don’t sit at the newly
painted table” (an example from Dale and Reiter), where “newly painted” may
help to explain why the request is made. Conversely, reference is not accom-
plished by a noun phrase on its own. Consider a domain that contains several
hats, only one of which has a rabbit in it; the domain contains other rabbits as
well [Stone and Webber, 1998]. Now the utterance ”Remove the rabbit from
the hat” contains an NP “the hat” that fails to refer if existing algorithms are
to be believed; similarly, the NP “the rabbit” appears not to refer uniquely,
because there are several rabbits. Yet it is completely clear what hat is to be
de-rabbited, and which rabbit will be produced. The authors argue that this
is because other parts of the sentence are to be taken into account, and espe-
cially the verb “remove”: after all, one can only remove a from b if b contains
a first; similarly, only something that’s in b can be removed from b. The pro-
cess is similar to the one discussed in section 6.4, in which two parts part of a
relational RE (e.g., “the cup on the table”) disambiguate each other.

The authors address both problems by deviating from the standard NLG

pipeline [Mellish et al., 2006], making reference a more organic part of NLG.
The proposed setup, in which Content Determination and Linguistic Realiza-
tion are interleaved,9 prevents “ineffable” semantic contents from being gen-
erated. Once again, Constraint Satisfaction can be employed to make things
work. For example, a syntactic constraint such as “every RE has a noun as
its head” can ensure that every RE expresses a TYPE, which is something that
other approaches have to enforce artificially.

9 Compare [Horacek, 1997, Krahmer and Theune, 2002, Siddharthan and Copestake, 2004],
among others, where these processes are interleaved as well.
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The line of research that was outlined very briefly in the above (cf.,
[Heeman and Hirst, 1995], [O’Donnell et al., 1998], [Koller and Stone, 2007],
[Garoufi and Koller, 2014]) follows the tradition started by Douglas Appelt
and Amichai Kronfeld, who sought to understand the place of reference within
a wider theory of speech acts. It is an apt reminder of the reductive nature of
the mainstream program of research on REG, in which important issues can
sometimes fall by the wayside. Like the California School, this line of work
has the potential to do justice to the place of reference in the wider system
of human communication, where reference seldom comes alone, and where
reference is not always achieved by an isolated noun phrase. However, this
holistic tradition can sometimes resemble older work in less fortunate respects
as well: details of data structures and algorithms can sometimes be difficult to
glean from published papers, and some theories appear to be driven by isolated
examples. This is not always the case. For instance, the ideas discussed above
were taken further by Pamela Jordan and Marilyn Walker when they focussed
on dialogue [Jordan, 2000a, Jordan, 2000c, Jordan and Walker, 2005].

Jordan hypothesized that REs are affected by multiple communicative goals
and tested this hypothesis on the COCONUT corpus [Di Eugenio et al., 2000],
which records dialogues between pairs of participants who play a game in
which they buy furniture together on a fixed budget. Examples of commu-
nicative goals are: committing to the purchase of an item, persuading one’s
dialogue partner to buy an item, changing a previous commitment, and so
on. These goals are defined in terms of recognisable features of a dialogue,
enabling annotators to indicate when they apply. For example, a summarize
context is defined as arising once an agreement has been reached for an action,
and ends if the agreement is nullified. Most of Jordan’s hypotheses were
confirmed [Jordan, 2000b, Jordan, 2002] when the corpus was analysed (see
[Jordan and Walker, 2005] for discussion), motivating their inclusion in a new
model of reference production, known as the Intentional Influences model.

The model reported in [Jordan, 2000c] starts by accumulating any properties
that contribute to the satisfaction of the speaker’s communicative goals (e.g.,
committing to the purchase of an object). Next, the model checks whether
the properties accumulated so far identify the referent, adding properties only
if they do not, in which case one of the classic REG algorithms is employed
to accomplish this (line 13). Unique reference, in other words, is treated like
an afterthought. I understand the structure of Jordan’s Intentional Influences
model ([Jordan, 2000c] section 6.3.2) to be as summarized in Algorithm 10.
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Algorithm 10 Jordan’s Intentional Influences model
Input: A domain of objects, containing a target referent r and a non-empty set of
distractors. A set of mutually known properties of r and a dialogue history.
Output: A contextually appropriate distinguishing description of r if one exists.

1: Find the TYPE of r
2: if the context is a summarize context then
3: let D contain all mutually known properties of r
4: else if the context is a commit context then
5: let D contain all properties of r mentioned in the offering utterance
6: else if the context is a verify context then
7: let D contain all properties of r expressed in the previous turn
8: else if the context is a persuade context then
9: let D contain the properties of r that make of r a better solution

10: else if the context is a change constraint context then
11: let D contain the properties of r that imply the change.
12: if D does not identify r uniquely then
13: apply a classic algorithm to r and add all the resulting properties to D

A few years later, Jordan and Walker implemented a version of the model
that exploits additional information concerning the dialogue history (e.g., How
long ago is it that the referent was last mentioned? Who was the speaker of
the previous utterance?). Features from the Intentional Influences and two
other models were fed to RIPPER, a Machine Learning device that produces
if-then rules. A few simplified rules are shown in the following, where C says
the RE contains a Colour attribute, O stands for Owner, and Q for quantity
[Jordan and Walker, 2005]:

if goal = select-chairs and distance-of-last-state ≥ 3 and speaker-of-last-state =
self, then say COQ

if prev-commit-speaker = commit and influence-on-listener = action-directive and
color-contrast = no & speaker-of-last-state = self, then say C

For example, the first rule says that if the goal of the current utterance is to
select chairs and the referent was last mentioned more than 3 utterances ago,
in an utterance that had the same speaker as the current one, then colour, owner
and quantity (COQ) are expressed. The rules that were learned were shown to
perform well, particularly because of features from the Intentional Influences
model (such as prev-commit-speaker and influence-on-listener, goal).
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Jordan and Walker’s main claim, that REG algorithms should look beyond
the task of identifying the referent, paying attention to a variety of commu-
nicative goals, is well taken. In the Epilogue (section 16.2), when we re-visit
the Gricean Maxims, we shall argue that theirs is one of the more promising
approaches so far to the tricky problem of ensuring that generated REs favour
contextually relevant properties.

In this Second Part of the book, we have addressed the classic REG task. In Part
III we shall address a more general task. Given is, once again, a finite domain
of entities and a target referent. This time around, however, the target referent
can be a subset, as well an an element, of the domain. Given is, furthermore,
a set of properties that may or may not be logically atomic: they are Logical
Forms that may contain various logical operators. If the aim of the algorithm
is to model speakers (rather than to optimize utility for hearers) then, in the
abstract, the new task can be thought of as follows:

The extended REG task. If there exists a Logical Form denoting the tar-
get, then the REG algorithm needs to (1) find such a Logical Form, making
sure that (2) the Logical Form is as similar as possible to the set of prop-
erties found in a typical human-authored description. If no distinguishing
description of r exists, then the algorithm should say so.

We shall see that the extended REG task, with its greater range of both referents
and REs, poses difficult new challenges.

6.7 Summary of the Chapter

This chapter has discussed a number of approaches to the classic REG task that
differ from the classic REG algorithms. As well as discussing, in section 6.6, a
range of approaches in the tradition of the California School (cf., section 4.2),
we have concentrated on the following “alternative” approaches:

• Probabilistic algorithms. Recent REG algorithms try to reproduce the prob-
ability distribution over the set of REs that are found in a corpus. As a result,
they are able to do justice to a wide variety of production behaviours, instead
of only the behaviour most frequently observed. Evaluation of these nonde-
terministic algorithms requires an evaluation method based on computation
of the conditional probablity P (a|b), where b is the model expressed by the
probabilistic algorithm and a is the data. [Section 6.3]
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• Constraint Satisfaction. Constraint Satisfaction offers an attractive
approach to problems in which different considerations need to be taken
into account, because it allows a clear separation between the (declarative)
statement of a problem and its (procedural) solution. [Section 6.4]

• Graphs-based approaches. Krahmer and his co-workers have used graph-
based representations to construct REG algorithms that take account of the
cost of an RE, where a lower cost can be interpreted as indicative of a more
felicitous RE. We have argued that costs allow more fine-grained control than
the Preference Orders of chapter 4. These considerations make this approach
well suited to the classic REG problem. We shall see in chapter 10 that when
harder versions of the REG problem are addressed, richer formalisms are
required, which support reasoning with complex information. [Section 6.5]
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7 First Extension: Using Proper Names

It is time for us to look beyond the classic REG task, which focusses on one-
shot REs, one referent, and one-place predicates. The classic REG task leaves
out many kinds of REs, such as proper names, which are the topic of the present
chapter. This chapter is shorter and more tentative than most, because little
computational research has been done in this area yet. I shall argue, however,
that work on the generation of proper names, and complex REs that contain
proper names, is urgently needed.

We have seen in section 2.7 that logicians interested in natural language have
studied proper names in great depth; linguists and neuroscientists have joined
them in later years (e.g., see relevant parts of [van Langendonck, 2007]), and
so have computational linguists working on Information Extraction (section
1.2, for example in connection with Named Entity Recognition).

It will be clear from Part II that researchers in REG have paid proper names
much less attention. Some have investigated the choice between proper names
and other REs [Henschel et al., 2000], [Piwek, 2008], but seldom (with the
exception of a simple approach in [Winograd, 1972]) in connection with REG

as understood in this book, where Natural Language Generation starts from a
Knowledge Base rather than a text. I believe this to be a significant omission,
so let us see how proper names might find a proper place within REG. Algo-
rithms play an important role in this book, but the present chapter is a reminder
of an important lesson that is well understood in Computing Science: the rep-
resentation of a problem can be the key to its solution, sometimes to such an
extent that the algorithms themselves are pushed into the background.1

This brief chapter will start by asking why proper names have so far been
neglected in REG (section 7.1), after which we shall present a first attempt at
letting REG algorithms take proper names into account (section 7.2). A slightly
more sophisticated approach, based on the reification of names, is presented in
section 7.3. The chapter concludes with a discussion of the challenges posed by
proper names, which focusses on the need for empirical results regarding the
choice between names and descriptions, and the difficulty of obtaining these
results in a sound manner (section 7.4).2

1 Representations also tend to take centre stage in approaches based on Constraint Satisfaction,
see section 6.4.
2 An initial exploration of the issues that arise when proper names become part of REG was offered
in [van Deemter, 2014], section 4.
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7.1 Why Have Proper Names Been Neglected in REG?

The usefulness of proper names is not in doubt. Where they are available,
names are often the preferred way of referring, particularly when the alterna-
tive is a lengthy conjunction of properties (cf., chapter 13). Perhaps the reason
why REG researchers have disregarded proper names is that if proper names
are allowed, reference is thought to be trivial: to refer to an entity, just gen-
erate its proper name! But, on ten seconds’ reflection, this is not a defensible
position.

For a start, the choice between a proper name and a full description is often
pragmatically significant, and so is the choice between different versions of a
proper name. References to people come with social implications to do with
familiarity, affection, and social hierarchy. Consider a couple with two chil-
dren. When the son refers to the daughter, he can choose between a proper
name and a description. If he wanted to refer to her when addressing his
mother, he could say “my sister”, “my sibling”, “your daughter”, “my father’s
daughter”, and so on. Yet, only a proper name would be considered normal.
Relation-denoting words like “aunt” complicate matters further, by adding a
descriptive element to a name. The expression “Aunt Agatha”, for example,
would be quite normal to use when referring to someone who is the aunt of
the speaker, when addressing herself or another family member (except possi-
bly where that family member is the referent’s son or daughter, in which case
“your mother” is more appropriate); it would be dis-preferred in most other
situations. On top of all these nuances, many languages allow names to be
abbreviated (e.g., in English, Christopher becomes Chris; Timothy becomes
Tim), with abbreviations carrying subtle implications of familiarity. Clearly,
choosing between all these expressive possibilities is far from easy.

Other complexities tend to come to the fore when proper names are used
as part of a larger RE, as when we say “Fido the dog”, “the poet Burns”, or
“the River Thames” (examples from [van Langendonck, 2007]). Of particular
interest to us are REs in which we refer to an entity via some other entity for
which we have a proper name. For example, we routinely refer to people as “the
CEO of So-and-so” (where So-and-so is a proper name), “the new Principal of
So-and-so University”, and so on, particularly when the role of the person is
more important than his or her name. In some rarer situations, the name may
not even be known. Suppose, for example, that, in 1997, you had asked me who
was the most influential author of the year 1996, and I responded “the author
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of the novel Primary Colors”. This would have been a good description of
Joe Klein, the political commentator who had anonymously written this book,
about a character resembling the then-president Bill Clinton. In my reference
to the author, I was unable to use his name but I was able to use the name of
his book.

7.2 Incorporating Proper Names into REG

What is needed is for proper names to become part of the REG mechanism,
to allow them to be combined with other properties and relations. The sim-
plest way in which this can be done is by assuming that each individual in the
Knowledge Base comes not just with a number of descriptive properties but,
sometimes, with one or more proper names as well. In other words, a proper
name is property. Some individuals may have a proper name and others may
not. For simplicity we shall assume that reference by proper name is preferred
over reference by properties, so “Joe Klein’s dog” is preferred over “The dog
of the author of Primary Colors”.

This example gets us to another semantic reason for treating proper names
seriously: one likes to think of proper names as unambiguous, but in practice,
they seldom are. There must be numerous individuals named Joe Klein, for
example, which is why I introduced him above as “Joe Klein, the political
commentator who ...”. One possibility is to regard a proper name as a property
that is true of all individuals who have this name. For example,

– (being named) Joe Klein is a property of all individuals named Joe Klein
– (being named) Joe is a property of all those individuals named Joe
– (being named) Klein is a property of all those individuals named Klein

The idea that proper names are properties is far from new and not without its
modern defenders. [Burge, 1973], for example, invoked sentences like

– There are relatively few Alfreds in Princeton.
– An Alfred joined the club today.

[Larson and Segal, 1995] added further arguments in support of the idea that
names are properties. Elbourne, who reviews and augments these arguments,
observes that we can talk about “that Alfred”, and that languages such as classi-
cal Greek and modern German allow the combination of a definite determiner
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with a proper name (“Der Alfred”) and defends Burge’s perspective against
various objections [Elbourne, 2005].

Of course, in realistic settings where domains may be large, REG should
come with a mechanism for the management of salience. As we have seen
in sections 1.6 and 4.9, an RE like “the dog” does not really denote the only
dog in the universe – or else we could never use this expression felicitously –
but only the most salient dog. Thus, a REG algorithm has reached its aim of
identifying a referent r if it has produced a description D such that the most
salient element of D’s denotation [[D]] is r. We assume here that the same idea
applies to proper names, thus, “Joe Klein” will individuate an entity if it is the
most salient entity in the Knowledge Base whose name is Joe Klein. Similarly,
“the political commentator Joe Klein” will be considered a legitimate reference
to r if r is the most salient political commentator whose name is Joe Klein. To
make this work for parts of names as well as full proper names, the easiest
approach is to associate a set of names with each individual, for example:

OCCUPATION: political commentator
NATIONALITY: American
NAMES: {Mr Joe Klein, Joe Klein, Joe, Klein}

Because longer versions of a person’s name will be applicable to only some of
the individuals to whom a shorter version is applicable, the different values of
the NAMES attribute will tend to subsume each other: all people who are called
Mr Joe Klein are also called Joe Klein, and all of these are called both Joe and
Klein. These properties could consequently be dealt with using the mechanism
for subsumption in the Incremental Algorithm, which can account for the fact
that all dogs are canines, all canines are mammals, and so on (see the function
FindBestValue in section 4.6).

We shall not discuss which types of individuals tend to have commonly
known proper names (people, cities, and companies come to mind) and which
do not (e.g., tables, trees, body parts, atomic particles). Likewise, we will say
little about the choice between different versions of a proper name (e.g., given
name, surname or both), a difficult issue that is handled differently in different
languages and cultures, and which can sometimes depend on the length and
frequency of the names involved. The social implications of titles and hon-
orifics complicate these questions even further; for example, to say “Mr Klein”
is more than simply to refer to the most salient male individual named “Klein”,
but also to do this politely.

To sum up the core of approach outlined so far:
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• Each individual is associated with an attribute NAMES.

• For a given individual, the set of values of NAMES can be empty (no name
is available), singleton (one name), or neither (several names).

• A subsumption relation can be defined among these values.

• Different individuals can share some or all of their names (cf., section 1.2,
where entity resolution is discussed).

• REG will treat the NAMES attribute in the same way as other attributes.

It appears that names are often the “canonical” way of referring to an entity.
If this is true, then standard mechanisms could be invoked to favour names at
the expense of other properties, including Dale and Reiter’s Preference Order,
or even (given that names are often short) a preference for brevity. This can be
likened to the idea that numbers can be written in canonical form by writing
them in decimal form:

√
16 denotes a bona fide number, but only 4 is the

canonical form of that number. But just as there can be reasons for writing√
16 (and certainly

√
2), there can be reasons for not using proper names. If

you know the name of the woman involved, this does not mean that “Please
contact the Director of the Customs and Tax Department” is better worded as
“Please contact Mr X” (where X is her name). In referring to sets (chapter
8), it is even less clear that proper names are always preferred, because listing
proper names does not necessarily make for a short description (compare “the
citizens of China” with a listing of all the elements of this set). Once again,
there are many open questions about these matters.

To see how things could work in practice, suppose the facts on the ground
are as follows. For simplicity, each individual has exactly one name:

TYPE: woman {w1,w2,w3}, man {m1}, dog {d1, d2}
NAMES: mary {w1}, shona {w2,w3}, rover {d1}, max {m1, d2}
ACTION: feed {(w1, d1), (w2, d2), (w2, d1)}
AFFECTION: love {(w1, d1), (w3, d1)}

Then our proposal suggests the following referential possibilities:

d1: “Rover”
d2: “The dog called Max” (Just “Max” could refer to m1.)
w3: “Shona, who loves a dog” (“Shona” could be w2,“loves a dog” could be w1.)
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7.3 Reifying Properties

The representational scheme that we use here is fairly flexible; for example, it
would allow a suitable generator to quantify over people using their names, as
when we say “There are two Shona’s in this domain”. With this representation
scheme in place, classic REG algorithms can be applied without any modifi-
cations. However, as Graeme Ritchie (p.c.) has pointed out, the representation
scheme does not allow proper names to have properties (e.g., “is a posh name”,
“has 5 characters” ,“is common in Scotland”). If names are reified, then this
becomes possible; what’s more, proper names themselves could be referred to
(e.g., “the name his friends call him”). This idea, which could be generalized
to other properties (“is a nice colour”, “is the colour of grass”, etc.), can be
worked out in different ways, but let me sketch one possibility.

The idea is to treat a name as just another object linked (on the one hand) to
the things it names and (on the other hand) to the ways in which it manifests
itself in spelling (pronunciation, etc.). One name, n2 for example, may name
both a man and a dog, and it is written as “Max”. This would lead to the
Knowledge Base above being expanded as follows:

Type: woman {w1,w2,w3}, man {m1}, dog {d1, d2}, name {n1, n2, n3, n4}
Action: feed {(w1, d1), (w2, d2), (w2, d1)}
Affection: love {(w1, d1), (w3, d1)}
Naming: name {(d1, n1), (d2, n2), (w1, n3), (w2, n4), (w3, n4), (m1, n2)}
Spelling: written {(n1,Rover), (n2,Max), (n3,Mary), (n4, Shona)}

The revised Knowledge Base can do everything the previous one can, and
additionally it can be used to generate REs such as “The name shared by a man
and a dog” (to refer to the name written “Max”). If n4 is also specified to be
Scottish, it can generate REs such as “Those women who have a Scottish name”
as well. The only drawback of this approach, in which names are objects rather
than values of an attribute, is that subsumption of values can no longer be used
to express the relationship between, for example, “Klein” and “Joe Klein”.
Future accounts would have to address the fact that not only individuals can
have names, but sets of individuals as well (cf., chapter 8). These complexities
become particularly clear if we move away from people to geographical areas,
for example, where there are names for individuals at many levels: Rosemount
is an area of Aberdeen, which is the capital of Aberdeenshire, Scotland, for
instance, and this hierarchy opens up a wealth of referential possibilities.
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7.4 Challenges for REG Posed by Proper Names

Proper names would make an interesting case study into the relation between
philosophical theory and computational linguistics practice. The analyses
above owe little to work in the philosophy of language, where some of the
best minds have studied the logic of proper names, puzzling over the ways in
which their behaviour differs from that of definite descriptions, for instance in
epistemic contexts (see section 2.7).

Epistemic contexts have so far been ignored by computational models, but
it is not obvious that our account fares worse in such contexts than philoso-
phers’ accounts. A sentence like “Aristotle could have had a different name”,
for example, can be dealt with by the two accounts above if different possible
worlds are associated with different Knowledge Bases: the sentence could be
analysed as meaning that the object named “Aristotle” in the actual world has
a different name in some other worlds.

Admittedly, if Kripke was right, then an example like “Aristotle might not
have been Aristotle” is harder to deal with in the models outlined above. But
was Kripke right to think this sentence is necessarily false? Existing work on
proper names (section 2.7) has not yet reached the stage where there is unanim-
ity about the facts, let alone their analysis, particularly in modal and epistemic
contexts (see e.g., section 2.5). Until good theories of such contexts are avail-
able, computational models could justifiably focus on the issue of expressive
choice, which lies at the heart of Natural Language Generation (recall section
1.3). This work could focus on questions of style, formality, and politeness, for
instance, where many open questions lend themselves to experimental investi-
gation [van Langendonck, 2007].

This chapter has only scratched the surface of a large problem: we have only
discussed names of individual entities, but sets (chapter 8) can have names
as well (e.g., “The Rolling Stones”), and so can geographical areas (chapter
14), for instance. A proper treatment of proper names should permit the use of
names in all such cases, perhaps particularly as parts of a larger RE, and in com-
bination with vague expressions (e.g., “the mountains just west of Barcelona”).

Future experiments on the generation of REs that involve proper names could
address the empirical questions in this area. To find out when proper names are
used, one could perform an experiment along the lines of the TUNA’s peo-
ple corpus (section 5.3), where speakers were invited to refer to stimuli on a
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Figure 7.1
A trial in the “people” part of the TUNA experiment (rendered here in black and white).

screen. The person highlighted in the top right of Figure 7.1, for example, could
be referred to as “the gentleman with the white beard” or as “Professor Samuel
Eilenberg” (a one-time mathematician at Columbia University). It would, how-
ever, have been very difficult to ensure that proper names compete with other
properties on a level playing field, neither favouring nor disfavouring proper
names.

To appreciate the difficulty, note that the participants in the original TUNA

experiment could have used proper names already, because the people in the
pictures depict actual persons (famous mathematicians, in fact). This never
happened, however, because our participants were not familiar with these
names. To make them familiar with the names of the referents, we could have
trained our subjects before the experiment. But what level of familiarity would
have been appropriate? If the training had been very extensive (or if we had
added these names as captions to the images, for example, as in the map task
corpus of [Anderson et al., 1991] [Bard, 2007]), then this would have caused
such a strong association between the name and the referent, in the minds of the
participants, that it would have biassed their utterances hugely towards using
names, at the expense of descriptions. The root of the problem is that proper
names are conventional in a way that descriptive expressions (e.g., “with a
white beard”) are not, and this fundamental difference makes it difficult to
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compare the two types of REs fairly. This is possibly the hardest challenge
posed by proper names.

One final consideration is related to the issue of conventionality. In our initial
discussion of Information Sharing (section 1.7), we saw that the normal direc-
tion of sharing can sometimes be reversed, as in Barwise and Perry’s example
in which a speaker says “My wife is coming in just now”, thereby informing
the hearer that the person who is walking into the room is his wife. Likewise, if
I use a proper name n to refer to the referent r, I tell the hearer that I consider
the fact that n is a name of r to be in our common ground. This is unremark-
able in many cases, but especially when n is a nickname it can be crucial:
by saying to you that “The Gunners” have just won a football match (this is
a nickname for the North-London football club Arsenal), I’m telling you that
this nickname is in our common ground. Effectively, I am thereby saying that
we both belong to a social circle of people who are “in the know” about the
club. Computational models are not yet able to formalize under what circum-
stances a nickname is an appropriate way to refer, and how it affects the shared
(social) information of the interlocutors.

7.5 Summary of the Chapter

This chapter argues that REG algorithms should take proper names into account
and offers a preliminary discussion of what might be the best way to do this.
We discuss two closely related approaches, both of which are variants of the
well-known theory that proper names are disguised definite descriptions (cf.,
section 2.7).

• The first proposal treats a proper name as a property of the referent. It
appears to account for many of the basic facts about proper names. In par-
ticular, a referent can have several proper names (some of which can be
more specific than others); a proper name can be ambiguous; a name can be
combined with other properties of the referent. [Section 7.2]

• The second proposal treats a proper name as an object to which a referent
can stand in the naming relation, and which can be written and pronounced
in various ways. This approach accounts for a number of additional facts,
such as the fact that a name can have properties and that a name can be
referred to. [Section 7.3]
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• Neither of these proposals has much to say about the behaviour of proper
names in modal or epistemic contexts, which have figured strongly in theo-
retical discussions of proper names (section 2.7). We have argued, however,
that this is to be expected given the state of our understanding of proper
names. [Section 7.4]

• The hardest problems in the area of this chapter include choosing between
proper names and other REs, choosing between different versions of the
same name, and figuring out how names are best combined with epithets and
other properties. These questions could be studied using the type of elicita-
tion experiments discussed in Part II. However, because names are purely
conventional devices, it is difficult to design an elicitation experiment that
compares names with other REs on a level playing field. [Section 7.4]

• Even though the issues discussed (briefly) in this chapter are particularly
relevant for proper names, they have some relevance for other types of REs
as well. This is true for reification of properties (section 7.3), for the issue
of politeness (after all, not all properties of a person are equally suitable for
use in a politely used reference to the person), and even for the question of
conventionality (section 7.4). The study of proper names, and REs containing
them, can be a useful testing ground for future REG models that take these
difficult issues into account.
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Classic REG algorithms do not only bypass proper names: they simplify in
other ways as well. For example, a referring expression (RE) produced by such
an algorithm can only refer to one single entity, never to a larger set. Moreover,
the classic algorithms are restricted to using logical conjunction (i.e., set inter-
section) as the only mechanism through which properties may be combined.
This chapter will explore the questions that come up when these two related
restrictions are abandoned. Reference to sets will prove to be a surprisingly
rich area, full of little-explored questions and open problems, some of which
will be dealt with in later chapters.1

The plan for this chapter is as follows. We start discussing how some ref-
erences to sets can be produced by a simple variant of the classic algorithms
(section 8.1). Then we discuss some limitations of this simple approach (sec-
tion 8.2), followed by two ways in which a wider range of references to sets can
be generated (sections 8.3 and 8.4). Then we move on to experimental studies,
focussing on two problems that arise from the fact that references to sets are
often conjunctive, being of the form “the so-and-so and the so-and-so”. The
first problem is that the two parts of such a conjunctive reference can some-
times be ill matched, because each conjunct applies a different conceptual per-
spective (section 8.7). The second problem is that conjunctive references can
give rise to syntactic ambiguities, as when we say “the old men and women”,
where it is unclear whether this could include any young women (section 8.8).

Because sets are at the centre of this enterprize, the use of set-theory notation
is difficult to avoid. Accordingly, the presentation in this chapter, and in the
later chapters of Part III, will be more formal than elsewhere in this book.

Readers who are particularly interested in empirical issues relating to refer-
ence to sets should be able to jump to sections 8.7 and 8.8 without difficulty.

8.1 Purely Conjunctive References to Sets

Suppose the information shared by a speaker and hearer is as captured by the
following Knowledge Base, whose domain is a set of dogs, and whose only
attributes are TYPE and COLOUR:

1 This chapter integrates ideas from [van Deemter and Halldórsson, 2001], [van Deemter, 2002],
[Gatt and van Deemter, 2007], and [Khan et al., 2012] with more recent work, using the mono-
tonic approach to REG outlined in chapter 4.
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TYPE: Dog ({a, b, c, d, e}), Poodle ({a, b})
COLOUR: Black ({a, c}), White ({b, e})

What would be more natural than to refer to {a, b}, which is a set, as “the poo-
dles”, or to {b, e} as “the white dogs”? Reference to sets is often neglected,
throughout the Cognitive Sciences. Yet generating descriptive REs is even more
crucial if the target is a set than if it is a single object: even if the objects in
the set have proper names, the set as a whole is likely to lack a name. (Each of
the occupants of the room next to mine has a proper name but, as a group, they
do not.) Moreover, if the set is large, then enumerating its elements is cumber-
some. In this section, we sketch extensions of REG that produce distinguishing
descriptions of sets. We shall see that reference to a set is a more complicated
affair than reference to an individual object.

In the examples considered so far, we are lucky, because the elements of the
target set happen to have something in common that they share with no other
entity. In this case, we can generate referring expressions in the same way as
before, searching for atomic properties P1, ..., Pn whose intersection equals a
given target set. For example, we could aim for the shortest conjunction that
singles out the target set. Or, we can use an incremental strategy, as in the
algorithm below, which we call IAPlural. As often before, we disregard special
provisions for head nouns (e.g., via the TYPE attribute). Note, however, that a
head noun must be selected that suits every element of the target set.

The new algorithm generalizes the original Incremental Algorithm: S takes
the place of the target referent r. The process of expanding L and contract-
ing C continues until all domain objects that are not elements of S have been
removed. IAPlural refers to a set by scrutinizing its elements. Because S may
be a singleton, IAPlural subsumes IA. As before, we assume a nonempty set
of distractors. In Algorithm 11, we state the algorithm informally, using the
monotonic structure familiar from our discussion of the Greedy and Incremen-
tal Algorithms for reference to a single object (chapter 4).

This simple algorithm was tested as part of the TUNA experiment of chapter
5, with results that were nearly as good as those for reference to individual enti-
ties [van Deemter et al., 2012b]. (For the furniture corpus, in situations where
a nondisjunctive RE is able to single out the referent set, the Dice score for the
best performing Incremental Algorithm was 0.797; for the people corpus this
figure was 0.819.) An example domain is shown in Figure 8.1.
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Algorithm 11 IAPlural: the Incremental Algorithm for referring to sets
Input: A domain of objects, containing a non-empty target set S consisting of elements
of the domain; also containing a non-empty set M of distractors (i.e., domain elements
that are not elements of S). A set P of properties true of each element of S. A linear
Preference Order defined on P .
Output: A distinguishing description D of r if one exists.

1: Start out with an empty D
2: while Not all distractors have been ruled out and P 6= empty do
3: Select a new property P from P , choosing the most preferred one
4: if P is false of some distractors then
5: Add P to D
6: Remove P from P
7: Remove from M all distractors ruled out by P

(a) People trial

Figure 8.1
The TUNA elicitation experiment (people): reference to sets.
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Collective properties. As an aside, note that this approach does not work for
collective properties, such as “being of the same age”, which pertain to sets
of objects (e.g., [Scha and Stallard, 1988], [Lønning, 1997]). A REG algorithm
that exploits collective properties was first proposed in [Stone, 2000], using a
constraint-based approach. The monotonic algorithm IAPlural can be modified
to do the same.2 This time around,M is a set of sets and P is a set of collective
properties true of the target referent set.

Algorithm 12 IACol: the Incremental Algorithm, referring to sets and allowing
collective properties
Input: A domain of sets, containing a target set S and a non-empty setM of distractors
(i.e., elements of the domain that are not identical to S). A set P of properties true of S
itself. A linear Preference Order defined on P .
Output: A purely conjunctive distinguishing description D of S if one exists.

Steps: Identical to the steps of IAPlural (Algorithm 11).

IACol selects properties of sets, removing from the set of all potential referents
(i.e., the set of all subsets of the domain) all those sets for which the property
is false. For example, selection of “being of the same age” removes all sets
whose elements are not of the same age as each other; selection of “football
team” removes all sets that do not make a (complete) football team. The algo-
rithm generates Logical Forms for descriptions such as “football teams whose
members are of the same age”.

As it stands, IACol applies to collective properties only. However, the algo-
rithm can take distributive properties in its stride if these are upgraded to the
level of sets (cf., [Kamp and Reyle, 1993], p. 338): let P be a distributive prop-
erty, then we define the collective property d(P ) to be true of a set if and only
if P is true of all elements of the set. For instance, suppose S = {a, b, c} is a
team of a 3-player sport and S is the only such team all of whose members
have the flu (i.e., Flu(a), F lu(b), F lu(c)). This makes the property d(Flu)

true of S. The algorithm above can single out S by combining the collective
property of being a team with the distributive property d(Flu). The target set
S is identified as the team whose members have the flu. (End of aside.)

2 These adaptations would cause the worst-case run time of the algorithm to become exponential,
because testing whether all distractors have been ruled out involves inspecting all subsets of the
domain, of which there can be up to 2nd , where nd is the cardinality of the domain.
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Figure 8.2
The need for negation (1): “I bought the two dogs that are not poodles”.

8.2 Negation and Disjunction

From here on, we focus on the case in which all properties ascribed to a refer-
ent set are distributive. Before we proceed, one terminological issue should be
clarified: Perhaps confusingly, disjunction (∨) (or its equivalent ∪ in set theory,
if you prefer) may be realized in language as conjunction (“and”). For example,
the set {x | x ∈ A∨ x ∈ B} can be referred to as “the As and the Bs”. Rever-
sals of this kind occur in other linguistic constructs as well. For example, “You
may do A or B” equals “You may do A and you may do B”, a phenomenon
known as Free Choice Permission (e.g., [Asher and Bonevac, 2005]).

Now that we are able to generate references to sets, let us move away from
purely conjunctive descriptions to full Boolean combinations of properties.
First look at Figure 8.2, where a speaker says “I bought the two dogs that
are not poodles”, which contains a negation; a better description seems hard
to find. A simpler example, where negation is unavoidable and where the ref-
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erent is one single individual, can be constructed if we consider the following
Knowledge Base, a variant of the one in section 8.1:

TYPE: Dog ({a, b, c, d, e}), Poodle ({a, b})
COLOUR: Black ({a, b, c}), White ({d, e})

Classic REG algorithms, such as the IA, do not allow us to individuate c. Yet c is
unique: it is the only black dog that is not a poodle: {c} = Black ∩ Poodle.
Let’s reflect on this situation: here is an element which an English speaker
would have no difficulty singling out by means of an NP; yet none of the algo-
rithms discussed so far is able to produce a distinguishing description of c.

One might be tempted to see this as a defect of the Knowledge Base: if for
each property P in the Knowledge Base there exists a property coextensive
with the complement of P , then the problem disappears. (If c, d, and e are all
alsatians, then c is “the black alsatian”.) This does not make sense, however,
because natural language does not have a word for every complement.

Moreover, gaps in our shared knowledge are only too real: it may be unclear
what type of dog c is, for example, because c is a cross between types. Nega-
tion can help in such cases. When relations are considered, the advantages of
negation become even more pronounced, because negated relations are often
not lexicalized. A dog that is not a poodle (as in Figure 8.2) is presumably
some other kind of dog, for which we may have a word if we are lucky; but
how about a man who is not wearing a sombrero: do we have a word for that?
(See Figure 8.3.) Chapter 10 will tackle situations of this kind.

There is a problem, however. Recall that the Knowledge Base is meant to
represent information that is in common ground. In other words, the reason
why c’s type is not listed as “poodle” might not be that c is not a poodle, but
merely that c’s being a poodle is not in common ground. It might even be that
c is a poodle, and that both the speaker and the hearer know it, but the hearer
fails to know that the speaker knows it. In this case, “the black dog that’s not
a poodle” will misfire, because to the hearer, there is no such dog. Clark and
Marshall’s reasoning about two people aiming to watch a film together (section
3.1) showed that there is no simple way around this problem, and that refer-
ence can fail. The simplifying assumption that we shall make here is that all
the information that is relevant to the appropriateness of an RE is in common
ground. Focussing on the example above, we assume that it is in the common
ground what the elements of the domain are, what their types are, and what
their colours are. More generally, we do not only assume that all the proposi-
tions listed explicitly in the Knowledge Base are in common ground, but also
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Figure 8.3
The need for negation (2): “Arrest the man who is not wearing a sombrero”.

the negated propositions that follow from the Closed World Assumption (sec-
tion 1.1). These assumptions can fail, but they tend to be fulfilled in situations
where speaker and hearer are co-present.

Before we discuss how REG can deal with these issues, we need to address
another limitation of classic REG algorithms, which is their inability to express
disjunction (i.e., set union). Consider the example domain above once again,
focussing on the set {a, b, d, e}. It is easily described in set-theoretic terms, for
instance, poodle∪white. Moreover, the set is referable in English, as when
we say “The poodles and the white dogs”. Just like negated properties, one can
view disjunctions between properties as being implicit in simple Knowledge
Bases of the kind on which we are focussing in this chapter. Unlike negation,
disjunction does not lead to conceptual problems related to common ground.
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In the next two sections, we will investigate how REG algorithms can pro-
duce REs that use negation and/or disjunction. But before we talk about algo-
rithms, it will be useful to ask how one can determine whether unique identifi-
cation of an entity is possible in a given situation. Before negation and disjunc-
tion made their appearance this was an easy question but, as the logical appara-
tus at the disposal of REG grows, this question becomes harder to answer. This
same question – which will be discussed more fully in sections 10.3 and 11 –
will turn out to give us a useful perspective on reference, ultimately suggesting
alternative REG algorithms.

8.3 Satellite Sets and Their Use in REG

Sometimes it is impossible to identify a given individual uniquely; every Log-
ical Form that describes it describes one or more other individuals as well.
Following [van Deemter and Halldórsson, 2001], we call these unwanted indi-
viduals satellites of the referent. Let’s now call the satellite set of an object r
the set of objects from which r cannot be distinguished (this time including r
itself). We shall see that the idea of a satellite set can inform a primitive algo-
rithm for referring to sets. Later in this chapter we shall be concerned with
other algorithms, but it will be enlightening to see what can be done with the
simple idea of a satellite set. Satellite sets will be reused in chapter 10 (where
they will be more rigorously defined), so it will be useful to keep track of them
during the course of our narrative.

First, consider the classic REG task of referring to an individual. There is a
domain D with a target referent r in it and a number of distractors. Further-
more, there is a set P of atomic properties. Consider the intersection of the
extensions of all properties that hold true of a referent r:⋂
{[[P ]] : P ∈ P ∧ P (r)}

In section 4.3 we encountered the Total Reference algorithm (Algorithm 2),
which essentially follows the structure of this formula. The algorithm calcu-
lates, for each of the properties P in P , its extension [[P ]], assembling these
properties in a list; it remove from the list the properties P for which r 6∈ [[P ]],
resulting in a new list. The algorithm then computes the intersections of the
extensions of all the properties in this list. If the resulting intersection equals
the singleton {r}, then the tentative Logical Form is an RE that identifies r; if
it is not, then an intersective RE does not exist.
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Three factors need to be distinguished: the Logical Form, its extension, and
the algorithm inspired by it. We call the Logical Form the satellite set con-
structor, and its extension (which is also the extension of the Logical Form)
the satellite set of r. Let’s return to the shared Knowledge Base of section 8.1,
which we repeat here:

TYPE: Dog ({a, b, c, d, e}), Poodle ({a, b})
COLOUR: Black ({a, c}), White ({b, e})

We carry out the above construction for each element of the domain. To sim-
plify presentation, we will omit brackets, writing dog instead of [[dog]], for
example; analogously we shall sometimes talk about, for instance, the inter-
section of properties where we mean the intersection of their extensions.

SatelliteSet(a) = dog ∩ poodle∩ black = {a}
SatelliteSet(b) = dog ∩ poodle∩white = {b}
SatelliteSet(c) = dog ∩ black = {a, c}
SatelliteSet(d) = dog = {a, b, c, d, e}
SatelliteSet(e) = dog ∩white = {b, e}

These simple calculations show that only a and b can be individuated. If your
aim is to identify c, and the four properties listed above are the only ones
available, then you should give up, because no algorithm will be able to do it.
If your aim is to identify the set {a, c}, however, then the intersection of black
and dog will do it. (The property dog is logically superfluous in this case, but
it is possible to systematically omit superfluous properties in order to make the
generated REs less verbose.)

This is not the end of the story, however. This can be seen in the Knowledge
Base above, where it is impossible to refer to {a, b, d, e} with just conjunc-
tion and complementation (i.e., negation): if we add full set complementation,
expressed here by means of a horizontal bar, we can express black ∩ poodle, or
set union, using the Logical Form poodle∪ black (“the poodles and the ones
that are not black”). One approach to the generation of REs of this kind uses
a generalization of the satellite set constructor above. The idea is to intersect
all the literals (i.e., atomic properties and their complements) that hold true of
each of the n element of the set, and to form the union of these n intersections
[van Deemter and Halldórsson, 2001]. This idea can be formalized elegantly
using set operators. S is the target set which the algorithm seeks to refer to:
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Logical Form = (the formula)
⋃
d∈S

⋂
A∈Sd

[[A]],
where Sd = {A : A ∈ Pplusneg ∧ d ∈ [[A]]},
where Pplusneg = P ∪ { Pi : Pi ∈ P }.

The algorithm inspired by this idea (Algorithm 13 below) starts adding to P
the properties whose extensions are the complements of those in P . The result-
ing set is called Pplusneg. For each domain element d of S, the algorithm finds
those properties in Pplusneg that are true of d, and the intersection of the exten-
sions of these properties is formed and dubbed Sat(d). A Logical Form for a
referent set S is constructed by forming the union of all the Sat(d), for each d
in S. A Logical Form is successful if it evaluates to the target set S; otherwise
the algorithm returns Fail. If Fail is returned, then no Boolean description of S
is possible. An example of the working of the algorithm will be given presently.

Algorithm 13 Description by Satellite Sets (DBS)
Input: A domain of objects, containing a non-empty target set S consisting of elements
of the domain; also including a non-empty set of distractors (i.e., domain elements that
are not elements of S). A set P of properties true of each element of S. The notation
Sd is explained in the text.
Output: A description D that denotes the set S, if such a description exists.

1: for each element d of S do
2: construct Sd (which is a set of sets of domain elements)
3: Satd := the intersection of all the sets in Sd

4: D := the union of all these Satd (i.e., where d is any element of S)
5: if [[D]] = S then
6: return D

The Logical Forms produced by DBS are lengthy. To identify the target set
S = {c, d, e}, for example, the property poodle would have sufficed. The algo-
rithm, however, starts from the three elements of S, performing line 2 of the
Algorithm three times:

Sc = {dog, black, poodle,white}.
Sd = {dog,white, poodle, black}.
Se = {dog,white, poodle, black}.

Consequently, a lengthy disjunction D is generated:

(dog ∩ black ∩ poodle∩white) ∪
(dog ∩white∩ poodle∩ black) ∪
(dog ∩white∩ poodle∩ black).
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DBS is computationally cheap: it has a worst-case running time of O(n.p),
where n is the number of objects in S and p is the number of atomic prop-
erties. Rather than searching among many possible unions of sets, a target
S = {s1, .., sn} is described as the union of n Satellite sets, each of which
equals the intersection of those (at most p) sets in Pplusneg that contain si.
Descriptions can make use of the Satellite sets computed for earlier descrip-
tions. Satellites sets can even be calculated off-line, for all the elements in the
domain, increasing computational efficiency even further.

The algorithm’s profligacy makes this theorem straightforward to prove:

Theorem 2 Boolean Completeness: For any set S, S can be denoted by a Boolean combination
of properties in Pplusneg if and only if

⋃
d∈S(SatelliteSet(d)) equals S.

Proof: The implication from right to left is obvious. For the converse implication, suppose that
S 6=

⋃
d∈S(SatelliteSet(d)). Then for some e ∈ S, SatelliteSet(e) contains an element e′ that is

not in S. But e′ ∈ SatelliteSet(e) implies that every property in Pplusneg that holds true of e
must also hold true of e′. It follows that S, which contains e but not e′, cannot be obtained by a
combination of Boolean operations on the sets in Pplusneg . 2

The completeness of DBS follows directly; the limitation to finite sets stems
from the fact that DBS addresses the elements d ∈ S one by one:

Theorem 3 Completeness of DBS: Assume there are finitely many properties. Then if an indi-
vidual or a finite set can be individuated by any Boolean combination of properties defined on the
elements of the domain, then DBS will find such a combination. 2

Algorithms based on satellite sets are fast and elegant. It is time, however, to
turn to another way of generating references to sets, which is closer in spirit to
the monotonic REG algorithms discussed in earlier chapters.

8.4 Generating Boolean Logical Forms Incrementally

The DBS algorithm generates unwieldy descriptions. Let’s see how Logical
Forms that refer to sets can be generated incrementally, producing output that
is a bit more in line with human language production. We start with the com-
putational mechanism, postponing discussion of empirical issues.

First, we add negations to the list of atomic properties taken into account by
an Incremental Algorithm. Then we let IAPlural run a number of times: in Phase
1, the algorithm is performed using all positive and negative literals; if this ends
before all distractors have been ruled out, Phase 2 removes further distractors
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from C by making use of negations of intersections of two literals, and so on,
until all distractors have been ruled out or all combinations have been tried.
Negation of an intersection comes down to set union, because of De Morgan’s
Law: P1 ∩ ...∩ Pn = P1 ∪ ...∪ Pn. Thus, Phase 2 deals with disjunctions of
length 2, Phase 3 with disjunctions of length 3, and so on. Optimizations may
be applied. For instance, a Logical Form of the form (P ∪Q)∩ (P ∪R) can
be simplified to (P ∪ (Q∩R)) using standard algorithms (e.g., McCluskey
1965). More will be said about these optimizations in section 8.5.

As usual, a schematic presentation (Algorithm 14) will be useful, in which
P+/− stands for any literal, that is, any atomic property or its negation. (Dif-
ferent occurrences of P+/− denote potentially different literals.) The length of
a property will equal the number of literals occurring in it. We will say that a
IAPlural phase uses a set of properties X if it loops through the properties in
X (i.e., X takes the place of P in the original IAPlural). Recall that in IAPlural,
D is the description under construction (which grows during execution of the
algorithm), and M is the set of distractors (which shrinks during execution).

Algorithm 14 Generating Boolean descriptions incrementally
Input: A domain of objects, containing a non-empty target set S consisting of elements
of the domain; also including a non-empty set M of distractors (i.e., domain elements
that are not elements of S). A set P containing n properties true of each element of S.
Output: A description D that denotes S, if such a description exists.

1: Phase 1: Perform IAPlural using all properties of the form P+/−
(and updating M and D in the process)

2: if this is successful then
3: return D
4: else
5: Go to Phase 2

6: Phase 2: Adding to the values of D and M coming out of Phase (1),
Perform IAPlural using all properties of the form P+/− ∪ P+/−
(and updating M and D in the process)

7: if this is successful then
8: return D
9: else

10: Go to Phase 3. (Etcetera, up to Phase n.)

We require without loss of generality that no property, considered at any
phase, may have different occurrences of the same atom. (For example, it is
useless to consider P1 ∪ P2 ∪ P1, which is true of every element in the domain,
or the property P1 ∪ P2 ∪ P1, which is equivalent to the earlier-considered
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property P1 ∪ P2.) Because, at Phase n, there is room for properties of length
n, the maximal number of phases equals the total number of atomic properties.

To see how this works, consider our example of section 8.2 again:

TYPE: Dog ({a, b, c, d, e}), Poodle ({a, b})
COLOUR: Black ({a, b, c}), White ({d, e})

Suppose the Preference Order of atomic properties corresponds with the order
in which they are listed, where the same order extends to their negations, which
are less preferred. Abbreviating B = black, D = dog, P = poodle, and W =

white, this yields the Preference Order 〈B,D,P,W,B,D,P ,W 〉. Now if S =

{c, d, e} or S = {c} are referred to, a Logical Form is found during Phase 1:
P in the first case, B ∩ P in the second. The situation gets more interesting
if S = {a, b, d, e}, which triggers Phase 2. Suppose the properties relevant for
Phase 2 are ordered as follows:

〈B ∪D,B ∪ P ,B ∪W ,D ∪ P ,D ∪W , P ∪W ,B ∪D,B ∪ P ,B ∪W ,
D ∪B, D ∪ P , D ∪W , P ∪B, P ∪D, P ∪W , W ∪B, W ∪D, W ∪ P ,
B ∪D, B ∪ P , B ∪W , D ∪ P , D ∪W , P ∪W 〉

No property is selected during Phase 1, because Dog does not remove any
distractors. During Phase 2, one property after another is rejected. The first
property that is true of all elements of S while also removing distractors
is P ∪W . This property happens to remove all distractors at once, causing
the algorithm to end with poodle∪white. If we modify the example by let-
ting [[black]] = {a, c} (rather than {a, b, c}) and S = {b, c, d, e} (rather than
{a, b, d, e}), then the Logical Form black ∪ poodle is found.

The algorithm IABoolean is not only incremental within a phase, but also from
one phase to the next. Once a property has been selected, it will not be aban-
doned even if properties selected during later phases make it logically super-
fluous. As a result, one may generate Logical Forms like X ∩ (Y ∪Z) (e.g.,
“white (cats and dogs)”) where Y ∪Z (e.g., “cats and dogs”) would have suf-
ficed (because (Y ∪Z) ⊆ X). This is not unlike the redundancies generated
by the original Incremental Algorithm, but more dramatic. Adaptations could
be made. For instance, phases might run separately before running in combi-
nation: first (as usual) Phase 1, then 2, then (as usual) 1&2, then 3, then 1&3,
then 2&3, then (as usual) 1&2&3, etc. As a result of this adaptation, the Logi-
cal Form Y ∪Z would be generated on account of Phase 2 alone.
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Double incrementality does not save IABoolean from intractability. To esti-
mate running time as a function of the number of properties (na) in the Knowl-
edge Base and those in the Logical Form (nl), one can mirror an argument in
Dale and Reiter (1995, section 3.1.1) to show that the maximal number of
properties considered equals

nl∑
i=1

2

(
na

i

)
=

nl∑
i=1

2
na!

i!(na − i)!

(The factor of 2 derives from inspecting each atom and its negation.) If
nl << na, then this is in the order of nnl

a . The algorithm can be pruned to
make it polynomial. By cutting off after Phase 1, for example, only literals
would be combined.completeness would be lost, but only for references to
non-singleton sets, because set union does not add descriptive power where
the description of singletons is concerned. The number of properties to be con-
sidered by this simpler algorithm equals n2a + 2na − 1. To produce Logical
Forms like White∩ (Cat∪Dog), the algorithm could be cut off one phase
later, leading to a worst-case running time of O(n3a), and so on.

Earlier, we proved Intersective Completeness for two versions of Dale and
Reiter’s Incremental Algorithm. We now prove Boolean Completeness for
IABoolean, the Boolean extension of IAPlural.

Theorem 4 Completeness of IABoolean. Assume there are at most denumerably many properties,
and finitely many distractors (one or more). Then if a set can be individuated distributively by any
Boolean combination of properties, then IABoolean will find such a combination. Proof:
Any Boolean expression can be written in Conjunctive Normal Form (CNF), that is, as an intersec-
tion of unions of literals (e.g., Fitting 1996). The theorem follows from the following Lemma.

Lemma 1 Let ϕ be a CNF whose longest union has a length n (conjoining n literals). Then
IABoolean will find a Logical Form ϕ′ that is coextensive with ϕ, in at most n phases. This is proven
by induction on the size of n.
Base step: If n = 1, the Lemma is equivalent to completeness of IAPlural, whose proof is analogous
to that of the completeness of IA, replacing {r} by S.
Induction step: Suppose the Lemma is true for all n < i. Now consider a CNF ϕ whose longest
union has length i; let ϕ containm unions of length i, namely, ϕ1 ∩ ..∩ϕm. Then ϕ can be writ-
ten as the CNF χ∩ϕ1 ∩ ..∩ϕm, where all the unions in χ have length < i. The Lemma is true
for all n < i, so if χ is sent to IABoolean, then the output is some χ′ such that [[χ′]] = [[χ]], in fewer
than i phases; so if, instead, ϕ is sent to IABoolean, then, after i− 1 phases, some possibly incom-
plete Logical Form η has been found, such that [[η]] ⊆ [[χ]]. Also, [[ϕ]] ⊆ [[η]]. Phase i inspects all
unions of length i, including each of ϕ1, ..,ϕm. Therefore, unless a Logical Form coextensive
with ϕ is found before Phase i, one will be found during Phase i. To see this, suppose the algo-
rithm finds ψ such that [[ψ]] = [[ϕ1]]∩ ..∩ [[ϕm]], then [[χ]]∩ [[ψ]] = [[ϕ]]; but [[ϕ]] ⊆ [[η]] ⊆ [[χ]],
therefore also [[η]]∩ [[ψ]] = [[ϕ]]. 2
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8.5 Optimization of Generated REs

REG algorithms sometimes generate Logical Forms in two steps: the first
step uses a simple method to produce a potentially lengthy Logical Form,
whereas the second removes redundancies. For instance, Ehud Reiter pro-
posed to generated a potentially overspecified initial Logical Form of a (sin-
gle) target referent, after which properties that are not necessary for singling
out the referent are removed from this initial Logical Form [Reiter, 1990b].
Two-step procedures are not unknown in psycholinguistics either – Levelt’s
famous model of language production (discussed in our section 1.4) allows
the speaker to monitor her own speech and modify it on the basis of this self-
monitoring ([Levelt, 1989], chapter 12). We shall encounter a different type
of self-monitoring in chapter 12, where tentative descriptions are enhanced if
they are likely to cause trouble to hearers.

A two-step procedure for generating references to sets was proposed in
[van Deemter, 2002]. The idea was not merely to remove superfluous prop-
erties, but to re-structure the initial Logical Form completely, making sure that
the resulting Logical Form is logically equivalent to the initial Logical Form,
aiming for the shortest equivalent. For instance, a Logical Form of the form
(p∪ q)∩ (p∪ r) is simplified to p∪ (q ∩ r). This procedure reduce the size
of many REs, and can be implemented using algorithms that are used rou-
tinely in the design of logic circuits (e.g., [McCluskey, 1965]). The proposal
of [van Deemter and Halldórsson, 2001] is open to the same improvements.

These optimizations are useful but they do not always lead to the shortest
RE possible, because they only look at logical equivalence. In other words,
they only replace an initial Logical Form with a shorter one if the two Logical
Forms corefer in all possible domains, whereas one may want to do the same
whenever they happen to corefer in the domain to which they are applied.

For example, suppose the initial Logical Form is as above, but with p′ replac-
ing the second occurrence of p, that is, (p∪ q)∩ (p′ ∪ r). Now suppose p and
p′ are co-extensive, because they hold true of the same entities in the domain at
hand. For example, the domain consists of the people in a room. Now p might
say left-handed and p′ might say wearing a kilt, and the two people in the room
who are left-handed are also the only ones wearing a kilt. The same optimiza-
tion is possible as before, but the program will fail to find it, because in other
domains, p and p′ may not be co-extensive. The problem can also apply to
combinations of properties, for example when p∪ q has the same extension as
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p′ ∪ q′. Gardent’s constraint-based approach would solve the problem, always
producing the shortest RE possible (section 6.4). However, given what is known
about human reference production (e.g., chapter 5), it seems unlikely that the
shortest REs are always the ones most likely to be produced, or the ones that
are most effective for a hearer. What is needed is a systematic investigation into
speakers’ strategies for referring to sets, analogous to earlier investigations into
the classic REG task.

8.6 Issues Raised by the Algorithms Proposed

The algorithm of section 8.4 has given rise to a number of questions. Claire
Gardent, for example, drew attention to situations where earlier proposals pro-
duced very lengthy Logical Forms, and proposed a reformulation of REG as
a Constraint Satisfaction problem, which finds optimally brief references to
sets (see section 6.4). Helmut Horacek has argued that it is generally bet-
ter to generate Logical Forms in Disjunctive Normal Form (DNF; unions
of intersections of literals) than the CNF-based Logical Forms generated by
[van Deemter, 2002]. Horacek therefore proposed an algorithm that first gen-
erates Logical Forms in CNF and then convert these into DNF, skipping super-
fluous disjuncts [Horacek, 2004]. To see how this can work, let’s modify our
old example again, assuming that all dogs are either poodles or alsatians:

TYPE: Dog ({a, b, c, d, e}), Poodle ({a, b}), Alsatian ({c, d, e})
COLOUR: Black ({a, c}), White ({b, e})

To refer to {b, c}, Horacek would start with an CNF Logical Form such as
(white∪ alsatian)∩ (black ∪ poodle) (“the dogs that are white or alsatians,
and also black or poodles”). This would be converted into DNF: (white∩
poodle)∪ (white∩ black)∪ (alsatian∩ poodle)∪ (alsatian∩ black) after
which the middle two disjuncts would be dropped, because nothing is both
white and black, or both an alsatian and a poodle. The outcome can be worded
as “the white poodle and the black alsatian”, which looks like a substan-
tial improvement, regardless of whether the aim of REG is humanlikeness
or benefit for hearers. Later work has tended to agree with Horacek in opt-
ing for DNF instead of CNF [van Deemter and Krahmer, 2007], [Gatt, 2007],
[Khan et al., 2012]. In the remainder of this chapter, we shall do the same,
focussing on conjoined NPs (“the so-and-so and the so-and-so”) in particular.
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We have discussed algorithms that extend the referential power of REG,
enabling the generation of distinguishing descriptions where this was not pre-
viously possible. This gives rise to a range of new questions. For example, it is
difficult to see how the REs discussed in the previous sections can be generated
in reasonable time, raising the question of how human speakers are able to do
this; algorithmic complexity has always been an issue in relation of the classic
REG problem (see section 4.8), but in the new situation it becomes huge.

It is difficult to choose between different distinguishing descriptions that
contain combinations of Boolean operators. In the words of Fitzgerald and
colleagues, “For a target set of objects, the number of logical forms that can
be used to describe it grows combinatorially with the number of observable
properties, such as color and shape. However, only a tiny fraction of these
possibilities are ever actually used by people” [FitzGerald et al., 2013]. Some
important issues were raised by Gardent and Horacek, as we have seen, and
more recently Machine Learning approaches have been applied with consider-
able success, as by Fitzgerald and colleagues, who sought to learn the corpus-
based likelihood of each logical form using a new method (based on stochastic
gradient descent). Additionally, there is the question of how Boolean opera-
tors should be combined with other phenomena: suppose a REG algorithm was
able to use relational descriptions as well as negation. Now what is preferable:
adding a relational property (“... in the wooden shed”), or adding a negated
property (“... which is not a poodle”)? Empirical investigations analogous to
those of chapter 5 are called for.

We leave these issues here, devoting the remainder of this chapter to two
other thorny issues: the internal coherence of disjunctive references and the
risk that surface ambiguities may break the clarity that REG algorithms are
designed to achieve. The strategic question of how much effort the research
community should invest in the investigation of the types of complex REs that
this chapter is beginning to explore is discussed in section 10.7.

8.7 Lexical Coherence in Conjoined REs

So far, when we are seeking to generate a conjoined RE, we are essentially
splitting the referent set into two or more parts, each of which is referred to sep-
arately, as when we say “the white poodle and the black alsatian”, for instance.
We are pretending to deal with two independent problems even though, in real-
ity, the two problems are connected.
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IDENTIFIER SPECIES ORIGIN

a lion Kenya
b lion China
c tiger China
d elephant India

Table 8.1
How to refer coherently to the set {a, c}?

To see why this is a problem, let us visit the infirmary of our zoo again,
which was introduced in chapter 1. An elephant is added to the casualties, and
certain facts (such as the weight of an animal) are left out of consideration
(Table 8.1). Let us look at some of the subsets of this domain, asking how to
refer to them. The set {c, d} can be referred to briefly and uniformly as “the
tiger and the elephant”, because there is only one of each. The set {b, c, d}
might be referred to as “the Asian animals” (provided the algorithm knows
where each country is located). What, however, is the best way to refer to
{a, c}? A number of options suggest themselves, including

1. The Kenyan animal and the tiger.
2. The Kenyan lion and the Chinese tiger.

The first of these lacks coherence, because it describes the two animals using
different conceptual perspectives. The second is more uniform, but more ver-
bose as well. It appears that either coherence or brevity has to be sacrificed.
How to choose?

A key question is whether these issues are best viewed at a conceptual
level or a lexical one. A conceptual view is offered in [Aloni, 2002] (see
our chapter 2, section 2.2), but this solution was rather rigid, implying that
reference always needs to stick with one conceptual perspective (e.g., an
animal’s country of origin), which is not always possible. A lexical view
could exploit existing methods in NLG, based on n-gram-based filtering (e.g.,
[Langkilde and Knight, 1998]): the idea would be to generate a large number
of conjoined NPs and to select the one that resembles the expressions in a
corpus most, in terms of its bi-grams or tri-grams. Filtering by n-grams, how-
ever, is ill suited for addressing choices of words that are more than 2-3 words
apart, and data sparsity can easily become a problem. It appears that a different
approach is required.
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Albert Gatt and I wanted to know whether a systematic perspective can
be brought to these issues [Gatt and van Deemter, 2007]. Gatt had the start-
ing intuition that, for an RE of the form “the so-and-so and the so-and-so” to
be coherent, the words – and especially the nouns – in the RE need to be as
similar to each other as possible, taking into account that complete coherence
(i.e., where all the words in a description are taken from the same conceptual
perspective) may not be compatible with the aim of referring uniquely. The
key concepts in this story are coherence and similarity.

Similarity had been studied extensively by Dekang Lin [Lin, 1998b],
[Lin, 1998a], building on existing Information Theoretical methods for
computing the information contained in a statement (e.g., [Fano, 1961],
[Cover and Thomas, 1991], see also chapter 13). Lin had argued that the simi-
larity of two arbitrary entities A and B should be measured by comparing the
amount of information needed to describe whatA andB have in common with
the information needed to fully describe what A and B are.

Focussing on distributional similarity, Lin based the description of a word
on the set of dependency triples 〈rel,w,w′〉 found in a corpus, where rel is
a grammatical relation, w the word of interest, and w′ its co-argument in rel
(or conversely if w′ is the word of interest). For instance, some of the triples
associated with the word “master”, obtained from the British National Corpus,
are 〈subject-of, “master”, “attend”〉, and 〈subject-of, “master”, “write”〉.

Lin viewed a grammatical triple 〈rel,w,w′〉 as a feature of both w and w′

(e.g., “master” has the feature Subject-of(“attend”)), allowing a word w to be
described by a set of features F (w) that characterize its syntactic behaviour.
Using this idea, the information that A and B have in common is F (A)∩
F (B). Lin went on to formalize the amount of similarity between two words
in the following formula (reminiscent of the Dice metric of chapter 5), where
I stands for the amount of information needed to describe a set of features:

sim(w1,w2) =
2 ∗ I(F (w1)∩ F (w2))

I(F (w1) + I(F (w2)))
, (8.1)

Following [Lin, 1998a], the definition of I(F (w)) takes into account a number
of factors, including the overall frequency of each of the relations with which
w occurs in the corpus. Gatt obtained F and I values from SketchEngine2
[Kilgarriff, 2003], which contains information about word similarity and the
mutual information of grammatical triples, based on estimates from the British
National Corpus. Similarity between pairs of nouns was estimated on the basis
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distributional sim ontological sim EXAMPLE

high high the leader and the chairman
high low the manager and the council
low high the department and the resource
low low the garden and the police

Table 8.2
Two types of similarity (sim) pitted against each other: examples of REs used as materials for one
of the experiments in [Gatt and van Deemter, 2007].

of the three grammatical relations of (a) the likelihood of two nouns occur-
ring as subjects of the same verb, (b) the likelihood of two nouns occurring
as objects of the same verb, and (c) the likelihood of two nouns being pre- or
post-modified by the same adjectives.

Gatt carried out a number of experiments to assess whether this notion of
distributional similarity (which formalizes the degree to which two words dis-
play the same syntactic behaviour) is a better predictor of the quality of a con-
joined noun phrase than other kinds of similarity. These experiments suggest
an affirmative answer. In an experiment based on magnitude estimation, for
instance, participants were shown REs of the form “the noun1 and the noun2”
that varied in terms of both their ontological similarity and their distribu-
tional similarity (Table 8.2). The former was measured in terms of the distance
between noun1 and noun2 in terms of the number of edges between concepts
in the WordNet IS-A nominal hierarchy [Pedersen et al., 2004]; the latter was
measured using Lin’s approach. Participants were asked to indicate, by moving
a slider, for each of a large number of REs, how acceptable they found this RE.
It turned out that participants’ acceptability judgments lined up much better
with distributional similarity than with ontological similarity.

Based on this and other experiments, Gatt designed a complex algorithm
that, given a domain and a referent set containing two or more elements, gen-
erates expressions that refer to this set and whose words are as distributionally
similar to each other as possible. Rather than testing the algorithm in the man-
ner of chapter 5, we decided to test a specific prediction inherent in it, namely,
that distributional similarity (i.e., coherence) can trump brevity.

The evaluation compared readers’ preference for descriptions that were opti-
mally brief or not (+/− b) and also either optimally coherent or not (+/− c).
Non-brief descriptions took the form the A, the B and the C. Brief descriptions
aggregated two disjuncts into one (e.g., the A and the Ds, where D comprises
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the union of B and C). Materials offered to participants consisted of specially
constructed items such as the following:

Three old manuscripts were auctioned at Sothebys:

(1) One of them is a book, a biography of a composer.
(2) The second, a sailor’s journal, was published in the form of a pamphlet.
It is a record of a voyage.
(3) The third, another pamphlet, is an essay by Hume.

Continuations:
(+c,−b) The biography, the journal and the essay were sold to a collector.
(+c,+b) The book and the pamphlets were sold to a collector.
(−c,+b) The biography and the pamphlets were sold to a collector.
(−c,−b) The book, the record and the essay were sold to a collector.

In a forced-choice task, participants were asked which continuation they found
most natural. We had expected to find that +c descriptions are preferred over
−c, that (+c,−b) descriptions are preferred over ones that are (−c,+b) (i.e.,
coherence is more important than brevity), and that +b descriptions are pre-
ferred over −b. We found that the first two hypotheses were confirmed, but
the last one was not. Not only were coherent descriptions preferred over non-
coherent ones when the brevity level (+/− b) was kept constant, but where
there was a trade-off between brevity and coherence, participants were much
more likely to select a coherent description than a brief one). To our surprise,
brevity on its own (i.e., the difference between conjunctions of 2 or 3 NPs) did
not have any measurable effect.

It is possible that an effect of brevity would have been found if the differ-
ences between +b and −b had been magnified. Be this as it may, the fact that
coherence, formalized in the corpus-based manner of Lin, was more important
than brevity suggests that it is a factor of genuine relevance for the quality of a
conjoined RE.

It does not seem farfetched to conjecture that lexical coherence may work
across larger stretches of discourse as well, as when a number of referents
are discussed sequentially, for example, even when the REs in question are
separated by considerable amounts of text. In fact, it is difficult to see why
the effects of lexical coherence should be limited to REs: the acceptability of
indefinite NPs (“a book, a record and an essay”) and quantified NPs (“all books,
records and essays”) is likely to be affected by the same factors, for example.
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If this is true, then the lexical coherence effect has potential relevance to many
areas of language.

The methods discussed above appear to have the potential to shed light on
some of the hardest questions in REG, involving the Gricean notion of Relation.
It would be possible, for instance, to use lexical similarity to favour the selec-
tion of properties (or words) that are most similar, on average, to the words in
the previous few sentences (or the semantic content that these sentences are
trying to express), thereby weeding out some of the irrelevant REs discussed
by Kronfeld (section 4.2). Alternatively, one could use ontological similarity
to achieve the same. It would be interesting to see how the different similarity-
based approaches to relevance affect the readability and intelligibility of a text.

8.8 Avoiding Surface Ambiguities

The main point of the algorithms discussed so far is to individuate a target,
making sure that nothing else answers to the properties accumulated by the
algorithm than the intended referent. Yet all this work can come to naught if
later modules realize a Logical Form as an ambiguous string of words.

Perhaps the most obvious situation in which surface ambiguities can com-
promise REG results from lexical ambiguity. To borrow an example from
Siddharthan and Copestake’s [Siddharthan and Copestake, 2004], suppose we
want to refer to an individual in a room full of royalty; we may want to let
our RE use the fact that our referent is the oldest of the kings in the room, and
express this by saying “the old king”. But if the previous king is also in the
room, then this RE is referentially ambiguous. It is true that human hearers will
often interpret an RE charitably, so if there are 2 previous kings in the room,
neither of whom is the oldest king in the room, then hearers will tend to under-
stand that “old” here is about age, because otherwise the NP would fail to refer
uniquely. But if there is only one previous king in the room, then the RE can be
understood as referring in two different ways, and confusion can result, which
is something generation programs should normally try to prevent.

Matters become more complicated when ambiguity is caused by syn-
tactic structure. To see what’s at stake, let us turn to an example in
[Khan et al., 2012], where scopally ambiguous conjoined NPs take centre
stage. Consider a meadow with various animals, and suppose the genera-
tor’s task is to single out the black sheep and black goats. Suppose a REG

algorithm has generated the Logical Form (black ∩ sheep)∪ (black ∩ goats).



CMR-web-July-2017 2017/7/12 12:14 Page 193 #203

Third Part: Generating a Wider Class of REs 193

This could be realized as: “the black sheep and the black goats” or “the black
sheep and goats”. The former is structurally unambiguous but lengthy and
arguably disfluent; the latter is ambiguous between (black ∩ sheep) (with nar-
row scope for the adjective) and black ∩ (sheep∪ goats) (with wide scope for
the adjective); only the latter is equivalent to the intended Logical Form.

So once again, brevity is coming up against another factor: in the previous
section, we discussed tensions between brevity and coherence; in the present
case, we are facing a tension between brevity and avoidance of ambiguity. The
question is how to balance these two potentially conflicting factors.

A key insight is that not all “theoretical” ambiguities need to be avoided,
because not all ambiguities that a parser can find are likely to lead to actual
confusion. For although most sentences in a corpus are multiply ambiguous,
most parses are hugely unlikely.

Imtiaz Khan, Graeme Ritchie, and I hypothesized that the corpus-based
techniques that had helped Gatt to assess the coherence of a conjoined
NP could also help us to predict the likelihood of a parse. Building on
[Chantree et al., 2005], Khan saw expressions of the form “the Adj Noun1 and
Noun2” as subject to two competing forces: a Coordination Force, whereby
Noun1 and Noun2 attract each other to form a syntactic unit, and a Modifica-
tion Force, whereby Adj and Noun1 attract each other.

We speak of Strong Coordination Force (SCF) if the collocational frequency
between the two nouns is high, and of Weak Coordination Force (WCF) if
the collocational frequency is low. Similarly, we speak of Strong Modification
Force (SMF) if the collocational frequency of Adj is high with Noun1 and low
with Noun2, and a Weak Modification Force (WMF) otherwise. Khan decided
to define high collocational frequency between two words as a situation in
which either of the two words appears among the top 30% collocates of the
other word in the grammatical relation of interest; low collocational frequency
was defined as a situation in which neither of the two words appears among the
top 70% collocates of the other word in the grammatical relation. Between 30%

and 70%, frequency is neither low nor high, so some phrases manifest neither
strong nor weak Coordination/Modification Force. Kilgarriff’s SketchEngine2,
with the BNC as a corpus, was employed to obtain frequencies. Four hypothe-
ses were formulated:

Hypothesis 1: If SCF and SMF, a narrow-scope reading is most likely.
Hypothesis 2: If SCF and WMF, a wide-scope reading is most likely.
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Force Predicted Judgments p-Value
Hypothesis 1 SCF & SMF NS NS (51/60) < .001

Hypothesis 2 SCF & WMF WS WS (55/60) < .001

Hypothesis 3 WCF & SMF NS NS (46/60) < .001

Hypothesis 4 WCF & WMF WS WS (54/60) < .001

Table 8.3
Results of one of the experiments in [Khan et al., 2012], which saw all four hypotheses confirmed.
WS is wide scope, NS is narrow scope, SMF is Strong Modification Force, and WMF is Weak Mod-
ification Force. p-Values are based on a one-tailed sign binomial test. The experiment suggested
that corpus-based frequencies can offer a good mechanism for predicting the preferred reading of
a scopally ambiguous conjoined NP.

Hypothesis 3: If WCF and SMF, a narrow-scope reading is most likely.
Hypothesis 4: If WCF and a WMF, a wide-scope reading is most likely.

Hypotheses 2 and 3 are intuitively obvious, because both forces operate in
the same direction; the other two were based on preliminary studies. As it
happened, all four hypotheses were confirmed, as summarized in Table 8.3.
These findings can be summarized using the following Prediction Rules, which
make Modifying Force the decisive factor:

1. If WMF, then WS

2. If SMF, then NS

Based on a number of experiments, Khan knew that if readable and intelligi-
ble sentences are to be generated, then the risk of misunderstandings needs to
be balanced against verbosity. For example, if two sentences are equally clear
and one is much shorter than the other, then, ceteris paribus, the shorter one is
read and understood more quickly [Khan et al., 2012]. For this reason, Khan’s
REG algorithm balances brevity and clarity.

A crucial notion in the algorithm is that of a “clear” RE, whose definition
is shown in Figure 8.4. The notion of a “brief” RE is also used in a specially
defined sense: descriptions of the form “the Adj Noun1 and Noun2” count as
brief; descriptions of the form “the Adj Noun1 and the Noun2” (for narrow
scope) and “the Adj Noun1 and the Adj Noun2” (for wide scope) are non-
brief. That is, brevity has a specialized sense involving the presence/absence
of the determiner (the), and possibly an Adj before the second noun. The non-
brief expressions are always syntactically unambiguous, but the brief NPs are
syntactically ambiguous. Crucially, syntactically ambiguous NPs can be clear.
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Figure 8.4
This diagram summarizes how the REG algorithm of [Khan et al., 2012] decided whether to clas-
sify a conjoined NP as “clear” or “unclear” (as these notions are defined in the text). The algo-
rithm avoids unclear expressions whenever it can. Note that structurally ambiguous NPs can be
clear. Not only those expressions are unclear for which the corpus-based method fail to predict a
reading, but also those for which this method predicts an unintended reading.

Note that not only those expressions are unclear for which the corpus-based
method fail to predict a reading, but also those for which this method predicts
a reading that does not correspond with the input to the generator.

The generation algorithm starts by generating formulas in Disjunctive Nor-
mal Form (DNF). The algorithm, which builds on [Gatt, 2007], partitions the
referent set into non-overlapping subsets and builds an initial Logical Form
denoting each subset using a conjunction of properties. The formulas that mat-
ter, from the present point of view, are of the form (A∩N1)∪ (A∩N2).
The formulas are like conventional set theoretic expressions, but their build-
ing blocks are English words rather than names of sets. For example, we use
formulas such as man∪ (big ∩ dog) to denote the set of domain objects that
are either men or big dogs. The algorithm consists of five stages and is exem-
plified below. Once an initial Logical Form is produced, this Logical Form is
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transformed to produce a variety of other formulas, each of which is logically
equivalent to the initial formula. The following transformation rules were used:

a. (A∩N1)∪ (A∩N2)⇒ A∩ (N1 ∪N2)

b. X ∪ Y ⇒ Y ∪X

These rules apply as often as possible, producing new formulas. Then during
Linguistic Realization, these formulas are converted into strings of words. An
example of a Realization rule is (Adj ∩Noun1)∪ (Adj ∩Noun2)→ the Adj
Noun1 and the Adj Noun2, which converts a formula directly into English.
Realization produces a set of NPs, each of which could be used to refer to
the target set. The problem now is to select the best NP, which is done during
the last two stages, where the results of the experiments are utilized. First, the
algorithm assesses the clarity and brevity of all the NPs that are available at this
point. This stage makes use of the Prediction Rules, which stated that WMF→
WS and SMF→ NS. During its selection phase, the algorithm prefers clear NPs
over unclear ones; and if several NPs are clear, then the choice between them
is made on the basis of brevity.

Algorithm 15 Khan’s algorithm for managing surface ambiguities
Input: A domain of objects, containing a non-empty target set S consisting of elements
of the domain; also including a non-empty set M of distractors (i.e., domain elements
that are not elements of S). A set P of properties true of each element of S. Brevity
(line 4) is defined in the text. Clarity (line 4) is defined in Figure 8.4.
Output: An NP whose extension denotes the target referent set S, if such an NP exists.
The NP embodies an experimentally motivated compromise between clarity and brevity.

1: Construct a Logical Form D in Disjunctive Normal Form
2: Use transformation rules to obtain a set of Logical Forms equivalent to D
3: Perform Linguistic Realization on each of these Logical Forms;

the result is a set N of NPs
4: Assess the clarity and brevity of each element of N
5: if some forms in N are clear and others are not then
6: remove from N all those forms that are not clear
7: if some remaining forms in N are shorter than others in N then
8: remove from N all those forms that are shorter than others in N
9: From the remaining forms in N make an arbitrary choice

The following example illustrates Khan’s algorithm, writing R for “radi-
cal”, S for “student”, and T for “teacher”. Suppose the Initial Logical Form
(produced by line 1) is (a) (R ∩ S)∪ (R ∩ T ) (radical students and radical
teachers). Transformation (line 2) produces three additional Logical Forms:
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(b) (R ∩ T )∪ (R ∩ S), (c) R ∩ (S ∪ T ), (d) R ∩ (T ∪ S). Linguistic Realiza-
tion (3) of these Logical Forms results in the following four NPs: (a) “The
radical students and the radical teachers”, (b) “The radical teachers and the
radical students”, (c) “The radical students and teachers”, and (d) “The radical
teachers and students”. Each of these NPs is then tested for clarity, making use
of the Prediction Rules.

The Prediction Rules predict wide scope for (d), because the relation
between radical and teachers is WMF (according to the BNC data). The Ini-
tial Logical Form was a wide-scope interpretation for this phrase, so despite
its theoretical ambiguity, (d) is judged to be clear. The rules do not predict
a scope for (c), because the relation between radical and students is neither
WMF nor SMF; hence, (c) is judged to be unclear. The other two NPs, (a) and
(b), are clear (because unambiguous) but less brief than (d). The NPs (a) and
(b) are less brief than (c) and (d). Based on these assessments, the NP (d) is
generated, which is clear and brief. The algorithm has opted for a brief noun
phrase. In other cases, where the Prediction Rules pan out differently, a more
elaborate noun phrase is generated. An example is “radical students and radi-
cal soldiers”, where omission of the second adjective would create misunder-
standings. The contrast between these examples shows that, where syntactic
ambiguity is involved, words can make all the difference.

This study teaches us an important lesson: identification of the intended ref-
erent cannot be guaranteed by an approach to generation that only pays atten-
tion to logic: the generation algorithm has to be aware of syntactic ambiguities
as well, and of the probability of misinterpretation. Luckily, there is now a
wealth of corpus-based and experimental work to inform this probability. Note
that the evidence, in this case, does not tell us how speakers behave; it only
tells us how they should behave if they wanted to produce sentences that are
read and understood quickly. The status of a computational model, like Khan’s,
that aims to maximize utility, comes up in sections 1.5 and 16.1 (where the first
dimension of variation between models is discussed).

8.9 Beyond Sets of Objects

There is more to the topic of this chapter: all we have done is present some
basic computational models for referring to sets, and discuss ways in which
these models can handle lexical coherence and syntactic ambiguity. Refer-
ence to sets poses many other challenges, some of which will be explored
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in chapter 10, where we shall be studying complex REs such as “the men who
feed two dogs”. An interesting issue that we will not discuss is the choice
between different determiners, which is much more difficult in connection
with plurals (where options may include “each”, “every”, “both”, and so on
[Shaw and McKeown, 2000]) than in connection with singulars.

Logically, the move from individuals to sets can be carried further. We often
refer to entities that are neither individual objects nor sets of individual objects.
We can say things like water and yellow sand in order to refer to what is some-
times known as “stuff”. With few exceptions (e.g., [Dale, 1989b], [Dale, 1988],
[Mitchell et al., 2012]), the Computational Linguistics community has not yet
touched this area. In chapter 14, we shall encounter an approach to reference
to geographical areas that reduces a geographical area to a large but finite
set of points on a map, bringing them into the orbit of the present chapter
[Turner et al., 2008]. First, however, we need to discuss other ways in which
classic REG models have been extended.

8.10 Summary of the Chapter

Sets are targets for reference as are individual objects, yet their generation
raises many issues that do not affect the classic REG problem. This chapter has
outlined some basic algorithmic approaches that can be taken, and discussed a
few of the difficult research questions thrown up by reference to sets.

• The logic of sets is complex, and this complexity affects the art of referring
to sets. For example, reference to sets using collective properties is a little
explored area that is much in need of further study. [Section 8.1]

• In the simplest cases, where the elements are bound together by a property
that they all share (and that is not shared by any distractors), sets can be
referred to using the classic REG algorithms, as long as a suitable TYPE

(i.e., a suitable noun) can be found that covers all elements of the target set.
[Section 8.1]

• Negation can be a crucial operation, not only when referring to sets, but even
when referring to a single referent. [Section 8.2]

• Disjunctive REs have no role to play in referring to a single object, but when
the aim is to refer to a set, disjunctive references (as when we use the Log-
ical Form Horse∪Cow, “the horses and cows”) are hard to do without.
[Section 8.2]
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• Satellite sets can be employed as a component of REG programs. They can
also help us to compute quickly which sets, or which objects, can be identi-
fied uniquely given a certain set of properties. [Section 8.3]

• Disjunctive REs become more acceptable if they display a certain thematic
or lexical coherence. For example, it is better ceteris paribus to refer to a set
as “the book and the pamphlets” than “the biography and the pamphlets”.
The precise nature of this coherence is gradually becoming clear. Crucially,
the most coherent RE may not be the best one in other respects; for example,
it may be lengthier than others. [Section 8.7]

• Disjunctive REs can give rise to syntactic ambiguities. Investigation into
these ambiguities suggests that it is not always a good idea to avoid them,
given that the avoidance of ambiguity can create other infelicities: it seems
preferable to avoid only those ambiguities that are likely to lead to actual
misunderstanding. Corpus-based probabilities can help to predict which
ambiguities fall into this category. [Section 8.8]

• Transformations on Logical Forms, where the transformation respects log-
ical equivalence, can simplify an initial Logical Form or broaden the set of
REs to be considered by a REG algorithm. [Section 8.8]
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9 Third Extension: Using Gradable Properties

We have so far avoided some of the main difficulties that language poses to
theorists and modellers. For example, we have avoided context dependence
and vagueness. In this chapter we shall see that models of reference production
become more complex when these issues are taken into account. Specifically,
we shall study the role of gradable properties in reference production.

Gradable properties have borderline cases, in which it is unclear whether the
words in question can be applied. Consider the word “giant”: a height of 240
cm makes you a giant; a height of 170 cm doesn’t, but somewhere in between,
the matter can be unclear. We noted something similar in our opening chapter
when we wondered whether the tiger in Figure 1.1 could be called “huge”.
Properties or expressions that have borderline cases are called vague.

It might be thought that referring expressions (REs) cannot contain gradable
properties, because their vagueness jeopardizes the aim of identifying a refer-
ent. Yet REs often contain gradable words. Following Manfred Pinkal, REs that
contain gradable expressions will be called vague descriptions [Pinkal, 1979],
even in situations where the expression as a whole is clear (i.e., not vague).
Gradable expressions are context dependent: to be a small elephant is not to
be small and to be an elephant, but to be “small for an elephant”. Context
dependence will complicate REG considerably.

To see how vague descriptions can work, suppose you enter a vet’s surgery
with two dogs of different sizes. The vet asks “Who’s the patient?”, and you
answer “the big dog”. This answer will allow the vet to pick out the patient
just as reliably as if you had said “the one on the leash”; the vagueness of
“big” is irrelevant. This shows how potentially vague properties can contribute
to the precise task of identifying a referent. Additional detail (e.g., about the
size of the dog) does not improve identification, and might even detract from
it, because measurement is more error prone than comparison [Lipman, 2009],
[van Deemter, 2009a], [van Deemter, 2010].

Let’s see to what extent computational models of reference can capture the
peculiarities of vague descriptions.1 We start by discussing the semantics and
pragmatics of vague descriptions (sections 9.1 and 9.2), after which we briefly
examine the experimental evidence (section 9.3). In section 9.4 we discuss one
way in which REG algorithms can determine the content of vague descriptions,
in the plural (cf., chapter 8) as well as the singular, as long as only one grad-
able dimension is involved: once there are several, things become problematic.

1 This chapter integrates and extends material from [van Deemter, 2000], [van Deemter, 2006],
[Mitchell et al., 2010], [Mitchell et al., 2011b], and [Mitchell et al., 2013a].
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After a discussion of its implications for the idea of Incremental REG, we turn
to a concrete case study to see what challenges face us when gradable adjec-
tives are used for talking about real-world objects (section 9.6). We conclude
the chapter with a discussion of salience – a core concept in communication,
as we have seen – as a gradable dimension (section 9.7), and its implications
for the risk that referring expressions may be misunderstood.

9.1 The Semantics of Vague Descriptions

Before turning to reference, ket’s examine the various forms vague adjectives
can take, using the word “large” as an example: they may or may not contain a
numeral n (positioned before or after the adjective), and the gradable adjective
(Adj) may be in base (“large”) or superlative form (“largest”):

1. The (n) Adj(est) N (e.g., “the 3 largest mice”)
2. The Adj(est) (n) N (e.g., “the largest 3 mice”).

If Adj is in base form, we shall focus on the word order (1); if Adj is a superla-
tive, then we focus on (2). We are limiting ourselves to referential uses, exclud-
ing cases like “This may be the largest mouse in the world”, in which the
expression ascribes a property to an already-identified object.

Different analyses are possible of what it means to be large: larger than aver-
age, larger than most, larger than some given baseline, and so on. It is doubt-
ful that any one analysis makes sense for all definite descriptions. Consider a
domain of three mice, sized 5 cm, 8 cm, and 10 cm. Here one can say

3. The large mouse (= the one whose size is 10 cm).
4. The two large mice (= the two whose sizes are 8 and 10 cm).

Clearly then, what it takes for the adjective to be applicable has not been cast
in stone but is, at least to an extent, open to fiat: the speaker may decide that 8

cm is enough, or she may set the standards higher (cf., [Kennedy, 1999]). The
numeral (whether it is implicit, as in (3), or explicit, as in (4)) enables the reader
to draw inferences about the standards employed [Kyburg and Morreau, 2000],
[DeVault and Stone, 2004]: (3), for example, implies a standard that counts 10

cm as large and 8 cm as not large. We shall ask how NPs like the ones in
(3) and (4) can be generated, without asking how they constrain, and are con-
strained by, other uses of “large” and related words. We shall make the follow-
ing simplification: in a definite description that expresses only properties that
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are needed for singling out a referent, we take the base form of the adjective to
be semantically equivalent with the superlative (and comparative) forms:

The n large mice = The largest n mice
The large mice = The largest mice
The large mouse = The largest mouse.

Although this is only meant as a rough approximation, a modest amount of
empirical evidence for this position will be offered in section 9.3.

Clearly, the expression “Adj(est)” in (3) and (4) is context dependent. We
simplify by pretending that the only contextually relevant factor is the com-
parison set: those elements of the noun denotation that are perceptually avail-
able. We disregard functional context-dependence, as when “the small hat” is
the one too small to fit on your head. For the moment, we also disregard the
global (i.e., not immediately available) context. For some adjectives, includ-
ing the ones that Manfred Bierwisch called evaluative, this is clearly inade-
quate. Bierwisch argued that evaluative adjectives (such as “beautiful” and its
antonym “ugly”; “smart” and its antonym “stupid”, etc.) can be distinguished
from the more frequent purely “dimensional” adjectives by the way in which
they compare with their antonyms. For example, after [Bierwisch, 1989],

Hans is taller than Fritz ⇒ Fritz is shorter than Hans.
Hans is smarter than Fritz 6⇒ Fritz is more stupid than Hans.

Bierwisch argued that the referent of an evaluative description should fall into
the correct segment of the relevant dimension. (For Fritz to be “the stupid
man”, it is not enough for him to be the least intelligent male in the local
context; he also has to be a fairly stupid specimen in his own right.)

Let us say more precisely what we will assume the different types of expres-
sions to mean. For ease of reading, concrete examples (e.g., “large”) will
replace syntactic categories, but the analysis is meant to be general.

The largest n mouse/mice. The n large mice. Imagine a set C of contex-
tually relevant animals. Then these NPs presuppose that there is a subset
S of C that contains n elements, all of which are mice and such that (1)
C − S 6= φ (i.e., not all elements of C are elements of S) and (2) every
mouse in C − S is smaller than every mouse in S. If such a set S exists,
then the NP denotes S. The case where n = 1, realized as “The large(st)
mouse”, falls out automatically.
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The large(st) mice. The above account can be extended to cover cases of
the form The [Adj]-(est) [Npl] (pl = plural), where the numeral n is sup-
pressed: they will be taken to be ambiguous between all expressions The
[Adj]-(est) n [N], where n > 1. Sometimes this leaves only one possibility.
For instance, in a domain where there are five mice, of sizes 4, 4, 4, 5, and
6 cm, the only possible value of n is 2, causing the NP to denote the two
mice of 5 and 6 cm size.

Refinements of these ideas are discussed below.

9.2 Pragmatic Constraints on What Can Be Said

Models of language production have to do more than find a distinguishing
description, (i.e., one that unambiguously denotes its referent): the description
should also be felicitous (cf., section 1.5). In other chapters, we look empiri-
cally at different dimensions of felicity, such as humanlikeness (chapter 4) and
benefits for human hearers (e.g., chapters 8 and 12). The present chapter will
use broader brush stokes, aiming for REs that perform well in both respects.

Consider the question, discussed in the philosophy of language, whether
it is legitimate, for a gradable adjective, to distinguish between observation-
ally indifferent entities: Suppose two objects x and y are so similar that it is
impossible to distinguish their sizes; can it ever be reasonable to say that x is
large and y is not? A positive answer would not be psychologically plausible,
because x and y are indistinguishable; but a negative answer would prohibit
any binary distinction between objects that are large and objects that are not,
given that it is always possible to find (or construct) objects x and y, one of
which falls just below the divide, whereas the other falls just above it.

A production model can offer a subtle response: that the offending statement
may be correct yet infelicitous.

Small Gaps. Expressions of the form The (n) large [N] are infelic-
itous when the gap between (1) the smallest element of the desig-
nated set S (henceforth, s−) and (2) the largest N smaller than all
elements of S (henceforth, s+) is small in comparison with the gaps
between the other elements [Thórisson, 1994], [Funakoshi et al., 2004],
[Gorniak and Roy, 2004], [Fernández, 2009]. If this gap is so small as to
make the difference between the sizes of s− and s+ impossible to perceive,
then the expression is also infelicitous.
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Dichotomy. When separating one single referent from one distractor, the
comparative form is often said to be favoured (“Use the comparative form
to compare two things”). We generalize this idea to situations where all the
referents are of one size, and all the distractors of another.

Minimality. Unless Small Gaps and Dichotomy forbid it, we expected that
preference should be given to the base form. In English, where the base form
is morphologically simpler than the other two, this rule could be argued to
follow from Gricean principles.

To keep matters simple, our algorithm will choose the base form if and only
if the gap between s− and s+ surpasses a certain value, which is specified
interactively by the user.

As for the presence/absence of the numeral in the description, there appear
to be different patterns of linguistic behaviour. A cautious generator might only
omit the numeral when the pragmatic principles happen to enforce a specific
extension (e.g., “the large mice”, when the mice are sized 3 cm, 2.8 cm, 2.499

cm, and 2.498 cm). This would allow the generator to use vague expressions,
but only where they result in an RE whose reference is clear.

9.3 Empirical Grounding

Readers interested in experimental testing of the claims presented in sec-
tions 9.1 and 9.2 are referred to [van Deemter, 2004], [van Deemter, 2006],
and [Barr et al., 2013]; the present section summarizes the main findings.

Despite the mitigating role of the Small Gaps constraint, and of Bierwisch’s
principle, a potential worry is that our algorithm might put too much empha-
sis on comparing the referent with the distractors, neglecting the question of
whether the adjective is applicable to the referent. It might be thought odd, for
instance, to describe a cup as “the tall cup” merely because it is taller than the
other cups in the relevant domain. Suppose the referent cup is smaller than a
normal cup and too small to drink from; can it still be called “the tall cup”?

As it happens, the literature suggests an affirmative answer to this ques-
tion [Sedivy et al., 1999]. The authors asked subjects to identify the target of
a vague description in a visual scene, for instance “the tall cup”. The scene
would contain three distractors: (1) a less tall object of the same type as the
target (e.g., a cup that is less tall), (2) a different kind of object which previ-
ous studies had shown to be intermediate in height (e.g., a pitcher that is taller
than both cups, but neither particularly short nor tall for a pitcher), and (3)
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a different type of object to which the adjective is inapplicable (e.g., a door
key). It did not matter much whether the adjective applied “intrinsically” to
the target referent (i.e., whether the target was tall for a cup): hearers identified
the target without problems in both types of situations. The time subjects took
before looking at the target for the first time was measured, and although these
latency times were somewhat greater when the referent were not intrinsically
tall than when they were, the average difference was tiny at 554 versus 538
milliseconds. Because latency times are thought to be sensitive to most of the
problems that hearers may have in processing a text, these results suggest that,
for dimensional adjectives, it might be forgivable to disregard global context.
This could be regarded as a (partial) vindication of Bierwisch’s principle.

Testing the pragmatic constraints of section 9.2, we were able to confirm
the idea that when base forms were used, the gap tends to be large. How-
ever, the Dichotomy constraint did not hold up well: even when comparing
just two things, the superlative form was often preferred over the compara-
tive [van Deemter, 2004]. Similarly, the Minimality constraint turned out to be
difficult to confirm: even when the gap was large, base forms were often dispre-
ferred. It is possible that these results are the result of quirks in the experimen-
tal setup, and that they might fail to be representative of naturalistic language
use; we are inclined to treat this as an open question.

Different generation strategies could be chosen on the basis of these
results, which were broadly replicated in [Barr et al., 2013] (see the corpus
at http://staff.science.uva.nl/∼raquel/xprag/). For exam-
ple, one might use the superlative all the time, because this was – surprisingly
– the most frequent form overall. Alternatively, one might use the base form
whenever the gap is large enough, as was done in the algorithm presented in
the following section.

Section 9.6 will discuss a different line of empirical investigation, but before
we go there, we need to talk about algorithms.

9.4 Computational Generation of Vague Descriptions

Previous chapters have demonstrated how classic REG algorithms generate
Logical Forms that individuate a referent by forming a conjunction of proper-
ties. It is important that these properties do not have borderline cases: if there
was an entity x for which it is unclear whether a property P is true, then the
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presence of P in a conjunction could leave it unclear whether x is part of the
referent set or one of the distractors.

Although presentations of the classic algorithms frequently use examples
that involve attributes such as SIZE, in fact these are treated as if they did not
contain borderline cases and as if they were not context dependent: their values,
such as LARGE and SMALL, always apply to the same objects, regardless of
what other properties occur in the Logical Form, and without any borderline
entities. This approach does not do justice to gradable adjectives, whether they
are used in the base form, the superlative, or the comparative. Suppose one
set a fixed quantitative threshold, making the word “large” true of everything
above threshold and false of everything at or below it. Then there would be
little use for this property at all. For example, suppose we are talking about
dogs: then every chihuahua might be small and every alsatian large, making
the combinations {large, chihuahua} (which now denotes the empty set) and
{large, alsatian} (in which the size property is redundant) useless. Context
dependency makes a property much more widely applicable.

In the next section, we show how REG algorithms such as the Incremental
Algorithm (IA) can be modified to produce vague descriptions. The algorithm
uses a richer type of Logical Forms than the classic algorithms, going beyond
conjunctions of properties, and was implemented in a PROLOG program called
VAGUE, which combines the ideas described below, with some simple rules
for Linguistic Realization, which map Logical Forms to English NPs.2

Expressing one vague property. We start by addressing the way in which
gradable information is represented in the Knowledge Base that forms the
input to REG. Initially, we focus on situations in which the referent is a sin-
gle entity. We assume that gradable properties are stored as attributes with
decimal numerical values. We take them to be of the form n cm, where n is a
positive real number, as in the example Knowledge Base below. For simplicity,
we assume these numerical values to be accurate and precise.

From input of this kind, the IA is able to generate a Logical Form such as
{yellow,mouse,9cm}, exploiting the attribute SIZE. The result could be the NP
“The 9-cm yellow mouse”, for example. The challenge, from the point of view
of the present chapter, is to avoid unnecessary precision, by avoiding numerical

2 Code and documentation of the VAGUE program can be downloaded from
http://homepages.abdn.ac.uk/k.vdeemter/vague.html.
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values unless they are necessary for the individuation of the target. This chal-
lenge will be met using a replacement strategy. Numerical values such as 9 cm
will be replaced by a superlative value that means “being the unique largest
element of C”. The resulting list of properties can be realized linguistically
using the superlative, the comparative, or the base form (“The largest yellow
mouse”, “The larger yellow mouse”, or “The large yellow mouse”).

Exploiting numerical properties, singular. To ensure that Logical Forms
contain a property expressible as a noun, we assume that the TYPE attribute
is more highly preferred than others. Suppose also, for now, that properties
related to size are less preferred than others. As a result, all the other proper-
ties that turn up in the NP – and that determine the set of objects in comparison
with which an object’s size will be determined – have already been selected
when size comes along. Suppose the target is c4:

TYPE(c1) = TYPE(c2) = TYPE(c3) = TYPE(c4) = mouse
TYPE(p5) = rat
SIZE(c1) = 6 cm
SIZE(c2) = 10 cm
SIZE(c3) = 12 cm
SIZE(c4) = SIZE(p5) = 14 cm

The first property that makes it into L is “mouse”, which removes p5 from
the context set. (Result: C = {c1, ..., c4}.) Now SIZE is taken into account, and
size(x) = 14 cm singles out c4. Using the letter L for Logical Forms, we have

L = {mouse, 14 cm}.

This could be the end of the matter, because the target has been singled out.
But we are interested in alternative Logical Forms, to enable the generation
of Vague Descriptions. One way in which such a list can be computed is as
follows. Given that 14 cm is the greatest size of any mouse in the Knowledge
Base, size(x) = 14 cm can be replaced, in L, by the property of “being the one
object larger than all other elements of C” (notation: size(x) = max1, where
C is the set of mice). Because this is about being the largest mouse, rather than
the largest animal, it becomes essential that L is an ordered list (rather than an
unordered set), whose second property is applied to the extension of the first.

L = 〈mouse, size(x) = max1〉
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This means: from the set of mice, pick out the largest one. Linguistic Realiza-
tion will convert this into English words, for example “the largest mouse”.

Exploiting numerical properties, plural. Plural references force considerable
complications in the REG algorithm. To show why the computational mod-
elling of referring can be an algorithmically more complex affair than sug-
gested by the pseudo-code displayed in this book so far, we discuss some of
these complications. Readers who wish to skip these are invited to examine
Algorithm 16, then move on to section 9.5.

If plural descriptions were generated using this replacement strategy, then it
would be impossible to use size to refer to sets whose elements have different
sizes. To make this possible, we use inequalities, that is, values of the form> α

or < α, instead of values of the form = α. Therefore, we compile the Knowl-
edge Base into a more elaborate form by replacing equalities by inequalities of
the form size(x) > α or size(x) < α. The new Knowledge Base can be lim-
ited to relevant inequalities only: the ones that compare the size of an element
to the sizes of other elements in the Knowledge Base:

SIZE(c4), SIZE(p5) > 12 cm
SIZE(c3), SIZE(c4), SIZE(p5) > 10 cm
SIZE(c2), SIZE(c3), SIZE(c4), SIZE(p5) > 6 cm,

where SIZE is an attribute, > 12 cm, > 10 cm, and > 6 cm are values, and c2,
c3, c4, c5, p5 are domain objects of which a given 〈Attribute,V alue〉 combi-
nation is true. The procedure is logically analogous to the treatment of nega-
tions and disjunctions in chapter 8: properties that are implicit in the Knowl-
edge Base are made explicit to facilitate REG.

Given inequalities, an object may have numerous values for the same
attribute; c4, for example, has the values > 6cm, > 10 cm, and > 12 cm.
To avoid redundancy, we prefer more informative (i.e., logically stronger)
inequalities over less informative ones. For example, size(x) > 12cm pre-
cedes size(x) > 10cm in the Preference Order, so once a size-related property
is selected, later size-related properties do not remove any distractors and will
therefore not be included in the Logical Form.

Suppose the target set S in our example is {c3, c4}. The Knowledge Base
gives its two elements different sizes, hence they do not share a property of
the form size(x) = α. They do, however, share the property size(x) > 10 cm.
This property is exploited by IAPlur to construct the Logical Form

L1 = 〈mouse, >10cm〉,
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first selecting the property “mouse”, then the property size(x) > 10 cm. (The
property size(x) > 12 cm is attempted first but rejected.) Because L succeeds
in distinguishing the two target elements, it follows that they are the only mice
greater than 10 cm. This inequality can be replaced by the property “being
a set of cardinality 2, whose elements are larger than all others” (notation:
size(x) = max2), leading to NPs such as “the largest (two) mice”:

L2 = 〈mouse, size(x) = max2〉.

The case in which the numeral is 1 corresponds with the singular (e.g., “the
largest mouse”). Optionally, we can go a step further to generate a truly
vague description (i.e., with borderline cases). This can be done by replacing
size(x) = max2 by the less specified property size(x) = max, which abbre-
viates “being a set of cardinality greater than 1, all of whose elements are
larger than all other elements in C”. The result, which might be realized as
“the largest mice”, loses information, because it is no longer clear how many
mice the speaker is talking about:

L3 = 〈mouse, size(x) = max〉.

Even if comparative properties are at the bottom of the Preference Order,
and more informative inequalities precede less informative ones, the order is
not fixed completely. Suppose, for example, that the Knowledge Base contains
information about HEIGHT as well as WIDTH, then we have inequalities of the
forms HEIGHT > x, HEIGHT < x, WIDTH > x, and WIDTH < x. Which of
these should come first? Greater differences are most likely to be chosen, pre-
sumably because they are more striking [Hermann and Deutsch, 1976]. This
idea may be implemented as follows. First, the values of the different attributes
should be normalized to make them comparable. Second, Preference Order
should be calculated dynamically (i.e., based on the current value of C, and
taking the target into account), preferring larger gaps over smaller ones. (It is
possible, for example, that WIDTH is most suitable for singling out a brown
bear, but HEIGHT for singling out a white bear.) The rest of the algorithm
remains unchanged.

The replacement strategy is essentially a simple kind of logical inference:
L1 and L2, for instance, are guaranteed to single out the same set, given that
exactly two mice are larger than 10 cm. Given the Knowledge Base, the two
lists are co-extensive. Logical inference was not an option in the classic REG

algorithms, where Logical Forms were conjunctions of atomic properties, but
when Logical Forms become more complex, inference becomes an important
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instrument for changing the shape of a Logical Form (keeping its extension
constant). We have seen examples of this in section 8.8, where avoidance of
surface ambiguities was an important consideration; chapter 10.2 will show
other uses of logical inference.

Expressing several vague properties. If the Knowledge Base contains several
gradable attributes, a description can make use of several of them, as in (i).
Even if only one gradable attribute is represented, combinations are possible,
as in (ii). Let’s see how REs of this kind can be generated.

(i) the flats that are taller than 8 m and less than 14 years old.
(ii) the flats whose age is between 6 and 14 years.

When opposites are part of the Knowledge Base, equalities arise automati-
cally, as combinations of opposites: every equality of the form height(x) = n

metres is equivalent to the combination of a property height(x) > i metres
and a property height(x) < j metres. Assuming that the following Knowledge
Base is derived from one that contained only equalities (as explained above),
it follows that every element is 6, 10, 12 or 14 years old. Consequently, if the
age of an entity lies between 6 and 12 years, then its age must be 10 years.

TYPE(c1) = TYPE(c2) = TYPE(c3) =TYPE(c4) = flat
TYPE(p5) = hall

AGE(c1) < 10 years
AGE(c1), AGE(c2) < 12 years
AGE(c1), AGE(c2), AGE(c3) < 14 years

AGE(c4), AGE(p5) > 12 years
AGE(c3), AGE(c4), AGE(p5) > 10 years
AGE(c2), AGE(c3), AGE(c4), AGE(p5) > 6 years

Different measures have to be taken when several vague attributes are involved.
Suppose, in addition to the facts represented above, the height of c1 is 7m, the
heights of p5 and c3 are 8m and 9m respectively, and those of c2 and c4 are
10m each. After recompiling these into inequalities, this yields

HEIGHT(c1) < 8 m
HEIGHT(c1), HEIGHT(p5) < 9 m
HEIGHT(c1), HEIGHT(c3), HEIGHT(p5) < 10 m
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HEIGHT(c2), HEIGHT(c4) > 9 m
HEIGHT(c2), HEIGHT(c3), HEIGHT(c4) > 8 m
HEIGHT(c2), HEIGHT(c3), HEIGHT(c4), HEIGHT(p5) > 7 m

Suppose the target set is {c2, c3}. The algorithm starts selecting flat, because
crisp properties are preferred over vague ones. (Result: C = {c1, c2, c3, c4}).
Depending on the Preference Order, the following Logical Forms are possible:

La = 〈 flat, AGE < 14 years, HEIGHT > 8 m 〉, which can be realized as
(i) above (“flats that are taller than 8 m and less than 14 years old”).

Lb = 〈 flat, AGE > 6 years, AGE < 14 years 〉, which can be realized as
(ii) above (“flats whose age is between 6 and 14 years”).

Optionally, further modifications are possible, transforming comparative into
superlative properties, for example. Once it is known which of all these out-
comes yields the most felicitous RE, the algorithm may be fine-tuned. Note that
if felicity is defined in terms of humanlikeness (i.e., simulating speakers) then,
this time around, a transparent corpus (i.e., a corpus in which text is coupled
with data, as was used extensively in chapter 5) may not be required; frequen-
cies in a non-transparent text corpus (like the BNC, for example) can tell us
which of these language patterns are most frequent. This is important because
non-transparent corpora are far easier to obtain than transparent ones.

The model outlined in this section, and implemented in the VAGUE program,
can be summarized as in Algorithm 16.

9.5 Puzzles for Incremental Content Determination

Gradable concepts cause an interesting conundrum for incremental Content
Determination: if human speakers perform Content Determination incremen-
tally, then why are properties not expressed in the same order in which they
were selected? Consider a speaker referring to a bear, for example. The algo-
rithm above suggests that the speakers starts deciding to call it a bear, to call it
brown, and only after this does she decide whether it’s the largest of the brown
bears. This makes sense, because a gradable adjective can only be interpreted
when a comparison set (e.g., the set of brown bears) is given. Yet, in English,
we say “the large brown bear”, rather than “the brown bear large”. Gradable
properties are selected last but realized first.
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Algorithm 16 Generating Vague Descriptions
Input: A domain of objects encoded in a Knowledge Base that uses attributes with
numerical values. The domain includes a non-empty target referent set S and one or
more distractors.
Output: an NP that describes S, using gradable adjectives to express information
gleaned from numerical values. Depending on the choices made in line 4, the NP

can be a distinguishing description or not; likewise, the NP can contain a numeral or not.

1: Recompile the Knowledge Base, replacing equalities by inequalities, for all grad-
able attributes.

2: Determine the Preference Order between the different groups of attributes, for
instance, giving all gradable attributes lower preference than all non-gradable ones.

3: Run an algorithm for generating references to sets (e.g., IAPlur of chapter 8),
resulting in a list of properties that jointly identify the target set.

4: Optionally apply inferences to the list of properties. For example, replace combi-
nations of inequalities by one exact value; replace inequalities by cardinalities.

5: Perform Linguistic Realization.

One might think that this is just how it is, because of syntactic constraints
that govern the structure of English NPs. However, eye-tracking experiments
cast doubt on this account, given that speakers start speaking (e.g., saying
the word “large”) while still scanning distractors [Pechmann, 1989]. How can
speakers start uttering an adjective before it’s clear that it’s going to be useful?

A similar problem is discussed in the psycholinguistics of interpreta-
tion [Sedivy et al., 1999]: like speech production, comprehension is widely
assumed to proceed incrementally, but an adjective in a vague description can
only be fully interpreted when its comparison set is known. Sedivy and col-
leagues resolve this quandary by positing a revision approach to the produc-
tion of vague descriptions, whereby later words allow hearers to refine their
interpretation of gradable adjectives: upon hearing “large”, the speaker forms
a mental image of what this might mean; upon hearing “green car”, this mental
image is revised. Something analogous could be true for the production of REs.
If REG algorithms are to do justice to these findings, then the proposed gener-
ation algorithm could be replaced by one that works in two phases, the second
of which will sometimes revise decisions taken during the first one. Details of
this idea would have to be fleshed out.

A different kind of problem is posed by multi-dimensionality: when objects
are compared in terms of several dimensions, these dimensions can be weighed
in different ways. Let us focus on references to an individual referent, starting
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with a description that contains more than one gradable adjective. The NP “the
tall fat giraffe”, for example, can safely refer to an element b in this situation:

HEIGHT(a) = 5 m
HEIGHT(b) = HEIGHT(c) = 15 m
WIDTH(a) = WIDTH(b) = 3 m
WIDTH(c) = 2 m

Cases like this would be covered by the decision-theoretic property of Pareto
Optimality (e.g., [Feldman, 1980]): an object r ∈ C is Pareto-Optimal for a
given combination of Attributes if it exceeds all its competitors in at least one
Attribute and none of its competitors exceeds it in any Attribute. In our exam-
ple, b is Pareto-Optimal, because b is both taller and wider than its competitor,
so b can be called “the tall fat giraffe”. It seems likely, however, that people
use doubly-graded descriptions more liberally. For example, if the example is
modified by letting WIDTH(a) = 3.1 m, making a slightly fatter than b, then b
might still be the only reasonable referent of “the tall fat giraffe”. Alternative
strategies are possible. The Nash Arbitration Plan, for example, would allow a
doubly-graded description whenever the product of the values for the referent
r exceeds that of all distractors [Nash, 1950].

We shall see in section 9.7 that multidimensionality, and the problems asso-
ciated with it, can slip in through the backdoor, via the gradable notion of
salience. But first, let’s discuss another way in which multidimensionality can
appear. Consider a seemingly one-dimensional word such as big, for example.
If there existed a canonical formula for mapping three dimensions into one
(e.g., length times width times height), then the result would be one dimen-
sion, (OVERALL-SIZE), and the algorithm discussed above could be applied
verbatim. But it is far from clear that such a formula exists.

9.6 A Case Study: Real-World Objects and Their Sizes

Language is often studied in artificially tidy situations, for example when
experiments use small scenes populated by stylized objects, presented in a
small number of sizes and colours. The advantage is that the experimenter
controls all the differences between the objects in the scene, so incidental fea-
tures are unlikely to influence the outcome of the experiment. But this tidiness
comes at a price, because real communication is seldom tidy (cf., our discus-
sion of ecological validity in section 3.7).
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Figure 9.1
The domain that gave rise to the crafts corpus of [Mitchell et al., 2010].

To obtain an insight into real-life communication, Margaret Mitchell per-
formed a series of experiments involving more complex objects and a playful,
game-like task [Mitchell et al., 2010]. An initial elicitation study had speak-
ers describe three-dimensional objects from an arts-and-crafts domain whose
objects varied in texture, material, colour, and sheen, as well as shape and
size. The domain consisted of a board on which were attached 51 objects of 7
different types (14 pieces of foam, 11 beads, 9 pom poms, 8 pipe cleaners, 5
feathers, 3 ribbons, and 1 star; see Figure 9.1). Because most objects had dupli-
cates, speakers produced both indefinite and definite NPs (“a green pom pom”,
“the green pom pom”). These experiments gave rise to some new algorithms
and other insights, which will be discussed in the Epilogue.

Consider the size of an entity. In the previous sections, we pretended that
things have only one size. In reality, of course, they have at least three size
dimensions.3 Consequently, an entity’s size may be talked about in terms of
just one of these dimensions (as when we say “the long mouse”), a combina-
tion of two dimensions (“the fat mouse”), or a combination of all its dimen-
sions (“the big mouse”). Mitchell was interested in knowing how speakers
choose between different perspectives on size. Although these perspectives are
not always expressed in a single adjective (e.g., speakers might say “long and

3 Even this is a simplification: a mountain doesn’t have one height, but many, at different latitudes
and longitudes. The domain underlying the brownies corpus – unlike the crafts corpus – avoids
these complications because it is limited to simpler shapes.
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rather thin”, or use a relative clause, as in “which is taller than ...”), for sim-
plicity we will continue to use the term adjective: this word will cover all these
ways in which size dimensions can be conveyed in English.

One step was to elicit human-produced descriptions of objects as described
above [Mitchell et al., 2010]. This led to a corpus of REs such as the longer
silver ribbon, “the yellow feather”, the small green heart, and so on. The crafts
corpus, as I will call it, was used for evaluating two different algorithms, one
of which was based on hand-crafted rules, the other on decision trees obtained
from Machine Learning. Below we introduce these algorithms one by one.
Each rests ultimately on the same data – and so of the same insights – obtained
from a second corpus, which I call here the brownies corpus.

The elicitation experiment that produced the brownies corpus resembles
earlier REG experiments. Human participants were shown pairs of rectilinear
objects. Each pair consisted of two pictures of objects of the same size: two
brownies, two books, two boards or two sponges, whose dimensions were care-
fully doctored to vary in height (the Y dimension) and width (the X dimen-
sion). The pictures made it possible to infer information about depth, but both
algorithms ignore this third dimension. This second elicitation experiment gave
rise to REs such as “the taller sponge”, “the shorter and slightly wider board
with a diagonal top side”, “the smaller board”, and “ the most square brownie”.
Focussing on the adjective, there are 6 possibilities: the adjective can be look-
ing at the 2 dimensions overall or (cf., [Landau and Jackendoff, 1993]) individ-
uating. In the latter case, the adjective can focus on the X or the Y dimension.
Because the adjective expresses a comparison, it can say that the target is either
greater (positive) than the distractor or smaller (negative):

〈Y,positive〉. For instance, taller, longest
〈Y,negative〉. For instance, shorter
〈X,positive〉. For instance, thicker, wider
〈X,negative〉. For instance, thinner, narrowest
〈overall, positive〉. For instance, larger, bigger, huge
〈overall, negative〉. For instance, tiny, smallest

The brownies corpus, annotated to reflect the scheme above, informed both
algorithms. They are discussed in the following section.

Algorithm based on hand-crafted rules. Testing on the brownies corpus con-
firmed three hypotheses that were formulated before the experiment. In the
wording of [Mitchell et al., 2011c],
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a. When two dimensions differ in the same direction between a referent object and
another object of the same type, an overall size modifier will be produced more often
than an individuating size modifier.

b. When two dimensions differ in opposite directions between a referent object and
another object of the same type, an individuating size modifier will be produced
more often than an overall size modifier.

c. The closer the aspect ratio4 of an object, the more likely participants are to use an
overall size modifier.

These findings were encoded directly into Algorithm 17. X(r) is the width
of the referent, Y (d) the height the distractor, and so on. Having replicated Her-
mann and Deutsch’s result, Mitchell also makes sure that if two objects differ
along two dimensions in opposite directions, then the dimension representing
the largest of the two differences is expressed (lines 5-6; see also section 9.4).

Algorithm 17 A part of Mitchell’s algorithm for dimension choice
Input: A visual domain containing the target referent r and one distractor, d. We use
X(r) as short for the width of r and Y (r) for the height of r (and analogously for d).
Output: A decision as to whether r is referred to using an overall or an individuating
expression, and whether it is positive or negative. largest-dim-diff is the dimension
(i.e., X or Y ) with the largest difference between r and d; sign(largest-dim-diff) is the
sign (i.e., positive or negative) of largest-dim-diff.

1: if Y (r) > Y (d) and X(r) > X(d) then
2: select an expression of the type [overall, positive]
3: if Y (r) < Y (d) and X(r) < X(d) then
4: select an expression of the type [overall, negative]
5: if Y (r) > Y (d) and X(r) < X(d) then
6: select an expression of the type [largest-dim-diff, sign(largest-dim-diff)]
7: else
8: ...
9: if Y (r) < Y (d) and X(r) = X(d) then

10: ... and so on (9 cases in total) If

The aforementioned experiments involved only one distractor, but the algo-
rithm was generalized by averaging the X and Y values of all distractors that
have the same type as the referent; thus, in a deviation from the algorithm of
section 9.4, the new algorithm sometimes calls a thing tall even though some
of its distractors are taller; whether this matches human production is a ques-
tion that has yet to be settled.

4 Aspect ratio is defined as x/y, where x is the value of the width and y of the height dimension.
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Algorithm from Machine Learning. We have seen before (e.g., section 6.6)
that when transparent corpora like the crafts and brownies corpora are avail-
able, they can be exploited by a Machine Learning program that looks for
regularities in the corpus. One way to do this is to learn decision trees,
which use boolean combinations of data features (with suitable values for
these features) to predict when a given type of RE can be used; tree struc-
tures are employed to make sure that the most informative features come first.
[Mitchell et al., 2011b] learned decision tree classifiers from the brownies cor-
pus. Mitchell decided to use not only the most obvious factors (such as X(r),
Y (r), X(d) and Y (r), which contain the dimensions of the target and the dis-
tractor), but also some “smart” ones that had emerged from studying the crafts
domain. Examples include target height divided by target width, target height
minus target width, and the following ones. The value is always a number; as
in the extended algorithm (a),X(d) and Y (r) are averaged over all distractors.

xratio = target width / distractor width
yratio = target height / distractor height
discx = 1 if X(r) > X(d); 2 if X(r) = X(d); 3 if X(r) < X(d)

discy = 1 if Y (r) > Y (r); 2 if Y (r) = Y (d); 3 if Y (r) < Y (d)

An example of a classifier that was learned is the following tree for the use of
type [overall, negative] (i.e., adjectives like small):

discy =1: no
discy >1

discx <=1: no
discx >1

drat <= 1
xratio <= 0.909: yes
xratio >0.909

discy <=2: no
discy >2

... (etc.)

This classifier is typical for using “smart” features in prominent positions near
the top of the tree, so whatever results are obtained by the Machine Learn-
ing is heavily indebted to the hypothesis-testing that has informed the other
algorithm as well.

Both algorithms were evaluated on both the brownies and the crafts cor-
pus, using an approach that resembles the Dice-based one in chapter 5. The
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most meaningful evaluation is the one that compares with the crafts corpus,
because it is different from the one on which the classifiers were trained.
[Mitchell et al., 2011c] reports both precision and recall (which the Dice met-
ric combines) but because the REs in the corpora only rarely contained more
than one size adjective (i.e., one rarely finds REs like “the feather that’s long
and thin”), precision and recall were always nearly identical. The evaluation
results were good, with precision and recall at about 81% for both algorithms.
By comparison, an oracle that always chooses, for a given referent, the type
of adjective (e.g., [overall, positive]) that was chosen most frequently by the
speakers of the crafts corpus when referring to that referent, scores 89.1%.
This oracle would be very difficult to beat of course. In other words, the two
algorithms were both successful, and to almost exactly the same degree.

Mitchell’s approach looks at REG from a very different perspective com-
pared to section 9.4. Consider one of the 5 feathers in the crafts domain.
Suppose its two dimensions are in agreement with each other: the referent
is both the second-longest and second widest feather, with the same distractor
being both longer and wider. Mitchell’s algorithms will tend to choose [over-
all, positive]. This does not mean, however, that the referent must necessarily
be called “the large (big, sizeable) feather”; instead, it might be called “the
second largest feather”, or “this rather large feather”. Unlike the VAGUE pro-
gram, these algorithms do not go as far as generating the semantic content of
a complete RE: they only decide which of the 6 attributes mentioned above
will be used: [individuating, positive], [individuating, negative], and so on. No
actual words are chosen. More importantly, it has not been decided where in
the relevant dimension the referent is to be placed. Finally, these algorithms do
not tell us whether a given attribute identifies the referent. To do that, an algo-
rithm like the one of section 9.4 needs to be added. Perhaps the best way to see
these algorithms, therefore, is as a way to decide what kind of size attribute to
consider when looking for a suitable combination of properties (e.g., what size
attributes to store in the Preference Order of the Incremental Algorithm).

A question that neither of these approaches addresses in earnest is what dif-
ferences are large enough to matter.5 The (a) algorithm, for instance, contains
a rule of the form “If Y (r) < Y (d) and X(r) = X(d), then ...”. This rule fires
if two values are equal, but it is unclear whether a tiny difference of, say, 1 mm
matters enough to stop them from counting as equal.

5 This is related to the notion of a Just-Noticeable Difference (JND) in perception research, e.g.,
[van Deemter, 2010], chapter 8.
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We have focussed on size, but other attributes are multidimensional as well:
suppose we want to refer to a person, for instance, focussing on her quality
as a researcher. We can call her productive or creative or smart, for instance,
or we can say that her work has had much impact. Or, instead of focussing
on such individual dimensions, we can choose an “overall” adjective, calling
her a good researcher, for instance. The choice between all these perspectives
resembles the choice of perspective associated with the size of an object.

Furthermore, we have focussed on REs, but the choices on which this section
has focussed are equally relevant for indefinite noun phrases (“a tall building”)
and quantified noun phrases (“every tall building”), whatever role they play in
a sentence. We hypothesize that these choices depend on the same factors and
can be made in similar ways.

9.7 Can We Ever Be Clear? Salience as a Gradable Property

We have seen in section 4.9 that salience is best regarded as a gradable prop-
erty, which some things possess to a greater degree than others. We can now
see that a natural treatment of salience falls automatically out of the treatment
of vague descriptions presented in section 9.4. This insight will allow us to
gain a more uniform understanding of REG. However, we shall also see that
the gradability of salience makes almost all reference error prone.

Essentially, Krahmer and Theune’s proposal (see section 4.9) analysed “the
black mouse” as denoting the unique most salient entity in the domain that
is both black and a mouse. Now suppose we let REG treat salience just like
other gradable attributes. Suppose there are ten mice, five of which are black,
whose degrees of salience are 1, 1, 3, 4, and 5 (the last one being most salient),
whereas the other objects (cats, white mice, etc.) have a higher salience. Then
the algorithm of section 9.4 might generate this list of properties:

L = 〈 mouse, black, salience > 4 〉.

This is a distinguishing description of the black mouse whose salience is 5: “the
most salient black mouse”. The simpler description “the black mouse” can be
derived by stipulating that the property of being most salient is normally left
implicit in English as well as, presumably, in other languages.

It is now easy to see why plural descriptions are often ambiguous. Taking
salience into account as suggested above, the singular “the black mouse” can
only refer to the most salient mouse. But “the mice” can refer to the most



CMR-web-July-2017 2017/7/12 12:14 Page 221 #231

Third Part: Generating a Wider Class of REs 221

salient two (sized 5 and 4), the most salient three (sized 5, 4 and 3), or to all
of them. To disambiguate the description, a number can be used (e.g., “the two
mice”), just like in the case of vague descriptions.

When salience is combined with other gradable notions, the likelihood of
confusion is even greater. Consider “the large(st) dog”. Our analysis predicts
ambiguity when size and salience do not go hand in hand.

TYPE: d1 (dog), d2 (dog), d3 (dog), d4 (dog), c5 (cat)
SIZE: d1 (20 cm), d2 (50 cm), d3 (70 cm), d4 (60 cm), c5 (50 cm)
SALIENCE: d1 (6), d2 (4), d3 (3), d4 (5), c5 (6).

If we are interested in the three most salient dogs (d1, d2, and d4), then “the
large(est) dog” designates d4, but if we are interested in the four most salient
ones (d1, d2, d3, and d4), then it designates d3. In other words, the description
is ambiguous between d3 and d4, depending on whether we attach greater
importance to salience or size. This is borne out by our generation algorithm.
Consider the simpler of the two treatments of salience, for example, which
starts out with a reduced domain. If d4 is the target, then the reduced domain
(consisting of all things at least as salient as the target) is {d1, d2, d4, c5}; “dog”
narrows this down to {d1, d2, d4}, after which size = max1 generates “the
large dog”. But if d3 is the target, then the same procedure applies, starting
with the full domain (because no element is less salient that d3) and the same
description is generated to refer to a different animal. For readers, csalience
and gradable adjectives are a problematic combination.

But this is not all, because salience itself is multidimensional (see e.g., Paul
Piwek’s [Piwek, 2009] for a 3-dimensional account). Consider a situation in
which two people agree to meet in a coffee bar (Figure 9.2); they are near a
bar that is so decrepit that it is barely functional; much further away (making
it less salient) is another coffee bar that is large and attractive (making it more
salient). In such a situation, it can be unclear which of the two coffee places
is intended. We usually assume that the entities around us can be identified by
suitable REs, but once salience is taken into account (especially in combination
with plurals and/or other gradable dimensions) it becomes difficult to generate
descriptions that are immune to being misunderstood. It might be thought that
referential ambiguity can be avoided by making the degree of salience of all
domain objects explicit, for example, by saying “let’s pay attention to buildings
in areaX , and to no other buildings”. However, this begs the problem, because
the RE “area X” itself is potentially subject to referential ambiguity.
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Figure 9.2
Multi-dimensional salience as a source of ambiguity: “Let’s meet at the coffee bar.”

In other words, despite computer scientists’ neat abstractions – involving
domains, distractors, and distinguishing descriptions – communication is often
risky; we will see this again in chapter 14.

9.8 Summary of the Chapter

Until this chapter, numbers were absent from the information from which refer-
ring expressions were generated: the shared Knowledge Bases that form the
basis of the classic algorithms, for example, did not contain numerical values.
By examining the effect of numerical values on reference, the present chapter
has opened the door to a large area of research, with potential relevance for
“big data” applications, where numerical information is paramount.

• The semantics of vague adjectives in REs can be likened to that of superla-
tives. [Section 9.1] There are, however, pragmatic differences between them,
which we have dubbed the principles of Small Gaps, Dichotomy, and Mini-
mality. [Section 9.2]
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• The monotonic approach to REG that dominates earlier chapters of this book
can be extended to cover gradable attributes. The resulting algorithms, how-
ever, tend to be considerably more complicated than the classic REG algo-
rithms. [Section 9.4]

• The algorithm discussed in this chapter should not be seen as a model of
the human production process (see section 16.1, where process models are
contrasted with product models). Experiments by Sedivy et al. suggest that,
to model human production, a more complex process may be needed, which
generates gradable adjectives twice: once as a first “draft” and once for real.
[Section 9.4]

• Size is multi-dimensional. Consequently, speakers can express a single size
dimension or a combination of size dimensions (e.g., as expressed by the
adjective “big”). A case study by Margaret Mitchell gave insight into some
of the principles underlying this choice. It would be interesting to see
whether these principles generalize to other multi-dimensional attributes,
like the health of a person or the quality of a book. [Section 9.6]

• Three principles appear to govern the choice between individuating and
overall size descriptions: (a) When two dimensions differ in the same direc-
tion, then overall size modifiers are more probable than individuating ones.
(b) When two dimensions differ in opposite directions, then individuating
size modifiers are more probable than overall ones (c) The closer the aspect
ratio of an object, the more probable are overall size modifiers as compared
to individual ones. [Section 9.6]

• Confirmation was found for Hermann and Deutsch’s principle that if two
objects differ along two dimensions in opposite directions (e.g., the referent
is taller but thinner than the distractor), then the dimension that represents
the largest of the two differences tends to be expressed. [Section 9.6]

• Combinations of gradable properties are difficult to interpret. Salience is
gradable, so this makes combinations of one gradable adjective with salience
potentially unclear. Salience is multi-dimensional, causing it to behave as a
combination of gradable attributes, so this makes the use of all REs poten-
tially unclear (as in “the coffee bar”, said when one coffee bar is nearer
whereas another one is larger). [Section 9.7]

• These findings suggest that we may have to give up the illusion that referring
expressions must be unambiguous descriptions in all situations. This will be
an important theme in Part IV of this book.
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10 Fourth Extension: Exploiting Modern Knowledge Representation

We have seen how recent work has started to go beyond the classic REG

problem, by generating expressions that make use of relational and gradable
properties, referring to sets, and using proper names. Earlier on (especially
in chapter 6), we saw how a variety of computational approaches have been
applied to REG, such as Labelled Directed Graphs, Constraint Satisfaction, and
Bayesian Reasoning; we have also seen various uses of Machine Learning. All
these developments have made REG algorithms more interesting and useful
models of reference production.

But despite these advances, there are still many situations in which a human
speaker would be able to utter a distinguishing description, yet none of the
algorithms discussed so far is able to do this. In this chapter and the following,
we shall ask how REG might become logically complete. The key to the exten-
sions discussed in this chapter lies in techniques that have been developed over
the last decades in Knowledge Representation (KR) and that have come to be
associated with formal ontologies and their practical applications. I consider it
unfortunate that KR and Formal Logic have come to be sidelined in much of
Computational Linguistics (cf., the start of chapter 5), in line with the “shrink-
ing horizons” that Ehud Reiter warned against [Reiter, 2007]. What follows is
an attempt to redress the balance, focussing on reference, but in a manner that
can have repercussions for phenomena other than reference.

By using modern KR techniques, we shall construct richer Knowledge Bases
and generate richer Logical Forms than before, which will allow our algorithms
to refer in situations where earlier algorithms were not able to do this. Further-
more, KR will help REG to exploit ontological information. Ultimately, it will
also become possible to refer to entities whose existence is not stated explicitly
in the Knowledge Base, but only implied, allowing these algorithms to gener-
ate the attributive descriptions noted by philosophers and other theoreticians
of language (section 2.6).

The problems discussed in this chapter have not been studied for long yet,
and the material presented here is more tentative than that of previous chap-
ters. We shall focus on the expressive power of generation algorithms. This
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means that logical concerns will be at the centre of our discussion. The ques-
tion of what RE would be most natural, or most effective – which concerned us
extensively in previous chapters – will take a backseat.

This chapter is constructed as follows1: First we introduce the idea of
Knowledge Representation and Description Logic (section 10.2), after which
we explain how Description Logic can be applied to REG, allowing a larger
range of REs to be generated than before (sections 10.3, 10.4, 10.5). We then
turn to a discussion of how REs may be generated that refer to entities whose
existence is not directly stated but only deduced (section 10.6). Finally, look-
ing back on the body of this chapter, we discuss why logically complex REs
were, and still are, worth studying (section 10.7).

10.1 Knowledge Representation and REG

The algorithms discussed so far start from simple, tailor-made Knowledge
Bases, which contain atomic information. We have seen in section 6.4 how 2-
place relations can be taken into account in the generation of relational descrip-
tions. Yet relational descriptions cry out for a further increase of expressive
power. It is nice to be able to generate “the cup on the table”. But why stop
there, instead of pressing on to generate “the table with two cups on it”, and
“the table that has only one cup on it” as well?

Moreover, the information in the Knowledge Base, which represents all the
knowledge that is shared between the speaker and the hearer, can be much
more complex than the atomic statements (and their negations) that we have
so far allowed. Some early REG algorithms made use of non-atomic informa-
tion, but this never went beyond representing the fact that one 1-place property
(e.g., being a dog) subsumes another (e.g., being a poodle). Here are some
of the things that these Knowledge Bases are unable to express, and that the
algorithms discussed so far cannot make use of when referring:

a. This painting is Flemish or Dutch.
b. The relation “part of” is transitive.
c. For all x, y, x is to the left of y if and only if y is to the right of x.
d. For all x, y, z, if x buys y and z is a part of y, then x buys z.

1 The discussion of the GROWL algorithm and related issues in sections 10.3, 10.4, and 10.5 is an
elaboration of the proposal in [Ren et al., 2010], with special thanks to Yuan Ren for advice.
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The disjunction (a) is what an art lover may get from inspecting a 14th-century
church panel. This “incomplete” information about the painting cannot be rep-
resented if only atomic information is available (unless “Flemish or Dutch” is
treated as an atomic property).

Sentences (b), (c), and (d) might be implicitly present in a Knowledge Base
of atomic facts, but there is substantial mileage in representing these rules
explicitly, because it allows information to be represented much more econom-
ically and insightfully. Consider (b), for example, when a complex machine is
described. Suppose part p1 is part of p2, which is part of p3, which is part of
p4. Axiom (b) allows us to leave it at that: four other facts (that p1 is also part
of p3 and p4, and that p2 is part of p4) can be deduced from the three facts that
are represented. In large domains the savings can be enormous. Existing REG

algorithms lack the formalism for expressing knowledge of this kind.
Luckily, the Knowledge Representation community has over 30 years of

experience designing formalisms and algorithms that handle (some) logically
structured knowledge efficiently. Not only are these able to represent many dif-
ferent kinds of information (including (a–d) above), they are also able to per-
form automated reasoning with them, for example to check whether a Knowl-
edge Base is logically consistent. Key reasoning tasks of early systems in this
tradition, such as KL-ONE [Brachman and Schmolze, 1985] were soon shown
to be undecidable, but later systems are decidable, and considerable care is
invested in making sure that reasoning is performed as fast as possible.

Formalisms for Knowledge Representation come in different flavours, of
which Conceptual Graphs and Description Logic are probably the most impor-
tant. Description Logic, for example, is now implicated in a large amount of
work on formal ontologies for practical applications, such as the SNOMED

ontology for medical information [Benson, 2012], and for the Semantic Web.
All these formalisms are closely aligned with Predicate Logic, and Modal
Logic [Baader et al., 2003]. Some of their terminology deviates from standard
logical practice as a result of their evolution from different ways of thinking
about knowledge that had established themselves before the link with Formal
Logic was properly understood, but in most cases, the translation between for-
malisms is straightfoward. (For example, where Predicate Logic speaks of a
2-place relation, Description Logic speaks of a role.)

To let REG benefit from these developments, we proposed to analyse REG as
a projection problem in Conceptual Graphs [Croitoru and van Deemter, 2007].
Independently, [Areces et al., 2008] analysed REG as a problem in Descrip-
tion Logic (DL). It is this latter idea, which is traceable at least to
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[Gardent and Striegnitz, 2007], that we shall use as our starting point in this
chapter. The idea is to generate a DL formula, called a concept expression or
simply a concept, such as

Dog u ∃love.Cat

This concept denotes the set {xεDog : ∃yεCat(love(x, y)}, that is, the set of
dogs intersected with the set of objects that love at least one cat. To apply this to
REG, the idea is to check how many individuals turn out to be elements of this
set (i.e., instances of the concept); if the number is 1, then the concept refers
to this individual; if the number is greater, then it refers to a set. Figure 10.1
depicts a small Knowledge Base involving relations between several people
and animals. Here the above-mentioned concept identifies d1 as “the dog that
loves a cat”, singling out d1 from the five other objects in the domain. Of

Figure 10.1
Diagram depicting a small domain. Edges from people to animals denote the relation “feed”;
edges between animals denote the relation “love”.

course, earlier approaches to the generation of relational REs (section 6.4) were
already able to refer to d1, but we shall see in section 10.4 that DL can allow
REG to generate a much wider range of REs.

10.2 Description Logic: a Primer

A Knowledge Base based on Description Logic [Baader et al., 2003] describes
concepts (denoting sets of domain objects) and binary relations (denoting sets
of pairs of domain objects). Each Description Logic embodies a compromise
between expressive power and speed of reasoning; a particularly expressive
Description Logic is SROIQ [Horrocks et al., 2006], the logic that underlies
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the language OWL2, which is often used in connection with the Semantic Web.
Principally, a SROIQ ontology consists of a Terminology Box (TBox) T
and an Assertion Box (ABox) A. The ABox contains axioms about specific
individuals, for example,

[a : C] means that a is an instance of the concept C (a has the property C).
[(a, b) : R] means that a stands in the R relation to b.

The TBox contains generic information concerning concepts and relations,
such as the fact that R is symmetric, irreflexive, or transitive. Most impor-
tantly, T can say that C v D, where C and D are concepts, meaning that
every instance of C must be an instance of D too. For example, if D is defined
as the concept Person and C as the concept ”Man below 15 years of age”, then
if Man v Person, it follows that C v D. In other words, C v D means that
our combined information about C and D allows us to conclude that every
instance of C must be an instance of D.

The notion of a concept is recursively defined. First of all, atomic concepts
are concepts. Furthermore, if C and D are concepts, and R is a binary relation
(i.e., a “role”), then so are each of the following:

> | ⊥ | ¬C | C uD | C tD | ∃R.C |
≥ nR.C | ≤ nR.C | ∀R.C | ∃R.Self | {a1, . . . , an}

where n is a non-negative integer, ai are individual constants, and R is a rela-
tion, which can be atomic or the inverse of a relation S (i.e., R may be S−).

As one can see, negation can apply to a concept, but it it cannot apply to a
relation: in SROIQ one cannot compose a concept ∃¬feed.Dog, for exam-
ple. In a Closed World, however, we can interpret ¬feed as the set of all pairs
of domain elements that do not stand in the relation feed. The proposal in
section 10.4 will follow [Ren et al., 2010] in using an extension of SROIQ,
which we shall call SROIQ+. This extended language will allow negated
relations as part of concept expressions, but their handling is computationally
less straightforward than that of other constructs.
> (“top”) is the most general concept, denoting the domain,⊥ (“bottom”) is

the least general concept, denoting the empty set. Quantifiers do not use vari-
ables. For example, ∃R.C denotes the set of things that stand in the relation
denoted by R to at least one element of the set denoted by C. Numerical quan-
tifiers of the form ≥ nR.C extend this idea to containing at least n elements
of the set; ≤ nR.C denotes the set of entities that stand in the relation denoted
by R to at most n elements of the set denoted by C. ∀may be thought of as the
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English quantifier “only”: ∀R.C denotes the set of those x such that, for all y,
if x stands in the relation denoted by R to y, then y must be an element of the
set denoted by C. Finally, ∃R.Self denotes the set of objects standing in the
relation R to themselves; this is known as self-restriction.

We use CN, RN, and IN to denote the set of atomic concepts, atomic relations,
and individuals. As usual in logic, the meaning of an expression is defined by
means of an interpretation function. In DL it is customary to apply the inter-
pretation function I to the domain of discourse as well as to the constructs of
the language. Thus, I is a pair 〈∆I , �I〉 where ∆I is the (non-empty) domain
of discourse; �I maps each atomic concept to a subset of ∆I , each atomic
role to a subset of ∆I ×∆I , and each individual to an element of ∆I . Thus,
an interpretation is closely aligned to what is known in other areas of logic
as a model. The interpretation of complex concepts is defined recursively, for
example, (C uD)I = CI ∩DI .
I is a model of the Knowledge Base Σ, written I |= Σ, if all the axioms

in Σ are satisfied in I. Notably, Σ can have multiple models. For example if
T = ∅,A = {[a : AtB]}, then there is an interpretation I1 such that AI1 =

{a},BI1 = ∅, and an I2 s.t. BI2 = {a},AI2 = ∅. The effect of axioms such
as [a : AtB] on REG (which express a kind of incomplete knowledge) will be
discussed in section 10.6.

To see how non-trivial inferences can be deduced from a simple Knowl-
edge Base, consider Figure 10.1 again, assuming that the domain does not
contain other individuals than the ones depicted, nor do individuals have
other properties and relations than the ones depicted. From this it follows that
∃love.Cat v ≥ 2 feed−.Woman (everything that loves a cat is fed by at
least two women) and ≥ 2feed−.Woman v ∃love.Cat (everything that is
fed by at least two women loves a cat). The two concepts have the same exten-
sion. If another axiom were to assert that the two concepts are disjoint with
each other, then it would follow that neither is satisfiable.

10.3 Applying Description Logic to Familiar REG Problems

In REG, as we shall see, Description Logics can be used for the dual purpose
of constructing Knowledge Bases and constructing Logical Forms for REs.
Description Logic forces one to be explicit about some assumptions that are
usually left implicit in REG. In discussing these matters, it will be useful to
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start from very simple examples, because these will permit us to see the logical
issues most clearly. Consider once again the following Knowledge Base:

TYPE: dog {a, b, c, d, e}, poodle {a, b}
COLOUR: black {a, c}, white {b, e}

Description Logic is most often employed in situations where information
that is not stated explicitly may still be true; there can even exist individuals
that are not mentioned in the Knowledge Base. This is known as the Open
World assumption. Most work on REG, by contrast, tacitly assumes that the
shared Knowledge Base is a Closed World. In the Knowledge Base above, for
example, if there were poodles other than a and b, then these might include c,
so “black poodle” no longer identifies a uniquely.

The Closed World Assumption assumes that all atomic facts whose truth
does not follow from the axioms in the Knowledge Base are false. (For exam-
ple, in the example above, c is not a poodle.) In section 10.4, we shall use a
more fine-grained approach that allows us to close an ontology only partly,
namely, by using a DBox [Seylan et al., 2009]. A DBox D contains only
atomic formulas. Every concept or relation appearing in the DBox is closed,
and the DBox defines their extensions exactly, so ifD 6|= [a : A], then [a : ¬A].
Crucially however, concepts and relations not appearing inD remain open, and
this is where generic rules can make themselves felt, because they can make
information inferable. For example, given T = {Dog v ∃feed−.Woman}
(every dog is fed by some woman) and A = {[d1 : Dog], [w1 : Woman]},
there must be some woman who feeds d1. If the domain is closed usingD = A,
then we can infer that this is w1, because this is the only woman in the domain.

If a Closed World is assumed, then given a Knowledge Base, every Descrip-
tion Logic concept denotes a set. If this set is not empty, then the concept can
be seen as referring to this set. It is this idea [Gardent and Striegnitz, 2007]
that Areces and colleagues explored, focussing on an ABox without a TBox.
Using a DBox, the domain in Figure 10.1 can be formalized as follows:

T1 = ∅

A1 = {[w1 : Woman], [w2 : Woman], [d1 : Dog], [d2 : Dog],
[c1 : Cat], [c2 : Cat], [(w1, d1) : feed], [(w2, d1) : feed],
[(w2, d2) : feed], [(d1, c1) : love]}

D1 = A1
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The algorithm proposed by Areces and colleagues computes all the similar-
ity sets associated with a given Knowledge Base and a given Description Logic
[Areces et al., 2008]. Similarity sets can be seen as generalizing the satellite
sets of [van Deemter and Halldórsson, 2001] by taking relations into account,
and by being explicitly parameterized on a given logic. The parametrization to
a logic is important, because which REs are expressible, and which objects are
referable, depends on the logic that provides the REs. Here we use the word
“satellite” instead of the word “similarity” because this is the term we used in
chapter 8, and because it rightly suggests a non-symmetrical relation: a can be
a satellite of b without b being a satellite of a. Thus, if L is a Description Logic
and I an interpretation, and i, j are elements of ∆I , then we shall say that

j is an L-satellite of i given I if and only if
for every concept ϕ of L: if iεϕI , then jεϕI .

The L-satellite set given I of an individual i is
the set of all L-satellites of i given I.

Clearly, the logic L contains an RE for i given I if and only if the L-satellite
set of i given I equals the singleton set {i}. In other words, an RE for a given
object i exists, given a Description Logic L and a model, if and only if there is
no other object j in the model such that j is in the extension of every concept
in L that has i in its extension.

Areces and colleagues applied their approach to two different types of
Description Logic. Here we focus on the most expressive of the two, ALC,
which still permits a far smaller range of constructs than SROIQ, excluding
the ∀ quantifier and numerical quantifiers, for example:

> | ¬C | C uD | ∃R.C

Unlike the algorithms discussed so far, theirs (Algorithm 18) does not aim
to find an RE for one particular “intended” referent: it finds REs referring to
any subsets of the domain that can be referred to given the language ALC.
The algorithm adapts an algorithm designed by Hopcroft [Hopcroft, 1971]. It
finds out what sets of objects are describable through increasingly complex
intersections of (possibly negated) atomic concepts, then tries to extend these
intersections with concepts of the form (¬)∃R1.Concept, then with concepts
of the form (¬)∃R2.(Conceptu (¬)∃R1.Concept), and so on. At each step,
more complex concepts are constructed from concepts constructed earlier.
The algorithm calls a function Add, which checks, for each of the newly con-
structed concepts, whether it makes a useful addition to the set RE:
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Algorithm 18 Computation of ALC-satellite sets
Input: An interpretation function I that assigns denotations to elements of AtConcepts
and AtRels.
Output: A set RE of formulas ϕ such that {ϕI : ϕ ∈ RE} is the set of things that are
ALC-satellite sets (of any object in ∆I) given I.

1: RE:= {>}
2: for each p ∈ AtConcepts do
3: Add(p,RE)
4: while There exist ϕ ∈ RE such that ‖ϕI‖ > 1 do
5: for each ϕ ∈ RE and R ∈ AtRels do
6: Add(∃R.ϕ,RE)
7: if made no changes to RE then
8: Exit

Add(ϕ,RE)
1: for each ψ ∈ RE with ‖ψI‖ > 1 do
2: if (ψ uϕ)I 6= ∅ and (ψ u¬ϕ)I 6= ∅ then
3: add formulas ψ uϕ and ψ u¬ϕ to RE

4: remove ψ from RE

Consider the Knowledge Base above (Figure 10.1), for instance. The algorithm
concludes in 3 phases, resulting in increasingly fine-grained partitions of the
domain, where each step builds on the previous ones. In step (3), for example,
w2 can be identified because d2 is identified during step (2).

1. Dog = {d1, d2}, Woman = {w1,w2}, Cat = {c1, c2}.
2. Dog u ∃love.Cat = {d1}, Dog u¬∃love.Cat = {d2}.

3. Womanu ∃feed.(Dog u¬∃love.Cat = {w2},
Womanu¬∃feed.(Dog u¬∃love.Cat = {w1}.

On termination, the algorithm has partitioned the domain into minimal sub-
sets, each of which gets coupled with an ALC formula denoting it. The ALC-
satellite sets that exist relative to this model are all found by the algorithm,
namely, {d1, d2}, {w1,w2}, {c1, c2}, {d1}, {d2}, {w2}, {w1}. The first two
of these were removed by step 4 of Add. Four of the animals can be indi-
viduated; the cats cannot, because inverse relations (e.g., being fed) are not
considered by this version of the algorithm.

The algorithm was implemented and evaluated on the Filing Cabinet cor-
pus of [Viethen and Dale, 2006b], with encouraging results. Being very small,
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the corpus contained only 15 relational REs; transparent corpora in which rela-
tional descriptions play a significant role were sparse, which is why a small
corpus had to suffice. The program managed to generate 10 of these 15 REs cor-
rectly, most of which were of the pattern “the (orange, blue,..) drawer above/-
below/next to the (orange, blue,..) drawer”. A typical example of an RE in the
corpus that the program was unable to generate is “the orange drawer below
the two yellow drawers”. This hints at the need for REs that contain numerical
quantifiers (e.g., “two”), an issue to which we shall turn presently.

The paper by Areces and colleagues is not only of interest because of this algo-
rithm but also because it shows how REG algorithms in the literature are related
to each other, by showing how their behaviour can be mimicked by applying
the approach described above to different Description Logic languages. We
shall not discuss these matters here any further. Instead, we shall demonstrate
how the work of these authors has inspired our own proposal [Ren et al., 2010].

10.4 Exploiting the Full Power of DL

These ideas can be generalized in two ways: by using TBox reasoning, and
by using a larger range of quantifiers. The two innovations are independent of
each other but explained here by means of one and the same example.

Areces and colleagues took logical models, not axioms, as their starting point,
which is equivalent to having a Knowledge Base that only contains an ABox
and that is interpreted under a Closed World Assumption. Consequently, their
algorithm essentially uses model-checking, rather than full DL reasoning. It is
possible, however, to generalize their ideas. Suppose we extend Figure 10.1
with a rule saying that if one is feeding an animal, and if this animal loves
another animal, then one feeds the second animal too, while also adding an
edge to the “love” relation (Figure 10.2) between d2 and c2: Suppose we
close the domain, using a DBox, as follows, using relation composition (◦):

T2 = {feed ◦ love v feed}

A2 = {[w1 : Woman], [w2 : Woman], [d1 : Dog], [d2 : Dog],
[c1 : Cat], [c2 : Cat], [(w1, d1) : feed], [(w2, d1) : feed],
[(w2, d2) : feed], [(d1, c1) : love], [(d2, c2) : love]}

D2 = {[w1 : Woman], [w2 : Woman], [d1 : Dog], [d2 : Dog],
[c1 : Cat], [c2 : Cat]}
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Figure 10.2
An extension of Figure 10.1. Dashed edges denote implicit relations, inferred using the TBox. As
before, arrows between dogs and cats denote the relation “love”; other arrows denote the relation
“feed”. Note that, this time around, d2 loves c2.

The implicit facts [(w1, c2) : feed], [(w2, c1) : feed], and [(w2, c2) : feed]

can now be inferred automatically by exploiting the TBox axiom. The use
of rules and reasoning is crucial from the point of view of DL: without it, DL

could hardly claim to be a logic (or a piece of Knowledge Representation, for
that matter): it would little more than a database formalism.

The second innovation is of greater importance from the point of view of
reference modelling (i.e., REG). Note that all the REG algorithms discussed so
far are very limited in terms of the relational REs they generate. The algorithm
based on ALC, for example, allows us to say “the woman who feeds a cat”
(Womanu ∃feed.Cat) but not “the woman who feeds two cats”, allowing
existential quantification but excluding other quantifiers.

If only existential quantifiers are used, then some referents cannot be distin-
guished at all. In fact, the algorithm fails to identify any individual in Figure
10.2 (also depicted in Figure 10.3), because none of their satellite sets is a
singleton. For example, the satellite set of w1 is {w1,w2}, which has two ele-
ments. I will show presently how all the individuals in the Knowledge Base
become referable if other quantifiers and inverse relations are allowed.

But first we need to ask what level of expressivity should be achieved.
In attempting to answer it we can benefit from the conceptual appara-
tus developed in an area of (initially) Formal Logic and (later) the for-
mal semantics of natural language, known as the theory of Generalized
Quantifiers. Research on Generalized Quantifiers goes back to Mostowski
and was further developed by Barwise and Cooper and by Van Benthem
[Mostowski, 1957] [Barwise and Cooper, 1981] [van Benthem, 1986]. This
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Figure 10.3
The woman who feeds two dogs is depicted to the left of the one who feeds only one.

research program seeks to understand what quantifiers are possible, in logic
and in natural language, over and above the ones that happen to be best known
(such as all and some). In the process, this research program has generated
many useful insights and technical innovations [Peters and Westerstahl, 2006].

Essentially, a Generalized Quantifier is a relation between two sets. A Gen-
eralized Quantifier Q can occur in many different contexts, for example, in
the context Q N V (where the noun N and the verb V both denote sets), as in
“All (some, ten, most, etc.) cats slept”. The most general format for REs that
involves a relation R is “The N1 who R Q N2’s”, where N1 and N2 denote
sets, R denotes a relation, and Q a Generalized Quantifier, as in “the women
who feed some dogs”. An expression of this form refers to an individual entity
if it denotes a singleton set. Using a set-theoretic notation, this means that the
following set has a cardinality of 1:

{y ∈ N1 : Qx ∈ N2(R(y,x))},

For example, ifQ is ∃,N1 the set of women,N2 the set of dogs, andR feeding,
then this means there exists exactly 1 dog-feeding woman. If Q is at least
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two, it says that there exists exactly 1 woman who feeds at least two dogs.
It will be convenient to formalise quantifiers as relations between sets. Using
∀ as an example, instead of writing ∀x ∈ A(x ∈ B), we write ∀(A,B); more
generally, we write Q(A,B), where Q is any quantifier and A and B are sets
of domain objects. Thus, the formula above is re-written as

{y ∈ N1 : Q(N2,{z : R(y, z)})},

where N2 plays the role of A and {z : R(y, z)} the role of B. Instantiating this
as before, with N1 = Woman, Q = ∃, N2 = Dog, and R = Feed, we obtain
{y ∈Woman : ∃(Dog,{z : Feed(y, z)})}, or “women who feed a dog”.

To show which quantifiers are expressible in our logic, let us think of quan-
tifiers as quantitative constraints on the sizes of A∩B, A−B, and B −A, as
is common in the theory of Generalized Quantifiers. The findings are summa-
rized in Table 10.1. SROIQ can express Logical Forms of the types in the
table, plus disjunctions and conjunctions of such Logical Forms.

type QAB DL

1 ≥ n (Dog,{z|Feed(y, z)}) [y : ≥ nFeed.Dog]

2 ≥ n (Dog,¬{z|Feed(y, z)}) [y : ≥ n¬Feed.Dog]

3 ≥ n (¬Dog,{z|Feed(y, z)}) [y : ≥ nFeed.¬Dog]

4 ≥ n (¬Dog,¬{z|Feed(y, z)}) [y : ≥ n¬Feed.¬Dog]

5 ≤ n (Dog,{z|F (y, z)}) [y : ≤ nFeed.Dog]

6 ≤ n (Dog,¬{z|Feed(y, z)}) [y : ≤ n¬Feed.Dog]

7 ≤ n (¬Dog,{z|Feed(y, z)}) [y : ≤ nFeed.¬Dog]

8 ≤ n (¬Dog,¬{z|Feed(y, z)}) [y : ≤ n¬Feed.¬Dog]

Table 10.1
Expressing 8 types of Quantified REs in Description Logic. Both columns of the table use “¬” to
express set complementation as well as logical negation.

Having all the quantifiers of SROIQ+ (SROIQ with role negation, see
section 10.2) enables us to refer in a wide class of situations. When n = 1,
type 1 in the table is equivalent to ∃. When n = 0, type 7 is equivalent
to ∀Feed.Dog, that is, the quantifier only. When n = 0, type 6 becomes
∀¬Feed.¬Dog, that is, the quantifier all. In types 2, 4, 6, and 8, negation of a
relation is used. This is not directly supported in SROIQ, but, as indicated in
section 10.2, given a relation Feed, its negation ¬Feed can be used.

By logically conjoining the options offered by Table 10.1, these constructs
allow the expression of a description such as “women who feed at least 1 and
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at most 7 dogs”, by conjoining type 1 (with n = 1) with type 5 (with n = 7).
Exact numbers can be expressed as well, as in ≥ 1Feed.Cat u ≤ 1Feed.Cat

(“feed exactly one cat”), or intervals, as in ≥ 10Sell.Car u ≤ 20Sell.Car

(“sell between 10 and 20 cars”). In addition to Table 10.1, SROIQ can
even represent relations to self, such as “the dog who loves itself” by
Dog u ∃Love.Self , which was not expressible in the approach discussed in
[Gardent and Striegnitz, 2007]. The usefulness of all these extensions is dis-
cussed in section 10.7.

Comparing the above with classes of quantifiers studied in the theory of
Generalized Quantifiers, it is clear that SROIQ is highly expressive (cf.,
[van Benthem, 1986], chapter 2). Yet some quantifiers routinely expressed in
English are not expressible in SROIQ; examples include most, infinitely
many, and many. These and other limitations of the above will be discussed
in section 11.2. But first, let us see how our extended set of quantifiers enables
us to generate a wider class of REs, making it possible to identify referents
uniquely in situations where this was not possible before.

10.5 Using SROIQ+ to Generate Complex REs

Computational models are the theme of this book. But this term covers a mul-
titude of sins. At one extreme lie models that have been implemented in com-
puter programs and whose properties have been tested both mathematically
(e.g., in terms of computational complexity) and empirically (e.g., in terms of
their ability to mimic human reference production). At the other extreme lie
models that are incomplete sketches, whose details have yet to be worked out,
and where much about the algorithm is still unknown.

If we use the word maturity to talk about these differences, then the classic
REG algorithms that form the theme of Part II of the book are positioned close
to the more mature extreme of this range (despite remaining questions over,
for example, the treatment of ties in the Full Brevity and Greedy algorithms;
see our discussion of algorithm 3). Most of the algorithms discussed in the
more recent chapters 8 and 9 lie somewhere in the middle of the range. The
same is true of PRO, the probabilistic approach to REG defended in section
6.3: its core, which we dubbed the PRO model (Figure 6.4), has been evaluated
extensively, but to make the model more widely applicable it was then extended
to the PRO algorithm (algorithm 9), and this algorithm as a whole has not been
implemented and evaluated yet.
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The algorithm we are about to put forward lies at the less mature extreme of
this range, where the treatment of proper names in chapter 2.7 lies as well. The
increased logical expressivity that SROIQ offers, and that the REs of the pre-
vious section require, creates a computational “embarrassment of riches”, not
least in terms of keeping the algorithm computationally tractable (cf., section
4.8). The problem, in a nutshell, is the cardinal problem of Natural Language
Generation: any given referent can be referred to in numerous, and highly var-
ied, ways. Which of these are most likely to be uttered by a human speaker,
and which are most useful for hearers, we do not know.

Our strategy, in the algorithm below, which we call GROWL after the lan-
guage OWL2 to which SROIQ is closely related, is similar to that of Areces
et al.: we generate REs for many subsets of the domain simultaneously, by
computing satellite sets; like its predecessor, GROWL applies a generate-and-
test strategy that composes increasingly complicated Logical Forms, without
aiming to individuate one particular target referent. This time, however, the
highly expressive Description Logic SROIQ is used and, unlike its prede-
cessor, GROWL uses DL reasoning to find out what set is denoted by a Logical
Form, taking TBox axioms into account. Moreover, as explained in the previ-
ous section, GROWL uses a large variety of quantifiers, instead of only ∃.

GROWL takes a Knowledge Base Σ as its input and outputs a queue LF of
Logical Forms, from the syntactically simplest ones to increasingly complex
ones. Different formulas can mean the same, for instance ¬∀R.A is equivalent
with ∃R.¬A. To reduce the set of formulas that our algorithm needs to con-
sider, we look at Logical Forms in their negation normal form (NNF). A NNF

has ¬ in front of only atomic concepts (including> and⊥), or self-restrictions.
The NNF of ¬C (¬R) is denoted ~C (~R). The algorithm uses these sets:

The set RN of atomic relations. For any atomic relation R, RN contains R, ~R,
R−, and ~R−.

The set CN of atomic concepts. In addition to concepts such as Man, Woman, etc.,
CN contains > and ⊥ and all expressions of the form ∃R.Self where R ∈ RN .
For any atomic concept A, CN also contains the NNF (~A).

A finite set N of integers 1, . . . , n, where n does not exceed the number of individ-
uals in Σ. N bounds the number n used in numerical quantifiers.

The construct set Con containing all the constructs whose use in Concept expres-
sions SROIQ permits: {¬,u,t,∃,∀,≤,≥,=}.

Before we sketch the GROWL algorithm, note that square brackets indicate
strings of symbols. For instance, in Step 8, where d and d′ denote elements of
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LF , and s denotes a set-theory connective, the expression “[d s d′]” denotes
the string that intersects, or forms the union of, two elements of LF .

Steps 2-3 add suitable elements ofCN to the setLF , which starts off empty.
The details of Add can be specified in different ways; [Ren et al., 2010] uses
a simple heuristic, whereby new Logical Forms are only added if they have
smaller extensions than all elements of the existing LF , so if two descriptions
are equivalent, then at most one of them ends up in LF . Crucially, these pro-
cedures take implicit knowledge (i.e., TBox axioms) into account.

Algorithm 19 GROWL: Computation of SROIQ+-satellite sets
Input: The Knowledge Base Σ and the sets CN,RN,N, and Con. An interpretation
function I that interprets CN and RN .
Output: A queue LF of formulas ϕ such that {ϕI : ϕ ∈ RE} is the set of things that
are SROIQ+-satellite sets (of any object in ∆I) given I.

1: LF := ∅
2: for each e ∈ CN do
3: LF := Add(LF, [e])
4: for each d = fetch(LF ) do
5: for each s ∈ Con do
6: if s = u or s = t then
7: for each d′ ∈ LF do
8: LF := Add(LF, [d s d′])
9: if s = ∃ or s = ∀ then

10: for each r ∈ RN do
11: LF := Add(LF, [s r.d])
12: if s =≤ or s =≥ or s is = then
13: for each r ∈ RN and each k ∈ N do
14: LF := Add(LF, [s k r.d])
15: return LF

During Steps 4-14, elements of LF are processed recursively, one by one.
fetch(LF ) retrieves the first element of LF , then the next, and so on. New
elements are added at the end of LF and are never removed. For each element
d of LF , Steps 6-14 generate a more complex Logical Form and add it at the
end of LF . Let us call this the expansion of LF . Steps 7 and 8 conjoin or
disjoin d with each element of LF . Steps 10 and 11 extend d with ∃ and ∀,
then Steps 13-14 extend d with numerical quantifiers. During the expansion of
LF , GROWL does not consider s = ¬ because, in NNF form, negation appears
only in front of atomic concepts.
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At any stage of the execution of GROWL, LF,RN,N , and S are finite, hence
Steps 5 to 14 terminate for a particular d ∈ LF . Assuming a finite domain, the
algorithm as a whole terminates as well, because of the way in which Add is
constructed (i.e., at some point there are no new subsets of the domain left
to be referred to). Consequently, GROWL can be used in the same way as the
algorithm of Areces and colleagues (section 10.3), generating one description
for each satellite set. If the aim is to find a description for a specific target
referent only, then construction of LF could be stopped once a description of
the target referent has been found.

The pseudo-code of algorithm 19 embodies an implicit “theory” that the
connectives u and t add less to the complexity of a description than the quan-
tifiers ∃ and ∀, which add less than the numerical quantifiers. Some decisions
are left unspecified, however, leaving it open whether ∀ or ∃ is added first,
for instance. Once these decisions are made, GROWL generates at most one
description for a given referent. If we apply the algorithm to the Knowledge
Base in Figure 10.2, the following solutions can be generated:

1. {w1} = Woman u ∃¬feed.Cat, the woman who does not feed all cats

2. {w2} = Woman u ≤ 0¬feed.Cat, the woman who feeds all cats

3. {d1} = Dog u ≤ 0¬feed−.Woman, the dog that is fed by all women

4. {d2} = Dog u ∃¬feed−.Woman, the dog that is not fed by all women

5. {c1} = Cat u ≤ 0¬feed−.Woman, the cat that is fed by all women

6. {c2} = Cat u ∃¬feed−.Woman, the cat that is not fed by all women

In other words, where previous algorithms were unable to refer to even one
object in this domain, GROWL is able to refer to all six.

Like the other algorithms discussed in this chapter, GROWL focusses on find-
ing REs. Ultimately, the algorithm should be fine-tuned based on empirical
research. For example, a TUNA-style evaluation (chapter 5) could be applied
to domains in which relations (like feed, love, etc.) play a role, to see how
people use quantifiers when they refer. Alternatively, a hearer-oriented type
of evaluation (perhaps in the style of the GIVE challenge, section 5.8) could
be performed to find out what types of REs permit hearers to individuate the
referent most speedily and reliably.
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10.6 Rethinking REG: Using Shared Knowledge That Is Not Atomic

We have discussed the classic REG task (section 4.3) and various extensions
of this task. From where we stand now, it is possible to see further than
before, towards the generalizations that will be discussed in the next Part of
the book. One extension, however, is so closely related to the subject matter of
the present chapter that we discuss it here.

Representations of shared knowledge in REG have long been limited to
atomic facts and their implicit negations; more complex types of shared knowl-
edge have rarely been considered. Non-atomic formulas often permit a more
succinct and insightful representation of information. But while succinctness
and efficiency are laudable, are they crucial? It might be thought that after the
reasoner has done its work, a Knowledge Base in the familiar style results, as
in section 10.4 when the model of Figure 10.2 resulted from reasoning with the
one in Figure 10.1. Consequently, we might expect any reasoning to have been
done before the start of REG, using a pre-compilation strategy that computes
all the instances of each atomic concept, and all the pairs of domain objects in
each atomic relation, once and for all. (The result is known as the materialized
ABox.) However, complete pre-compilation is not always feasible.

The main reason why pre-compilation does not always work is the kind of
incomplete knowledge flowing from disjunctions and existential quantifiers.
Consider our earlier example of a painting that is known to be Flemish or
Dutch, say [a : FlemishtDutch]. We also know that a certain other painting
is Spanish, say [b : Spanish]. This is all we know; hence the Knowledge Base
has models in which a is Flemish and models in which a is Dutch. We cannot
simply let the reasoner compute a set of atomic propositions, because neither
[a : Flemish] nor [a : Dutch] is justified. It is possible to refer to a as “The
painting that is Flemish or Dutch” (or “The painting that is not Spanish”),
but the pre-compilation strategy outlined above will end up empty handed.
GROWL, by contrast, is able to generate a disjunctive RE that does the job.

It may be worth reflecting on the nature of the knowledge that we want to
model. One might argue that a Knowledge Base should be able to “decide”
each and every atomic proposition in the language. According to this perspec-
tive, a painting may be Flemish, it may be Dutch, but it cannot be Flemish-
or-Dutch. This perspective on knowledge is embodied in the classic REG algo-
rithms of Part I, and in the algorithm of Areces and colleagues. But if we
want to model human language production, then the objective perspective is
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hopelessly limited. In many situations, a person’s knowledge is incomplete:
the information state of someone who looks at the painting, uncertain as to
whether it is Dutch or Flemish, is characterized best by the disjunctive state-
ment [a : FlemishtDutch]. This is one of the reasons why a genuine Knowl-
edge Base is a better model of human knowledge than a simple database.

An example due to Yuan Ren shows that pre-compilation can even result in
erroneous REs. Consider the following ontology, which hinges on incomplete
knowledge in the form of an existential quantifier. Suppose the only ABox
axioms in the ontology are [a : A], [b : A], and [(a, b) : R], and the only TBox
axiom is A v ∃R.A (every element of A stands in the relation R to something
in A). Materialization has no effect: the materialized ABox is the same as the
original one. Using a REG algorithm directly on the ABox would result in an
RE that singles out a as the only domain object that stands in the relation R to
something in A (suggesting that it is the only instance of ∃R.A). However, by
consulting the TBox axiom, GROWL will find out that b is an instance of this
concept as well, so the previous RE is incorrect. Likewise, a reliance on pre-
compilation would cause b to be erroneously referred to as the only element
of ¬∃R.A, whereas in fact it is in ∃R.A. Materialization simply does not do
justice to an ontology expressed in SROIQ.

Other cases of reasoning intrigue for philosophical reasons (cf., section 2.6).
Suppose we wanted to generate an RE like “the last quarterly report of 2009”
from a Knowledge Base that makes optimal use of generic rules, saying that
every year has a unique first, second, third, and fourth quarter, and that every
quarter has a unique report associated with it. The reasoner will deduce that
there exists a unique report on the fourth quarter of 1929, allowing the gen-
erator to refer to it producing REs such as “the last quarterly report of 1929”.
Suppose now we are interested how a certain company weathered the economic
crisis of the late 1920s. October 1929 was the crucial month for this company,
so the last quarterly report should contain the information we are looking for.
We may want to say,

(U) The report on the last quarter of 1929 must be crucial.

But, we do not have any direct acquaintance with this report, arguably making
“The report on the last quarter of 1929” an attributive description in Don-
nellan’s sense (cf., section 2.6). To see this, we can apply a standard test to
distinguish between attributive and referential descriptions: suppose you had
uttered U when you first saw a volume the librarian had fetched for you. When
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Figure 10.4
Attributive description: “What a mess! The murderer must have been insane.”

you uttered U, you believed this volume to contain the report of the last quar-
ter of 1929, but now you open it, and you discover that it’s actually a volume
of poetry. This discovery tells you that the referent of “the report of the last
quarter of 1929” is not what you thought it was. Yet it will not make you to
want to revise U, because the utterance itself remains accurate. This thought
experiment suggests that your utterance U was not about a particular thing;
rather, it expressed a general rule, facilitated by an attributive description that
means, approximately, “whatever volume reports on the last quarter of 1929”.
Donnellan’s original examples of attributive descriptions can be modelled in
analogous fashion. Consider his

The murderer of Smith is insane,

assuming the scenario displayed in Figure 10.4: Smith’s mortal remains, in the
midst of a scene of utter devastation, are tied in a knot. To represent the rele-
vant information, a Knowledge Base could contain concepts such as Corpse,
Murderer, Being tied in a knot, and Being insane. Its ABox would state the
observable facts, whereas the TBox might state that anyone tied into a knot
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has been murdered by exactly one murderer, and that any murderer who ties
her victim into a knot is insane. Such an ontology would permit the attributive
description, “the murderer of Smith”.

This analysis is not without its rough edges, for example because many rules
– such as the one about the existence of quarterly reports – permit exceptions;
after all, 1929 may have been such a troublesome year that one quarter went
unreported. Nonetheless, automated reasoning has the capacity to expand REG

algorithms into areas that have long been studied by theoreticians, but that
approaches based on a database of atomic statements had never been able to
reach. The new approach does not make the problems with attributive descrip-
tions disappear overnight, but they do open a new, constructive perspective on
the matter that might bear fruit.

The approach to REG outlined in this section offers a stark counterpoint to
Dale and Reiter’s move (section 4.3) away from the complexities addressed by
the California School of REG (section 4.2): if REG is approached as outlined
in the present section, then REG is becoming even more complex than it was
in the 1980s. Once again, there would be a need for extensive modelling of
knowledge. Of course, the modelling of knowledge has advanced very con-
siderably since the 1980s, not least as a result of work on Description Logic,
with its ability to perform a lot of reasoning tasks very rapidly, so researchers
wanting to work in this direction will have a much better starting point than
those in the California School. Maybe what was too difficult in the 1980s has
become possible now.

Lessons may be learned from projects such as CYC, which formalize
common-sense knowledge [Matuszek et al., 2006]. This type of detailed logi-
cal modelling, sometimes known as “real AI”, does not sit easily with current
trends in Computational Linguistics (discussed in the introduction to chap-
ter 5), because real AI is labour intensive and domain dependent. Perhaps the
way forward is to acquire models of common-sense knowledge automatically,
an enterprise into which considerable effort is being invested at the moment,
often based on Machine Learning from text (e.g., [Ryu et al., 2010]). This, to
me, seems an interesting way forward. Needless to say, the simpler perspec-
tive on REG on which this book focusses will suffice for producing REs in
many practical applications of Natural Language Generation. But if the aim
is to achieve the fullest possible understanding of speakers’ ability to refer –
the construction of computational models of referring, in other words – then
common-sense knowledge should not be overlooked.
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10.7 Why Study the Generation of Logically Complex REs?

The previous chapters have shown how the expressive power of REG has
grown. But how useful are these extensions? Might they be like Rube Goldberg
machines, whose pay-offs are negligible in comparison with the complexity of
their mechanisms?

With a few notable exceptions, computational linguists have recoiled from
their early fascination with logic, as we have seen (e.g., section 4.2, the intro-
duction to chapter 5, and section 10.6). In this intellectual climate, the rel-
evance of modern Knowledge Representation will not be taken for granted.
There are good reasons for this skeptical attitude, not least because experi-
mental psychology has taught us that our species’ grasp of logical inference
is tenuous (e.g., [Johnson-Laird, 2006], [Kahneman, 2012]); it might therefore
be thought that there cannot be a place for the complexities of Formal Logic
in an account of human speaking. Yet I will argue that it is important to study
logical extensions of REG and the questions that they raise. This time around,
however, Formal Logic should go hand in hand with empirical finesse, based
on corpora and experiments with human language users; empirical sophistica-
tion, as well as speed and expressivity, were lacking in the 1980s (section 4.2).

1. Sometimes the referent could not be identified before. Sometimes the
new algorithms allow us to individuate a referent where this was previously
impossible. We have used this argument time and again: referents that were
not referable for the classic REG algorithms have become referable because of
later extensions in the expressive power of these algorithms.

2. Sometimes the proposed extensions generate less complex REs. Some of
the new REs are relatively simple and occur frequently. This goes without say-
ing for proper names (section 7) and for quantifiers like “all” (“The woman
who programmed all these functions”), “two” (“The dog with two owners”),
and “only” (“The dog that only chases cats”).

People may have difficulties with some of the constructs employed by the
new algorithms: our cognitive difficulties with negation are well attested, for
instance. Still, an RE that contains a negation may be less complex than any
other RE that singles out the referent. Consider a car park full of vehicles.
Given the choice between “The cars that are not Hondas need to be removed”
and “The Fords, Toyotas, Audis, (...), need to be removed”, the former may be
shorter and more preferable. My claim is not that negation should be used at



CMR-web-July-2017 2017/7/12 12:14 Page 247 #257

Third Part: Generating a Wider Class of REs 247

every opportunity, but that in some situations, REs that use negation are prefer-
able to others. This argument applies to quantified REs as well. Expressions
like “The man who adores all cars” and “The woman with two suitors”, may be
complex, yet they will sometimes be simpler than the simplest non-quantified
RE that singles out the referent.

3. Simplicity isn’t everything. So far, we have tacitly assumed that a complex
Logical Form is worse than a simple one, suggesting that a generator should
always prefer the simplest one. But simplicity is not everything. Consider

– “The man who loves all cars” (when a car exhibition is discussed)
– “John’s car” (when John is salient or after discussing someone else’s car)
– “The cars that are not Hondas” (in front of a Honda factory).

In all these situations, the RE contains a source of complexity (the quantifier
“all”, a relation, or a negation) for which it should be rewarded rather than
penalized, because it makes the RE more contextually relevant than a simpler
RE would have been (cf., section 4.2).

4. A complex content does not always require a complex form. We have
been assuming that Content Determination precedes decisions about the syn-
tactic and lexical form of the RE. The English expression coming out at the end
of the generation pipeline may not always mirror the logical structure of the
Logical Form directly: a complex formula can sometimes be expressed through
simple words. For example,

≥ 106Own.Dollars (“The person who owns at least a million dollars”):
“The millionaire”

Furthermore, the information in the RE might be dispersed over several
utterances (cf., section 3.6). Suppose the generator produces Womanu
∃Feed.(Dog u ∀Chase.Cat). Parts of this RE may end up scattered over var-
ious dialogue turns, the first of which might describe someone as (1) “This
woman”, the second might add that (2) “she feeds a dog”, and the third says
that (3) “the dog chases only cats”. By breaking complex information down
into bite-size chunks, the RE as a whole may well become easier to understand.
Further research is needed to spell out the logical constraints on the dispersal
of referential information, which have to do with the monotonicity properties
of the different types of quantifiers. To see the problem, consider the informa-
tion in a slightly different RE, Woman u ≤ 0¬Feed.(Dog u ∀Chase.Cat).
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A direct translation might say “the woman such that there are no dogs that
chase only cats whom she does not feed”; after some logical manipulation,
this becomes “the woman who feeds all dogs that chase only cats”. The infor-
mation in this RE cannot, however, be dispersed over three separate utterances,
as in (1) “This woman”, (2) “she feeds all dogs”, (3) “the dogs chase only
cats”, because the second utterance may be false.

5. Characterizing linguistic competence. Finally, exploring the space of pos-
sible REs is of theoretical interest. Let us assume, against our better judgment,
that empirical research will show beyond reasonable doubt that most of the
newest batch of REs are useless: no human speaker would ever generate them,
and no human hearer would ever benefit from them. I would contend that our
understanding of human language and language use would be considerably
advanced by this insight, because it would show us which logically possible
referential strategies people actually use.

Two famous analogies come to mind. First, consider center-embedding, for
example of relative clauses. As is well known, this syntactic phenomenon can
give rise to arbitrarily deep nestings, which are easily covered by recursive
grammar rules yet difficult to understand (e.g., “a man that a woman that a
child knows loves”) [Karlsson, 2007]. There exists a finite upper bound on
the depth of embedding of any NP ever encountered, therefore a grammar
without recursive rules can cover all NPs. Does this mean there is no need
for recursive rules? Probably not. A standard response, ever since Chomsky’s
[Chomsky, 1965], is that recursive rules are needed for modelling the human
linguistic competence (i.e., what people can say in principle); human linguistic
performance may be best understood by additional constraints, reflecting lim-
itations on human memory and calculation. The semantically complex expres-
sions of the present chapter may be viewed in the same light.

The second analogy transports us back to our discussion of quantifiers. The
theory of Generalized Quantifiers does not stop at a characterization of the
class of all quantifiers. The theory also asks what quantifiers can be expressed
through syntactically simple means (e.g., in one word, or within one NP

[Peters and Westerstahl, 2006]). It is this theory that enabled us to extend REG

algorithms as proposed in section 10.4. Once we know what REs are possible,
we can ask which of these are actually used. In this way, the study of reference
production opens up a new chapter in the study of Generalized Quantifiers,
focussing specifically on the use of quantifiers in referring expressions.
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10.8 Summary of the Chapter

This chapter has argued that REG can benefit greatly from the expressive power
and reasoning support that modern Knowledge Representation paradigms such
as Conceptual Graphs and Description Logic can offer. Specifically, we have
shown how Description Logic has started to extend the power of REG signifi-
cantly, and we have outlined how further extensions are possible.

• Areces and colleagues have shown that the Description LogicsALC and EL
can be employed to generate REs in an elegant and a principled way. This is
true for “classic” REs in the style of Dale and Reiter, for relational REs, and
for REs that make use of negated properties. [Section 10.3]

• Substantial advantages are obtained when more highly expressive logics
such as SROIQ are employed, permitting the identification of entities that
no earlier REG algorithm was able to identify, containing properties such as
“feeds two cats” and “is not loved by all dogs”. It appears that SROIQ+,
a minor extension of SROIQ, permits REG to use those quantifiers that are
most important for natural language. [Sections 10.4 and 10.5]

• If REs are generated from logically structured information, this opens up a
range of new algorithmic possibilities. For example, it enables the exploita-
tion of incomplete knowledge, as when we say “The painting that is Dutch
or Flemish”. Also, it would permit the generation of attributive descriptions
in the style of Donnellan, as when we speculate about “the report on the last
quarter of 1929”. Thus it will enable our algorithms to talk about entities
that are not explicitly mentioned in the Knowledge Base but whose (unique)
existence can be deduced. [Section 10.6]

• It is practically useful to study negation, disjunction, and quantifiers because
without these operations, unique reference is often impossible. It is also the-
oretically important to study these operations because this gives us a starting
point for investigating why some REs come to human speakers more natu-
rally than others. [Section 10.7]

Having used the bulk of Part III of this book to discuss ways in which REG

algorithms can be made more expressive and powerful, we shall use the final
chapter of this Part to reflect on their limits. After all the extensions discussed
here, are REG algorithms able to identify any referent that can be identified at
all, or might further extensions be called for?
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11 The Question of Referability

In the last few chapters, we have seen algorithms that produce a distinguishing
description in situations where algorithms designed in the 1980s and 1990s fall
short. The limitations of earlier algorithms arose from an inability to represent
negation, disjunction, and certain quantifiers. So where are we now? Are we
able to generate a distinguishing description whenever one exists? We shall see
that the answer to this question is: not quite.

In this short chapter, as in the previous one, we focus on logical complete-
ness alone: syntactic and lexical completeness are well beyond our grasp (as
we saw in section 1.1). We shall focus on reference to a single individual, but
generalizations to sets will be straightforward. We shall start by asking what
it might mean for a target referent to be “unreferable”, and this will lead to
a Referability Theorem, which offers a semantic test of whether two domain
objects can be told apart by any predicate-logical formula (section 11.1). Next,
we investigate some implications of this theorem, concluding that even the
GROWL algorithm, which we sketched in the previous chapter, is unable to
refer in all situations in which reference is possible (section 11.2). We con-
clude the chapter, and the Third Part of the book, by asking how REG algo-
rithms might go beyond GROWL (section 11.3).

11.1 Revisiting the Logical Completeness of REG

In section 4.7 I wrote: “Let’s call a REG algorithm successful with respect to
a given situation, characterized by a Knowledge Base and a given target r, if
the algorithm produces a distinguishing description in that situation. We will
call an algorithm (logically) complete if it is successful in every situation in
which a distinguishing description exists.” Henceforth, we shall say that if a
distinguishing description of r exists, then r is referable.

It would be unfair to complain that the classic REG algorithms (or the
GROWL algorithm, for that matter) is unable to exploit epistemic modalities,
or probability for example, because these types of information are not rep-
resented in the Knowledge Base that forms the starting point for these algo-
rithms. In what follows, we shall show that there does exist an absolute sense
in which an individual may be referable, and in which a REG algorithm may
be logically complete, provided some assumptions are made concerning the
information expressed in the Knowledge Base. To the best of my knowledge,
these assumptions are met by any Knowledge Base to which REG algorithms
have so far been applied.
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In chapter 10, where we used Description Logic, the notion of an interpre-
tation (also called a model) was defined as a pair 〈∆I , �I〉, where ∆I is a
non-empty set and �I is a function that maps each atomic concept to a sub-
set of ∆I , each atomic relation (i.e., role) to a subset of ∆I ×∆I , and each
individual to an element of ∆I . Implicit in this definition is the idea that indi-
viduals belong to concepts (i.e., properties) and are connected to each other by
2-place relations. Let us assume our present models to be exactly like that, dis-
regarding functions, and relations of higher arity. In connection with REG, it is
reasonable, moreover, to assume that models have only finitely many entities.
The models that result from these assumptions can be graphically depicted as
in the diagrams of the previous chapter. Under these assumptions, what would
it mean for a REG algorithm to be logically complete?

Indistinguishable entities. Is it ever possible to prove that one domain ele-
ment cannot be distinguished from another one? More generally, is there such a
thing as “the” satellite set of an entity, regardless of the logical language under
consideration? Because negation can be expressed in some logics (hence, if
a formula ϕ distinguishes a from b, then ¬ϕ distinguishes b from a), we can
make the question symmetrical, asking under what conditions two entities can-
not be distinguished from each other.

In real life, it can be extremely challenging, or even impossible, to find an
effective way to individuate a referent. (See Figure 11.1, where the speaker is
at a loss to produce a distinguishing description of her backpack, because it is
very similar to other backpacks.) In strictly logical terms as well, some models
contain elements that are indistinguishable from each other. Consider a model
that contains two men and two women, happily arranged as follows:

[m1 : Man], [w1 : Woman], [(m1,w1) : Love]

[m2 : Man], [w2 : Woman], [(m2,w2) : Love]

Logically there is nothing to separate the two men, or the two women for that
matter. The model has two “halves” that are isomorphic to each other (i.e.,
there exists a 1-1 mapping between the two halves that respects all properties
and relations). The same is true in a less fortunate variant of the model that has
only one woman, loved by both men:

[m1 : Man], [m2 : Man], [w1 : Woman]

[(m1,w1) : Love], [(m2,w1) : Love]
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Figure 11.1
Reference is problematic if the referent is indistinguishable from one or more of its distractors.

This example shows overlapping halves (because w1 belongs to each half)
which are nonetheless isomorphic, capturing the intuition that there is noth-
ing to separate m1 and m2. In this example and the previous one, m1 and m2

cannot be distinguished from each other. These observations suggest that two
objects can only be told apart if they take up different parts in the “topology”
of the model.

In formalizing this idea, it will sometimes be convenient to disregard the
direction of the arrows in our graphs, viewing them as if they were undirected
arcs. Given an entity r inM , we now define the model generated by r, abbrevi-
atedM(r), as the (directed) part ofM that is reachable from r. More precisely,
and continuing to limit ourselves to relations whose arity does not exceed 2,
let M(r) be the result of restricting the model M , with its set of individuals
∆I , to the set Reach(∆I , r) (the subset of ∆I reachable from r) consisting
of all those objects in ∆I to which one can travel from r following the arcs
regardless of their direction, and including the starting point r itself: (Note the
recursion in Steps 2 and 3.)
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1. r ∈ Reach(∆I , r).
2. For all objects x and y and for every relation R,
if x ∈ Reach(∆I , r) and (x, y) ∈ RI , then y ∈ Reach(∆I , r).
3. For all objects x and y and for every relation R,
if x ∈ Reach(∆I , r) and (y,x) ∈ RI , then y ∈ Reach(∆I , r).
4. Nothing else is an element of Reach(∆I , r).

We prove that, under the stated assumptions, an object is referable if and only
if it can be referred to by means of a formula of First-Order Predicate Logic
With Identity (FOPL). The key is the insight that two elements, a and b, are
indistinguishable using FOPL if and only if the models M(a) and M(b) gen-
erated by a and b are isomorphic, with a and b taking up analogous positions
in their respective submodels. We write [[ϕ(x)M ]] to denote the set of objects
in M (i.e., in ∆I) that satisfy the FOPL formula ϕ(x). The proof will use the
fact that, given a submodel M ′ generated by one of the objects in M , a FOPL

formula describing M ′ completely up to isomorphism can be “read off” M ′,
as follows:

Reading off a Logical Form for the referent r from a generated model M ′:

1. Logically conjoin all atomic propositions p for which M ′ |= p.
2. Add, as additional conjuncts, inequalities a 6= b for all constants a, b occurring
in the conjunction resulting from (1).
3. Close off all 2-place relations. Thus, for any a, if a1,..,an are the only con-
stants ai such that M ′ |= aRai, then add, as an additional conjunct, the for-
mula ∀y(aRy→ (y = a1 ∨ ...∨ y = an)); similarly, if a1,..,an are the only con-
stants ai such that M ′ |= aiRa, then add, as an additional conjunct, the formula
∀y(yRa→ (y = a1 ∨ ...∨ y = an)).
4. Replace all occurrences of constants by free variables (using the same variable for
occurrences of the same constant, and different variables for occurrences of differ-
ent constants), using x to replace r. Occurrences of the same constant are replaced
by the same variable, occurrences of different constants by different variables.
5. Quantify existentially over all the free variables in the conjunction, except for the
variable x, which remains free.

The third step is reminiscent of circumscription [McCarthy, 1980]: this step
makes it explicit that relations hold only where M ′ says they hold. To see why
this step is required, suppose M is as follows, and our intended referent is m1:
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[m1 : Man], [w1 : Woman], [(m1,w1) : Love]

[m2 : Man], [w2 : Woman], [w3 : Woman],
[(m2,w2) : Love], [(m2,w3) : Love].

In this model, m1 cannot be identified without taking into account that
m1 does not love w2 and w3. Let’s go through the five steps above, omit-
ting 1-place predicates for simplicity. Starting from the generated model
M(m1), Step 1 yields a short formula, L(m1,w1). Step 2 turns this into
the conjunction L(m1,w1) ∧ m1 6= w1. Step 3 adds two universally quan-
tified conjuncts, resulting in L(m1,w1) ∧ m1 6= w1 ∧ ∀y(L(x, y)→ y =

w1) ∧ ∀y(L(y,w1)→ y = m1). Step 4 replaces m1 by the free variable x
and replaces w1 by some other variable, say x1. Step 5 add an existen-
tial quantifier as a prefix, yielding ∃x1(L(x,x1) ∧ x 6= x1 ∧ ∀y(y 6= x1→
¬L(x, y)) ∧ ∀y(L(y,w1)→ y = x)). This formula says that x loves one and
only one person, that this person is not x, and that this person is loved by x
only. This formula is true of m1 and of no other element of M .

We are now ready state and prove a key Lemma:

Lemma 2 Consider a finite model M that contains elements a and b. Now a and b are FOPL-
indistinguishable if and only if there exists a bijection f fromM(a) toM(b), such that f respects
all properties and relations and such that f(a) = b. We sketch the proofs of the two directions:⇐ Let f be a bijection from M(a) to M(b) as specified. Then one can prove using formula
induction that a ε [[ϕ(x)M ]] iff b ε [[ϕ(x)M ]], for any FOPL formula ϕ(x) (i.e., a and b are FOPL-
indistinguishable). Note that this equivalence holds across all of M : we do not merely prove that
a ε [[ϕ(x)M(a)]] iff b ε [[ϕ(x)M(b)]].⇒ Suppose there does not exist f as specified. Then there exist a FOPL formula ϕ(x) such that
ϕ(a) is true and ϕ(b) is false (hence a and b are not FOPL-indistinguishable), and conversely. A
suitable formula ϕ(x) can be read off M(a) in the manner specified above.

We have seen what it takes for an object to be distinguishable from another.
Given a model, an intended referent r will be called FOPL-referable if there
exists a FOPL formula that is true of r and false of all distractors, with respect
to the model. The Referability Theorem follows almost immediately, because
to be referable is to be distinguishable from every distractor.

Theorem 5 Referability Theorem: Consider a finite model M that contains an intended ref-
erent r and n distractor objects, d1, .., dn. Now r is not FOPL-referable if and only if, for some
distractor di, there exist a bijection fi from M(r) to M(di), such that fi respects all properties
and relations and such that fi(r) = di. Proof: If there exists such a distractor di, then it follows
from Lemma 2 that r is not FOPL-referable. If there does not exists such a distractor di, then the
formula read off M(r) shows r to be FOPL-distinguishable from each of d1, .., dn, and hence the
same formula shows r to be FOPL-referable. 2
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Saying this informally, FOPL can characterize precisely those domain elements
that take up a unique place in the model. Therefore, given our assumptions
about the nature of a model, if FOPL cannot refer to a domain element, then
this element cannot be referred to at all. Given the class of models specified,
things that FOPL cannot identify cannot be identified at all.

The Referability Theorem might seem unsurprising, yet its details are worth
taking in. For example, equality (=) is a crucial part of FOPL because without
equality, one cannot distinguish between (on the one hand) an object that stands
in the relation R to one thing and (on the other hand) an object that stands in
the relation R to two different things.

The assumption that M is finite is crucial too, because for infinite models
the second half (⇒) of the Lemma does not always hold. To see this, consider
the counterexample of a large model M in which there are no properties, R
is the only 2-place relation, and a and b take up similar positions in the graph
of the model, with ∀x(aRx↔ x ∈ {ai : i ∈ R}) (where R is the set of Real
numbers, which is uncountable) and ∀x(bRx↔ x ∈ {bi : i ∈ N}) (where N is
the set of Natural numbers, which is infinite but countable), so b is R-related
to only countably many objects, whereas a is R-related to uncountably many
objects. Now the generated modelsM(a) andM(b) are clearly not isomorphic,
yet no FOPL formula ϕ exists such that ϕ(a)∧¬ϕ(b) or ϕ(b)∧¬ϕ(a). This
may serve as a reminder of the limitations of FOPL.

Note that the proof of the second half of the Lemma (⇒) is constructive.
This suggests the possibility of new REG algorithms, which is an issue we
shall turn to very briefly in section 11.3. The procedure of reading off a formula
from a sub-model is reminiscent of the idea of a Satellite set (see sections 8.3
and 10.3): because the formula read off the sub-model generated by an entity
r spells out all that is known about r, this formula does not only represent a
logically exhaustive attempt at distinguishing this entity from one particular
distractor; it distinguishes r from every other entity in the model from which
it can be distinguished at all: if the formula happens to be true for any other
entity in the model, then this other entity cannot be distinguished from r, hence
it is a member of the Satellite set of r.

Our exposition in this section has been limited to properties and 2-place rela-
tions, but various generalizations can be proven straightforwardly. If models
include relations of higher arity, then the concept Reach(∆I , d) can be rede-
fined to include all objects that can be reached through n-ary relations. (For
instance, to cover 3-place relations, if x ∈ Reach(∆I , d) and (x, y, z) ∈ rI ,
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then y ∈ Reach(∆I , d) and z ∈ Reach(∆I , d)). The definition of “reading
off” should be reformulated analogously, after which the proof of the Refer-
ability Theorem proceeds in the same way as before. The theorem can also be
generalized to include references to sets (cf., chapters 8 and 10 for algorithms
that generate references to sets).

11.2 Limitations of SROIQ + and the GROWL Algorithm

In recent years, REG algorithms have made great strides forward, not least in
terms of their expressive power. Yet even the GROWL algorithm is not logically
complete: there can be referable entities that GROWL is unable to identify.

One class of limitations is caused by the fact that SROIQ + lacks full
equality. For even though relations to self are expressible in SROIQ +, as in
Dog u ∃Love.Self (“dog that loves itself”), and even though the cardinality
quantifiers imply an ability to tell entities apart, other uses of equality cannot
be expressed, and this affects what one can refer to. Consider, for instance, the
following model:

[m1 : Man], [m2 : Man], [d1 : Dog],
[(m1, d1) : Feed], [(m2, d1) : Feed], [(d1,m1) : Love].

M(m1) is not isomorphic to M(m2), so both m1 and m2 are referable. For
example, m1 is the man who feeds dogs that love him. This is expressible
in FOPL, but not in SROIQ +. In fact, there is no SROIQ + concept that
identifies m1. In other words, m1 is referable, yet the GROWL algorithm is
unable to produce an RE that accomplishes this.

A second class of limitations is caused by the fact that SROIQ + does not
allow intersection between roles (i.e., relations). Consider a situation discussed
by Gardent and Striegnitz, with a model M that contains two men and three
children. One man adores and criticizes the same child; the other adores one
child and criticizes the other [Gardent and Striegnitz, 2007]:

[m1 : Man], [m2 : Man], [c1 : Child], [c2 : Child], [c3 : Child],
[(m1, c1) : Adore], [(m2, c2) : Adore],
[(m1, c1) : Criticize], [(m2, c3) : Criticize]
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M(m1) is not isomorphic to M(m2), so m1 and m2 are distinguishable
from each other in FOPL. A suitable formula ϕ true for m1 but false for m2

can be read off M(m1). Part of this formula says that ∃x(Adore(m1, x)∧
Criticize(m1, x)). This information about m1 would be false of m2; hence,
FOPL with equality can separate the two men. Can GROWL?

The quasi-formula Manu ∃AdoreuCriticize.Child (“the man who
adores and criticizes one and the same child”) comes to mind, but intersec-
tions of relations are not supported by OWL2, so this is not an option for
GROWL. OWL2 can express Manu (∃Adore.Child) u (∃Criticize.Child),
but, in the model at hand, this denotes a set of two (i.e., {m1,m2}). OWL2, and
hence GROWL, is unable to distinguish m1 and m2 from each other.1

These limitations of the GROWL algorithm stem from SROIQ rather than
from the algorithm itself. SROIQ adds the limitation that it is only able to
take cardinalities up to a certain size into account, which can prevent it from
identifying entities in larger models. (The same holds a forteriori for infinite
models, but these were disregarded from the start of this chapter.) The main
other limitations of SROIQ are both shared by FOPL and irrelevant for REG.
Let me give some examples. Consider REs such as

(a) Men who feed most (i.e., a majority of) dogs.
(b) Women who feed the same number of dogs and cats.

These REs cannot be expressed in SROIQ, nor can they be expressed in FOPL

(intuitively, one would need an infinitely long conjunction to express it). For
REG, however, this does not matter, because if a referent is referable by one
of the expressions above, then it is also expressible by a “less abstract” RE.
Consider example (a), assuming there are exactly n dogs in the domain. Each
of the men in the referent set (i.e., the men who feed a majority of dogs) feeds
a specific number of dogs. Let n be the smallest number of dogs fed by any of
the men in the referent set (so n exceeds half the total number of dogs), then
GROWL will find the RE Man u ≥ nFeed.Dog. This RE identifies the target
set. The RE of example (b) is constructed in similar fashion. The situation is
different of course if the exact number of dogs fed by each man cannot be
inferred from the Knowledge Base.

1 No similar restriction hold regarding the disjunction of relations. For even though role dis-
junction, as in the quasi-formula Manu ∃AdoretCriticize.Child (“the men who adore or
criticize a child”), is not expressible, an equivalent concept can be expressed through disjunction
of concepts, as in Manu ((∃Adore.Child)t (∃Criticize.Child)).
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11.3 Even More Expressive Algorithms?

Although the “reading off” process employed by the Referability Theorem was
not intended to produce a REG algorithm, and although full FOPL deduction
does not have the efficient reasoning support that exists for SROIQ, the fact that
“reading off” can be done constructively suggests the possibility of new REG

algorithms. One straightforward algorithm would proceed as in Algorithm 20.
The algorithm exploits the fact that the formula that is read off the model gen-
erated by the intended referent r must distinguish r from each distractor that it
can be distinguished from.

Algorithm 20 A primitive, logically complete algorithm for referring to sin-
gular referents
Input: A domain of objects, with properties and 2-place relations defined on it. The
domain contains a target referent r and a non-empty set of distractors.
Output: A distinguishing description of r if one exists. “Reading off” is defined in
section 11.1.

1: Compute the submodel M(r) generated by r
2: Read off a FOPL formula ϕ from M(r)
3: if r is the only x for which ϕ(x) then
4: optimize ϕ, resulting in ϕ′

5: return ϕ′

Without optimization (line 4), this procedure would produce unnecessarily
lengthy descriptions. Different approaches to optimization are possible (cf.,
section 8.5), including local optimization (cf., [Reiter, 1990b]), which removes
conjuncts that are not necessary for producing a distinguishing description.2

In the absence of computationally efficient procedures, and in the absence of
evidence for the linguistic reality of the REs that can be generated along these
lines, we do not pursue this line of work any further here. It is time to aban-
don Part III of the book, which has targetted the generation of types of noun
phrases that earlier algorithms were unable to generate (namely, logically com-
plex REs and REs that contain a proper name). Leaving this part of the book

2 Note that ϕ can contain a wide range of formulas, including negated ones such as ¬∃xA(c, x).
Hence, to test whether r is the only object for which ϕ is true (line 3), it does not suffice to pro-
ceed analogous to [Krahmer et al., 2003], testing whetherM(r) stands in the relation of subgraph
isomorphism to any other parts of M .
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behind us, we turn to a number of recent studies that are starting to challenge
established conceptions of what reference is. Unlike the challenges faced in
Part III, the difficulty of these further challenges will not lie in the types of
referring expressions that are generated, but in the situation in which they are
generated.

11.4 Summary of the Chapter

Chapters 8-10 have shown how the expressive power of REG algorithms can be
extended beyond the classic REG algorithms. The present chapter has helped
us understand this extended expressivity, by putting it in context, showing how
these algorithms compare to what is possible in principle. The upshot of our
discussion is as follows:

• We have discussed what it might mean for a REG algorithm to be logically
complete in an absolute sense. The Referability Theorem proves that the
resulting sense of logical completeness coincides with a notion of definabil-
ity in First-Order Predicate Logic (FOPL) with equality. [Section 11.1]

• The SROIQ algorithm of the previous chapter, although it is more expres-
sive than any other REG algorithm, is not logically complete in this sense,
because it is possible for an entity to be non-referable by SROIQ even though
a FOPL-based formula can identify the entity uniquely. [Section 11.2]

• The process of “reading off” a FOPL formula off the model generated by an
intended referent could be used in principle to let REG algorithms achieve
full logical completeness (in the above-defined sense). Here, however, we
enter a territory where efficient generation may no longer be achievable.
Likewise, we may be approaching a point where human speakers struggle
to find distinguishing descriptions; so REG algorithms of this kind should
be regarded with some hesitation. Earlier, in section 10.7, I have offered
some reasons why these algorithms, and the REs they generate, are worth
investigating nonetheless. [Section 11.3]
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Reference seemed such a simple idea: to refer is to anchor your utterances
to “things”, ensuring that people will know what you are talking about. As
such, reference is an example of Information Sharing (sections 1.7 and 3.1):
information already shared between speaker and hearer enables the speaker to
pass on her privileged information to the speaker, so this information becomes
shared as well. This is quite a simple idea indeed.

Yet this simple idea covers a large range of communicative situations. This
Fourth Part of the book will discuss complications of Information Sharing, by
focussing on situations that challenge existing approaches to REG. These chal-
lenges arise in situations that do not meet the presuppositions behind the classic
REG task definition that were listed in section 4.4. To explain the challenges,
I chose not to use formal definitions, but informal communication scenarios.
As we shall see, each challenge has led to new REG algorithms that widen our
understanding of reference.

The first challenge (chapter 12) arises in complex domains, where crucial
information may only be obtained through some “fact finding”. The second
challenge (chapter 13) stems from situations in which the speaker does not
know what the hearer knows. The third challenge (chapter 14) arises when the
referent resists being singled out precisely, so REs can at best be approximative.
The fourth challenge (chapter 15) arises when the speaker has something else
in mind than the identification of the referent.

Various computational solutions to these four challenges will be discussed.
Frequent echoes of the Battle of Balaclava will be heard, which featured in
chapter 1, and whose fatally misunderstood reference to “the front” caused
mayhem. These echoes will be especially loud when we discuss situations in
which speakers struggle to fathom what hearers know (chapter 13), or where
hearers have to dig deep to discover “the lay of the land” (chapter 12).

Because the problems discussed in this fourth Part of the book are difficult,
and cognitive scientists have only recently started to investigate them, we shall
paint the models that have been proposed with a broad brush: to expound on
the details of an algorithm that may still be far from its final formulation would
not be useful.1

1 The discussion of the First Challenge makes extensive use of [Paraboni et al., 2007] and
[Paraboni and van Deemter, 2014], although the presentation of the JOVE algorithm is modi-
fied. My discussion of the Second and Fourth Challenge owes a debt to [Kutlak et al., 2011],
[Kutlak et al., 2012], and [Kutlak et al., 2013]. The discussion of the Third Challenge elaborates
on [Khan et al., 2006], [van Deemter, 2009a], and [van Deemter, 2009b].
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12 First Challenge: Large Domains

In this book we have often presented domain knowledge in a table, neatly
arranged to highlight the commonalities and differences between the entities
in the domain. But real life is seldom so accommodating: in large domains we
often have to work hard to find out how the facts line up.

The first challenge to existing models arises when a domain is large and
complex, making it difficult for the recipient to grasp it completely. In these
situations, which are highly relevant at a time when “big data” attracts broad
attention, hearers may have to explore the domain, trying to find the referent:
its properties may not yet be part of the information that the sender and the
recipient share. Consider the following communication scenario.

The Book scenario. Someone is reading a bulky textbook and has got
to page 30, where it says “See picture 168”. Because pictures are num-
bered throughout the book, this can refer to only one picture. However, this
description would cause the reader unnecessary work. A more elaborate
one, such as “See picture 168 in chapter 14” or “See picture 168, on page
420”, would have saved her time.

The challenge for REG is to find algorithms that produce elaborate REs when
they are needed. This requires a departure from existing referential strategies.
The text on page 30 of the book that is mentioned in the scenario identifies the
picture uniquely, so why add more information? There are two possibilities:
either the location of the picture is known to the reader, in which case there
is no need to say more than “picture 168”; or it is not known to the reader, in
which case it may seem useless to mention it. The idea that information not
yet known to the hearer can help her find the referent is incompatible with the
theory embodied in the algorithms discussed so far.

The amount of effort that a well-crafted RE could have saved here is some-
what limited in this case, because books are designed to be easy to browse.
Moreover, readers may have seen only a handful of pictures on pages 1-30 and
estimate that picture 168 is probably somewhere in the last quarter of the book,
allowing them to speed up their search. To see that the problems can be worse,
let us turn to a more challenging scenario:

The Direction Giving scenario. Suppose Lewes Road is the longest street
in Brighton. I invite you to come to number 968, the highest number in the
street. You have never visited Brighton before and have no map. I tell you,
speaking in a cafe in London, to “come visit me in Brighton tomorrow, at
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Figure 12.1
Lack of Orientation (LO): “Use the black copier. There’s only one, you can’t miss it.”

number 968”. Because other streets in Brighton, being shorter, only have
numbers lower than 968, this is a distinguishing description. Yet it does not
help you much to find the house. A description like “968 Lewes Road” (“...
in the Moulsecoomb area, right at the end of the street”) could have saved
you a huge amount of time.

(Figure 12.1 shows a rather similar situation.) Ivandré Paraboni, Judith Mas-
thoff, and I started by studying the Book scenario, conducting experiments
and constructing algorithms [Paraboni et al., 2007], after which Paraboni and
I turned to Direction Giving [Paraboni and van Deemter, 2014], focussing on
spatial domains. Instead of testing participants’ behaviour in the real world, we
chose to focus on the interactive virtual environments provided by the GIVE

evaluation challenge [Koller et al., 2010b].
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Figure 12.2
A domain as used in the GIVE game (Striegnitz et. al., 2011), rendered here in black and white.

A “world” of the GIVE game consists of a 3D virtual space containing rooms
with doors, tables, and chairs (Figure 12.2), and with buttons in it that can
be pushed. Virtual environments, although more complex than the domains
studied in earlier chapters, lack many of the complexities of the real world but
they allowed us to control the details of the environment precisely; they also
allowed us to measure search effort in a variety of ways, by logging the time
taken and the distance travelled by a subject who is searching for the referent.

Our work on the Book scenario had taught us that two types of referential
situations are particularly problematic, which we termed Lack of Orientation
(LO) and Dead End (DE). These terms turned out to apply straightforwardly
to spatial domains, so let’s introduce them. Note that some buttons are hidden
behind the larger landmark objects (e.g., plants). It was therefore natural to
refer to the less accessible object (i.e., the button) via the accessible landmark,
thereby facilitating the hearer’s search task:

(a) the blue button, behind the plant
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Suppose there is only one blue button. Mentioning the plant is not logically
necessary to permit identification, yet the simpler RE (b) may lead to what we
call Lack of Orientation (LO), because the hearer has no clue as to the location
of the referent:

(b) the blue button

As for DE, let us modify the scenario: this time there are several blue buttons, so
the reference to the landmark (i.e., the plant) is necessary for disambiguation.
Yet even (a) may cause problems if the hearer comes across another plant (with
no blue button behind it) before reaching the intended plant: seeing this other
plant, the reader may be puzzled not to find a blue button behind it. This is
what we call Dead End (DE). Search would be facilitated if some additional,
logically redundant information was added, as in:

(c) the blue button behind a plant, on the right.

Paraboni demonstrated that the descriptions generated by existing REG algo-
rithms, which do not add logically redundant information in situations of this
kind, slow down readers very considerably in terms of the time they require
to find the referent, and in terms of the distance they travel (in digital space
of course) during their search, when compared to more elaborate REs. To pre-
vent this loss of time and energy, we proposed a procedure called Judicious
Overspecification (JOVE), which enhances existing REG algorithms. The idea
is to self-monitor the REs that a given REG algorithm produces – different REG

algorithms can play this role – and to add information to the RE that is gener-
ated by this algorithm if the monitoring reveals the existence of an LO or DE

problem. The term over-specification reflects that the REs in question contain
properties that are not logically necessary for identifying the referent. There
is nothing intrinsically wrong with over-specification: in fact, an overspecified
RE may well be the shortest RE that any reasonable speaker would produce.

The pseudo-code of the JOVE algorithm (Algorithm 21 below) does not
specify fully how an object is to be individuated: the choice of information
to be used in overspecification is not spelled out completely; in the GIVE set-
ting, a specific kind of location information (“on the left”, “on the right”, etc.)
was used. This assumes that each object is located in one well-defined visual
“context” that is small enough to be taken in visually by the player of the
Direction Giving game, namely a room. Let’s assume that the target referent is
in the same room as the hearer (who begins his search in the position start, see
Figure 12.3).
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Figure 12.3
Schematic view of a Dead End (DE) situation caused by the RE “the blue button behind the plant”

JOVE assumes that a tentative description D for the referent r has been pro-
duced by an existing REG algorithm (e.g., sections 6.4 and 6.5). D may be
simple or complex. It is possible that D describes r entirely by means of its
own properties (e.g., r is the round blue button), without referring to any land-
marks; in this case, JOVE focusses on r itself, trying to identify r. Alternatively,
D may contain a landmark (e.g., the door in “... near the door”), in which case
JOVE tries to identify this landmark. A landmark may be identified by means
of another landmark, and so on.

If we simplify by abstracting away from the relations (“above”, “near”,
etc.) between the various xi and xi+1, we can model a description of xn as
〈(x1, P1), (x2, P2)...(xn, Pn)〉, where x1 is r itself, and each xi is interpreted
by means of the landmark xi+1. For example, x1 may be a button, P1 may be
the property of being a blue button, x2 may be a plant, so P2 is the property
of being a plant. If this is the end of it, then D = 〈(x1, P1), (x2, P2)〉. If the
relation is “behind”, thenD encodes the RE “the blue button behind the plant”.

The idea of the JOVE algorithm is to start from an initial description of this
kind, to figure out how the player will search for the referent given this initial
description, to detect any problems that may arise during this search, and to
prevent these problems by adding information to the initial description. JOVE’s
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behaviour is summarized by the pseudo-code in Algorithm 21 below. The algo-
rithm imagines that the hearer will go searching for the referent, following a
path through the room. PATHS is the set of all search paths that the reader may
choose, going from where he is, all the way up to xn. PATHS is a set because the
reader’s search path is not fully known. Not every search path is equally plau-
sible, and in [Paraboni and van Deemter, 2014] we have proposed and tested a
simple model, called Nearest-First Search (NFS), of human searching. In what
follows, we shall identify PATHS with the set of search paths permitted by NFS.
Once PATHS is computed, JOVE monitors the RE, testing whether it may lead
to LO or DE. If the reference leads to neither LO nor DE, then the RE is com-
plete. If it does lead to LO or DE, then an additional property P is included in
Pn, and this process of adding properties continues until the risk of LO/DE has
been averted (see the While loop in lines 3-4 of Algorithm 21).

To see how NFS works, we return to Figure 12.3, divided into 5 contexts,
as shown in Figure 12.4: the central area containing “start” and the landmark
objects (i.e., chairs and plants); and four corridors containing one button each.

Figure 12.4
The domain of Figure 12.3. For ease of reference, unique names are added to domain objects.

Nearest-First Search (NFS) models the search by a reader for a referent, fol-
lowing the utterance of an RE:
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1 The reader will exhaustively search for the target referent within the current visual
context before considering any other visual context.

2 A decision to move to another visual context can never disobey the instruction pro-
vided by the RE (e.g., the reader cannot search on the right if the RE says “on the
left”). If no instruction is provided, the hearer may choose to perform search in
another context.

3 The object nearest the reader that matches the description is taken to be the intended
target. If, later on, this interpretation turns out to be mistaken, the hearer resumes
search as in clause 1. If two or more objects are equally distant from the hearer, the
choice between them is random.

4 No object is inspected twice, and search stops when the goal has been reached.

Consider the search for “the blue button behind a plant” in the domain in Figure
12.4. The local context (i.e., the central area) is inspected first. Clause 1 of NFS

dictates that within this area, the hearer searches exhaustively for the referent
of “the plant”. Then clause 2 dictates that this information be used to search
for “the blue button” behind the corresponding plant.

Search may either end up in rapid success, or it may require a considerable
number of steps, for instance if the hearer inspects p1, then b1, before reach-
ing the correct target area behind p2. More precisely, non-problematic NSF-
compatible paths to the target b4 are (c1,p2,b4) and (c1,c2,p2,b4). Addition-
ally, a number of problematic paths (leading to DE when finding p1 and b1) are
also compatible with NFS; examples include (p1,b1,p2,b4), (p1,b1,c1,p2,b4),
(c1,p1,b1,p2,b4), and (c1,c2,p1,b1,p2,b4), among others. Thus, NFS defines a
set of paths from start to target, each of which is considered a path that a per-
son could conceivably follow on his search for the referent. The set PATHS on
which the algorithm below rests contains precisely these paths.

The way in which JOVE checks the helpfulness of a RE is reminiscent of
the classic REG algorithms of chapter 4, which test routinely whether a ref-
erent has been singled out by a given combination of properties. Some early
dialogue systems such as HAM-ANS employed an anticipation feedback loop,
which allowed the generator to monitor various aspects of its own output,
including syntactic ambiguities and the clarity of its REs [Jameson, 1983]
[Wahlster and Kobsa, 1989]. JOVE adds an empirically tested model of how
readers search for a referent.

Going from experimental data to an algorithmic model invariably involves
some extrapolation, because the data cannot cover all situations (e.g., rooms
of all shapes). Based on our experiments with LO and DE, we proposed the
following [Paraboni and van Deemter, 2014].
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Algorithm 21 JOVE: Judicious Overspecification
Input: A spatial domain containing a hearer location l and another location where
the target referent r is positioned. A set P of properties defined on the domain. In a
description of the form D = 〈(x1, P1), (x2, P2)...(xn, Pn)〉, where n ≥ 1, the referent
r equals x1, and xi+1 is a landmark that helps to locate xi (as in “the button behind
the plant”, where the button is xi and the plant xi+1).
Output: an RE D, which may contain overspecification. The notion of a “problematic”
path (and hence the choice of whether or not to overspecify) is explained below.

1: Let an existing REG algorithm produce an initial description
D = 〈(x1, P1), (x2, P2)...(xn, Pn)〉, where n ≥ 1

2: PATHS := the set of NFS-compatible search paths from l to xn
3: while some of the elements of PATHS are problematic do
4: Expand D by adding a suitable new location property to Pn

5: return D

Suppose at some stage the algorithm is trying to describe an entity xn. For
example, xn may be a landmark that helps to identify the intended referent
xn−1. Suppose the algorithm has ascribed the properties in the set Pn to xn.
Now a search pathO ∈ PATHS is problematic in two possible situations. A DE-
type problem arises ifO contains an entity of the same type as xn (yet different
from xn) for which all properties in Pn hold true, and which may consequently
be confused with xn. The second type of problematic situation, associated with
term LO, can be defined in different ways: we deviate here from the definition
in [Paraboni and van Deemter, 2014] by saying that a search path has an LO-
type problem if the path contains a pair (xn,Pn) where xn is not located in
Context(xn−1) yet there is no information in Pn that makes this clear. The idea
is that xn is too far away to get noticed by the hearer, and there is nothing in
the description that points towards xn. A LO-type problem arises in the domain
depicted in Figure 12.4 if the starting instruction says “push the green button”:
there is only one green button, but it is in a different room, so JOVE considers
it to be too far away to be easily found.

Example. Consider the situation in Figure 12.3. Initially, an identifying
description is produced, for example, “the blue button behind a plant”, where
the button is x1 and the plant is x2 (and n = 2). The reference “a plant” to x2
is submitted to JOVE, and tested for LO/DE. If the hearer finds the nearest plant
first (as, in fact, the NFS search model of [Paraboni and van Deemter, 2014]
predicts), then this is a DE-style obstacle (i.e., the short description “the blue
button behind a plant” would cause DE). The fact that the wrong plant may be
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encountered first (i.e., Paths contains a path in which this is the case) is suffi-
cient reason for JOVE to amplify the initial Logical Form by adding informa-
tion (e.g., “on the right”). The algorithm produces the non-minimal description
“the blue button behind a plant, on the right”. This expanded RE does not cause
problems, so this overspecified RE is generated.

Are the scenarios discussed here really examples of reference, or is direction
giving a different task (cf., [Dale et al., 2005])? This is a difficult question,
because reference and direction giving are tied up closely with each other.
Whenever a referent finds itself among a reasonably large number of distrac-
tors, REs need to contain information that guides hearers towards the referent
(e.g., [Arts, 2004]). This is not only when the referent’s properties are to be
verified in physical space (i.e., observed), but equally when verification takes
place in memory. Suppose, for example, I told you I heard a performance of
music by a classical composer whose surname contains the letters “l” and “d”.
You might take some time to locate the referent in your memory; additional
information (e.g., his nationality and the time in which he lived) will make it
far easier for you to retrieve Haendel as a potential referent. Whether this is
reference or Direction Giving is a moot question.

These scenarios do not deviate very much from the ones commonly stud-
ied in REG, yet they have shown that existing REG can be strikingly unhelpful.
Doubtless, JOVE is only scratching the surface of the complications involved in
them. The same journal issue in which [Paraboni and van Deemter, 2014] was
published contains another account of the same problem, in which Garoufi
and Koller use a transparent corpus (likewise based on the GIVE game) to
train a maximum entropy model to allow a planning-based REG program to
produce REs that minimize the time taken by hearers to find the referent
[Garoufi and Koller, 2014]. Features include, for instance: the number of dis-
tractors in the room that are of the same type as the referent; the distance
between the hearer and the referent; and whether the referent’s colour is shared
by one or more other objects in the domain. Other work based on Machine
Learning uses Bayesian Classifiers to model speakers’ choice of landmarks
[Barclay, 2010].

Whether a rule-based approach or an approach based on Machine Learning
works best is for further research to flesh out; in both cases, details can no
doubt be improved. What is interesting from the present perspective is the need
for checking whether a given RE is likely to cause readers difficulty. Both our
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own and Garoufi and Koller’s algorithm do this and might therefore be said to
embody a simple Theory of Mind (cf., chapter 3, section 3.2).1

Psycholinguistic research (see section 3.2) has taught us not to assume too
readily that speakers design their REs optimally for their audience. The work
discussed above highlights a situation in which the lack of any audience design
would cause disaster. The work reported in [Paraboni and van Deemter, 2014]
– which focuses on the effects that REs have on recipients – does not tell
us what speakers actually do, but earlier work contains a small study sug-
gesting that human authors of written texts are good at this type of audi-
ence design when they are encouraged to think about the choice of RE in a
text [Paraboni et al., 2007]. It may well be that human speakers (as opposed
to authors) are frequently more egocentric, especially under time pressure
and when referential success is not of crucial importance. When speakers do
engage in the type of behaviour suggested by the JOVE model, they perform
what is known in psycholinguistics as self-monitoring (e.g., [Levelt, 1989],
chapter 12): they examine the output of the Conceptualization process (see
section 1.4)), and if they observe that it falls short, they elaborate.

1 Compare [Koller et al., 2010a], which argues in favour of a “lightweight”, behaviour-oriented
model. See also [Engonopoulos et al., 2013].



CMR-web-July-2017 2017/7/12 12:14 Page 273 #283

13 Second Challenge: Breakdown of Common Knowledge

The previous chapter discussed situations in which the hearer is unable to iden-
tify the target until he has discovered some new facts about the domain. A
different challenge to established accounts of reference and Information Shar-
ing comes from situations in which the speaker is uncertain about the hearer’s
knowledge. Scenarios of this kind arise whenever we address an open-ended
audience (i.e., when we publish something) and touch upon the philosophical
problems discussed in section 2.2. Here is one such scenario:

The “Who is?” scenario. The publishing industry comes up with a new
reading gadget. This gadget allows the reader of a document to select a
proper name x that occurs in the document, asking “Who (or what) is x?”
Its aim is to answer these questions in an optimally useful way. How should
they be answered, assuming that space does not allow an entire Wikipedia
page (or a similar extensive information source) to be displayed?

The speaker does not know what the hearer knows, and this causes common
knowledge (chapter 3, section 3.1) to break down. Breakdowns of common
knowledge are a feature of life, because speakers can rarely be sure what their
hearers know. Things could not have been more different in studies such as the
TUNA experiment of chapter 5, where participants were invited to describe the
referent that they saw on the screen in terms that the computer would under-
stand. Although the computer did not know who the participants were, the
information displayed was assumed to be shared between the computer and
the participants. In fact, the furniture pictures in that experiment had been espe-
cially selected to ensure that their properties (type, colour, etc.) would be evi-
dent to any normally sighted viewer (see section 5.3). Thus it was reasonable
to assume that all information about the scene was common knowledge.

The “Who is?” scenario was studied computationally by Roman Kutlák
[Kutlak, 2014]. It resembles a scenario studied by Siddharthan, Nenkova, and
McKeown, who likewise constructed algorithms that refer to people. However,
these authors worked in a context of Text Summarization; when a generated
summary had to refer to a person, it could “borrow” words and phrases from
the texts that their algorithm was summarizing [Siddharthan et al., 2011]; mor-
ever, much of their work focussed on the contextual appropriateness of a gen-
erated description (e.g., taking into account whether the person referred to had
been mentioned earlier in the summary), which is not an issue in the “Who
is?” scenario. Kutlák observed that the task of the gadget in this scenario fits
Searle’s definition (see section 1.1, and repeated here) precisely:
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“Any expression which serves to identify any thing, process, event, action,
or any other kind of individual or particular I shall call a referring expres-
sion. Referring expressions point to particular things; they answer the ques-
tions Who?, What?, Which?” [Searle, 1969, pp. 26–27]

Yet this scenario poses some difficult challenges. Let us populate it. Sup-
pose x = the name “Jang Song Thaek”, the name of an uncle of the North
Korean president Kim Jong Un whose execution in December 2013 was widely
reported around the world. The question “Who is?” is asked in the context of
an Australian newspaper report in January 2014, which asserted that members
of the man’s direct family have now also been executed:

News report of Jan 2014: “The North Korean dictator is reported to have
put to death all of Jang Song Thaek’s direct relatives.”

Given the extensive media coverage of the events in December 2013, many
readers will have known about the person executed, yet many will have forgot-
ten the poor man’s name. For them it makes sense to ask “Who is Jang Song
Thaek?”, and the reading gadget can help them by saying “This is the uncle
of the North Korean president, who was executed in Dec 2013 after being
denounced during a televized meeting. His execution was widely reported at
the time.” Other readers, however, may not know about the December events,
in which case they are likely to be entirely unfamiliar with the referent. It is
difficult to know what information would be useful to them.

Mindful of the difference between readers who do and readers who don’t
have previous exposure to the referent – knowing and unknowing readers, as
we shall say – Kutlák focussed on the question of what information is most
widely known about the referent. As for knowing readers, information that is
widely known is relatively likely to be known by them as well; hence this infor-
mation stands a good chance of triggering their memories of the referent. As
for unknowing readers, information that is widely known is what these readers
might be most interested in acquiring, because it helps to close the information
gap between them and the people who do know the referent. The challenge, in
both cases, is for the computer to find out what information is widely known.

Kutlák hypothesized that this problem may be solved if the internet is
used as a window on hearers’ knowledge. Many people read information on
the world-wide web. If we do not know anything specific about a particular
hearer’s knowledge state, then this hearer might be modelled as having been
exposed to a large but unknown fragment of the world-wide web. From this
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perspective, if an item i of information occurs on the web more frequently
than another item j, then the hearer is more likely to have been exposed to i
than to j, so i is put earlier in the Preference Order than j.

Several versions of this idea were implemented and tested, the simplest
of which is this: to find out how likely it is that an unknown reader knows
that Albert Einstein was a physicist, search for documents on the world-wide
web that contain the name “Albert Einstein” and the property “physicist”. The
more documents match this search, the more widely known this proposition is
hypothesized to be. More sophisticated methods make use of Pointwise Mutual
Information (PMI; [Fano, 1961]), which is based on a comparison between the
joint probability of two events and the probability of co-occurrence of the two
events if n and p are probabilistically independent of each other. In the present
case, n is the occurrence of a particular name in a document and p is the occur-
rence of a particular property in the same document:1

PMI (n,p) = log
P (n,p)

P (n) ∗ P (p)
. (13.1)

If this was all there is to Kutlák’s problem, and if the set of distractors is known
(for example, by extracting a large set of famous people from the internet), then
the monotonic approach to REG, introduced in section 4.5 might be resurrected
to shape these ideas. In the pseudo-code of Algorithm 22, we leave out even
more details than before.

Algorithm 22 REG algorithm based on an assessment of hearers’ knowledge
Input: A domain of objects, containing a target referent r and a non-empty set M
of distractors. A set P of properties of r. A metric (see text) that estimates how well
known a property is in connection with r.
Output: A distinguishing description D of r if one exists.

1: Start out with an empty D
2: while Not all distractors have been ruled out and P 6= empty do
3: Select a new property P from P , choosing the best-known one
4: if P is false of some distractors then
5: Update D, P , and M

1 PMI itself did not have a good correlation with human judgments, but much better results were
obtained when PMI was multiplied with

√
count(n,p) to prevent pairs consisting of highly infre-

quent words that only occur together from achieving unreasonably high scores (e.g., if P (n) is
close to 0, then so is P (n) ∗ P (p)). The idea of this correction stems from [Hodges et al., 1996].
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In the “Who is?” scenario, however, it is unknown what distractors exist in
the hearer’s mind, and what properties he ascribes to each of them. The set of
distractors is unknown; hence it is not possible to ascertain whether all distrac-
tors have been ruled out (clause 2) and whether P is false of some distractors
(clause 4), so a different algorithm needs to be used, which does not rely on
the distractor set.

Kutlák hypothesized that, once again, a crowd-sourced information resource
like the internet can shed light, essentially by estimating the Discriminatory
Power of an RE (as opposed to that of a single property). Once again, docu-
ments that express a certain conjunction of properties are retrieved from the
world-wide web. One option is to linguistically “realize” this conjunction by
expressing it as an English description, and to use this description to search the
internet. If the proportion of documents returned that also contain the name of
the referent is small, then the RE is considered not to be complete yet, in which
case the next-best known property is added. For example, if the description
of Einstein composed so far is “German-born physicist” and fewer than, say,
10% of the documents returned by the description contain the name “Albert
Einstein”, then the algorithm should continue to add properties to the Logical
Form. The generation algorithm terminates when the number of documents
retrieved that contain the name of the referent exceeds the threshold of 10%.

A number of variants of these ideas were first tested in pilot experiments.
The two most promising ones, which were identical except for their termi-
nation heuristic, were then employed to generate expressions that refer to a
number of famous people, based on the facts about these people represented
in DBpedia, a huge database extracted from wikipedia [Bizer et al., 2009].
The information in DBpedia is extracted mostly from wikipedia infoboxes,
which contain factual information such as persons birth date and birth place.
DBpedia is a growing resource now containing structured information about
4 million entities, 600,000 of which are people (as opposed to organizations,
books, etc.). The output of algorithms was assessed via an experiment based
on Mechanical Turk, in which participants were shown an English description
and given the instructions in Figure 13.1. In response to the description, par-
ticipants were asked to move a slider to the left or the right, depending on the
extent of their agreement or disagreement with a given statement.2

2 A very similar use of this “magnitude estimation” method was reported in section 8.7.
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Figure 13.1
A part of the questionnaire employed in Kutlák’s final evaluation experiment.

Evaluation was performed in terms of the number of people correctly identi-
fied by participants who were shown a number of descriptions that were gener-
ated, and in terms of the two other evaluation questions (Figure 13.1). Kutlák’s
algorithms were compared against a number of competitors, including a ver-
sion of the Incremental Algorithm, and a set of specially crafted (“gold stan-
dard”) descriptions produced by human authors. The results were encouraging.
In terms of correct identification and quality (i.e., answers to the question Sup-
pose you did not know this person, how good would you find the description?),
both algorithms performed considerably better than the Incremental Algo-
rithm. In terms of naturalness (i.e., participants’ answer to the question How
natural does the description read to you?) there was no statistically significant
difference. Unsurprisingly, gold-standard descriptions composed by human
authors outperformed their competitors in all respects [Kutlak et al., 2013].
Some examples of the descriptions compared can be found in the table below.

Kutlák’s work has shown the radical implications of scenarios like the
ones discussed in this chapter, and how the problems that are inherent in
these scenarios can be addressed by using open, crowd-sourced, information
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Referent Algorithm Description
Charles Darwin Human This person is considered the father of the modern

theory of evolution due to his book On the Origin of
Species.

IA-optimal This person was a British scientist who was popu-
larised by Alvar Ellegard.

Kutlák-1 This person was the author of On the Origin of
Species, died in Downe, was known for evolution,
natural selection, On the Origin of Species, and com-
mon descent, and named Notochthamalus.

Kutlák-2 This person died in Downe, was known for On the
Origin of Species and named Notochthamalus.

Audrey Hepburn Human This actress is famous for her performances in Break-
fast at Tiffanys, My Fair Lady and Charade.

IA-optimal This person starred in the film Green Mansions and
was a humanitarian.

Kutlák-1 This person starred in Funny Face and lies buried in
Vaud.

Kutlák-2 This person starred in the film The Secret People and
Funny Face and lies buried in Vaud.

Billie Holiday Human This person was a noted jazz singer, famous for her
songs God Bless the Child, Lady Sings the Blues and
Strange Fruit.

IA-optimal This person is a musician and is the author of A Moth-
ers Gift.

Kutlák-1 This person wrote Our Love Is Different, sang the
songs Oh, Where Can You Be?; Lover Man; and
Our Love Is Different; was also known as Lady Day;
recorded The Lady Sings; and has homepage http...

Kutlák-2 This person wrote Our Love Is Different, was also
known as Lady Day, and has homepage http...

Table 13.1
Some descriptions generated by Kutlák’s main algorithms (Kutlák-1 and Kutlák-2, which differ
only in their termination procedures), the Incremental Algorithm with optimal Preference Order
(IA-optimal), and a human-authored description (Human). Notochthalamus, in descriptions of
Darwin, is a species of barnacle.

resources. Kutlák used the internet as the main source of information; and as
his search queries were performed in English, the documents returned were
also in English. These and similar methods could also be used with different
languages, or focussing on other sources of knowledge, exploring other types
of hearers’ knowledge, and other communities’ knowledge. These techniques
are not only relevant for REG, but for all those situations in which one has to
predict what information is likely to be available to a person about whom not a
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lot is known. In particular, this is relevant to the Content Determination com-
ponent of a Natural Language Generation system (section 1.4, see e.g., Figure
1.2). After all, in a reverse application of the ideas above, such systems should
often suppress information that is unlikely to add to the reader’s knowledge.

Many situations in real life combine features of the different scenarios dis-
cussed here. For example, it is worth reflecting on a scenario that shares some
features with the “Who is?” scenario, and others with the Direction Giving
scenario. The game theorist Barton Lipman described an imaginary game that
features a speaker who needs an acquaintance to be picked up from an airport
[Lipman, 2009]. Lipman, who was intrigued by the fact that human language
makes such frequent use of vague expressions (e.g., “tall”, “large”, “grey”)
asked under what circumstances it would be beneficial, for the speaker and/or
the hearer, if the speaker uses vaguely defined words (as opposed to exact mea-
surements) as part of an RE. Here is a scenario that slightly different from the
one discussed by Lipman, but directly inspired by it:

The Airport scenario. A speaker asks a hearer to go to the airport to pick
up an acquaintance of the speaker. Unlike the speaker, the hearer does not
know what the acquaintance looks like. There will be other people at the
airport, but their number and features are not known in advance. What
should the speaker say?

Like in the Direction Giving scenario, the hearer will have to inspect the
domain to find the facts. But unlike that scenario, the speaker cannot know
what information the hearer will find there (e.g., how many distractors will
there be?). As in the “Who is?” scenario, the speaker does not know who the
distractors are (from the point of view of the hearer), yet the referential task is
easier this time, because the speaker knows she should focus on visible prop-
erties (e.g., height, hair colour, etc.). However, she does not know what combi-
nation of properties suffices to identify the referent, hence she does not know
how elaborate to be when she refers.

Lipman argued, using a Game-Theoretical perspective, that in situations of
this kind, speakers who want to minimize the chance of misunderstandings
should be as informative as possible. In the Lipman’s original scenario this
meant avoiding vagueness and rounding; in our own Airport scenario, it means
conveying all those properties that the hearer will be able to check – a strat-
egy that tends to lead to an extremely lengthy description, of course. Lipman
noted rightly, however, that his arguments did not take into account that lengthy
REs may be difficult to produce and to interpret, creating a potential trade-off
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between clarity and effort [van Deemter, 2009a]. Further discussion of these
issues would be out of place here, but it would be interesting to explore exper-
imentally what is the optimal amount of information that the speaker should
pack into her REs [Green and van Deemter, 2011] and how actual speakers per-
form such trade-offs.

The scenarios discussed so far in this fourth Part of the book are a reminder
of the artificiality and simplicity of the referential situations that are usually
studied in REG. Let us now turn to another way in which reference in daily life
tends to differ from the situations that are typically studied because, in these
situations it is impossible, or not practically feasible, to separate the target ref-
erent from all possible distractors.
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Most REG algorithms assume that identification of the referent is a require-
ment. Moreover, they operate on the basis that all distractors should be
removed from the hearer’s attention, and that one distractor cannot be more
important than another. In many situations, however, these assumptions are
not justified. Once again, let us reflect on some scenarios.

The Olive Oil scenario. You are preparing a meal in a friend’s house, and
you wish to obtain, from your own kitchen, a bottle of Italian extra vir-
gin olive oil. You phone home to ask your young son to bring it round for
you. You know that also in your kitchen cupboard are some distractors:
one bottle each of Spanish extra virgin olive oil, Italian non-extra virgin
olive oil, cheap vegetable oil, linseed oil (for varnishing) and camphorated
oil (which is medicinal). It is imperative that you do not get the linseed
or camphorated oil, and preferable that you receive olive oil. The expres-
sion “Italian extra virgin olive oil” guarantees clarity but may overload
your helper’s abilities. A very short expression, “oil”, is risky. Perhaps you
should settle for the intermediate “olive oil”.

Writing about this scenario, Graeme Ritchie, Imtiaz Khan, and I once sketched
an approach to REG that operates by searching for the RE that has the lowest
cost [Khan et al., 2006]. Unlike the costs of section 6.5, this time, the cost of
a Logical Form S is defined in terms of a combination of the length of an RE

(the Brevity cost, fB(S), with B for Brevity) and the number of distractors
that the RE fails to remove (the Clarity cost, fC(S)), for example, Cost(S) =
fB(S) + fC(S). Search for the lowest-cost RE could be greedy, always select-
ing the property that reduces Cost the most, or it could work in such a way
that a minimal-cost descriptions is always found. Clarity is essentially a form
of utility, of course, hence Clarity cost is a form of negative utility.

A failure to remove linseed oil should bear a higher cost than a failure to
remove Spanish extra virgin olive oil. Therefore, instead of a simple linear
function of the size of the set of distractors that an RE fails to remove, there is
a curve where the cost drops more steeply as the more undesirable distractors
are excluded. For example, each object could be assigned a numerical rating of
how undesirable it is, with the target having a score of zero. The brevity cost
function fB(S) could still be a linear function [Khan et al., 2006].

An algorithm along these lines could sometimes terminate before all distrac-
tors have been removed. Consequently, if the generator opts for saying “bring
me the olive oil”, then despite the definite article, it is not uttering a distin-
guishing description, a bit as if it had said “(...) one of the bottles of olive oil”.
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Figure 14.1
The chef to his wife: “I dropped the fish. Can you clean the area to your right for me?”

This suggests once again (cf., section 2.4) that the borderline between definite
and indefinite NPs can be blurred and that techniques developed for generating
one type of NP can be useful for generating the other.

Approximate REs also come up when the aim of a description is to refer to a
spatial region. [Khan et al., 2006] offered a variant of the following scenario as
an example. As in the Olive Oil scenario, it is difficult to remove all distractors,
but this time the difference in status between different distractors does not
come to the generator’s aid.

The Dirty Floor scenario. Mr X has dropped a piece of fish on the floor,
then removes it. He would now like Mrs X to wipe the area clean. The fish
doesn’t leave a visible stain, so he has to explain where it was. It appears
that there is no such thing as a distinguishing description (except the insuf-
ficiently informative “where I dropped the fish”), although Mr X can arbi-
trarily increase precision by adding further information, for instance “near
the table”, “on your right”, and so on.
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An ideal description would cover the dirty area and nothing more. On the other
hand, a larger area will also do. The domain is defined as all conceivable sub-
areas of the floor, so the target is one element of the domain (i.e., one sub-
area). The function fC(S) should now assess the aptness of the denotation of
any potential RE S ensuring that this denotation contains the target (i.e., the
contaminated area), and that it does not contain too much else.1 In many cases,
an RE that denotes the referent and nothing else does not exist.

Computerized weather forecasts (e.g., [Turner et al., 2009]) resemble the
Dirty Floor scenario. These forecasts can assess which roads are likely to be
icy, and hence dangerous. Systems of this kind inform road gritters concerning
the condition of roads, to help them decide which ones require treatment with
salt to avoid traffic accidents. Thousands of roads can be dangerous on a given
night, so it is often not feasible to say exactly which ones.

The Road Gritting scenario. Suppose one weather warning says “Roads
in the Highlands will be icy” whereas another says “Roads above 500
metres will be icy”. The first may have 10 false positives (i.e., roads gritted
unnecessarily) and 10 false negatives (i.e., dangerous roads not gritted);
the second has 100 false positives and only 2 false negatives. Which of the
two references to the intended geographical area is preferable?

This resembles the Dirty Floor scenario except that the weather warning is
based on sensor readings from a finite set of points on the map. But although
this makes it possible in principle to list precisely which points are predicted
to be icy, this would lead to enormously lengthy descriptions. Scenarios of this
kind can be very complex, because one and the same area can be approximated
in different ways. In an American context, for example, one might say “The
American Midwest” (describing a given area as a whole), “The Great Lakes
region and the Eastern Great Plains region” (splitting the same area in two),
or one might list all the States that cover the area: “Indiana, Iowa, Kansas,
Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota,
and Wisconsin” (splitting the area into 11 parts).2

1 An added complication is that expressions such as “near the edge of the table” and “on the left”
have fuzzy borderlines, that is, areas of which it is unclear whether they are properly described by
these expressions; compare chapter 9, where vague properties are discussed.
2 The problem of finding a suitable partitioning of a geographical region is precisely analogous
to the problem of partitioning a set, which came up in sections 8.7 and 8.8 and is discussed more
fully in [Gatt and van Deemter, 2007] and [Gatt, 2007]. For example, the question comes up when
it is felicitous to describe an area by means of partially overlapping sub-regions.
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Note that it matters which of these summaries is generated, because each
summary will lead to a different set of roads being treated with salt (i.e., grit-
ted). Gritting all the roads is not an option, because salt is bad for the envi-
ronment, but failing to grip a slippery road can cause traffic accidents. Faced
with these difficulties, Turner and colleagues decided to disallow false nega-
tives (i.e., every road predicted to be icy must be reported as such). In other
words, their generator would select a third weather warning, which covers the
entire target area but may have numerous false positives (e.g., “roads outside
coastal areas will be icy”).

Turner’s cautious approach may well have been justified given the potential
gravity of traffic accidents, but if the method is to generalize to other situations,
where the advantages of false positives and false negatives are more finely
balanced, then a more flexible approach may be called for. One perspective
on these matters would, once again, associate each utterance with a utility.
To utter a sentence, after all, is to perform an action, and the choice between
different actions is naturally thought of as governed by utility maximization,
where utility is understood in the broadest possible sense, subsuming factors
such as Clarity and Brevity. The idea, in other words, is to look at NLG as an
area of applied decision theory.

Given a decision-theoretic framework of this kind, then, in the scenario
above, one might reason that if a false positive has a negative utility (i.e., cost)
of 0.1 and a false negative has a cost of 0.5, for example, then the first summary
is preferable to the second. For the first summary only has a cost of (10 ∗ 0.1) +

(10 ∗ 0.5) = 6, whereas the second has a cost of (100 ∗ 0.1) + (2 ∗ 0.5) = 11.
The analysis of language production as driven by the utility of utterances

(see [van Deemter, 2009a]) appears to offer a reasonable answer to the prob-
lems presented by the Dirty Floor and Olive Oil scenarios (above), and it feels
natural to people familiar with practical applications, where texts are gener-
ated for a concrete purpose. This approach is far from a panacea, however,
and needs to be studied in more detail. The choice of the utility weights asso-
ciated with the different kinds of error is crucial, of course, and can be tricky
to justify, as is illustrated by the Road Gritting scenario. Also, although our
emphasis on utility is only able to shed light on the question what REs are best
for hearers, it is as yet unclear to what extent speakers are sensitive to this
type of utility (cf., section 1.5, where two different perspectives on Natural
Language Generation were contrasted).
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When we describe an entity, identification of that entity is not always our main
aim. To gain an understanding of what other aims a description can have, and
how these aims may be modelled computationally, we examine some scenarios
in which identification of the referent is one factor alongside others.

Let us cast our minds back to the COCONUT experiment of section 6.6, in
which pairs of participants buy furniture together. The dialogues between par-
ticipants see them proposing a piece of furniture, persuading their partner to
buy it, changing an earlier proposal, confirming an earlier proposal, and so on.
The Intentional Influences model [Jordan, 2000c] contained rules that guaran-
tee identification of the referent. Additionally, the model contains rules such as
the following, that serve a different purpose:

If the context is a persuade context, then select the properties
that make the item a good solution to the problem.

This rule applies when there is a need to convince the hearer of the merits
of a particular furniture item. These and other rules in the model show how
the identification of a referent can go hand in hand with other communica-
tive goals. Recent years have seen work on Recommender Systems that follows
a very similar logic when a system figures out what to say about an item to
a particular user [Carenini and Moore, 2001], [Tintarev and Masthoff, 2012].
Recently, Steven Knox, Erik Sanstedt, Paul Zah, and other undergraduate stu-
dents at Aberdeen studied a similar type of situation, focussing on reference in
a sales situation in which the preferences of the user are not known:

The Camera Adviser scenario. You are discussing cameras with a sales
adviser. You are looking for a high-end compact camera and have discussed
some options with the adviser, who has mentioned 5 different cameras to
you. At a loss from so much choice, you ask “Which camera should I buy?”
The answer should refer to a specific camera, in such a way that the choice
for this camera is motivated.

Common though this type of scenario is, existing REG algorithms are not well
placed to handle it. For although the adviser is trying to identify a camera,
identification is only a part of what she is trying to do when she says “The
Nikon with the full-frame sensor”: her aim is to let the most important fea-
tures of the camera get across to you. If your interests, as a customer, are very
well understood – you may be particularly interested in a camera’s ability to
take good pictures in low light, for example – then these should be taken into
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account. But what if not enough is known about the customer’s interests? Can
we predict “interestingness” computationally?1

Predicting interestingness is made easier, in this scenario, by the fact that
quantitative attributes, such as price, weight, and pixel count, are so perva-
sive in it. In chapter 9, where gradable properties were discussed, we saw how
such attributes can be handled; the approach proposed in that chapter can give
precedence to properties that express extreme values. Suppose, for example,
the cameras range in price from 100 to 1000 dollars, with most cameras costing
somewhere around 300; then the property of costing 289 dollar is less “inter-
esting” than the property of costing, say, 100 dollar, even if the property of
costing (precisely) 289 dollar has huge Discriminatory Power. Extremity can
be measured statistically as a Z score (i.e., comparing a value’s distance to the
mean of the set with the standard deviation over the set); in a pilot study, this
approach appeared to give plausible results in relation to the Camera Adviser
scenario, producing REs that express numerical information that camera buyers
might care about.

The idea of the interestingness of a property can be used as yet another way
to populate the monotonic REG algorithm scheme of section 4.5, which we
have seen a number of times now. Consider Algorithm 23 below, for exam-
ple, which also takes on board the idea from section 13, that properties are
added regardless of whether they remove any distractors (thus deviating from
algorithms that we have seen). Depending on how interestingness is defined,

Algorithm 23 REG algorithm based on “interestingness”
Input: A domain of objects, containing a target referent r and a non-empty set M of
distractors. A set P of properties of r. A metric (see text) that tells us how interesting a
property is in connection with r.
Output: A distinguishing description D of r if one exists.

1: Start out with an empty D
2: while P 6= empty do
3: Select a new property P from P , choosing the most interesting one
4: if P is false of some distractors then
5: Update D, P , and M

1 The Aristotelian notion of an essential property comes to mind: a property that an entity cannot
fail to have without becoming another entity. The camera I’m looking at could have been painted a
different colour without becoming a different camera; but if its sensor was replaced by a different
one, then it would no longer be the same. Thus, sensor type might be seen as an essential property,
and colour as an inessential one, perhaps because sensor type explains more of the camera’s other
qualities (e.g., price). I do not know whether there is computational mileage in this idea.



CMR-web-July-2017 2017/7/12 12:14 Page 287 #297

Fourth Part: Generalizing Reference Generation 287

it may or may not be possible to rank properties in terms of interestingness
in advance: if interestingness is understood simply in terms of extreme values
(see above), then it can be computed once and for all for a given r. If interest-
ingness is understood in terms of how surprising a property is, however, then
it should depend on the other properties assigned to r. For example, a price tag
of 3000 dollars may be extreme for a camera, but if the camera is known to
be a Leica, an expensive brand, it is no longer surprising and may therefore be
less notable.

Unfortunately, the notion of interestingness outlined above is only applica-
ble in relation to quantitative variables; in other cases it is meaningless. Can
we predict how interesting a property is when the property is not quantitative?
This is a difficult question, but luckily not one that only researchers in NLG

have asked: it has been studied in data mining, for example, where researchers
have designed a range of metrics for automatically discovering interesting pat-
terns in data. As Roman Kutlák realized, some of these metrics may be of use
in REG situations where extremity of values does not apply.

In their survey of interestingness metrics for data mining, Geng and Hamil-
ton suggested that interestingness may be determined by a variety of factors,
including novelty, generality, reliability, and “actionability” (i.e., the extent to
which the information in question is able to guide the hearer’s actions), each of
which one may attempt to measure. One of the most important factors is what
the authors call surprisingness or unexpectedness [Geng and Hamilton, 2006],
defined as patterns that contradict existing knowledge or expectations. In a
study discussed in chapter 13, Kutlák applied this idea to REG by hypothesiz-
ing that unexpected, and thus interesting, properties of a person are properties
that are rare for a person to have. For example, being awarded the Nobel prize
is unexpected because only a handful of people receive this prize. By contrast,
having a mother is rather expected and consequently it is not worth mention-
ing; having a famous mother is, once again, interesting.

Formalizations of unexpectedness tend to have conditional probability at
their core. For example, when we compute the extent to which x’s having won
the Nobel Prize is unexpected, we want to know how likely it is for someone to
win this prize. But what information should we assume as given? The fact that
x is a physicist? The fact that x is female? At this stage, these are open ques-
tions. Moreover, the conditional probability of a fact may not tell the whole
story, and other statistical constructs may be relevant. For example, being born
on the 12th of March has low probability, yet someone’s being born on that
date is not very unexpected or newsworthy. Perhaps this is because in the case
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of someone’s birthday, where (information-theoretic) entropy is high, we do
not build up an expectation, hence the 12th of March is not unexpected. But in
a case where entropy is lower, as in the date when someone starts their PhD
(which is often around the start of the academic year), the 12th of March might
be unexpected. At the time of writing, these potential avenues for formalizing
the notion of unexpectedness – and hence interestingness – are only starting to
be explored. They will not be discussed further here, but see [Kutlak, 2014].

In the scenario above, identification is no longer the be-all and end-all of
reference, but merely one factor among others. To show that “identification
of the referent” can be pushed even further into the background, let’s con-
sider yet another scenario. Recent years have seen the emergence of com-
puter systems that produce textual descriptions of photographs of everyday
scenes. We focus here on the MIDGE system, which extends systems discussed
in [Li et al., 2011] and [Yang et al., 2011], automaticaly generating descrip-
tions of photographs gathered from Flickr; an even more recent example,
based on the development of a huge corpus of human-annotated pictures,
is [Kazemzadeh et al., 2014]. The authors of [Mitchell et al., 2012] describe
MIDGE as “generating a natural sounding description of a photograph from
computer vision detection” [Mitchell et al., 2012]. We take MIDGE to be oper-
ating in the following scenario:

The Flickr scenario. A person is shown a photograph of a scene that he
or she may not have seen before. The person is asked to describe what’s
in the photograph, using just one NP. The instructions ask her to “describe
it as you might describe it to a blind person who wants to know what the
photograph depicts. Please avoid any meta-information (e.g., whether it’s a
nice picture, or where the picture was taken)”.

MIDGE takes as input a set of entity detections, along with some of their prop-
erties and some spatial relations between them, as recognized by a computer
vision system. This input is combined with statistical information extracted
from a corpus of 700,000 images in which each picture is coupled with a
human-generated verbal description, which is often a (definite or indefinite)
noun phrase. The objects and substances recognized are associated with nouns,
which are used as the seed of the generation process, during which descriptions
are partly “hallucinated” on the basis of corpus-based probabilities.

For instance, two objects may be recognized next to each other, and these
may be associated with the words “duck” and “pond”. As a first step towards
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combining these nouns into a textual description of the image, they are ordered
from left to right, based on which order is most frequent in the corpus; for
example, “duck” should occur before “pond”. Each of these nouns gathers a set
of small syntactic trees around it, each of which is consistent with the computer
vision output and reflects the syntactic contexts in which the noun appears
frequently in the corpus; for “duck” this might include a syntax tree for “duck
[next to]”, “duck near”, “duck in”; for “pond” this might include syntax trees
for “in [a pond]”, “[next to] [a pond]”, “near [the pond]”, etcetera. These local
trees are then combined into grammatically correct combinations, such as a
syntax tree for the phrases “[a duck] [in [a pond]]”, “[a duck] [near [a pond]]”,
“[a duck] [[next to] [a pond]]”, etc. The final, complete description is produced
using further corpus-based methods, for example, based on the frequency of
the 3-grams that make up each description.

There may seem to be something rash in “hallucinating” so much of the con-
tent of these descriptions, but the limitations of computer vision make this, for
the moment, the best way to make an educated guess at what may be going on
in a picture, using a philosophy not dissimilar to the one employed in chapter
13. Evaluation of the descriptions produced by MIDGE suggests that the sys-
tem does a reasonable job even though, as one might expect, human-produced
descriptions received much higher ratings in terms of grammaticality, correct-
ness, and humanlikeness. MIDGE-generated NPs include “People at a wooden
table”, “A brown cow”, and “Boats under the sky” (all of which were broadly
correct as descriptions of the pictures they describe), but also “the sky” (as a
description of a picture that shows a horse in a meadow, but no sky). Leaving
the technical performance of the system apart, what stands out from our view-
point is the communicative task on which MIDGE puts the spotlight: what does
it mean to “describe” an entity or a set of entities, in a situation where singling
it out from a finite set of distractor entities is not the point (or not the main
point) of the description?

MIDGE differs from the reference tasks that are the core of this book. Yet
some insights from the Camera Adviser scenario and the “Who is?” scenario of
chapter 13 extend to the Flickr scenario, despite the fact that the noun phrases
occurring in the latter are often indefinite (using an indefinite article or a bare
plural). First, if it is possible to identify the referent, then it helps to do this
(if the photograph depicts the Eiffel Tower, it would be strange not to say so).
Second, if you see something remarkable in the picture – a striking landscape,
an extremely tall building, or a man biting a dog – then this is worth saying as
well. Interestingness, in other words, seems as important in the Flickr scenario
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as in the other two. What this suggests is that interestingness is not limited to
descriptions and other NPs: it governs all our choices concerning the proposi-
tions that we decide to put into words. As we saw in connection with previous
scenarios, ideas which govern reference production are of considerable rele-
vance to other areas of language and communication as well.

Moving away even further from the classic reference task, one can think of
scenarios such as the following:

The Unnamed Company scenario. Two people in my research group have
founded a company, Arria NLG. When colleagues ask who they visited last
week, they may say “(we visited) a large oil company whom we are hoping
to get as a customer”. Their description is not designed to allow us to iden-
tify the referent, but to give us an insight into the reasons for their visit, and
the type of business their company are interested in. In a variant scenario,
there are business reasons why the two are not able to disclose the identity
of their prospective customer.

The speakers’ task starts with a specific company. As before, their task is to
provide information about this entity, mindful of the interests of the hearer. The
difference is that they do not try to identify the referent, because they consider
this uninteresting to their audience. In the variant scenario, the plan is not to
permit identification of the referent, leaving something like interestingness as
the main reason for including a property.2 One could imagine more extreme
scenarios, in which the aim is to deceive the hearer concerning the identity of
a referent. What these examples demonstrate is that a speaker can have very
different aims with their descriptions.

In the Unnamed Company scenario, it would have been possible (although
possibly ill advised) for the speakers to identify the referent for the hearer. In
other cases identification is not even possible:

The Musical Chairs scenario. You and your sister are standing outside a
room where a children’s party is in progress. Inside the room, the music
stops, signalling that a game of musical chairs has just concluded. You tell
your sister: “one player is without a chair”. She nodds and you continue:
“Go inside the room and offer a lemonade to the player without a chair”.

2 Note that this makes the scenario similar to what happens in the computational task of data
anonymization (mentioned in section 1.2), where information is filtered to ensure that referents
cannot be identified.
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Given the rules of the game, some players must be without a chair, and because
every player tries to grab a chair, there is unlikely to be more than one of
them. Consequently, the Russellian statement (cf., section 2.4), that exactly
one player is without a chair, holds true. This is what makes your utterance
(to your sister) make sense. It is hard to say which of the NPs in the scenario
refer: some theoreticians would call “the player without a chair” an attributive
description (section 2.6). Be this as it may, the rule-based approach of section
10.6 was designed to tackle situations of exactly this kind, enabling a generator
to refer to entities that are only inferred to exist.

We are seeing that the purpose of a description can vary considerably: it can be
to identify the entity precisely (as in the classic REG problem), or to identify
it approximately (as in the Road Gritting scenario of chapter 14), or to explain
what’s striking about it (as in the Flickr scenario), or combinations of the above
(as in the Camera Adviser scenario). Considerations such as the following are
applicable to a range of descriptions:

The extent to which a property can help to recommend an object

The extent to which a quantitative property is extreme

The extent to which a property is surprising or unexpected

Earlier chapters have shown that the Maxim of Relation (which covers the
notion of relevance) is less well understood than the other Grician Maxims.
But relevance is implicated in many of the considerations above. For example,
a feature that recommends the referent in one context may not recommend it
in another; a feature that is surprising in one context may not be surprising in
another. A proper understanding of the issues discussed in the present section
therefore seems to be a crucial step towards a full understanding of reference,
and other areas of communication as well. For once again, these are issues that
affect language production in all its facets: they apply not only when we refer,
but whenever we communicate.
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In Part I, we defined Information Sharing as the process in which a sender
exploits information that she shares with the recipient, to anchor her utterances
to objects (section 1.7). This idea has remained central to our account. Parts
II and III demonstrated that the nature of the information exploited can vary
considerably: from a simple database of atomic facts, on the one hand, to a
set of complex axioms (section 10.6), on the other. Now, in Part IV, we have
seen that the idea of Information Sharing hides some important distinctions,
for example between:

a. Situations in which the speaker has incomplete information concerning the recipi-
ent’s knowledge. The Airport Scenario and the “Who is?” scenario were examples of
this problem.

b. Situations in which the recipient lacks some crucial information about the domain
that she can nonetheless recover by searching. Examples include the Book scenario
and the Direction Giving scenario.

c. Situations in which there does not exist a distinguishing description, or none whose
length is acceptable. The Dirty Floor scenario was an example of the former and the
Road Gritting scenario an example of the latter.

d. Situations in which approximate identification suffices. In the Olive Oil scenario,
some distractors need to be removed but others are less crucial; in the Dirty Floor
and Road Gritting scenarios, all distractors are equally important but the task allows
a limited number of false positives and/or false negatives.

Reference – or a task that is very similar to reference – can even take place in
communicative settings where identification of the referent does not lie at the
heart of the expression, including:

e. Situations in which (precise or approximate) identification plays a role without being
the main aim. Often when we refer, we have an ulterior motive: to ask attention
for something, to recommend the referent, or to warn against it. This happens, for
example, in the Camera Adviser scenario.

f. Situations in which the aim of a description is to express what is interesting (e.g.,
because it is perceptually salient, or practically useful) about an entity. The Flickr
scenario exemplifies this category.

g. Situations in which the aim of an NP is not to refer but to express a quantified state-
ment, for example that one (or at least one) x has the property y. Examples include
the Unnamed Company scenario and the Musical Chairs scenario.

It is easy to think of variants of these scenarios. For example, collaboration
between the speaker and the hearer (discussed in sections 1.6 and 3.6) could
be added to a number of these scenarios, and this would alter the dynamics of
Information Sharing considerably.
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16 Epilogue

How can one gain an understanding of a complex cognitive phenomenon
such as reference production? This book suggests that understanding requires
collaboration between academic disciplines, with an interplay among theory,
empirical experimentation, formal analysis, and computational modelling.

We started, in Part I, with an overview of the issues raised by philosophers
and psycholinguists. In Part II we saw how computational linguists imple-
ment algorithms that produce REs from non-linguistic input, and how these
algorithms are found and tested in increasingly sophisticated ways, based on
experiments with human speakers and hearers. Part III showed how, in recent
years, REG algorithms have started to address a much wider range of refer-
ring expressions (REs), enabling these algorithms to refer to sets, to make use
of gradable properties and a variety of quantifiers. In Part IV we looked at
a range of problematic scenarios, which put our understanding of reference
and Information Sharing to the test and which led to new algorithms. As the
reader of section 1 may recall, a number of these challenges are implicated in
the disastrous misunderstanding that caused the defeat of the British army at
Balaclava: Lord Raglan, in saying “advance rapidly to the front” was trying to
refer to a geographical area that was not precisely delineated (just like in the
Road Gritting scenario of section 14). He misjudged his hearer’s view of the
terrain (as may happen in the “Who Is?” scenario of section 13) and failed to
make his utterance safer by adding more information (unlike the JOVE algo-
rithm in the Direction Giving scenario of section 12). He could have added
“on the Causeway Heights”, for example, and this would have prevented the
misunderstanding.

It is time to take stock. We start by putting REG into the context of Com-
putational Cognitive Modelling (section 16.1); this area of research is usually
seen as unrelated to REG, but I shall argue that a different view of REG is
possible and, in fact, increasingly plausible. Next, we shall briefly revisit the
Gricean Maxims – principles that guide a lot of research throughout Linguis-
tic Pragmatics – in light of the insights embodied by REG algorithms and the
principle of Intrinsic Preference, which underlies the Incremental Algorithm
and its descendants (section 16.2). We conclude by discussing the future of
research on reference production (section 16.3).
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16.1 REG Algorithms as Cognitive Models

Historically, REG algorithms are rooted in practical applications, as we have
seen. This book, however, has emphasized a different perspective, which views
these algorithms as models – imperfect models, but models nonetheless – of
reference production. It is interesting then to compare REG with other com-
putational models of human abilities, looking for similarities and differences.
Effectively, this means that REG will be viewed as an area of Computational
Cognitive Modelling. As the starting point for this comparison I will use a
summary of Computational Cognitive Modelling from the Introduction to the
Handbook of Computational Psychology, where some existing classifications
of the field are discussed [Sun, 2008]. I have extracted a number dimensions
of variation from Sun’s discussion and applied these to REG.

(1) First, Computational Cognitive Models differ according to their aim.
Most commonly associated with Computational Cognitive Modelling are mod-
els that aim to simulate (i.e., mimic) human behaviour. Other models, however,
have a different aim. For example, they may aim to produce output that is prac-
tically useful, possibly surpassing human performance in a particular area. An
area where this distinction is often discussed is logical reasoning, with some
models focussing on logically valid reasoning (the classic domain of Formal
Logic), and others on actual human reasoning with all its peculiarities and defi-
ciencies [Bringsjord, 2008].

One can see in table 16.1 that most REG models have tried to mimic human
speakers (although a minority have focussed on the production of REs that
allow hearers to find the referent quickly and reliably). Why is this? Given its
roots in practical applications, a focus on utility for hearers might have been
more apt. The reason, I think, is that computational linguists are used to eval-
uating their output by comparing with a corpus – the BLEU metric used in
Machine Translation is one of the best known examples – so this is the method
that REG researchers knew best. The method had to be adapted (cf., chapter 5),
but once suitable transparent corpora were available, there was no problem in
principle with applying it to REG. Only gradually did researchers start to real-
ize that evaluation in terms of effectiveness (i.e., utility for hearers) makes at
least as much practical sense as humanlikeness. The fact that REG evaluations
started in terms of humanlikeness might be seen as a happy accident, because
the idea of simulating speakers might not have been investigated in such depth
otherwise.
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(2) A second dimension discussed by Sun concerns the granularity of the
input and output of a model. Focusing on the output, for example, a Computa-
tional Cognitive Model of social behaviour might focus solely on the number
of Twitter feeds produced by an individual or, in a more fine-grained analysis,
it may try to capture their topic as well. Similarly, a model of speech might
focus merely on the articulation of words, or it might capture intonation pat-
terns as well. In REG, a large number of studies have focussed specifically on
the semantic content of generated REs, which is known as the problem of Con-
tent Determination (see section 1.4); only a minority of computational studies
(discussed in chapter 8) have looked at Linguistic Realization as well (see table
16.1). So, once again, a distinction originally invented in connection with other
Cognitive Models is applicable to REG.

(3) A distinction that is even more interesting in connection with REG

is the one between process and product models [Vicente and Wang, 1998]
[Sun, 2008]. Product models, also known as blackbox models or input-output
theories, formalize the relation between the inputs to a system (e.g., a domain
and an intended referent) and the outputs that it generates (e.g., an RE), with-
out making any claims about the manner in which that mapping comes about.
Some researchers feel that product models should not be regarded as cognitive
models, because they do not tell us much about the manner in which the human
mind works. In the opinion of these researchers, process models – which aim
to model the manner in which people perform a cognitive task – are the only
properly cognitive models. Others, however, beg to differ, arguing that the pro-
cessing details of a model are often highly speculative, in which case it may be
more realistic to regard the relations between inputs and outputs as the thing
that a Computational Cognitive Model makes claims about.

To view an algorithm as a product model may be counter-intuitive, but when
evaluation studies test a REG algorithm by comparing it to a corpus of human-
produced REs (see e.g., chapter 5), they do look at the relation between inputs
and outputs only; in other words: they test the quality of the algorithm as a
product model. Looking at the field of computational REG as a whole, it is
clear that most studies – such as the TUNA Evaluation Campaigns of chapter 5
– have treated REG algorithms as product models. At the time of writing, very
few studies examine the processing implications of an entire REG algorithm;
an example of a study where this does happen is a recent investigation that asks
whether speakers’ speech onset times follow the pattern that one should expect
if speakers followed the Incremental Algorithm [Gatt et al., 2012]. Other stud-
ies are harder to place along this dimension: where a computational study is
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informed by classic hypothesis testing, for instance, it might be viewed as
involving process models, to the extent that the study addresses a principle
(e.g., the principle of Intrinsic Preference) that plays a role in REG.

(4) Another of Sun’s distinctions is the one between models of individual
agents and models of groups of agents. It is interesting to see how this dis-
tinction plays out in the study of reference. At first sight, the vast majority of
work on REG focusses on individual agents, because so far only a handful of
computational studies have focussed on interaction (see Table 16.1). However,
groups of agents can not only be studied in terms of the interactions between
agents but also in terms of the differences between them. The former category
was discussed in section 3.6; the latter category in section 6.1 (including the
work of Viethen and Dale), and in sections 6.2 and 6.3 (including the PRO

algorithm).
Sun discusses two other dimensions of variation that are of interest to us,

namely, (5) the amount of algorithmic detail that is offered, and (6) the extent
to which a model is inspired by the physiology of the human brain (see table
16.1). We have discussed the former at the start of section 10.5; we shall turn to
the latter in section 16.3, focussing particularly on models inspired by specific
evidence about language production rather than by general (and sometimes
rather loose) considerations of cognitive-neurological architecture.

Looking at the table as a whole, it is evident that the mainstream of REG

does not always match the mainstream of Computational Cognitive Modelling.
For example, REG today is characterized by an emphasis on product mod-
els, as opposed to process models. One wonders whether it may be time for
researchers in REG to ask more systematically than before how the working
of their algorithms – as opposed to its mapping between inputs and outputs –
might be tested, for instance by means of eye-tracking.

REG is not commonly seen as a part of Computational Cognitive Mod-
elling, although our discussion suggests that it can be seen that way. If REG

researchers were to enter the mainstream of Computational Cognitive Mod-
elling, then this could have interesting consequences. For example, the interac-
tion with learning, with short-term memory, and with other features of human
cognition could take center-stage, perhaps as part of a more generic cognitive
architecture, such as ACT-R (see e.g., [van Rij et al., 2013] for an application
of ACT-R to reference comprehension) or Soar [Laird, 2012].
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Mainstream Exceptions Comments

1. Aim Mimic REs that
were elicited from
human speakers

Produce useful REs
[Paraboni et al., 2007]
[Turner et al., 2009]
[Koller et al., 2010b]
[Garoufi and Koller, 2014]

This dis-
tinction
was only
made sys-
tematically
after 2000

2. Granularity Only perform Con-
tent Determination

Produce complete NPs
[Stone and Webber, 1998]
[Krahmer and Theune, 1998]
[Khan, 2013]

3. Model the
product or the
process?

Model only the
product of human
language produc-
tion

Model the language
production process
itself [Gatt et al., 2012]

This dis-
tinction is
usually left
implicit

4. Individuals
or groups?

Model individual
behaviour

Model collaboration
[Heeman and Hirst, 1995]
[Garoufi and Koller, 2014].
Model group variation
[Viethen and Dale, 2010]
[van Gompel et al., 2012]

5. Algorithmic
detail

Has been imple-
mented

Has not been imple-
mented [Jordan, 2000a]
[Ren et al., 2010]

Many algo-
rithms have
been imple-
mented in
multiple
ways

6. Physiologi-
cal basis

Not used in
computa-
tional REG

yet

Table 16.1

A classification of Computational Models of Referring, broadly inspired by the dis-
cussion of Computational Cognitive Models in [Sun, 2008]. A classification of non-
computational work on reference production would show a different pattern, with more
attention being paid to the production process, to social interaction, and to neuro-
scientific evidence.
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16.2 The Gricean Maxims and the Principle of Intrinsic Preference

In chapter 3, we identified a number of factors that affect reference produc-
tion, calling them Truthfulness, Discriminatory Power, Relevance, Clarity, and
Intrinsic Preference. All except the last one derive from the Gricean Maxims
[Grice, 1975], so let us revisit these Maxims briefly in light of our findings.

Quality: “Do not say what you believe to be false. Do not say that for which
you lack adequate evidence.” Herb Clark’s work has modified these princi-
ples in such a way that the common ground shared by the speaker and hearer is
taken into account (section 3.1), but this is not the end of the story. For not only
have we observed that speakers’ ability to meet these requirements is limited
(section 3.2), we have also seen that situations arise in which it is not feasible
for speakers to limit their REs to information that is in common ground (chap-
ter 13): speakers, in these situations, have to be gamblers.

Relation: “Be relevant.” Despite Kronfeld’s insistence (see our section 4.2) on
relevance, REG has long struggled to make algorithmic sense of this idea. From
where we stand, one can see the beginnings of a solution. Pam Jordan, in her
Intentional Influences model, demonstrated how the context of a dialogue can
make properties salient that would normally be overlooked (section 6.6). Ross
Turner explored the idea that an irrelevant RE is one that suggests an incorrect
explanation for an event (section 3.3; see also chapter 14), for instance as when
a weather forecast says “strong winds are expected in rural areas” (instead of,
for example, “... in coastal areas”). Furthermore, we have seen in chapter 15
that statistical analysis can help to predict which properties may be surprising
or interesting; this is another dimension of relevance, relating to the degree
to which a property is relevant to the hearer’s values and decisions. Finally,
Albert Gatt has demonstrated, working on plural REs (section 8.7), how com-
plex REs can be made lexically coherent; I have argued that this idea may also
help ensure the relevance of other words in a text (section 8.7). This plurality
of accounts suggests that relevance may not be one issue but many. Informa-
tion may be relevant for different reasons, and our explanations for why an RE

(or a part of an RE) is relevant should reflect this.

Manner: “Avoid obscurity of expression. Avoid ambiguity. Be brief. Be
orderly.” In the realm of REG, some of these issues can be covered by other
Maxims: the injunction to be brief may be covered by the Maxim of Quan-
tity, for instance (see below). Perhaps the most central of the four injunctions
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is the one about avoiding ambiguity. Imtiaz Khan found that, although ambi-
guity is undesirable, it is productive to allow ambiguity under certain condi-
tions (section 8.8). Like Ivandré Paraboni before him (see chapter 12), Khan
found that clarity needs to be traded off against brevity. In Paraboni’s case,
brevity needed to be weighed against the amount of search effort inflicted on
the hearer; in Khan’s case, against the likelihood of misunderstandings. Grice,
of course, was well aware that his Maxims could clash, so it is possible to see
in these results a sharpening, rather than a refutation, of his ideas.

Quantity: “Make your contribution as informative as is required. not make
your contribution more informative than is required.” As chapter 4 shows,
much of the history of REG is a series of qualifications of this Maxim: early
investigators such as Winograd and Appelt discovered that straightforward
interpretations of Quantity are at odds with the facts of human language pro-
duction. Dale and Reiter asked attention for what we called the principle of
Intrinsic Preference, culminating in their Incremental Algorithm.

Having revisited the Maxims, it is time to discuss Intrinsic Preference. We
have seen that the Gricean Maxims alone do not offer a complete explanation
of the patterns observed in reference production. Most researchers believe that
something like a fixed Preference Order has to be taken into account as well,
because some types of information are simply more “important” than others,
for reasons unrelated to their Discriminatory Power or practical interest. Mod-
els of referring ignore these issues at their peril (see e.g., sections 3.5 and 6.2).
Yet fixed Preference Orders should be taken with a pinch of salt. This is not
only because of the logical and algorithmic problems that arise when the val-
ues of an attribute have overlapping extensions (section 4.7), but for empirical
reasons as well. Let me explain.

Much of the attraction of the idea of a fixed Preference Order rests on the
assumption that the values of an attribute have much in common, and that
they must all be preferred to the same degree. For example, the task of finding
a good Preference Order (as in the TUNA experiment of chapter 4) becomes
much harder if different colours, different sizes, and so on, can be preferred
to different degrees. The idea of an attribute as a cluster of similar properties
has some initial plausibility, not least in terms of how the different values of
an attribute are treated by the human information processing system. However,
we have seen in sections 3.4, 3.5, and 6.3 that the degree of preference associ-
ated with an attribute can depend on many factors: a statement like “colour is
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preferred over size” is at best a rule of thumb; at a deeper level, there are other
issues at work, which cut across Attributes.

Other considerations point in the same direction, suggesting that the values
of a given attribute may differ sharply in terms of their degree of preference.
For example, blue and red are values of the same attribute, yet the colour of a
blue strawberry is more likely to be noted than that of a red one, because the
prototypical strawberry is red. The fact that not all values of an attribute are
equally important is even clearer in the case of quantitatively valued attributes,
such as distance, weight, and price: if you bought a cadillac for only 500 dol-
lars, wouldn’t this make you more likely to mention the price than if you had
paid a more normal (i.e., higher) price? Consequently, the extremity of a prop-
erty should be taken into account when determining whether the property is
worth mentioning (chapter 15). This idea generalizes Hermann and Deutsch’s
old principle that if two objects differ along two dimensions in opposite direc-
tions, then the dimension that represents the largest of the two differences tends
to be expressed in reference (section 3.4).

It might be added that the idea of incremental Content Determination does
not sit easily with the order in which words are realized (in English and many
other languages), as discussed in connection with gradable adjectives in sec-
tion 9.5. This confirms that, despite recent progress, one should be extremely
cautious regarding current REG algorithms as models of the reference produc-
tion process: at best, the algorithms offer good models of the relation between
inputs and outputs of human language production; the components and the
timeline of the process are an entirely different matter.

Finally, all the evidence for Intrinsic Preference comes from a tiny set of
attributes, namely, TYPE, COLOUR and SIZE. It is plausible that the TYPE of
an object contributes disproportionately to the Gestalt that the object creates
in the human mind. Similarly, COLOUR is perceived in different ways from
other attributes, and often (though not always) with great vividness (section
3.4). So if experiments demonstrate that TYPE and COLOUR occur frequently
in human-produced REs, then this should of course be taken into account by
computational models. But to jump to the conclusion that all attributes can be
linearly ordered in terms of their degree of preference, and that this plays a key
role in human production of REs, would be unwarranted. Perhaps TYPE and
COLOUR are exceptions that need to be treated in special ways, whereas other
attributes are governed by Discriminatory Power. The exceptional status of the
TYPE attribute is widely accepted. It is possible that COLOUR deserves special
treatment too.
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In short, Incremental Content Determination has to be regarded with cau-
tion; this conclusion is even more inevitable in connection with relational REs
(section 6.4) and reference to sets (chapter 8), where incrementally runs into
additional problems, as we have seen. The future belongs to a more flexi-
ble approach modelled loosely on the Greedy Algorithm. At the core of this
approach lies a monotonic approach to the selection of properties first intro-
duced in section 4.5, which might be generalized along the lines of Algorithm
24, and augmented along the lines of the PRO algorithm of section 6.3 and the
JOVE algorithm of chapter 12 to make sure there is a place for overspecifica-
tion. Needless to say, the pseudo-code below is a mere caricature of an algo-
rithm, from which some crucial details are missing. The pseudo-code focusses
on solutions to the classic REG problem, leaving the logical complexities of
Part III (relational descriptions, reference to sets, the use of gradable proper-
ties, and the use of negations and disjunctions) aside.

Algorithm 24 The shape of a future solution to the classic REG problem?
Input: A domain of objects, containing a target referent r and a non-empty set M of
distractors. A set P of properties of r.
Output: A distinguishing descriptionD of r if one exists.D is chosen probabilistically,
based an a variety of factors (see text).

1: Start out with an empty D
2: while Not enough distractors have been ruled out and P 6= empty do
3: Probabilistically select a new property p from P .
4: if P is false of sufficiently many distractors then
5: Update D, P , and M
6: while D makes r difficult to find and P 6= empty do
7: Add a suitable property from P to D

Factors influencing the selection of a new property have been discussed in
the last few chapters, with Intrinsic Preference, Discriminatory Power, knowl-
edge status, extremity, and interestingness all playing a role. How these factors
combine is a question that is likely to occupy researchers for a long time, but
our discussion in section 6.3 suggests that, if human reference production is
to be modelled, the choice of a new property has to be nondeterministic, with
different REs being produced on different occasions. Given that factors such as
knowledge status and interestingness apply to many aspects of communication,
this work my well prove to have practical relevance to Text Summarization,
Recommender Systems, and the general problem of Content Determination in
Natural Language Generation.
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16.3 Future Research: The Way Ahead

We have argued in section 1.1 that the problem of modelling reference produc-
tion is NLG complete, in the sense that solving REG would mean solving all
of NLG. This makes the modelling of reference production a huge task, so it is
important to prioritize the open problems in this area. Based on what we have
seen in earlier chapters, let me offer some suggestions.

Investigate logically complex REs and proper names. I have emphasized
that REs come in many shapes, and that the logical complexity found among
REs poses difficult logical and computational challenges. Yet a comparison
between Parts II and III of the book reveals a stark asymmetry: the empiri-
cal side of the classic REG problem (studied in Part II) has been investigated
extensively: the main algorithms have been tested thoroughly with human par-
ticipants, and many relevant hypotheses have been tested in psycholinguistic
experiments, but the same is not true for proper names and complex REs (stud-
ied in Part III): although we saw a range of algorithms for the generation of
logically complex REs, and a number of experimental studies underpinning
some aspects of these algorithms, they have yet to be scrutinized systemati-
cally. A similar gap exists in psychology, where few experiments so far have
focussed on complex REs. Until complex REs have been studied thoroughly,
our knowledge of REG remains painfully incomplete.

Study axiom-based REG. The classic definition of the reference task (section
4.3) is limited to logically simple REs. The task of generating logically com-
plex REs led us to use modern Knowledge Representation formalisms such
as Description Logic (chapter 10). But Knowledge Representation not only
allows us to construct complex REs; it also allows us to utilize generic and
incomplete knowledge, which are widely recognized as natural components of
human knowledge. In section 10.6, we have started to explore the implications
of this view, which can enhance our understanding of attributive descriptions, a
type of description much studied by philosophers of language. An axiom-based
approach to REG, which makes full use of TBox as well as ABox axioms, goes
against the grain of current trends in Computational Linguistics – which warn
justifiably against hand-crafted rules – but could revolutionize REG and other
areas of Computational Linguistics, aided by modern techniques for automated
reasoning and years of experience with empirical methods.
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Attributive descriptions and proper names are prominent topics of discus-
sion in theoretical linguistics, philosophy of language, and the formal seman-
tics of natural language. I have argued that it is time to study these topics
computationally as well, and I have offered suggestions for how this may be
done. As argued in chapter 2, some other theoretical issues might benefit from a
computational approach as well; examples include misdescriptions (including
metonymical and Donnellan-style descriptions) and the types of descriptions
studied by Russell and Strawson (section 2.6).

Study complex communication scenarios. The study of complex scenarios in
Part IV revealed that REG changes when Information Sharing is compromised.
Far from being exceptional, the challenges discussed in Part IV are common in
daily life. For example, speakers routinely refer despite only having incomplete
information about hearers’ knowledge (chapter 13), and in situations where the
hearer needs to examine the domain before being able to resolve the RE. Fur-
thermore, speakers often have to make do with approximate descriptions. So
in these respects as well, the classic REG task definition of section 4.3 amounts
to a stark simplification. Challenges such as the ones discussed in Part IV offer
rich opportunities for further study.

Study variations between and within speakers. Given the considerable vari-
ations that exist in the REs produced by different speakers (and by one speaker
on different occasions), a model of reference production overlooks some-
thing important unless it takes these variations into account. To exemplify
this direction of travel, section 6.3 discussed the PRO algorithm, which pro-
duces, for each input, not just one RE but a probability distribution on a set
of RE types. It will be interesting to see similar methods being applied to
complex scenarios. Also of great interest is the kind of speaker modelling
pursued by [Viethen and Dale, 2010] and others (section 6.1), which can be
extended to study connections between personality characteristics and refer-
ence production. It seems likely, for example, that some speakers are better
at handling epistemic mismatches than others; scenarios of this kind may
pose particular challenges to people on the autistic spectrum, for instance
[Arnold et al., 2009], [Wicklund, 2012], [Nadig et al., 2015].

Enhance the study of large and naturalistic domains. The research com-
munity knows much about the classic REG problem, except in connection with
large and naturalistic domains. Psychological and computational work on ref-
erence has focussed on small and simple domains, involving only a handful of
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objects, and compromizing ecological validity in various ways (section 3.7).
Exceptions include investigations of the effect of clutter on reference pro-
duction [Paraboni et al., 2007, Coco and Keller, 2009, Koolen et al., 2013a,
Koolen et al., 2013b, Clarke et al., 2013, Paraboni and van Deemter, 2014].
Also exceptional for its attention to larger domains is Gorniak and Roy’s work
on the interpretation of REs: these authors describe a computer program that
interprets REs elicited from speakers [Gorniak and Roy, 2004]; REs refer in a
domain of up to 30 cones on a computer screen; domains are chosen in such
a way that information about location is crucial, as in “The green one that’s
closest to us in the front”. All these studies confirm that existing algorithms
fall well short of capturing how speakers behave – and what hearers require –
in large domains, and suggest that computational models of reference produc-
tion need to scale up.

To indicate why reference to real-life objects can cause trouble for REG

algorithms, let me list some of the things that Margaret Mitchell found
when she studied her arts-and-crafts domain (see section 9.6). First, the
notion of the TYPE of an object, which plays an important role in many
REG algorithms, is problematic. For example, speakers referred to a heart-
shaped object by calling it the heart; does this make HEART the TYPE of
the object?1 Second, when an object possesses a property that is proto-
typical for objects of a given type, then this makes it less likely that this
property is mentioned ([Mitchell et al., 2013b]; compare section 3.6, and see
[Westerbeek et al., 2015] for further developments).

Finally, and connected with the previous point, target referents are
frequently described by analogy to something else. This phenomenon
had been noticed in the psycholinguistic literature, as when the RE

“the violinist” refers to a shape that reminds the speaker of a violinist
[Clark and Wilkes-Gibbs, 1986a]. REG algorithms could emulate this type of
behaviour by computing analogies in advance of the reference task. Focussing
on the example above, pictures of some typical violinists could be stored in
memory. Now if a Computer Vision program computes, for a given referent
r, that r’s similarity to one of the typical violinists is high, then this makes
the property of “being similar to a violinist” true of r; when this property
is added to the RE, all the domain objects that are dissimilar to the typical

1 A similar example is due to Richard Power (personal communication): reportedly, the word
“palomino” denotes a horse whose coat is brown and whose mane and tail are white. Does this
make palomino a TYPE? Does it denote a COLOUR?
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violinists can be removed. Computing the required similarities in a way that
matches human judgments is a challenging problem whose solution would
not only help REG but contribute hugely to our insight in analogy, which is
becoming an important theme in Artificial Intelligence and Cognitive Science
[Hofstadter and Sander, 2013].

Focus on hearers as well as speakers. This book has paid considerable atten-
tion to experimental studies of hearers.2 Nonetheless, the bulk of empirical
work has so far emphasized emulation of speakers, rather than benefits for
readers. The relative scarcity of work that investigates REG from a viewpoint
of benefits for hearers (see section 16.1, first row of Table 16.1) is unfortu-
nate, especially from a practical point of view. For, arguably, it is as impor-
tant to know how to generate understandable REs as it is to know what REs
human speakers tend to produce (cf., section 1.5). Recent years have seen links
between computational REG and psychologists studying reference production;
what is needed now is the establishment of similar links between computa-
tional REG and psychologists studying the comprehension of REs.

Aim for psychological and neurological realism. Much of this book is a plea
for the idea that psychological models of language production should take the
shape of algorithms. Yet few existing algorithms can claim to be good models
of the human production process (see section 16.1, third row of Table 16.1).

When the generation process takes centre-stage, neuro-scientific meth-
ods are bound to come to the fore. Among the most established meth-
ods in neuro-cognition are methods based on measuring event-related poten-
tials on the scalp (ERP); these can detect the time path of a mental task;
another method, based on functional Magnetic Resonance Imaging (fMRI)
scans, is more suitable for assessing the locations in the brain that are impli-
cated in a task. Since about 2000, reference comprehension has been rec-
ognized as an important area of neuroscience [van Nieuwland et al., 2007],
[Nieuwland and van Berkum, 2008], [Engelhardt et al., 2011], allegedly with
its own distinctive neurological footprint, known as Nref (where the first char-
acter stands for Negative voltage and the remainder for reference). The Nref
phenomenon has been confirmed using both ERP and fMRI.

2 This was especially true for Parts II and III, where we discussed the avoidance of ambiguity
(section 8.8) and the design of coherent references to sets (section 8.7), and where we studied the
production of REs under epistemically problematic situations (chapters 12, 13).
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Neuro-cognitive methods can be aimed at the hearer, offering new ways of
testing claims to the effect that one REG algorithm makes life easier for com-
prehenders than another (see e.g., the algorithms discussed in chapters 12 and
13). Moreover, they have the potential to offer insight into the human produc-
tion process beyond what other methods, such as self-paced reading and eye-
tracking, can teach us. If a reliable way can be found to measure ERP during
language production, for example, this could give us a measure of the difficulty
of a given reference task, whose outcomes could then be compared to the run-
time of a REG algorithm (cf., [Gatt et al., 2012] for a study using speech onset
times); note that a new focus on the production process itself could “reha-
bilitate” computational tractability as an important tool in the modelling of
reference production (cf., section 4.8, which argued against the importance of
computational tractability in this area of research). Furthermore, by telling us
what areas of the brain are active during a particular production task, fMRI

studies might tell us to what extent REG algorithms are on the right track when
they posit problem solving activities such as “checking whether all distractors
have been removed” and “adding information to help the reader”, which play
a role in some algorithms.

Neuro-cognitive methods are not easily applied to naturalistic language pro-
duction, however. ERP is difficult to apply because the muscles involved in
human speech articulation can easily affect ERP signals; fMRI is difficult to
apply as well, because brain scanning does not permit participants to speak
and act naturally. Various solutions to these problems could be explored, for
example by letting participants in the experiment think of an utterance with-
out actually producing (i.e., saying) it; moreover, initial studies of reference
production based on Transcranial Magnetic Stimulation (TMS) of brain parts
suggest that other methods might be able to circumvent the above-mentioned
problems entirely (e.g., [Nozari et al., 2014]). It can be argued that, in the psy-
chology of language, neuro-cognitive methods have yet to live up to their
promise. Be that as it may, it now seems likely that neuro-cognitive stud-
ies of language production will soon fulfil their promise, not only by inspir-
ing neurologically motivated computational frameworks (e.g., connectionism
[Thomas and McClelland, 2008]), but by motivating the type of models that
have formed the subject matter of this book.
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These speculations conclude our exploration of reference as the Drosophila
melanogaster (i.e., the fruit fly) of language, as we called it playfully in the
Preface: a humble subject that has nonetheless attracted substantial interest
from many corners of Cognitive Science, ranging from linguistics and the phi-
losophy of language (chapter 2) to Artificial Intelligence, and from compu-
tational logic (e.g., chapter 10) to psychology (chapter 3) and, most recently,
neuroscience.

As with the real fruit fly, scientists have both practical and theoretical rea-
sons for studying reference. For example, like the fruit fly, reference is ubiq-
uitous and relatively straightforward to experiment with. The fruit fly is often
thought to be one of the simplest animals whose biology involves the same
mechanisms (e.g., in terms of its genetics, physiology, metabolism, and life
cycle) that are found in higher animals. Similarly, reference may be one of
the simplest speech acts that involve the same mechanisms that are found in
fully fledged communication, for instance in terms of Information Sharing, in
terms of the relation between form and content, in terms of the role of logic
and reasoning, and in terms of the variations that are observed both between
and within speakers.

Clearly, many questions about reference and referring have yet to be solved.
On the other hand, I hope to have shown that referring is a phenomenon that the
Cognitive Sciences are starting to get quite a firm grasp of. The analogy with
the fruit fly suggests that it may be time to investigate, more systematically than
before, to what extent the insights gained in the study of reference production
carry over to other phenomena in language and communication.
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Frequently Occurring Terms and Abbreviations

Audience Design. The idea that human speakers “design” their utterances to
make them optimally useful to hearers. The extent to which, and the condi-
tions under which, speakers perform audience design is a much investigated
issue in psycholinguistics. Related to the Egocentricity debate.

Common Ground. See Shared Information.

Common Knowledge. See Shared Information.

Conceptualization. The process whereby human speakers decide what infor-
mation to express in their utterance (or in their Referring Expression). Con-
ceptualization is the psychological counterpart to Content Determination.

Content Determination (CD). The process whereby a computer program deter-
mines the information content of a piece of text to be generated. CD is the
computational counterpart to Conceptualization. This book mostly uses the
term CD in a specialized sense, focussing on the informational content of a
Referring Expression.

Definite Description. Definite Descriptions are Noun Phrases of the form “the
so-and-so”, or ones equivalent to these, such as genitives (e.g., “John’s father”,
the father of John).

Denotation. The denotation of an English expression is the set of things that
correspond with it in reality or in a model. Analogously, we speak of the deno-
tation of a property. We use the term as synonymous to extension. The denota-
tion of a is often written as [[a]].

Description Logic (DL). A family of Knowledge Representation formalisms
closely related to decidable fragments of Predicate Logic.

Discriminatory Power (DP). The DP of a word or a property measures its capac-
ity to remove distractors. DP is usualy formalized as the number of distractors
removed, as a proportion of all the distractors present in a given situation (sec-
tion 3.3).

Distinguishing Description. A Referring Expression that leaves no doubt about
its intended referent. Like an RE, a distinguishing description can be a Noun
Phrase or a Logical Form.

Distractor. A distractor is something we do not intend to refer to. In simple
cases, where the intended referent is a single thing, a distractor is anything (in
the model) except the intended referent. In pseudo-code, the referent is often
represented by the symbol r.
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Egocentricity debate. A topical debate in psychology that focusses on the ques-
tion under what conditions adult people know, and realise, what other people
know. Closely related to questions about Audience Design.

Extension. See Denotation.

Information Sharing. The process of turning privileged information into
Shared Information. Usually, Information Sharing makes use of knowledge
that is already shared between speaker and hearer. Part IV of the book dis-
cusses difficulties that can arise in Information Sharing.

Intensional. A function or process is intensional (with an “s”) if it is able to
distinguish between words or properties that have the same extension.

Knowledge Base. A computational device for storing knowledge (i.e., a glori-
fied database). Most Knowledge Bases in this book store information that is in
Shared Information. We use a variety of formalisms for representing knowl-
edge, including Description Logic.

Logical Form. An expression of a formal language, designed to capture the
information content of an RE. In its simplest form, the Logical Form is a set
of properties, interpreted as logically conjoined. The more complex Logical
Forms in Part III of the book use a greater variety of logical operators, such as
negation, disjunction, and quantifiers.

Natural Language Generation (NLG). The use of computer programs for the
generation of text in a human language. Generation is the computational coun-
terpart of human Language Production.

Noun Phrase (NP). A syntactic category. For example, any expression that can
be the subject of a sentence is an NP. Referring Expressions often take the form
of a Noun Phrase.

Referring Expression (RE). By first approximation, REs are Noun Phrases
whose aim is to single out a referent (see section 2.1). By extension, we also
use the term to denote the information content of an RE, that is, a Logical Form.

Referring Expressions Generation (REG). The computational aspect of this
book: the study of algorithms that model the production of referring expres-
sions. Also known as Generation of Referring Expressions (GRE).

Shared Information. (also: Common Knowledge; Common Ground). Infor-
mally speaking, this is information publicly shared by a group of people. If
information is shared, then each member of the group knows that it is shared.
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