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A multi‑sensory stimulating 
attention model for cities’ taxi 
service demand prediction
Lyuchao Liao1,2, Yongqiang Wang1,2*, Fumin Zou2, Shuoben Bi  3, Jinya Su4 & Qi Sun5

Taxi demand forecasting is crucial to building an efficient transportation system in a smart city. 
Accurate taxi demand forecasting could help the taxi management platform to allocate taxi resources 
in advance, alleviate traffic congestion, and reduce passenger waiting time. Thus, more efforts in 
industrial and academic circles have been directed towards the cities’ taxi service demand prediction 
(CTSDP). However, the complex nonlinear spatio-temporal relationship in demand data makes it 
challenging to construct an accurate forecasting model. There remain challenges in perceiving the 
micro spatial characteristics and the macro periodicity characteristics from cities’ taxi service demand 
data. What’s more, the existing methods are significantly insufficient for exploring the potential 
multi-time patterns from these demand data. To meet the above challenges, and also stimulated by 
the human perception mechanism, we propose a Multi-Sensory Stimulus Attention (MSSA) model for 
CTSDP. Specifically, the MSSA model integrates a detail perception attention and a stimulus variety 
attention for capturing the micro and macro characteristics from massive historical demand data, 
respectively. The multiple time resolution modules are employed to capture multiple potential spatio-
temporal periodic features from massive historical demand data. Extensive experiments on the yellow 
taxi trip records data in Manhattan show that the MSSA model outperforms the state-of-the-art 
baselines.

A smart city is as considered the direction of urban development and the trend of civilized development in the 
information age1. It aims to use modern information technology to promote the interconnection, efficiency, and 
intelligence of urban operating systems2. As an indispensable part of a smart city, intelligent transportation aims 
to improve the transportation system’s operating efficiency and make full use of transportation resources3. Taxi is 
a travel tool that meets people’s travel service demand, and it plays an essential role in urban public transporta-
tion systems4. In recent years, with the continuous improvement of people’s living standards and the significant 
lifestyle changes, there is higher requirements for quality and efficient taxi services. However, there are still some 
inefficiencies in this mode of transportation. For example, the insufficient supply of taxis in some areas leads 
to long waiting times for passengers, and the oversupply in some areas causes a large number of online taxis to 
be empty. These problems not only lead to inefficient taxi cruising, but also affect people’s satisfaction with taxi 
services. Therefore, to better meet the needs of passengers and reduce costs, the taxi management platform should 
conduct reasonable dispatch of online taxis. At present, with the increasing popularity of floating car technology 
and taxi services like Uber and Didi Chuxing, a massive amount of public travel data has been accumulated5. 
Making full use of these historical public travel data provides us an opportunity to address the challenges of 
CTSDP in smart cities4, which could rationally dispatch taxis to areas with higher demand and reduce the wait-
ing time of passengers. In addition, it could also reduce energy consumption and air pollution in smart cities. In 
summary, building an efficient CTSDP model for the massive historical demand data is crucial to constructing 
a smart traveling service in smart cities.

More efforts have been directed to towards building a more accurate model with historical data for traffic 
prediction. Data-driven traffic prediction methods are generally divided into three major categories: time-series 
analysis methods, traditional machine learning methods, and deep learning based methods. The time-series 
analysis methods and the traditional machine learning methods are insufficient for the complex nonlinear 
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temporal and spatial relationships in traffic data. Fortunately, deep learning has brought new ideas to capture 
nonlinear spatio-temporal relationships6–8, which has aroused more and more related studies. Abundant studies 
have applied Convolutional Neural Network (CNN) to capture spatial correlations9–11, and Zhang et al.12 further 
proposed ST-ResNet, which is composed of a convolutional layer and a residual unit to simulate the spatial 
dependence of the city. To capture the time dependence, recurrent neural networks (RNN) and some of its vari-
ants, such as long short-term memory networks (LSTM) and gated recurrent units (GRU), have been widely 
used due to their excellent performance in capturing dynamic time dependence6,13,14. For example, Xu et al.15 
encoded the taxi demand data in the past week into a time series and fed the sequence to the LSTM network to 
learn the time pattern of taxi demand. Although these studies explicitly modeled temporal or spatial dependence, 
they don’t consider both aspects simultaneously. Therefore, to solve the problem of spatio-temporal sequence 
prediction, Liu et al.16 further proposed a spatio-temporal network for demand prediction, which integrates 
local CNN and LSTM networks to learn spatio-temporal correlations simultaneously. Wang et al.17 also used an 
encoder-decoder framework to deal with the spatio-temporal relationships of traffic data. Taking into account 
the shortcomings of a single data source, Zhao et al.18 proposed a feature fusion model using multi-source data 
for prediction. It verified the effectiveness of the model using multi-source data sets. Some studies have extended 
the spatio-temporal model to solve CTSDP which requires higher accuracy. For example, Rodrigues et al.19 pro-
posed a deep learning architecture combining text information and time-series data and applied this method to 
regional taxi demand prediction.

The existing methods mainly focus on predicting taxi demand in some specific regions. There are few studies 
which are based on the taxi Origin–Destination (OD) demand in a whole city. One of the significant challenges 
in CTSDP is to capture the spatial–temporal dependencies between each two OD pairs. Liu et al.20 proposed a 
contextualized spatio-temporal network for taxi Origin–Destination demand prediction. The network integrates 
local spatial context, temporal evolution context, and global context into a framework. Ke et al.21 proposed the 
spatio-temporal encoder-decoder residual multi-graph convolutional network (ST-ED-RMGC), which builds 
multiple graphs to characterize the non-Euclidean pair-wise geographical and semantic correlations among dif-
ferent OD pairs. Chen et al.22 proposed a method combining spatial-OD and Bidirectional ConvLSTM model 
with taking the historical and future states of the data into account to extract the time and space characteristics. 
Although these spatio-temporal deep networks showed reasonable performance for CTSDP, they still show 
some significant shortcomings: (1) being insufficient to perceive the micro spatial characteristics and the macro 
periodicity characteristics from the cities’ taxi service demand data; (2) lack of consideration for exploring the 
potential multi-time patterns from these demand data.

In the human perception mechanism, people generally pay attention to the changes in details and the macro 
variety tendency23. Therefore, to meet the above challenges, we propose a Multi-Sensory Stimulus Attention 
(MSSA) model for CTSDP, which is similar to the multi-sensory stimulus in the human perception mechanism24. 
Specifically, the proposed framework integrates two different attention mechanisms, namely Detail Perception 
Attention (DPAtt) and Stimulus Variety Attention (SVAtt), for mining the characteristics of historical demand 
data at the micro and macro levels respectively. Moreover, the framework combines a Local Spatio-temporal 
Network (LSTN), a Daily periodicity network (DayNet), and a Weekly periodicity network (WeekNet) for explor-
ing potential multiple periodic patterns.

The main contribution of this work could be summarized as follows:

•	 Inspired by the human perception mechanism, we propose a Multi-Sensory Stimulus Attention (MSSA) 
model, which combines detail perception attention and stimulating variety attention to learn the character-
istics of historical demand data from the macro and micro levels.

•	 We combine multiple time resolution modules to capture potential spatio-temporal periodicity features from 
massive taxi service demand data.

•	 Extensive experiments were conducted on Manhattan’s yellow taxi trip records data, and the results show 
that the proposed MSSA model outperforms the state-of-the-art methods.

Results and discussion
Prediction results and overall performance analysis.  We compare the prediction performance of the 
proposed method with the following baseline methods. These baseline methods include not only time-series 
analysis methods and traditional machine learning methods but also the state-of-the-art deep learning models. 
The specific methods are:

•	 Historical Average (HA) Historical Average uses the average values of previous demand at a given location 
over a relative time interval to forecast demand.

•	 Linear Regression We implemented two typical methods: Lasso25 (i.e., with l1-norm regularization) and Ordi-
nary Least Squares Regression26 (OLSR).

•	 Multilayer Perceptron (MLP) The multilayer perceptron consists of four fully connected layers. The MLP takes 
the demand data of the last n time intervals as input and predicts the demand data of the next moment.

•	 XGBoost27 XGBoost is a robust boosting tree-based method that is widely used in data mining applications.
•	 ST-ResNet28 ST-ResNet is a deep learning-based traffic prediction method, which constructs traffic maps of 

cities at different times in the form of images.
•	 CSTN20 CSTN is the state-of-the-art deep learning-based method for taxi Origin and Destination demand 

prediction. The method is modeled from three perspectives: local spatial context, temporal evolution context, 
and global relevance context.
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We evaluate the prediction performance of our proposed method and existing methods with two widely 
used metrics, namely Mean Average Percentage Error (MAPE) and Root Mean Square Error (RMSE), which 
are defined as:

where m is the total number of grid divisions in New York City, R̂(t) and R(t) are the predicted taxi demand and 
the corresponding ground truth in time interval t, respectively. These two metrics are the most commonly used 
to evaluate the prediction accuracy, and their value ranges are [0,+∞) . A higher value of the metric indicates 
a higher prediction error.

In our work, we respectively predicted the Origin–Destination demand of taxis and the Origin demand of 
taxis. When evaluating the performance of these two aspects, for convenience, the above two evaluation metrics 
were denoted as MAPE-OD and RMSE-OD in the taxi Origin–Destination demand assessment, and MAPE-O 
and RMSE-O in the taxi Origin demand assessment.

Using MAPE and RMSE evaluation metrics, we summarize the experimental results of all methods in Origin 
demand forecasting and Origin–Destination demand forecasting in Table 1.

The experimental results could be observed that the MSSA model significantly outperforms other competed 
methods. Among them, the time-series analysis method (HA) offers the worst performance. The traditional 
machine learning methods (Lasso, OLSR, and XGBoost) are relatively better than the former, and the methods 
based on deep learning (ST-ResNet and CSTN) have more significant improvements. Specifically, the MSSA 
method our proposed achieves the lowest MAPE and RMSE on the task of taxi Origin demand prediction and 
taxi Origin–Destination demand prediction. Moreover, for the Origin demand prediction, the MSSA model 
achieves 18.29% and 27.66% relative performance improvements over MAPE-O and RMSE-O, compared to the 
existing best-performing CSTN method. For the Origin–Destination demand prediction, the MAPE-OD and 
RMSE-OD are also reduced by 5.26% and 5.30% respectively compared to CSTN method.

The time-series forecasting methods (HA) does not perform well because it only relies on historical records 
and ignores spatial and other contextual features. The traditional machine learning methods (Lasso, OLSR, and 
XGBoost) further treat spatial correlation as features and rules, which helps to obtain better performance gains 
over the traditional time series analysis methods. However, these methods generally fail to capture the complex 
and nonlinear spatial and temporal correlations. The emerging deep learning methods (ST-ResNet and CSTN) 
showed significant improvement in recent years. However, there are still some drawbacks in the ST-ResNet and 
CSTN, which lead to the limitations of further improvement. Generally, ST-ResNet ignores learning the tem-
poral evolution context, and CSTN ignores the influence of an obvious pattern (periodicity). In addition, these 
methods are not sufficient to perceive the micro spatial characteristics and the macro periodicity characteristics 
from the cities’ taxi service demand data. Compared with these methods, the MSSA model further integrates 
detail perception attention and stimulating variety attention to learn the characteristics of historical demand data 
at the macro and micro levels and then combines multiple time resolution modules to capture various potential 
spatio-temporal periodicity features.

Performance analysis on different days.  We could compare the prediction performance of all methods 
on different days by dividing the dataset into 7 categories according to different days of the week and predicting 
separately. As shown in Fig. 1, we only compare the performance of traditional machine learning methods and 
deep learning methods on the metric MAPE-OD because the performance of time series methods is poor and 
the performance comparison of other metrics is similar to MAPE-OD. We can conclude from the figure that our 
proposed method outperforms all baseline methods on different days of the week. In addition, the model could 
achieve lower MAPE-OD values on weekdays than on weekends. We can also conclude that the prediction per-
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Table 1.   Performance comparison of methods.

Method MAPE-O (%) RMSE-O MAPE-OD (%) RMSE-OD

HA 45.04 52.44 37.71 1.93

Lasso 34.89 33.00 33.85 1.65

OLSR 33.09 32.68 33.86 1.65

XGBoost 37.78 31.23 32.04 1.54

MLP 25.24 25.60 30.70 1.49

ST-ResNet 24.16 22.43 28.53 1.38

CSTN 18.48 19.85 27.37 1.32

MSSA 15.10 14.36 25.93 1.25
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formance of weekdays is better than that of weekends. The underlying reasons is that the taxi trips on weekdays 
are more regular, which is beneficial to the model prediction, while the trips on weekends are more random, 
which increases the difficulty of the model’s prediction.

Effectiveness of multi‑sensory stimulating attention.  This section discusses the impact of multi-
sensory stimulating attention on the performance of taxi demand prediction. We trained a network without 
multi-sensory stimulating attention and got the average of its experimental results through multiple training. 
The comparison results are shown in Table 2.

The comparison results show that the MSS model without multi-sensory stimulus attention achieves a MAPE-
O of 16.98% and a RMSE-O of 15.29, and it also gets a MAPE-OD of 26.67% and a RMSE-OD of 1.274. After 
adding the multi-sensory stimulating attention, the performance of the MSSA model with the multi-sensory 
stimulus attention will be improved with 11.07% and 6.08% over metrics MAPE-O and RMSE-O respectively. It 
also will be improved with 2.77% and 1.26% over metrics MAPE-OD and RMSE-OD respectively. The experi-
mental results show that the multi-sensory stimulus attention could improve the model’s prediction performance.

Influence of sequence length.  To explore the influence of sequence length in the LSTN network, we 
investigate the relationship between sequence length and prediction performance by training our model with 
sequences of different lengths. The relationship between the sequence length and the Origin demand prediction 
performance is shown in Fig. 2a, and the relationship between the sequence length and the Origin–Destination 
demand prediction performance is shown in Fig. 2b.

Figure 1.   Performance comparison on different days of the week.

Table 2.   Performance comparison for detail perception attention.

Method MAPE-O (%) RMSE-O MAPE-OD (%) RMSE-OD

MSS 16.98 15.29 26.67 1.274

MSSA 15.10 14.36 25.93 1.258

Figure 2.   Relationship analysis for between different sequence lengths.
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As shown in Fig. 1, the prediction performance of model shows an increasing tendency with the increase of 
sequence length (the lower the value of the evaluation metric, the better). The sequence length offers an optimal 
value at the length of 5 (2.5 h). It’s noteworthy that the prediction performance begins to decline when exceeding 
the optimal value. The upward trend of the prediction performance with increasing sequence length indicates 
that the model is sensitive to the variety tendency in the same period, and the decline when exceeding the opti-
mal value means that more parameters need to be learned when extending to a more extensive time range. The 
sequence length was set to 5 in the MSSA model to make the training convergence more quickly.

Effect with different periodic modules.  To further explore the impact of different potential periodic 
modules on the overall performance, we integrate different periodic modules to implement the following vari-
ants:

•	 LSTN + DayNet The network only contains local spatio-temporal modules and potential daily periodic mod-
ules. The outputs of the two modules were fused and fed into a convolution layer for predicting taxi demand.

•	 LSTN + WeekNet The network contains only a local spatio-temporal module and a potential weekly periodicity 
module. The outputs of these two modules were fused and fed into a convolutional layer for predicting cab 
demand.

•	 LSTN + DayNet + WeekNet As a complete version of our proposed model, this network incorporates a local 
spatio-temporal module, a potential daily periodicity module, and a potential weekly periodicity module to 
predict taxi demand.

The prediction performance of different variants on taxi demand is shown in Table 3. The comparative analysis 
shows that both the daily and the weekly periodic modules are beneficial for prediction performance, and the 
integrating multiple periodicity modules shows better prediction performance.

Methods
Taxi trip records data.  The experiments were conducted on the taxi travel record dataset provided by NYC 
open data29, which is mainly distributed in Manhattan. We selected the taxi travel record data for the whole year 
of 2014. The data of the last 60 days was employed as the test set, and the rest was used as the training set.

In addition, we analyzed the temporal and spatial characteristics of urban residents’ travel. We firstly divided 
the travel records on January 10, 2014 into 8 time periods and then drew the travel heat map of each time frame. 
In the heat map, the darker color indicates that there is a high demand for taxis in this area, and different colored 
lines represent popular travel routes from different high-demand areas. From the results shown in Fig. 3, it could 
be learnt that the cities own different demand of taxi service in different time period. It’s a challenge to capture 
these periodical patterns from massive taxi service demand data, and we aim to address this challenge in this 
work.

Data enhancement.  To achieve data enhancement through multi-source information fusion, we collected 
meteorological data from open-source websites30. The collected and selected meteorological indicators are 
shown in Table 4, including 23 discrete weather types and 6 continuous weather indicators.

Data preprocessing.  In the spatial dimension, we divide the Manhattan area into H × W grid areas, as 
shown in Fig. 4, and numbered them as 

{

g1, g2, . . . , gG
}

 , where G = H×W . In the time dimension, we divided 
the time evenly into a sequence of time intervals, denoted as {t1, t2, . . . , tT } . Based on the time stamp and loca-
tion coordinates of passengers getting on and off the taxi from the taxi trip record, we counted the number of 
trips between each area and then generate the taxi OD matrix R(t) within the time interval t. We denoted it as 
R(t) ∈ RG×G.

To better maintain the continuity of data distribution and better capture local spatial features, we further 
carried out a simple transformation of the dimension of the matrix. That is, transformed from the original 
R(t) ∈ RG×G to R(t) ∈ RG×H×W . In addition, we filtered the samples with demand values less than 10 to improve 
data quality31.

For the meteorological data, we first digitized the 23 discrete types of data with one-hot encoding and then 
converted the 6 continuous types of data into the range of [−1,1] with Min–Max linear normalization.

Model framework overview.  This section provides details about the MSSA model, which aims to pre-
dict the Cities’ Taxi Service demand R̂(t) for possible upcoming trips by using nearby historical demand data 
Rclose , daily periodic data Rday , weekly periodic data Rweek , and the heterogeneous data ǫ . Figure 5 shows the 

Table 3.   Comparison of different periodicity modules.

Method MAPE-O (%) RMSE-O MAPE-OD (%) RMSE-OD

LSTN + DayNet 17.78 15.21 26.24 1.271

LSTN + WeekNet 16.99 15.03 26.19 1.269

LSTN + DayNet + WeekNet 15.10 14.36 25.93 1.258
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architecture of the MSSA model, which consists of three sub-networks, namely LSTN, DayNet, and WeekNet. 
These three sub-networks separately model different periods of historical demand data to analyze the three 
time modes: closeness, daily periodicity, and weekly periodicity. What’s more, the Detail Perception Attention 
(DPAtt) learns the spatial and meteorological characteristics of historical demand data at the micro-level, and 
the Stimulating Variety Attention (SVAtt) learns potential periodic patterns from the macro level.

Local spatial feature learning.  In spatio-temporal traffic data, the traffic observations at spatially adja-
cent locations are often not independent but are strongly correlated. The same is true for taxi demand, which 
tends to have more similar demand patterns in spatially adjacent regions. To extract local spatial features of taxi 
demand from the Origin view and the Destination view, we input the taxi OD demand matrix R(t) and DO 
demand matrix R(t)T into the 3D convolutional layer, respectively, which has 16 convolutional kernels with the 
kernel size of 3 × 3. Formally,

where wo and wd are learnable parameters.
The residual learning proposed by He et al.32 was applied in our model to further explore detailed spatial 

features with limited computing resources. In our work, the residual mapping consists of the combination of 
activation and convolution once. We stacked L residual units upon Conv3D as follows:

(3)Fo = Conv
(

R(t),wo
)

(4)Fd = Conv
(

R(t)T ,wd
)

Figure 3.   Travel heat map in different time frame. These eight maps were created using ArcMap version 10.5 
software (https://​deskt​op.​arcgis.​com/).

Table 4.   Types of meteorological data in Manhattan.

Type Information

Weather Condition 23 types(e.g., Sunny, Rainy)

Temperature/℃ [− 18.3, 35.6]

Windchill/℃ [− 28.4, 38.5]

Visibility/km [0.4, 16.1]

Wind Speed/km/h [0.0, 137.0]

Humidity/% [9, 100]

Precipitation/mm [0.0, 28.7]

https://desktop.arcgis.com/
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where ξ is the residual function, and θo,(l), θd,(l) are the set of all learnable parameters of the l  th residual unit in 
the Origin view and the Destination view, respectively.

After extracting the local space features of the Origin and the Destination view, we finally use a convolutional 
layer to fuse the two features. Formally,

(5)Fo,(l+1) = Fo,(l) + ξ

(

Fo,(l), θo,(l)
)

, l = 1, 2, . . . , L

(6)Fd,(l+1) = Fd,(l) + ξ

(

Fd,(l), θd,(l)
)

, l = 1, 2, . . . , L

Figure 4.   Grid delineation map of the study area. This map was created by using a third-party package of 
python, named Folium (https://​python-​visua​lizat​ion.​github.​io/​folium/), and the version number of the package 
is 0.12.1. The base map for this figure was produced by OpenStreetMap. Credit: OpenStreeMap contributors. 
This map is licensed under Open Database License. The license terms can be found at the following link: https://​
wiki.​osmfo​undat​ion.​org/​wiki/​Licen​ce.

Figure 5.   The system architecture of MSSA.

https://python-visualization.github.io/folium/
https://wiki.osmfoundation.org/wiki/Licence
https://wiki.osmfoundation.org/wiki/Licence
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where ⊕ denotes feature concatenation operation and wod is the parameter of the fused convolutional layer.
Since our task is to predict the future demand of taxis in each city grid, the network structure didn’t employ 

any downsampling and pooling operations in the spatial dimension. This is because these operations tend to 
reduce the size of the tensor which makes the network less sensitive to local spatial features.

Heterogeneous information fusion.  Taxi demand may be affected by complex external factors like road 
network connections, points of interest, and weather conditions. Considering the potential strong correlation of 
meteorological information on taxi trips, we focused on the impact of meteorological data. We first encode them 
using a multilayer perceptron (MLP). Then, we concatenate the encoded meteorological features with the local 
spatial features and fused the two features with a convolutional layer with 32 filters. Formally,

where ⊕ is the feature concatenation. Fw denotes the meteorological feature after coding and wodw denotes the 
parameters of the convolutional layer.

Detail perception attention.  Recently, attention mechanism has become an essential part of neural net-
work structure and has a large amount of research in different fields. In particular, Woo S et al.33 proposed a 
convolutional block attention module (CBAM) to enhance feature representation for visual semantic analysis.

Inspired by the attention in CBAM, we proposed a Detail Perception Attention (DPAtt) to learn the detail 
variation of fused features fully. To enhance the feature representation of local spatial features and meteorologi-
cal features, DPAtt is constructed with a level attention module, and a spatial attention module, in which the 
level attention module mainly processes the feature map of different taxi demand levels and the spatial attention 
module mainly reinforces the demand density distribution on the feature maps. The level attention and spatial 
attention in DPAtt make it possible to pay more attention to the vital demand levels and the critical regions in 
the feature maps.

As shown in Fig. 6, the level attention does max-pooling and average-pooling for the feature maps in level 
dimension to obtain Maxpool level attention vector and AvgPool level attention vector. We then input these two 
vectors into a single-layer perceptron with shared weights to obtain two new level attention vectors. We merged 
these two vectors using element-wise summation and finally multiplied with the original feature map to obtain 
the new feature map, which is expressed as:

where  ⊗ denotes the multiply operation, and σ denotes the sigmoid function.
To compute the spatial attention, as shown in Fig. 7, we first applied average-pooling and max-pooling opera-

tions along the level axis to obtain two spatial attention maps and concatenate them. Afterwards, a convolutional 
layer and an activation layer were employed to generate the spatial attention weight matrix. Finally, we multiplied 
the matrix with the input feature map to obtain the weighted feature matrix, which is expressed as:

where  ⊗ denotes the multiply operation, and σ represents the sigmoid function.

(7)Fod = Conv
(

Fo,(L+1)Fd,(L+1),wod

)

(8)Fodw = Conv
(

Fod ⊕ Fw ,wodw

)

(9)Ml

(

Fodw
)

= σ

(

MLP

(

MaxPool
(

Fodw
))

+MLP

(

AvgPool
(

Fodw
)))

(10)Fl = Ml

(

Fodw
)

⊗ Fodw

(11)Ms

(

Fl
)

= σ

(

Conv
([

MaxPool
(

Fl
)

;AvgPool
(

Fl
)]))

(12)Fs = Ms

(

Fl
)

⊗ Fl

Figure 6.   The level attention.
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Local temporal feature learning.  To simultaneously extract time closeness features and spatial features 
of taxi demand, we introduced the ConvLSTM34 network, which helps establish time-series relationships from 
two-dimensional plane data and extract spatial relationships. The difference with LSTM is that the convolution 
is employed as the operation between the input and each gate, which helps to extract both temporal features and 
spatial features.

The operation could be formulated as follows:

where it , ft and ot denote input gate, forget gate, and output gate, respectively. Xt and ct denote the input and cell 
state of the network at time t, respectively. Each w and b represent the weight and bias of each gate respectively. 
∗ denotes the convolution operation,   ⊗ means the Hadamard product and σ is the logistic sigmoid function.

We input the temporal closeness subsequence Fsc = [Fs(t − n), Fs(t − n+ 1), . . . , Fs(t − 1)] into the Con-
vLSTM network to generate local spatio-temporal features Fclose . Formally,

where wclose are all learnable parameters.

Potential temporal periodicity feature learning.  Due to the regularity of people’s daily life, traffic data 
usually show apparent cycles and trends. However, most researchers currently model the taxi demand forecast-
ing problem using data from only a few intervals (typically several hours). They ignore a vital property of spatio-
temporal prediction: long-term dependence (such as potential periodicity)35. Therefore, this section will focus 
on the learning method of the multi-period mode.

(1)	 Potential daily periodic feature learning

The demand for taxis in the area around times square for four consecutive days is shown in Fig. 8. It could be 
observed from the figure that there is a significant similarity in demand for taxis at the same time on different 

(13)

it = σ(wxi∗Xt + whi∗ht−1 + wci ⊗ ct−1 + bi)

ft = σ
(

wxf ∗Xt + whf ∗ht−1 + wcf ⊗ ct−1 + bf
)

ct = ft ⊗ ct−1 + it ⊗ tanh (wxc∗Xt + whc∗ht−1 + bc)

ot = σ(wxo∗Xt + who∗ht−1 + wco ⊗ ct + bo)

ht = ot ⊗ tanh(ct)

(14)Fclose = ConvLSTM
(

Fsc ,wclose

)

Figure 7.   The spatial attention.

Figure 8.   Daily periodicity.
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days. To learn this potential daily periodic pattern, we denoted the daily relative time interval demand sequence 
as:

where p is the total number of time intervals in a day, and sp is the number of periods of potential daily periodicity.
In the DayNet module, we first concatenate the sequence Rday in the time dimension, and then use a 3D 

convolutional layer to extract features.

where wday is the learnable parameters.
To perceive which day had the most significant stimulus (i.e., relevance) to our prediction, we further con-

structed a SVAtt module. (The details of this attention will be expanded in the next section). We input the 
extracted feature Fpday into SVAtt.

(2)	 Potential weekly periodic feature learning

Similarly, we drew a heat map of the demand situation in the New York times square area for four consecutive 
weeks, as shown in Fig. 9. From the figure, we can conclude that the taxi demand pattern also has significant 
similarities at the same time in different weeks. We denoted the weekly relative time interval demand sequence as:

where q is the total number of time intervals in a week, and sq is the number of periods of potential weekly 
periodicity.

In the WeekNet module, we use the same approach as in the DayNet module. That is, convolutional network 
and SVAtt were used to capture the potential weekly periodic patterns.

where wweek is the learnable parameter.

Stimulating variety attention.  In the previous section, when learning the potential daily periodic fea-
tures, the contribution of the demand of the previous sp days to the forecast was not equal. For example, the 
impact of the same time for yesterday on the prediction performance may be more significant than that of the 
day before yesterday, or because of travel restrictions such as car restriction in some areas, people’s travel pat-
terns may become more similar on alternate days. Similarly, we believe that similar travel patterns also exist 
in potential weekly cyclical features. To solve the inconsistent contribution of daily (weekly) data to predictive 
performance, we propose the SVAtt, which could assign different weights to daily (weekly) demand from two 
aspects, potential daily periodicity, and potential weekly periodicity.

We detailed each step of the SVAtt module as follows: We first input Fpday into a fully connected layer with sp 
neural units, and then activated it with Softmax to obtain the attention weight vector wday.

(15)Rday =
[

R
(

t − sp × p
)

,R
(

t −
(

sp − 1
)

× p
)

, . . . ,R
(

t − p
)]

(16)F
p
day = Conv

(

Rday ,wday

)

(17)Fday = SVAtt
(

F
p
day

)

(18)Rweek =
[

R
(

t − sq × q
)

,R
(

t −
(

sq − 1
)

× q
)

, . . . ,R
(

t − q
)]

(19)F
p
week = Conv(Rweek ,wweek)

(20)Fweek = SVAtt
(

F
p
week

)

Figure 9.   Weekly periodicity.
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We further multiplied the Fpday with the attention weight wday to obtain the potential daily periodic feature 
weighted by attention. Formally:

where  ⊗ denotes the Hadamard product.
Similarly, for the potential weekly periodic feature learning module, we use the same method for processing, 

and the processing process could be expressed as:

where the fully connected layer has sq neural units.

Features fusion.  This section discusses the fusion method of the three components of local spatio-temporal 
features, potential daily periodic features, and potential weekly periodic features. As shown in Fig. 5, we denoted 
these three parts as Fclose , Fday and Fweek , respectively. It should be noted that different regions are affected by 
these three components, but the degree of influence may be different. For some regions, closeness dependence is 
often particularly significant, while for other regions, long-term dependence is more important. Therefore, when 
fusing the above three components, we fully considered the different contributions of these three components 
from historical data.

where ⊗  is the element-wise multiplication, wrc , wrd and wrw are learnable parameters that reflect the degrees 
of the closeness influence, the daily period influence, and the weekly period influence on the predicted target.

Finally, we input Fres into a convolutional layer and an activation layer to obtain the taxi OD demand predic-
tion value, R̂(t) at the time interval t, which is expressed as:

where f  is the tanh activation function, and wres is the learnable parameter.

Implementation details.  We divided Manhattan into a 15 × 5 grid map based on the longitude and lati-
tude. That is, H is 15 and W is 5. We implemented our model with the Tensorflow-2.5 framework on NVIDIA 
3080 GPU. The input to the model consists of eleven historical observations, including five temporal closeness 
components, three daily periodic components, and three weekly periodic components. That is, n is 5, P is 3, and 
Q is 3. In the LSTN module, the number L of residual units was set to 2, and all convolution layers in ConvLSTM 
had 32 filters. For the DayNet and WeekNet sub-network, the convolutional layer had 32 filters and sp, sq were 
3 respectively. For the whole model, the batch size was set to 32, the learning rate was 0.001 in the pre-training 
model and 0.0001 in the later training, and early stopping on the validation dataset was employed. We used 
Adam36 optimizer for training to minimize Mean Squared Error.

Conclusions
To address the challenge of taxi service demand prediction in smart cities, we propose a Multi-Sensory Stimulat-
ing Attention (MSSA) Model for CTSDP. Like the human perception mechanism, the MSSA model integrates 
detail perception attention and stimulating variety attention to learn the characteristics of historical demand 
data at the macro and micro levels. The multiple periodical modules were combined to capture potential spatio-
temporal periodicity features from massive taxi service demand data.

Extensive experiments and evaluations were conducted on the taxi travel record dataset in Manhattan, New 
York. The results showed that the MSSA outperforms the baseline methods. Specifically, compared with the 
state-of-the-art methods, the MSSA reduced the MAPE and RMSE by 18.29% and 27.66% in the Origin demand 
forecasting, and 5.26% and 5.30% in the Origin–Destination demand forecasting, respectively. Further analysis 
showed the effectiveness of multi-sensory stimulating attention and multiple periodicity feature learning.

The MSSA could be applied in smart cities to improve traveling service quality and also help to reduce 
pollution emissions. In the future, the MSSA could also be extended by learning more periodic patterns and 
incorporating more context information.

Data availability
The yellow taxi trip records data related to this study is accessible using the following links: https://​www1.​nyc.​
gov/​site/​tlc/​about/​tlc-​trip-​record-​data.​page. The meteorological data related to this study is accessible using the 
following link: https://​www.​wunde​rgrou​nd.​com.

(21)Wday = Softmax
(

Liner
(

F
p
day

))

(22)Fday = F
p
day ⊗ wday

(23)Wweek = Softmax
(

Liner
(

F
p
week

))

(24)Fweek = F
p
week ⊗Wweek

(25)Fres = wrc ⊗ Fclose + wrd ⊗ Fday + wrw ⊗ Fweek

(26)R̂(t) = f (Conv(Fres ,wres))

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.wunderground.com


12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3065  | https://doi.org/10.1038/s41598-022-07072-z

www.nature.com/scientificreports/

Received: 30 September 2021; Accepted: 10 February 2022

References
	 1.	 Tong, Z., Ye, F., Yan, M., Liu, H. & Basodi, S. A survey on algorithms for intelligent computing and smart city applications. Big 

Data Min. Anal. 4, 155–172 (2021).
	 2.	 Pang, J., Huang, Y., Xie, Z., Li, J. & Cai, Z. Collaborative city digital twin for the COVID-19 pandemic: A federated learning solu-

tion. Tsinghua Sci. Technol. 26, 759–771 (2021).
	 3.	 Lin, C. et al. Spatiotemporal congestion-aware path planning toward intelligent transportation systems in software-defined smart 

city IoT. IEEE Internet Things J. 7, 8012–8024 (2020).
	 4.	 Riascos, A. & Mateos, J. L. Networks and long-range mobility in cities: A study of more than one billion taxi trips in New York 

City. Sci. Rep. 10, 1–14 (2020).
	 5.	 Wang, F. et al. 6G-enabled short-term forecasting for large-scale traffic flow in massive IoT based on time-aware Locality-Sensitive 

Hashing. IEEE Internet Things J. 8, 5321–5331 (2020).
	 6.	 Liu, Y. et al. An attention-based category-aware GRU model for the next POI recommendation. Int. J. Intell. Syst. 36, 3174–3189. 

https://​doi.​org/​10.​1002/​int.​22412 (2021).
	 7.	 Nikparvar, B., Rahman, M., Hatami, F. & Thill, J.-C. Spatio-temporal prediction of the COVID-19 pandemic in US counties: 

Modeling with a deep LSTM neural network. Sci. Rep. 11, 1–12 (2021).
	 8.	 Gou, Y., Zhang, T., Liu, J., Wei, L. & Cui, J.-H. DeepOcean: A general deep learning framework for spatio-temporal ocean sensing 

data prediction. IEEE access 8, 79192–79202 (2020).
	 9.	 Guo, S., Lin, Y., Li, S., Chen, Z. & Wan, H. Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting. 

IEEE Trans. Intell. Transp. Syst. 20, 3913–3926 (2019).
	10.	 Dong, L., Zhang, H., Ji, Y. & Ding, Y. Crowd counting by using multi-level density-based spatial information: A Multi-scale CNN 

framework. Inf. Sci. 528, 79–91 (2020).
	11.	 Li, A., Chen, R., Farimani, A. B. & Zhang, Y. J. Reaction diffusion system prediction based on convolutional neural network. Sci. 

Rep. 10, 1–9 (2020).
	12.	 Zhang, J. et al. Predicting citywide crowd flows using deep spatio-temporal residual networks. Artif. Intell. 259, 147–166 (2018).
	13.	 Liu, Z., Chen, H., Sun, X. & Chen, H. Data-driven real-time online taxi-hailing demand forecasting based on machine learning 

method. Appl. Sci. 10, 6681 (2020).
	14.	 Luo, H., Cai, J., Zhang, K., Xie, R. & Zheng, L. A multi-task deep learning model for short-term taxi demand forecasting consider-

ing spatiotemporal dependences. J. Traffic Transp. Eng. (English Edition) 8, 83–94 (2021).
	15.	 Xu, J., Rahmatizadeh, R., Bölöni, L. & Turgut, D. Real-time prediction of taxi demand using recurrent neural networks. IEEE Trans. 

Intell. Transp. Syst. 19, 2572–2581 (2017).
	16.	 Liu, Z., Liu, Y., Lyu, C. & Ye, J. Building personalized transportation model for online taxi-hailing demand prediction. IEEE Trans. 

Cybern. (2020).
	17.	 Wang, Y., Xu, D., Peng, P., Xuan, Q. & Zhang, G. An urban commuters’ OD hybrid prediction method based on big GPS data. 

Chaos Interdiscip. J. Nonlinear Sci. 30, 093128 (2020).
	18.	 Zhao, J., Chen, C., Huang, H. & Xiang, C. Unifying Uber and taxi data via deep models for taxi passenger demand prediction. 

Personal Ubiquitous Comput., 1–13 (2020).
	19.	 Rodrigues, F., Markou, I. & Pereira, F. C. Combining time-series and textual data for taxi demand prediction in event areas: A 

deep learning approach. Inf. Fusion 49, 120–129 (2019).
	20.	 Liu, L. et al. Contextualized spatial–temporal network for taxi origin-destination demand prediction. IEEE Trans. Intell. Transp. 

Syst. 20, 3875–3887 (2019).
	21.	 Ke, J. et al. Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph 

convolutional network. Transp. Res. Part C Emerg. Technol. 122, 102858 (2021).
	22.	 Chen, D., Wang, J. & Xiong, C. Research on origin‐destination travel demand prediction method of inter‐regional online taxi 

based on SpatialOD‐BiConvLSTM. IET Intell. Transp. Syst. (2021).
	23.	 Rao, A. R. An oscillatory neural network model that demonstrates the benefits of multisensory learning. Cogn. Neurodyn. 12, 

481–499 (2018).
	24.	 Fordell, H., Bodin, K., Eklund, A. & Malm, J. RehAtt–scanning training for neglect enhanced by multi-sensory stimulation in 

Virtual Reality. Top. Stroke Rehabil. 23, 191–199 (2016).
	25.	 Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 73, 273–282 

(2011).
	26.	 Hutcheson, G. D. Ordinary Least-Squares Regression 224–228 (L. Moutinho and GD Hutcheson, 2011).
	27.	 Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd acm sigkdd International Conference 

on Knowledge Discovery and Data Mining. 785–794. https://​doi.​org/​10.​1145/​29396​72.​29397​85 (2016).
	28.	 Zhang, J., Zheng, Y. & Qi, D. Deep spatio-temporal residual networks for citywide crowd flows prediction. Thirty-first AAAI Conf. 

Artif. Intell. https://​doi.​org/​10.​1016/j.​artint.​2018.​03.​002 (2017).
	29.	 TLC Trip Record Data, https://​www1.​nyc.​gov/​site/​tlc/​about/​tlc-​trip-​record-​data.​page (2014).
	30.	 Meteorological Data, https://​www.​wunde​rgrou​nd.​com/ (2014).
	31.	 Yao, H. et al. Deep multi-view spatial-temporal network for taxi demand prediction. in Proceedings of the AAAI Conference on 

Artificial Intelligence. (2018).
	32.	 Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. 

IEEE Trans. Image Process. 26, 3142–3155 (2017).
	33.	 Woo, S., Park, J., Lee, J.-Y. & Kweon, I. S. Cbam: Convolutional block attention module. in Proceedings of the European conference 

on computer vision (ECCV). 3–19. https://​doi.​org/​10.​1007/​978-3-​030-​01234-2_1 (2018).
	34.	 Xingjian, S. et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. in Advances in neural 

information processing systems. 802–810 (2015).
	35.	 Yin, X. et al. Deep learning on traffic prediction: Methods, analysis and future directions. IEEE Transactions on Intelligent Trans-

portation Systems (2021).
	36.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. Preprint https://​arxiv.​org/​abs/​1412.​6980 (2014).

Acknowledgements
Portions of this research were funded through the projects of the National Natural Science Foundation of 
China (41971340, 41471333, 61304199), projects of Fujian Provincial Department of Science and Technology 
(2021Y4019, 2020D002, 2020L3014, 2019I0019), and the Foundation of Fujian Provincial Universities Key Labo-
ratory of Industrial Control and Data Analysis (Fujian University of Technology) (KF-X19013).

https://doi.org/10.1002/int.22412
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.artint.2018.03.002
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.wunderground.com/
https://doi.org/10.1007/978-3-030-01234-2_1
https://arxiv.org/abs/1412.6980


13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3065  | https://doi.org/10.1038/s41598-022-07072-z

www.nature.com/scientificreports/

Author contributions
Y.W. conceived the initial idea and designed the research together with L.L. and F.Z., and S.B. participated in 
the experiment and data processing. J.S. and Q.S. assisted in the organization of the “Results” section, while 
also aiding in the justifications of the “Method” section. All authors discussed the results and contributed to the 
writing and editing of the paper.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A multi-sensory stimulating attention model for cities’ taxi service demand prediction
	Results and discussion
	Prediction results and overall performance analysis. 
	Performance analysis on different days. 
	Effectiveness of multi-sensory stimulating attention. 
	Influence of sequence length. 
	Effect with different periodic modules. 

	Methods
	Taxi trip records data. 
	Data enhancement. 
	Data preprocessing. 
	Model framework overview. 
	Local spatial feature learning. 
	Heterogeneous information fusion. 
	Detail perception attention. 
	Local temporal feature learning. 
	Potential temporal periodicity feature learning. 
	Stimulating variety attention. 
	Features fusion. 
	Implementation details. 

	Conclusions
	References
	Acknowledgements


