
U S I N G WA T E R A G E T O E X P L O R E H YD RO L OG I C A L
P RO C E S S E S I N CON T R A S T I N G E N V I R ONMEN T S

Using water age to explore hydrological processes in
contrasting environments

While the spatial and temporal distribution of water resources is

reshaped by changes in the underlying climatic drivers, the

corresponding global demand for water is rapidly increasing. In this

context, the chemical quality of surface water bodies represents an

emerging issue for scientists, policy makers and managers. The chemi-

cal composition of river flows—and thus its suitability to satisfy certain

human needs—reflects, in a dynamic manner, the spatiotemporal dis-

tribution of active water sources, and the relevant hydrological path-

ways connecting these potential sources to the catchment outlet. The

concept of water age nicely encapsulates the hydrological history of

the water stored in (some key compartments of) a catchment or

released through its boundaries, providing quantitative information on

how long water parcels belonging to a given storage or flux have been

retained in the system (Kirchner et al., 2001; McGuire &

McDonnell, 2006; Rinaldo et al., 2015). Early studies on use of age

distributions in the context of transport models date back to more

than 30 years ago (Cvetkovic & Dagan, 1994; Jury et al., 1986;

Rinaldo & Marani, 1987). More recently, however, these early theories

have been extended to incorporate the inherent dynamical nature of

age distributions across different hydrological systems (Botter, 2012;

Botter et al., 2010, 2011; Hrachowitz et al., 2013; van der Velde

et al., 2012), highlighting the potential of general age conservation

equations to describe a variety of environmental problems, from the

characterization of discharge water quality to soil-vegetation dynam-

ics and biogeochemical cycling (Benettin et al., 2017; Beyer

et al., 2020; Birkel et al., 2011; Harman, 2015; Hrachowitz

et al., 2016; Li et al., 2021; Rinaldo et al., 2015; Soulsby et al., 2015;

Sprenger et al., 2019; Tetzlaff et al., 2014, 2021). The flexibility of this

new theoretical apparatus, jointly with the availability of more exten-

sive, cheaper and accurate analysis of tracers, has given rise to an

increased number of studies where the concept of water age was

used to characterize the chemical signature of streams, groundwater

bodies and water taken up by vegetation. Nowadays, the quantifica-

tion of water ages in different types of environmental systems repre-

sents one of the hottest topics in the hydrological literature, and

applications of coupled flow and transport models are becoming wide-

spread. Integrated models for water flow and solute transport, in fact,

are able to provide a more accurate characterization of the relevant

hydrological processes as compared to standard hydrological models

(e.g., Beven & Davies, 2015; Hrachowitz et al., 2015; Kuppel

et al., 2018; Wilusz et al., 2020). This reflects the intertwined coupling

between water quality and quantity in river systems, which calls for

the development of comprehensive and integrated modelling tools, as

mirrored by the observed increase in the number of studies on the

characterization of the ages in the critical zone, where such coupling

is particularly evident.

This Special Issue of Hydrological Processes provides a collection

of contributions that exploit the concept of water age and focus on

challenges and opportunities provided by different environments in

terms of data availability, processes identification, interpretation of

measurements and models. The Special Issue combines theoretical

and empirical work that explore synergies among data, models and

process interpretation under a variety of climatic and geographic set-

tings. In particular, the papers belonging to this Special Issue can be

grouped into five main thematic areas: (i) theoretical investigations

about the structure of water ages in river basins and hillslopes;

(ii) papers exploring water ages in different snow-impacted catch-

ments ranging from North-America to Europe; (iii) the characterization

of water age distributions in seasonally low-rainfall and drought set-

tings; (iv) water age studies in Australia, with specific reference to

some of the wettest regions of this relatively dry continent. A miscel-

lany of papers from other regions of the World (from the Tropics to

the Tibetan region) nicely complements this Special Issue. The latter

contributions involve a set of catchments which share the common

feature of being ‘unique’ in terms of catchment features or investi-

gated processes. These sets of topics covered by the Special Issue are

summarized in the following sections.

1 | THEORETICAL ANALYSES

The studies by Rodriguez et al. (2020), Zarlenga and Fiori (2020) and

Rigon and Bancheri (2021) provide nice theoretical advances in the

characterization of water age distributions in rivers, and analyse the

linkages between water ages, catchment structure and climatic forc-

ing. In particular, Rodriguez et al. (2020) explore the origin and the

implications of multimodal age distributions of catchment-scale dis-

charge. The analysis reveals that multimodal age distributions are
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likely to occur in the outflow of complex watersheds forced by

unsteady climate, particularly in the presence of heterogeneous

flowpaths and/or water velocities. However, this key signature of the

age structure of the streamflow might not be clearly detectable from

a single tracer concentration timeseries at the outlet, thereby

highlighting the importance of multi-tracer studies. Zarlenga and

Fiori (2020), instead, present a physically-based framework for the

analysis of water and solute age distributions in hillslopes. The analy-

sis is based on the Boussinesq approximation of the full three-

dimensional flow and age equations under transient conditions, and

provides a set of novel expressions for the moments of the water age

along a control plane perpendicular to the mean flow. The study

shows that the unsteady nature of rainfall and climate is the primary

driver of water ages in hillslopes, while the relationship between the

age structure of the storage and that of the outflow depends on key

topographic properties such as the bedrock slope and the hillslope

shape. The relationship between age distributions of different compo-

nents of a complex hydrological system is also the subject of the work

contributed by Rigon and Bancheri (2021), in which the relationships

among the internal structure of a complex hydrological systems and

the ensuing age/response time distributions are studied starting from

simple water budget equations which encapsulate the underlying

catchment structure. The paper offers a framework to couple flow

and transport models in a coherent manner, combining analytical

results and a set of practical examples.

2 | WATER AGES IN SNOW IMPACTED
CATCHMENTS

The papers by Campbell et al. (2020), Ceperley et al. (2020), Cooke

and Buttle (2020) and Leach et al. (2020) analyse the structure of

water ages in catchments which experience—to a quite heteroge-

neous extent—significant snow dynamics. The geographical cover-

age of this group of papers ranges from North America (Ontario and

Alberta) to Italy and Switzerland. Ceperley et al. (2020) showed that

seasonal snow cover leads to small young water fractions (i.e., ages

younger than 2–3 months) and a significant dampening in the dis-

charge isotopic signature. The study also highlights important meth-

odological issues associated with the reconstruction of isotopic

precipitation signal from sparse samples, and emphasizes how

glacier-dominated catchments are characterized by larger young

water fractions as compared to snow-dominated settings. The lim-

ited contribution of young water ages to the discharge observed at

the outlet of snow dominated catchments also emerges from the

study of Campbell et al. (2020), who analysed with the aid of numer-

ical simulations the applicability to snow-dominated settings of

methods based on the equivalence between young water fractions

and isotope amplitude ratios (Kirchner, 2016a, 2016b). The papers

by Cooke and Buttle (2020) and Leach et al. (2020), instead, are

focused on the analysis of the intra-regional variability of age-

related signatures in central and southern Ontario (Canada). The

authors evidence important spatial heterogeneity in mean discharge

water ages and young water fractions, depending on catchment

characteristics (e.g., flowpath length, land-use/land-cover) and key

hydrologic indexes (such as the baseflow index and discharge vari-

ability), discussing the important implications in terms of stream

water quality and catchment storage potential. Overall, these stud-

ies provide more insight on the relationship between snow dynam-

ics and water ages across different geographic regions, but also

indicate that caution should be used in applying standard tools for

the analysis of the structure of water ages to snow dominated con-

texts, where heterogeneity in elevation, geology, topography and

climate could play a key role in shaping the hydrochemical response

of rivers.

3 | WATER AGES IN SEASONALLY DRY
CATCHMENTS

Most early investigations of water age tended to be based in more

humid environments and in relatively undisturbed experimental

catchments where the impact of human activity was relatively unob-

trusive. This tended to: (a) underplay the importance of evapotrans-

piration (or ‘green water’) fluxes in affecting the ages of residual

groundwater recharge and stream flow (of ‘blue water’) fluxes and

(b) ignore the role of anthropogenic influences on water ages in ‘real
world’. The paper by Grande et al. (2020) addresses both of these

issues focusing on a small catchment in California, USA, which expe-

riences a Mediterranean climate and drains a rural mountainous

headwater but passes through a downstream urban area. Using a

combination of isotopic and geochemical tracers, they showed that

stream flow was considerably younger than groundwater stored in

the catchment (�1 year compared with �10 years respectively)

reflecting the seasonal influence of the wet period and relatively

young water on stream flow generation. Interestingly, the authors

also show that irrigation water from a golf course, whilst only a

minor component of the annual water balance, formed a significant

fraction of stream flow. Gallart et al. (2020) also report results of iso-

topic studies from a Mediterranean climate in the Vallcebre research

catchments, Catalonia, Spain. Strong hydroclimatic seasonality

restricts the wettest periods to autumn and spring, with both sum-

mer and winter being dry. However, the mountainous catchment is

dominated by clay rich bedrock. Consequently, climate and geology

combine in wet periods to produce an extremely ‘flashy’ hydrologi-
cal response. They highlight the importance of high resolution iso-

tope sampling in this environment to accurately characterize the age

distribution of younger water in stream flows, and show how routine

weekly sampling typical of many monitoring programmes may lead

to serious underestimation of young water fractions. In contrast,

Smith et al. (2020) focus on plot scale studies in a lowland catchment

in Germany in the early stages of recovery from the 2018 drought

that affected much of Europe. They use isotope data collected under

contrasting co-dominant land uses of forests on more sandy soils

and grassland on more loamy soils. The data was used in calibration

of the tracer-aided, process-based ecohydological model EcH2O-iso
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(Kuppel et al., 2018) to estimate effects of land use on water par-

titioning and water ages in order to assess implications for drought

recovery. Evapotranspiration is higher under forest, leading to drier

soils, higher soil water ages and longer recovery times for soil mois-

ture stores to replenish. This also leads to older recharge waters

under forests, and older transpiration ages as trees can access

deeper, older water. Such process-based modelling of age evolution

in the critical zone of soil-vegetation units can also provide the basis

for understanding implications for drought recovery at the catch-

ment scale (Smith et al., 2021).

4 | WATER AGES IN SEASONALLY WET
CATCHMENTS IN AUSTRALIA

Some of the earliest work on estimating stream flow ages was based

in Australia (Turner et al., 1987), a country where the combination of

dry conditions or marked hydroclimatic seasonality, combines with a

complex, ancient geological settings poses distinct conceptual chal-

lenges to water age studies. These are compounded by logistical chal-

lenges of sampling in often large, remote catchments. Cartwright

et al. (2020) used tritium dating of streamflow in a number of meso-

scale catchments in Victoria to ascertain Mean Transit Times of base

flows and to relate these to potential climatic and landscape controls.

However, identifying such linkages proved much more difficult than in

some other geographical regions, probably because of the influence of

large, but poorly constrained groundwater stores in deep weathered

zones sustaining baseflows, resulting in very old (upto 100 years)

water ages. In addition, very high evapotranspiration rates limited

young water influences to wetter periods when near surface flow

paths are well connected. Identifying these complexities of controls

underlines how different age characteristics can vary in contrasting

geographic and hydroclimatic environments and highlights the dan-

gers of assuming landscape (e.g., topography, soils, etc.) controls are

transferable. Buzacott et al. (2020) also found that high evapotranspi-

ration and deep groundwater sources (this time in fractured bedrock

aquifers) had a strong influence on the Corin catchment in the

Australian Alps. They used time series of stable isotope data in precip-

itation and stream flow to identify storage selection (SAS) functions to

estimate the ages of stream flow, catchment storage, and evapotrans-

piration. Whilst evapotranspiration was found to show a strong pref-

erence from relatively young water (�2 years old), stream flow was

well-mixed, with ages relatively stable (�5 years) and showed only a

weak preference for younger water and older waters when the catch-

ment was wet or dry. However, uncertainty was large and the size of

the groundwater store poorly constrained due to the limitations of

stable water isotopes in capturing ages of more than a few years.

Moreover, the stream water data was limited to a year of sampling.

Nevertheless, the study, which is the probably the first application of

the SAS methodology in Australia, showed the strong influence of

evapotranspiration on stream water ages and identified the impor-

tance of large groundwater storage. This demonstrated the utility of

the SAS approach in data sparse catchments.

5 | MISCELLANEOUS PAPERS

The last group of papers exemplify the diversity of approaches that

are available to assess water ages under different climates and using

different type of tracers. The hydrological systems investigated in this

group include: an agricultural catchment in France (Benettin

et al., 2020), the aquifer of a forested catchment in Sweden (Kolbe

et al., 2020), two sites in the tropics, where one is a hillslope of volca-

nic ash soil (Mosquera et al., 2020) and the other is a rainforest catch-

ment (Correa et al., 2020) and two sites in China, where one is a Karst

catchment (Zhang et al., 2020) and the other is a large, high-elevation

river basin (Yang et al., 2021). Water age is used by Benettin

et al. (2020) to explain catchment-scale removal of agricultural nitrate.

They find that, while nitrate removal likely occurs throughout the

year, its effect is only visible at very low flows before the winter,

when streamflow is mainly sustained by deeper and older groundwa-

ter. The age analysis, based on tracer data (chloride), focused on the

younger (<1 year) water components. This is typical in catchment

hydrology but it is different from groundwater approaches, which

tend to focus on a different—and older part of the age distributions.

Indeed, Kolbe et al. (2020) computed groundwater age based on the

Boussinesq model and CFC data from nine wells and found mean

groundwater ages of 20–80 years. Age stratification showed a quick

increase to 30 years just below the water table which was explained

by return flow of groundwater in the surface discharge zone. Water

age stratification is also addressed by Mosquera et al. (2020), with dif-

ferent tools and tracers. They measured water stable isotopes at

2-week interval over 3 years along a soil hillslope transect in Ecuador,

in the tropics. Mean water age, computed trough the standard convo-

lution integral, suggests that vertical flow paths dominate the system

and generate a mean water age stratification from about 2 weeks in

the top 10 cm to about 9 months at 65 cm depth. The other study

based on the tropics (Correa et al., 2020) was largely influenced by

vegetation uptake ad transpiration. Therein, water ages were com-

puted through a conceptual, spatially-explicit model run at high spa-

tiotemporal resolution and calibrated against water flow and stable

isotope data. Mean streamflow age was estimated to range from just

a few hours to a few years depending on the hydrologic conditions.

The high spatiotemporal resolution of the model further allows the

authors to explore how vegetation and topography affect water fluxes

and their age in both time and space. Work by Zhang et al. (2021) is a

relatively rare example of catchment water age study influenced by a

karst system. Water age was evaluated through a lumped transport

model calibrated on stable isotope data and it was compared with the

(mean) young water fraction estimated through tracer cycle damping.

The share of young water in streamflow appears to be driven by stor-

age variability and by connectivity between the conduit network and

the stream. Because of this connectivity, young water was estimated

to contribute almost entirely to streamflow right after a storm event,

with implications for the quick transport of contaminants. Finally,

Yang et al. (2021) worked on three sub-basins of about 5000 km2

each and identified the need for age indicators that quantify not just

the fraction of young water but also the fractions of water younger/
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older than 1 year. They proposed a preliminary methodology based on

the annual water balance to compute such fractions and found that

on average the fraction of water younger than 1 year, and thus

affected by just 1 cycle of thawing/freezing, was about 80%.

The Special Issue demonstrates the incredible diversity of

instances in which the concept of water age proves to be useful for

interpreting hydrologic dataset and investigating the underlying driving

processes. The generality of the formulation, which often capitalizes

on age mass balances formulated within suitable domains, makes it a

useful tool applicable to a variety of settings, as demonstrated by the

large diversity of climates, hydrologic systems and methods embraced

by this Special Issue. Most of the studies included here makes use of

the concept of young water fraction (evaluated either from models cal-

ibrated on tracer data or directly from tracer cycle damping). This

shows that the community is progressively moving away from ‘tradi-
tional’ concepts originally conceived under stationary conditions to

more sophisticated age metrics capable of better representing the

complexity of age structures in dynamic environmental systems.
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