
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2022) 36:29
https://doi.org/10.1007/s10458-022-09556-8

1 3

Explaining BDI agent behaviour through dialogue

Louise A. Dennis1 · Nir Oren2 

Accepted: 4 April 2022
© The Author(s) 2022

Abstract
BDI agents act in response to external inputs and their internal plan library. Understanding
the root cause of BDI agent action is often difficult, and in this paper we present a dialogue
based approach for explaining the behaviour of a BDI agent. We consider two dialogue
participants who may have different views regarding the beliefs, plans and external events
which drove agent action (encoded via traces). These participants make utterances which
incrementally reveal their traces to each other, allowing them to identify divergences in the
traces, or to conclude that their traces agree. In practice, we envision a human taking on the
role of a dialogue participant, with the BDI agent itself acting as the other participant. The
dialogue then facilitates explanation, understanding and debugging of BDI agent behav-
iour. After presenting our formalism and its properties, we describe our implementation of
the system and provide an example of its use in a simple scenario.

Keywords  BDI · Dialogues · Explanation

1  Introduction

Belief, Desire Intention (BDI) based approaches to agent reasoning are very popular, with
applications ranging from air traffic management [33], to e-Health [13]. The formal basis
of BDI systems facilitate formal validation and verification, and provide guarantees as to
their actions [12] and to the states the system will, or will not reach. However, understand-
ing why a BDI-based system acted as it did is difficult, requiring working through plans
and subplans while tracking the system’s internal state.

Researchers have noted that dialogue is a potentially useful tool to explain the behav-
iour of complex AI artefacts [7], and in this paper we propose a dialogue based approach
to reasoning about BDI system behaviour. As our departure point, we consider the case
where two dialogue participants (which we may also refer to as agents) hold — possibly
different — views about the content of a BDI program and the environment in which it

 *	 Nir Oren
	 n.oren@abdn.ac.uk

	 Louise A. Dennis
	 louise.dennis@manchester.ac.uk

1	 University of Manchester, Manchester, UK
2	 University of Aberdeen, Aberdeen, UK

http://orcid.org/0000-0002-4854-9014
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-022-09556-8&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2022) 36:29

1 3

 29   Page 2 of 27

executes. Our dialogue is then designed to pinpoint where disagreement between dialogue
participants exists. Such disagreement could, for example, lie in different views regarding
what plans drive the BDI system; their priorities; or differences in inputs or initial beliefs
of the system. Our dialogue then enables at least one dialogue participant to locate a disa-
greement (if one exists); and alternatively allows it to determine if no disagreement exists.
We assume that in the case of multiple disagreements the dialogue can take place multi-
ple times, with the dialogue participants’ beliefs updated between each dialogue instance.
Importantly, we do not consider how participants update their beliefs during or following a
dialogue, with such belief revision lying outside the scope of the current work.

Our main contribution is the description and formalisation of the explanatory dialogue,
enabling the identification of, and explanation for, the reasons why a BDI system behaved
as it did. We focus on this formal aspect here and emphasise that natural language genera-
tion and utterance presentation from similar work (e.g., [7, 21]) lies outside the scope of
this paper. Unlike such work, we do not provide a formal argumentation-based underpin-
ning to our dialogue.

The remainder of the paper is structured as follows. In the next section, we discuss why
explanation is necessary, and the benefits of explainability in AI systems. Section 3 intro-
duces a simple BDI language and formalises our environment. Section 4 introduces the
dialogue. We examine the properties of the dialogue in Sect. 5 and provide an illustrative
example in Sect. 6. Section 8 contains detailed discussion, including a comparison with
existing work. Section 9 concludes by considering avenues for future research.

2 � Explainable systems

While there is significant interest in explainable AI systems [19], much such work revolves
around explaining the inferences made by (otherwise opaque) machine learning systems. In
this context, researchers argue that explainability has multiple benefits, including improv-
ing stakeholder trust in such systems [27], detecting biases [26], and ultimately improving
their design [4].

Our focus here is instead on symbolic systems, and more specifically, BDI-based agent
systems. The BDI-based approach to programming follows the declarative logic-program-
ming tradition, based on a folk-psychology model of reasoning. In other words, one could
ascribe that a system behaves as it does due to the beliefs, desires and intentions present
within the system at some point in time. While BDI systems have other advantages (e.g.,
naturally reacting to changes in their environment), it has long been claimed that the intui-
tive understanding of these folk-psychological concepts make programming such systems
simple, and that the explanation of behaviour of such systems can follow human intuitions.
Implementations of BDI systems have shown that explanations of system behaviour are
however not so easy to perform.

One reason for this difficulty — arguably — lies in the way BDI systems are imple-
mented. As discussed in Sect. 3, most BDI systems consist of a set of beliefs (logical facts
about the world), a set of desires (implemented as goals the system may wish to achieve)
and a set of intentions, instantiated from a set of plans. Plan steps either affect the envi-
ronment outside the BDI system (by undertaking physical actions in the environment), or
affect the system’s reasoning process by adding or removing beliefs, or identifying new
goals that should be achieved. Given some context (i.e., a set of beliefs held by the system,
current goals and possibly events from the environment), a subset of plans is selected to

Autonomous Agents and Multi-Agent Systems (2022) 36:29 	

1 3

Page 3 of 27  29

achieve some goals, and the instantiation of these plans represent the intentions that the
system will attempt to achieve.

Plans within the BDI system are usually hierarchical and nested; a high-level plan will
specify some goals which lower level plans can achieve. Plans — especially at a low level
— are often at too fine a level of granularity to be easily understood, and can also make use
of non-intuitive programming language constructs to achieve their low level effects. The
cognitive effort required to understand such plans is therefore potentially not much differ-
ent to that required to understand and debug programs in other programming languages.

In contrast to the above, humans often use enthymemes in explanation to other humans,
skip low level details that (they believe) the party they are providing explanation to already
knows, and are able to focus on areas where explanation is actually necessary. A funda-
mental aspect of this is the presence of dialogue. The party obtaining the explanation is
able to guide the explainer through the use of questions in the dialogue, homing in on disa-
greements, skipping points of agreement and what they already know. We therefore believe
that the use of dialogue has the potential to drive explanation of BDI systems, both because
they map onto human concepts, and — in the case of BDI systems — that such dialogue
can allow for utterances about the intuitively understood concepts such as beliefs, goals,
desires and intentions. Finally, dialogue also allows us to provide an explanation at the
correct level, presenting both high-level beliefs and plans which explain the behaviour, and
the lower-level beliefs which trigger or created the higher level beliefs, in response to the
requirements of the party requiring explanation.

3 � The SimpleBDI language

We begin this section by introducing a language which captures the fundamental features
of more complex BDI languages. We then discuss the relationship between our simple lan-
guage and more feature rich languages.

3.1 � SimpleBDI

We introduce a very simple BDI language, SimpleBDI, which we will use to illustrate our
ideas. SimpleBDI is designed to be as simple as possible, as its primary purpose is to dem-
onstrate the feasibility of our approach and enable its formalisation. SimpleBDI contains
the constructs which lie at the heart of more complex BDI languages, and is therefore an
appropriate underlying representation.

A SimpleBDI program consists of a set of plans � of the form �id ∶ B → I together
with an ordering ≥ over these plans. B (the plan’s guard) is a set of first order ground predi-
cates over some language L , and I is a [U, do(a)] pair. In turn, U is a set of belief updates of
the form +b,−b where b is a ground first order predicate, and a is an action, again denoted
using a ground first order predicate. Since some plans may only update beliefs rather
than execute an action, we introduce a special symbol null to denote the lack of action.
In addition, we assume the existence of an empty plan �null ∶ [] → [[], do(null)] . Plans are
assumed to be ordered by preference, and we write � ≥ �′ if � is either equally or more
preferred to �′ . Unlike most BDI languages, SimpleBDI does not explicitly model goals.
However, goals can be encoded through the introduction of a predicate of the form goal(g),
which is added and removed as a belief at appropriate times as part of plan execution.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:29

1 3

 29   Page 4 of 27

When writing SimpleBDI programs (e.g., Listing 3), we denote plan orderings by asso-
ciating a numeric priority with each plan. For example, the following plan has priority 3.

If multiple plans can be executed, then plans with a higher priority are selected over
plans with lower priority. We assume that the empty plan has lower priority than all other
plans. While this presupposes a total ordering over plan preferences, we note that this
choice is purely syntactic, and SimpleBDI’s semantics can also deal with partial preference
orderings over plans.

SimpleBDI programs execute plans based on beliefs and changes in the environment
(percepts). The latter is captured by an input trace �e of events external to the agent. Each
event is a list of belief updates, V, of the form +b or −b containing a single ground first
order predicate. The list of belief updates for a single event cannot contain contradictory
belief updates, i.e., +b,−b ∉ V .

The executor1 of a SimpleBDI program maintains a set of internal beliefs — denoted
B — encoded as a set of ground first order predicates, and is formally represented at a point
in time as a tuple

Here, B is a set of the executor’s beliefs; � is its plan library and ≥ its preference relation
over the plans within � ; � the current plan selected for execution; �e is the input trace; and
aex the (external) action executed by the executor agent at that time. stage ∈ {�, �, �} cap-
tures the current state of the executor; SimpleBDI programs run through repeated percep-
tion ( � ), plan selection ( � ), and plan execution ( � ) stages. Given a set of plans � represent-
ing a SimpleBDI program and an input trace �e the initial state of the executor is

Figure 1 summarises the semantics of SimpleBDI describing how the tuple representing
the executor evolves as a transition system (i.e., if Ei → Ei+1 in Fig. 1 then Ei becomes
Ei+1 as the system executes). A program execution trace is then the sequence of tuples
[E1,… ,En] where Ei+1 is obtained by executing a program over the input trace found in Ei
until the input trace is empty; the ∅ symbol denotes the end of program execution.

In the perception phase ( � ), the top of the input trace ( �e ) is consumed, updating the set
of beliefs B . The update itself is done through the update function, which takes a set of
belief updates and a set of beliefs as input, and returns an updated set of beliefs. Note that
during the remaining phases, no beliefs are consumed; a null perception is therefore con-
sumed during these phases.

The plan selection phase ( � ) proceeds by selecting an applicable plan using the select ,
gather and applicable functions respectively. The applicable function determines whether
a plan is applicable by checking whether the plan’s beliefs do, or do not, appear in the
belief base. All most preferred applicable plans are collected using the gather function,
and a plan is then selected from these (via select ). With no loss of generality, we assume

E = ⟨B,� ,≥,�, �e, aex, stage⟩

E = ⟨[],� ,≥, null, �e, null, �⟩

1  We use the term “executor” rather than agent to differentiate this entity from the agents undertaking dia-
logue about the execution of the SimpleBDI program.

Autonomous Agents and Multi-Agent Systems (2022) 36:29 	

1 3

Page 5 of 27  29

that this plan is selected at random. If no applicable plan exists, then the empty plan �null is
returned. The selected plan is recorded, to be used in the next phase.

Finally, the plan execution phase ( � ) takes the selected plan and updates the belief
base according to the plan’s effects. In addition, any action a executed due to the plan is
recorded. The cycle then begins again with a new perception phase.

Example 1  Listing 1 shows a simple program in SimpleBDI (i.e., the plans, � , used by
the program executor). In this program a robotic system (for instance a Mars Rover), must
move from its starting position to a waypoint and then on to a final location to take a sam-
ple. It does this if it believes it has received a message take_sample. It then uses move1 to
move from the starting point to the waypoint (if it believes the terrain is safe) and then uses
move2 to move from the waypoint to the location where it should take the sample by drill-
ing (again if it believes the terrain is safe). We omit “do(null)” for plans with no associated
actions.

〈B, Π,≥, π, [], aex, p〉 → ∅
〈B, Π,≥, π, [V |τe], aex, p〉 → 〈update(V,B), Π,≥, π, τe, null, s〉

〈B, Π,≥, π, [null|τe], aex, s〉 → 〈B, Π,≥, select(B, Π), τe, null, e〉
〈B, Π,≥, πid : B → [U, do(a)], [null|τe], aex, e〉 → 〈update(U,B), Π,≥, null, τe, a, p〉

update([],B) = B
update([+b|B],B) = update(B,B ∪ {b})
update([−b|B],B) = update(B,B\{b})

select(B, Π) = an element of gather(B, Π, {})

gather(B, [], G) =

{
{πnull} if G = {}
G otherwise

gather(B, [π : B → I|Π], G) =






gather(B, Π,G) if ¬applicable(B, B) or there is a π′ :
B′ → ∈ Π s.t. applicable(B, B′) and
π′ ≥ π and π �≥ π′

gather(B, Π,G ∪ {π}) otherwise

applicable(B, []) = �

applicable(B, b : B) =

{
applicable(B, B) if b ∈ B
⊥ otherwise

applicable(B,¬b : B) =

{
applicable(B, B) if b B∈�
⊥ otherwise

Fig. 1   SimpleBDI semantics. ∅ denotes termination of execution

	 Autonomous Agents and Multi-Agent Systems (2022) 36:29

1 3

 29   Page 6 of 27

So for instance, the second plan (lines 4—6) states that if the agent perceives that it is
at the start (belief at_start), and the terrain is safe (belief safe_terrain) and it
has received a message telling it to take a sample (belief goal_at_location) then it
will move to the waypoint (via the external action move1), adding the belief that it is at
the waypoint (via +at_waypoint) to its knowledge base, and no longer believing that
it is at the start location (due to the -at_start plan effect). At this point, if it no longer
perceives the terrain is safe it will not move further. However if it continues to believe the
terrain is safe it will move to the final location (using the plan in lines 8—11) and which in
turn triggers the remaining plan in the program: to drill for a sample (lines 13—15).

Given a program and an initial state — which includes an input trace — the state of
the executor at each step of the program execution trace describes the internal state of the
executor and its effects (actions) on the environment. Table 1 illustrates an example trace
obtained by running 1. To improve readability, we only show the head of the event stack at
each time point.

3.2 � Relationship of SimpleBDI to existing BDI languages

SimpleBDI lacks a number of features that are common in existing BDI languages such as
Jason [6] and 2APL [11]. Key among these are the existence of goals as first class objects,
the sequencing of multiple actions within plans, and the use of multiple intentions (allow-
ing, for instance, multiple goals to be pursued at once).

We argue that these features are important for programming and engineering purposes,
but they complicate the formalism, and their behaviour can be reproduced in SimpleBDI—
though at the expense of more verbose and opaque programs. This means that languages
containing such features can still employ the dialogue mechanism proposed here in the
context of SimpleBDI. We present below an informal transformations from programs with
these features into programs without them. We note that, in practice, adapting a language
with such features to produce dialogues meaningful to a user or programmer by transform-
ing programs and traces in such a language into ones equivalent to SimpleBDI programs
and traces will be non-trivial.

Autonomous Agents and Multi-Agent Systems (2022) 36:29 	

1 3

Page 7 of 27  29

Ta
bl

e 
1  

T
he

 tr
ac

e
ob

ta
in

ed
 w

he
n

ex
ec

ut
in

g
C

od
e

Li
sti

ng
 1

Ti
m

e
St

ag
e

Ev
en

t s
ta

ck
 h

ea
d

B
el

ie
fs

C
ur

re
nt

 p
la

n
A

ct
io

n

0
p

+
ta

ke
_s

am
pl

e,

+
at

_s
ta

rt,
 +

sa
fe

_
te

rr
ai

n

∅
nu

ll
nu

ll

1
s

nu
ll

{a
t_

st
ar

t,
ta

ke
_s

am
pl

e,
 sa

fe
_t

er
ra

in
}

nu
ll

nu
ll

2
e

nu
ll

{a
t_

st
ar

t,
ta

ke
_s

am
pl

e,
 sa

fe
_t

er
ra

in
}

ta
ke

_s
am

pl
e-

(4
)>

 -t
ak

e_
sa

m
pl

e,
 +

go
al

_a
t_

lo
ca

tio
n

nu
ll

3
p

nu
ll

{a
t_

st
ar

t,
sa

fe
_t

er
ra

in
, g

oa
l_

at
_l

oc
at

io
n}

nu
ll

nu
ll

4
s

nu
ll

{a
t_

st
ar

t,
sa

fe
_t

er
ra

in
, g

oa
l_

at
_l

oc
at

io
n}

nu
ll

nu
ll

5
e

nu
ll

{a
t_

st
ar

t,
sa

fe
_t

er
ra

in
, g

oa
l_

at
_l

oc
at

io
n}

go
al

_a
t_

lo
ca

tio
n,

 a
t_

st
ar

t,
sa

fe
_t

er
ra

in
-(

4)
>

 +
at

_w
ay

po
in

t,
-a

t_
st

ar
t,d

o(
m

ov
e1

)
nu

ll
6

p
nu

ll
{a

t_
w

ay
po

in
t,

sa
fe

_t
er

ra
in

, g
oa

l_
at

_l
oc

at
io

n}
nu

ll
m

ov
e1

7
s

nu
ll

{a
t_

w
ay

po
in

t,
sa

fe
_t

er
ra

in
, g

oa
l_

at
_l

oc
at

io
n}

nu
ll

nu
ll

8
e

nu
ll

{a
t_

w
ay

po
in

t,
sa

fe
_t

er
ra

in
, g

oa
l_

at
_l

oc
at

io
n}

at
_w

ay
po

in
t,

sa
fe

_t
er

ra
in

, g
oa

l_
at

_l
oc

at
io

n-
(2

)>
 +

at
_l

oc
at

io
n,

 +
go

al
_t

ak
e_

sa
m

pl
e,

 -a
t_

w
ay

po
in

t,
-g

oa
l_

at
_l

oc
at

io
n,

 d
o(

m
ov

e2
)

nu
ll

9
p

nu
ll

{a
t_

lo
ca

tio
n,

 g
oa

l_
ta

ke
_s

am
pl

e,
 sa

fe
_t

er
ra

in
}

nu
ll

m
ov

e2
10

s
nu

ll
{a

t_
lo

ca
tio

n,
 g

oa
l_

ta
ke

_s
am

pl
e,

 sa
fe

_t
er

ra
in

}
nu

ll
nu

ll
11

e
nu

ll
{a

t_
lo

ca
tio

n,
 g

oa
l_

ta
ke

_s
am

pl
e,

 sa
fe

_t
er

ra
in

}
at

_l
oc

at
io

n,
 g

oa
l_

ta
ke

_s
am

pl
e-

(1
)>

 d
o(

dr
ill

),
-g

oa
l_

ta
ke

_s
am

pl
e

nu
ll

12
p

nu
ll

{a
t_

lo
ca

tio
n,

 sa
fe

_t
er

ra
in

}
nu

ll
dr

ill

	 Autonomous Agents and Multi-Agent Systems (2022) 36:29

1 3

 29   Page 8 of 27

3.2.1 � Goals

As can be seen in our sample programs we advocate representing goals as beliefs in
SimpleBDI. BDI theory categorises goals as perform goals, achievement goals and
maintenance goals each with different behaviours. In general maintenance goals are
not widely implemented as first class objects so we omit discussion of them here. Lan-
guages vary over whether they implement perform and/or achievement goals. A perform
goal exists as the trigger for the application of a plan but there is no check on whether
the goal itself is achieved after the plan has been executed. The behaviour of this type of
goal is easily reproduced using beliefs since the belief can be used in a SimpleBDI plan
guard and the belief itself then removed by the plan’s belief updates. An achievement
goal persists until some state of the world is bought about – typically given some logi-
cal term t a goal to achieve t persists until a belief t is acquired. In this case, again, we
can model the goal as belief but instead of removing the goal in the belief update of any
plan that includes the goal in its guard, we instead have a separate plan which removes
the belief representing the goal when the desired state of the world comes about. An
example of how SimpleBDI implements perform goals is shown in the last plan of code
listing 1, where goal_take_sample is removed when drilling occurs, while an
achievement goal is captured in the third plan of code listing 1, which checks whether
one has reached the goal location before removing it form the belief base.

3.2.2 � Action sequences

A plan that contains a sequence of actions can be implemented by chaining together
a set of SimpleBDI plans. For instance, suppose in some situation, represented by a
plan guard, G, we want to execute a1 followed by a2 and, potentially make some set of
belief updates, U. This means we want a plan of the form � ∶ B → [U, do(a1);do(a2)]
- we represent this in SimpleBDI as �1 ∶ B → [+b1, do(a1)] (a plan to perform the
first action and then add some “placeholder” belief b1 ) and then a second plan
�2 ∶ [b1] → [U ∪ {−b1}, do(a2)] (a plan that performs the second action, removes the
placeholder belief and performs the desired plan update). Assuming an appropriate pri-
ority ordering on plans this will have the same behaviour as a single plan that sequences
the two actions.

3.2.3 � Multiple intentions

Multiple intentions are needed in the context of sequences of actions in plans where there
may be occasions where interleaved execution of actions between two plans is required.
For instance, the program might have a plan that moves a robot to some location and per-
forms a measurement, but also needs to have a second plan that can execute an emergency
halt or take additional measurements in response to specific stimuli while the first move-
ment action is executing. Since we do not have sequencing of actions within plans, we do
not actually need multiple intentions to reproduce this behaviour but can instead rely on
appropriate priorities between single action plans. This is illustrated in code listing 2 where
movement will occur until the system detects it is in danger, and then prioritise corrective
action over further movement.

Autonomous Agents and Multi-Agent Systems (2022) 36:29 	

1 3

Page 9 of 27  29

The ease with which goals and multiple intentions can be encoded within SimpleBDI
leads us to believe that most programs in well-known BDI languages can easily be trans-
formed to SimpleBDI programs and, similarly, that their traces can be transformed into
SimpleBDI traces for the purposes of generating explanatory dialogues. The formal parts
of our dialogue mechanism therefore do not need to explicitly handle these features though
we note that the presentation of utterances to users in a way that is meaningful given their
understanding of an agent’s program will be non trivial in more complex languages; we
leave further investigation of this to future work.

4 � Dialogues

The semantics of SimpleBDI allow us to determine how a program will execute (for a given
initial state). However, systems executing such programs are often opaque, and understand-
ing why some behaviour occurred with only partial knowledge of an execution’s inputs
and internal workings may be difficult, requiring (at best) tracing through multiple layers
of plans, and (at worst) guessing as to what some beliefs and system events were. The aim
of this paper is to help facilitate an understanding of program behaviour in such situations.

To this end we consider a dialogue between two participants who may have partial
access to the program execution trace, and have their own model of the executing system.
Our dialogue seeks to identify differences between the participants’ models so as to iden-
tify disagreements. Such differences could arise due to differences in the plans the dialogue
participants believe the executor has; a divergence with regards to the beliefs they believe
the executor holds; or different beliefs they have with regards to the various traces. If one
of the participants is the program executor (whose trace is correct), and another is a human
or system trying to understand the executor’s behaviour, then identifying a disagreement
means that an error in the latter’s assumptions or reasoning has been identified, and doing
so serves as a form of explanation of the executor’s behaviour.

We begin by providing the intuition behind our dialogue, after which we describe a
model of the dialogue participants. Finally, we formalise the dialogue by describing the
utterances or moves participants may make in the dialogue (c.f., dialogue games [32]).

4.1 � Dialogue — Intuitions

When applying the semantics correctly, differences between execution traces between dia-
logue participants arise due to differing plans within agent plan libraries or plan prece-
dence, due to different perceptions from the environment, or due to different initial beliefs,
as these drive the execution of the system and the resultant execution trace. The only exter-
nally visible effects of a running system are the actions it executes within the environment,

	 Autonomous Agents and Multi-Agent Systems (2022) 36:29

1 3

 29   Page 10 of 27

and our dialogue therefore begins by having one participant asking the other why, or why
not, an action was performed at some time.

Let us consider the evolution of a possible explanatory dialogue. If a dialogue partici-
pant asks another why an action did not take place, the latter can respond by asking the
former why they believe an action did take place. If on the other hand, a participant asks
why an action did take place, the explanation (i.e., response) involves identifying the (exe-
cuted) plan which triggered the action. When asked why a plan was executed, the response
involves demonstrating that the set of beliefs which triggered the plan held. When asked
why some belief held, a response involves either presenting the percept which caused the
belief, or the plan which led to the belief being adopted. In the latter case, the dialogue can
continue by providing an explanation for the plan.

When an assertion regarding a belief is presented it is also possible for a disagreement
to occur with the other dialogue participant asserting that the belief does not hold at the
relevant point in time. In such a situation, the dialogue can continue with the presentation
of a plan or percept which removes the belief. In the former case, the dialogue can continue
by providing an explanation for the plan. In the latter case, the presentation of the percept
should identify a disagreement between the dialogue participants.

The above paths through the dialogue help us identify natural points of dialogue termi-
nation. When a percept justifying a belief is presented, no further explanation is possible,
as such a percept originates from outside the BDI system. When stating that a plan was
executed, if the other dialogue participant is not aware of the plan (i.e., the plan is not
present in their plan library), or if they believe that a higher precedence plan exists, then
a disagreement has been identified which cannot be resolved by further discussion regard-
ing system execution. However, if an alternative plan is advanced, then the dialogue can
continue either by explaining why the plan should not have been executed (e.g., due to it
having a lower priority), or the agent querying what beliefs hold for the alternative plan to
have run. In the latter case, the dialogue participants reverse their roles, but the dialogue
can continue. Finally, If one dialogue participant asks another why an action took place (or
didn’t take place), and the latter believes that the action didn’t take place (did take place),
then no further discussion is possible. Figure 2 graphically describes this ordering of utter-
ances with regards to other utterances.

4.2 � Dialogue participant model

A dialogue participant is a tuple ⟨M,O,O⟩ where M,O and O are program execution
traces of a BDI program, and |M| = |O| = |O|.

Informally M represents the participants model of what should have happened – i.e.,
the program execution trace they believe to be correct, O represents their (partial) under-
standing of what the other participant’s trace looks like. O then captures commitments or
constraints that emerge on the other participant due to their utterances – specifically plans
the other participant has explicitly committed to not having been selected; beliefs explicitly
committed to not having been perceived on the input trace; and actions explicitly commit-
ted to not having been performed2.

We index a specific time point within the execution trace using array notation (e.g.,
M[5] ). Where the context is clear, we index individual portions of a BDI executor’s

2  We observe that some elements of the tuples stored within O are not referred to by the dialogue.

Autonomous Agents and Multi-Agent Systems (2022) 36:29 	

1 3

Page 11 of 27  29

state at a specific time in the same manner, identifying the program with a superscript.
For example, aM

ex
[5] refers to aex of BDI program execution trace M at time 5. Equiva-

lently, if — for example — some x ∈ �M
e
[5] , we may say that x holds in �M

e
 at time 5.

We refer to elements within O as B,� etc, indexing individual entries by time. We note
that — in the present system — the plan library � does not change, and therefore abuse
notation by referring to it without identifying a specific time point; we assume that any
operations on �M,�O and � apply to all time indices. Finally, we also assume that
stageM[T] = stageO[T] = stageO[T] for all 0 ≤ T < |M|.

Utterances made by one dialogue participant can affect the other participant’s view of
the utterer. Therefore, given one dialogue participant ⟨M,O,O⟩ , we refer to the other dia-
logue participant as ⟨M′

,O
′
,O

′
⟩ . We can, for example, index the other dialogue partici-

pant’s view of its own input trace at time T as ��
e

M[T].
The purpose of our dialogue is to allow a participant to identify disagreements or incon-

sistencies between itself and the other participant. Such disagreements can be recognised
as occurring between the M and O traces, or between the M and O traces.

•	 A disagreement can be detected when there is a difference in beliefs. That is, when one
dialogue participant is aware that some of the other participant’s beliefs are not a subset
of its own, or that the other participant is committed to facts that this participant knows
do not hold. Formally, for an index T, if BO[T] ⊈ B

M[T] , or if B[T] ∩ B
M[T] ≠ � then

a disagreement in belief has been identified. More specifically, the disagreement rests
on beliefs (BO[T]�BM[T]) ∪(B[T] ∩ B

M[T]).
•	 Another source of disagreement occurs when plan libraries differ between participants,

or plan priorities differ. That is, if 𝛱O ⊈ 𝛱M , or if 𝜋 > 𝜋′ according to �M , and
𝜋 ≯ 𝜋′ according to �O , or if there is some � ∈ � ,�M then a disagreement w.r.t. the
plan library has been identified. Such a dispute revolves around plans �,�′ or � respec-
tively.

•	 Disagreements can also occur when the participants disagree about which plan is exe-
cuted at some point in time. For an index T, if �O[T],�[T] ≠ null and �M[T] ≠ �O[T]

why(¬A,T) why(A,T)

did(A, T) assert(π, T) didnt(A, T)

not in library(π) why(π, T) accept(π, T) precedence(π,π)

assert(B, T, T)

assert(¬B, T, T)

why(¬B, T)

accept(¬B, T, T) accept(B, T, T)

why(B, T)

percept(−B, T)

percept(+B, T)

Fig. 2   A graphical description of which moves can follow which moves in the dialogue. Bold text identifies
the two possible starting moves

	 Autonomous Agents and Multi-Agent Systems (2022) 36:29

1 3

 29   Page 12 of 27

or � = �[T] then a disagreement in the executing plan has been identified. This dispute
centers on plan �.

•	 Another source of disagreement can arise if the participants believe that the physical
environment (in terms of percepts arriving to the system) differ. That is, if at any time
T the head of �M

e
 differs from the head of �O

e
 and �O

e
≠ null , then a disagreement in per-

ception (w.r.t. the respective heads of the lists) has been identified.
•	 Finally, a disagreement can revolve around what action the participants believe has

been executed by the system. This occurs if at any time T, aM
ex
[T] ≠ aO

ex
[T] ≠ null or

aM
ex
[T] = aex[T] , then a disagreement in action has been identified, based on the actions

identified.

For a disagreement to occur, the relevant element of O and O must not be ∅ . This reflects
the fact that as the dialogue progresses, O and O are updated and a disagreement only
occurs when an explicit difference is found.

4.3 � Dialogue initiation and termination

At the start of a dialogue all elements of O and O at all times are set to null (or ∅ for beliefs),
reflecting a lack of knowledge a dialogue participant has about the other participant.

The dialogue begins when one dialogue participant makes a why(A, T) or why(¬A,T)
move, asking why an action, A was, or was not performed at time T.

The dialogue continues as additional utterances are made by the participants in response
to previous utterances. Utterances are open until their closure condition occurs in the dia-
logue, at which point they are closed. The dialogue terminates when no open utterances
exist, i.e., when there is no legal move that any dialogue participant can make. Once the
dialogue terminates, disagreement(s) can be identified using the procedure described in the
previous section3.

4.4 � Utterances

During a dialogue, participants make different utterances. Table 2 describes these, when
they can be made (i.e., what move must be open for the utterance to be made), and their
intuitive meaning, aligning with the high level dialogue description provided in Sect. 4.1
and Fig. 2. Note that why(A, T) can be used to initiate the dialogue, or made in response
to a why(¬A,T) move. In other words, if a participant asks “Why did action A not occur?”,
asking “Why do you think action A should have occurred?” is a valid response, as it will
allow for a disagreement in views to be detected. Also note that the assertion of a plan
( assert(�,T) ) can be made in response to asking why an action took place, why a belief
was instantiated, or in response to the claim that some other plan should have been exe-
cuted. The intuition behind the latter is that a dialogue participant suggests that another
plan should have been executed. The dialogue can then continue to investigate why this is
the case.

3  The dialogue itself can be viewed as a collection of utterances. The status of each utterance can easily be
computed based on other utterances present within the dialogue.

Autonomous Agents and Multi-Agent Systems (2022) 36:29 	

1 3

Page 13 of 27  29

Ta
bl

e 
2  

L
eg

al
 d

ia
lo

gu
e

ut
te

ra
nc

es
 a

nd
 w

ha
t m

ov
es

 th
ey

 fo
llo

w
, a

s w
el

l a
s t

he
ir

in
tu

iti
ve

 m
ea

ni
ng

U
tte

ra
nc

e
Fo

llo
w

s
In

tu
iti

on

w
h
y
(¬
A
,
T
)

N
on

e
A

sk
s w

hy
 a

ct
io

n
A

di
d

no
t t

ak
e

pl
ac

e
at

 ti
m

e
T.

w
hy

(A
, T

)
N

on
e
w
h
y
(¬
A
,
T
)

A
sk

s w
hy

 a
ct

io
n

A
to

ok
 p

la
ce

 a
t t

im
e

T.
di

d(
A,

 T
)

w
h
y
(¬
A
,
T
)

A
ss

er
ts

 th
at

 a
ct

io
n

A
to

ok
 p

la
ce

 a
t T

. E
nd

s t
he

 d
ia

lo
gu

e.
di

dn
t(A

, T
)

w
hy

(A
, T

)
A

ss
er

ts
 th

at
 a

ct
io

n
A

di
d

no
t o

cc
ur

 a
t t

im
e

T.
 E

nd
s t

he
 d

ia
lo

gu
e.

a
ss
er
t(
�
,
T
)

w
h
y
(A
,
T
+
1
) w

h
y
(B
,
T
+
1
)

w
h
y
(¬
B
,
T
+
1
) a

ss
er
t(
�
� ,
T
)

A
ss

er
ts

 th
at

 p
la

n
�

 w
as

 se
le

ct
ed

 fo
r e

xe
cu

tio
n

at
 ti

m
e

T
in

 re
sp

on
se

 to
 a

 q
ue

sti
on

 re
ga

rd
in

g
w

hy
 a

n
ac

tio
n

or

be
lie

f h
el

d,
 o

r t
o

co
un

te
r a

 c
la

im
 th

at
 a

no
th

er
 p

la
n

w
as

 e
xe

cu
te

d
at

 ti
m

e
T.

n
o
t_
in
_
li
b
ra
ry
(�
)

a
ss
er
t(
�
,
T
)

St
at

es
 th

at
 th

e
di

al
og

ue
 p

ar
tic

ip
an

t i
s n

ot
 aw

ar
e

of
 p

la
n
�

 . E
nd

s t
he

 d
ia

lo
gu

e.
p
re
ce
d
en
ce
(�
,
�
�)

a
ss
er
t(
�
,
T
)

Fo
llo

w
s a

 se
co

nd
 a
ss
er
t(
�
� ,
T
) m

ov
e.

 S
ta

te
s t

ha
t p

la
n
�

 h
as

 e
qu

al
 o

r g
re

at
er

 p
re

ce
de

nc
e

th
an

 �
′  .

En
ds

 th
e

di
al

og
ue

.
a
cc
ep
t(
�
,
T
)

a
ss
er
t(
�
,
T
)

A
cc

ep
ts

 th
at

 p
la

n
�

 w
as

 se
le

ct
ed

 fo
r e

xe
cu

tio
n

at
 ti

m
e

T.
w
h
y
(�
,
T
)

a
ss
er
t(
�
,
T
)

A
sk

s w
hy

 p
la

n
�

 w
as

 se
le

ct
ed

 fo
r e

xe
cu

tio
n

at
 ti

m
e

T.
a
ss
er
t(
B
,
T
,
T
�)

w
h
y
(�
,
T
�
+
1
)

A
ss

er
ts

 th
at

 b
el

ie
f B

 e
xi

sts
 a

t a
ll

tim
es

 b
et

w
ee

n
T

an
d
T
′ (

in
cl

us
iv

e)
.

a
ss
er
t(
¬
B
,
T
,
T
�)

a
ss
er
t(
B
,
T
��
,
T
�)

A
ss

er
ts

 th
at

 B
 d

id
 n

ot
 e

xi
st

at
 a

ll
tim

es
 b

et
w

ee
n

T
an

d
T
′ .

a
cc
ep
t(
B
,
T
,
T
�)

a
ss
er
t(
B
,
T
,
T
�)

A
cc

ep
ts

 th
at

 B
 h

ol
ds

 b
et

w
ee

n
T

an
d
T
′ .

a
cc
ep
t(
¬
B
,
T
,
T
�)

a
ss
er
t(
¬
B
,
T
,
T
�)

A
cc

ep
ts

 th
at

 B
 d

oe
s n

ot
 h

ol
d

be
tw

ee
n

T
an

d
T
′ .

w
hy

(B
, T

)
as

se
rt(
B
,
T
,
T
�)

A
sk

s w
hy

 b
el

ie
f B

 e
xi

sts
 a

t t
im

e
T.

w
h
y
(¬
B
,
T
)

as
se

rt(
¬
B
,
T
,
T
�)

A
sk

s w
hy

 b
el

ie
f B

 d
oe

s n
ot

 e
xi

st
at

 ti
m

e
T.

p
er
ce
p
t(
+
B
,
T
)

w
h
y
(B
,
T
+
1
)

Ex
pl

ai
ns

 th
at

 B
 w

as
 p

er
ce

iv
ed

 a
t t

im
e

T
in

 re
sp

on
se

 to
 a

sk
in

g
w

hy
 it

 h
el

d
at

 th
e

ne
xt

 ti
m

e
po

in
t.

p
er
ce
p
t(
−
B
,
T
)

w
h
y
(¬
B
,
T
+
1
)

Ex
pl

ai
ns

 th
at

 B
 w

as
 p

er
ce

iv
ed

 b
ei

ng
 re

m
ov

ed
 a

t t
im

e
T.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:29

1 3

 29   Page 14 of 27

While Table 2 specifies what utterance can be made in response to a move, the contents
of a legal utterance are further constrained. Table 3 provides a semi-formal description of
each utterance, stating when a move can be made (the move condition), the move’s closure
condition, and move’s effect on dialogue participants. Within the table, _ is used, as in Pro-
log, to indicate that any instantiation of the relevant value may exist.

We assume that the same move cannot be repeated. A dialogue D is then a sequence
of moves [D1,… ,Dn] obeying all dialogue constraints (i.e., “Follows” requirements of
Table 2, and “Move” and “Closure” conditions of Table 3). Note that we do not specify an
explicit turn taking mechanism. Rather, dialogue participants make utterances in response
to an open move subject to the move conditions. Different instantiations of the dialogue
are therefore possible whereby, for example, an agent can respond to a question about
why a plan holds by responding with a single belief assertion at a time, or by asserting all
elements of the plan’s guard simultaneously. While this may have an impact on dialogue
understanding and dialogue length (which we will categorise as part of future work), the
entire dialogue family will yield equivalent results in terms of the dialogue’s goals (i.e., in
identifying disagreements).

Moves such as accept(�,T) which always close a dialogue branch either explicitly indi-
cate agreement or disagreement with an utterance previously made by the other dialogue
participant. In the latter case, they typically end the dialogue. Other moves are closed when
the appropriate closure move exists. This closure move either identifies the disagreement,
or refines where scope for disagreement exists. For example, when one participant asserts
a plan was executed, and the other responds by asserting that some other plan was exe-
cuted, participants no longer needs to discuss the former plan to identify disagreement.
Instead, identifying why the latter plan was (believed to be) executed is enough to identify
the disagreement.

The precedence utterance sets a constraint between � and �′ . We assume in addition that
the effect maintains a total ordering over plans in � . We omit the requirement that 𝜋′ > 𝜋
appear in � ′ as the utterance’s effect is sufficient to detect disagreement.

Note that there is an asymmetry with regards to closure conditions between
assert(B,T , T �) and assert(¬B,T , T �) . The former can be closed by the latter, but not the
other way around. The intuition behind this is that the assertion of a belief must identify
the maximal interval during which the belief held. Providing an overlapping interval where
it does not hold counters the assertion, but the new assertion must be explained (via a
why(¬B,T) move) rather than requiring another assertion for the belief holding.

Finally, note that why moves have no effect on the dialogue participants, as such moves
simply request more information without committing the utterer to any specific stance.
However, the condition for uttering such a why move requires that the utterer have appro-
priate beliefs (e.g., for why(B, T), the utterer has to believe that belief B held at time T. We
do not impose a similar constraint when asking why an action did/didn’t take place. Such
utterances initiate the dialogue and requires a participant to believe that the other believes
the action did/didn’t take place but places no requirements on the utterer (i.e., constraints
on M ), and without a response, does not constrain the other (i.e., does not constrain O).

Autonomous Agents and Multi-Agent Systems (2022) 36:29 	

1 3

Page 15 of 27  29

Ta
bl

e 
3  

P
re

co
nd

iti
on

s f
or

 a
n

ut
te

ra
nc

e;
 re

qu
ire

m
en

ts
 to

 la
be

l t
he

 m
ov

e
cl

os
ed

; a
nd

 u
tte

ra
nc

e
eff

ec
ts

 o
n

di
al

og
ue

 p
ar

tic
ip

an
ts

U
tte

ra
nc

e
M

ov
e

co
nd

iti
on

C
lo

su
re

 c
on

di
tio

n
Eff

ec
t

w
h
y
(¬
A
,
T
)

st
a
g
eM

[T
]
=
�
 a

nd
 th

er
e

is
 n

o
ot

he
r w

h
y
(¬
A
,
_
) u

tte
r-

an
ce

 in
 th

e
di

al
og

ue
.

di
d(

A,
 T

) o
r w

hy
(A

, T
) i

n
th

e
di

al
og

ue
N

on
e

w
hy

(A
, T

)
st
a
g
eM

[T
]
=
�
 a

nd
 th

er
e

is
 n

o
ot

he
r w

h
y
(A
,
_
) u

tte
r-

an
ce

 in
 th

e
di

al
og

ue
.

di
dn

t(A
, T

) o
r a

ss
er
t(
�
,
T
−
1
) s

.t.
 �

=
_
→

[_
,
d
o
(A
)]

in

 th
e

di
al

og
ue

.
N

on
e

w
h
y
(�
,
T
)

�
=
�
O
[T
]

If
 �

 is
 o

f t
he

 fo
rm

 [b
1
,
…

,
b
n
]
→

[U
,
_
] t

he
n

th
er

e
is

 a

m
ov

e
a
ss
er
t(
b
i,
_
,
T
−
1
) f

or
 a

ll
i
=
1
,
…

,
n
.

N
on

e

w
hy

(B
, T

)
B
∈
B
O
[T
]

W
he

n
th

er
e

is
 a

 m
ov

e
p
er
ce
p
t(
+
B
,
T
−
1
) o

r a
 m

ov
e

a
ss
er
t(
�
,
T
−
1
) s

uc
h

th
at

 �
 is

 o
f t

he
 fo

rm
 _

→
[U

,
_
]

an
d
+
B
∈
U

.

N
on

e

w
h
y
(¬
B
,
T
)

B
∉
B
O
[T
]

W
he

n
th

er
e

is
 a

 m
ov

e
p
er
ce
p
t(
−
B
,
T
−
1
) o

r a
 m

ov
e

a
ss
er
t(
�
,
T
−
1
) s

uc
h

th
at

 �
 is

 o
f t

he
 fo

rm
 _

→
[U

,
_
]

an
d
−
B
∈
U

.

N
on

e

a
ss
er
t(
�
,
T
)

st
a
g
eM

[T
]
=
�
 a

nd
 �

=
�
M
[T
]  .

If
 fo

llo
w

-
in

g
w
h
y
(A
,
T
+
1
) (

eq
ui

va
le

nt
ly

 w
h
y
(B
,
T
+
1
)

or
 w
h
y
(¬
B
,
T
+
1
) )

th
en

 �
 is

 o
f t

he
 fo

rm

_
→

[_
,
d
o
(A
)]

 (e
qu

iv
al

en
tly

 _
→

[[
…

,
+
B
,
…
],
_
] o

r
_
→

[[
…

,
−
B
,
…
],
_
]).

D
ia

lo
gu

e
co

nt
ai

ns
 o

ne
 o

f t
he

 fo
llo

w
in

g:
 w
h
y
(�
,
T
)

a
ss
er
t(
�
� ,
T
) a

cc
ep
t(
�
,
T
) n

o
t_
in
_
li
b
ra
ry
(�
)

p
re
ce
d
en
ce
(�
,
�
�)

�
�O
[T
]
=
�

 . I
f f

ol
lo

w
in

g
an

a
ss
er
t(
�
� ,
T
) t

he
n
�

 is
 a

dd
ed

 to
 �

� [
T
] .

a
ss
er
t(
B
,
T
,
T
�)

B
∈
B
M
[i
] s

uc
h

th
at

 T
≤
i
≤
T
′

D
ia

lo
gu

e
co

nt
ai

ns
 w
h
y
(B
,
T
�)

 o
r a

cc
ep
t(
B
,
T
,
T
�)

 o
r

a
ss
er
t(
¬
B
,
T
��
,
T
�)

 (w
he

re
 T

′′
≤
T
′).

B
is

 a
dd

ed
 to

 a
ll
B
�O
[i
] f

or
 a

ll
T
≤
i
≤
T
′

a
ss
er
t(
¬
B
,
T
,
T
�)

B
∉
B
M
[i
] s

uc
h

th
at

 T
≤
i
≤
T
′

D
ia

lo
gu

e
co

nt
ai

ns
 w
h
y
(¬
B
,
T
�)

 o
r a

cc
ep
t(
¬
B
,
T
,
T
�)

B
is

 a
dd

ed
 to

 B
� [
i]

 fo
r a

ll
T
≤
i
≤
T
′

di
d(

A,
 T

)
A
=
a
M ex
[T
]

A
lw

ay
s c

lo
se

d
a
�O ex
[T
]
=
A

di
dn

t(A
, T

)
A
≠
a
M ex
[T
]

A
lw

ay
s c

lo
se

d
a
� ex
[T
]
=
A

n
o
t_
in
_
li
b
ra
ry
(�
)

�
∉
�

M
A

lw
ay

s c
lo

se
d

�
 is

 a
dd

ed
 to

 �
′

p
re
ce
d
en
ce
(�
,
�
�)

D
ia

lo
gu

e
ha

s a
ss
er
t(
�
,
T
)  ,
a
ss
er
t(
�
� ,
T
)  .
�
,
�
�
∈
�

M

an
d
�
≥
�
′ i

n
�

M

A
lw

ay
s c

lo
se

d
𝜋
>
𝜋
�
∈
𝛱

�O

a
cc
ep
t(
�
,
T
)

�
=
�
M
[T
]

A
lw

ay
s c

lo
se

d
�
�O
[T
]
=
�

a
cc
ep
t(
B
,
T
,
T
�)

B
∈
B
M
[i
] f

or
 a

ll
T
≤
i
≤
T
′

A
lw

ay
s c

lo
se

d
B

is
 a

dd
ed

 to
 B

�O
[i
] f

or
 a

ll
T
≤
i
≤
T
′

a
cc
ep
t(
¬
B
,
T
,
T
�)

B
∉
B
M
[i
] f

or
 a

ll
T
≤
i
≤
T
′

A
lw

ay
s c

lo
se

d
B

is
 a

dd
ed

 to
 B

� [
i]

 fo
r a

ll
T
≤
i
≤
T
′

	 Autonomous Agents and Multi-Agent Systems (2022) 36:29

1 3

 29   Page 16 of 27

Ta
bl

e 
3  

(c
on

tin
ue

d)

U
tte

ra
nc

e
M

ov
e

co
nd

iti
on

C
lo

su
re

 c
on

di
tio

n
Eff

ec
t

p
er
ce
p
t(
+
B
,
T
)

st
a
g
eM

[T
]
=
�
 a

nd
 +
B

 is
 c

on
ta

in
ed

 w
ith

in
 th

e
se

t a
t

th
e

he
ad

 o
f �

M e
[T
]

A
lw

ay
s c

lo
se

d
B

is
 a

dd
ed

 to
 B

�O
[T

+
1
]

p
er
ce
p
t(
−
B
,
T
)

st
a
g
eM

[T
]
=
�
 a

nd
 −
B

 is
 c

on
ta

in
ed

 w
ith

in
 th

e
se

t a
t

th
e

he
ad

 o
f �

M e
[T
]  ,

or
 T

=
0
 a

nd
 B

∉
M

[0
]

A
lw

ay
s c

lo
se

d
B

is
 a

dd
ed

 to
 B

� [
T
+
1
]

Autonomous Agents and Multi-Agent Systems (2022) 36:29 	

1 3

Page 17 of 27  29

5 � Dialogue properties

Having described the utterances dialogue participants can make, as well as how a dialogue
is initiated and terminates, we now turn our attention to the properties of the dialogue.

The first property we consider reflects the fact that the model held by one dialogue par-
ticipant of the other always reflects the latter’s true internal state if it did so previously.

Proposition 1  If, before move Di , for all indexes T, B�O[T] ⊆ B
M[T] , 𝛱 ′O ⊆ 𝛱M ,

��O[T] ∈ {�} ∪ {�M[T]} , ��
e

O[T] ∈ {�} ∪ {�M
e
[T]} , and a�

ex

O[T] ∈ {�} ∪ {aM
ex
[T]} , then

this will also be the case following the move.

Proof  We note that why moves do not affect the traces, and therefore only consider the
remaining move types.

Those moves which update an element of O′ do so in a way consistent with M , giving
us the desired result. 	� ◻

Note that the update procedure described above also updates the constraints in O
′
 in

a manner consistent with M . Therefore, O′
,O

′
 are consistent with the program execu-

tion trace M.

Corollary 1  Given two dialogue participants ⟨M,O,O⟩ , ⟨M′
,O

′
,O

′⟩ , if M and O′ con-
tain no contradictions prior to move Di , then they will contain no contradictions following
it.

The next property we demonstrate is that a dialogue participant can always respond
to an open move. We do this by considering each utterance individually.

Proposition 2  Given a dialogue and an open move, a response to the open move is always
possible.

Proof  We provide an exhaustive proof. Consider two dialogue participants ⟨M,O,O⟩ ,
⟨M′

,O
′
,O

′
⟩ , and a dialogue D with some open move m. With no loss of generality, assume

that there is an open utterance made by the first agent. We begin by noting that if this
move is one of did(A,T), didnt(A,T), not_in_library(�), accept(�,T) , precedence(�,��) ,
percept(_B,T) or accept(_B,T , T �) then these are closed, and therefore do not consider
these moves further. For the remaining moves, we show that there is always at least one
legal response.

why(¬A,T  ) Here, A is either in the second participant’s trace at time T, or not. If it is,
then did(A, T) is a possible response. However, even if this is not the case, why(A, T) is
always a legal response.

why(A, T) If A is not in the second participant’s trace at time T, then didnt(A, T) is a pos-
sible move. If it is in the trace, then there must have been a plan which caused the action
to take place within the trace, which was selected at the previous time point for execution,
meaning that assert(�,T − 1) can be uttered.

assert(�,T) If the plan is not in the second participant’s plan library, they can respond
with not_in_library(�) . If the plan appears in their own trace at time T, they can accept it.
If another plan �′ appears in their trace at time T, and � can also be selected for execution,

	 Autonomous Agents and Multi-Agent Systems (2022) 36:29

1 3

 29   Page 18 of 27

they can utter precedence(�,��) . Finally, if they are aware of the plan, they can also always
utter why(�,T).

why(�,T) For this to have been uttered by the first participant, the second participant
must have uttered assert(�,T) , and the plan must have been selected for execution within
their trace. This means that the beliefs which allowed the plan to be triggered must be pre-
sent, meaning that these can be asserted (via assert(B,T , T �) until the why(�,T) move is
closed.

assert(B,T , T �) If the belief holds between time T and T ′ in the second partici-
pant’s trace, then they can utter accept(B,T , T �) . Alternatively, they can always question
why(B, T), or — if there is a time-point in their trace M′ where B does not hold, they can
respond with assert(¬B,T , T �).

why(B, T) This was uttered in response to an assert(B,T , T �) which means that the
belief appeared in the utterer’s trace at time T. This was either due to a percept occur-
ring at the previous time-point within that trace, allowing for a percept(+B,T − 1) to be
uttered, or alternatively, as the effect of a plan executed in the previous time point, allowing
assert(�,T − 1) to be uttered.

assert(¬B,T , T �) If the belief is not in the respondent’s trace, they canaccept(¬B,T , T �)4.
The only other response is asking why(¬B,T) which is always a valid response.

why(¬B,T) This was uttered in response to an assert(¬B,T , T �) which means the belief
disappeared from the utterer’s trace at time T. This was either due to a percept remov-
ing the belief (allowing percept(−B,T − 1)5 to be uttered), or due to a plan removing the
belief, allowing assert(�,T − 1) to be uttered. 	� ◻

Next, we demonstrate that our dialogues always terminate.

Proposition 3  Given a finite set of plans � with a finite set of propositions in their guards,
G, then any dialogue starting with a why question on an action will terminate.

Proof  We know from proposition 2 that a response is always possible. We need to show
that this response must either close the dialogue, or (eventually) make moves which only
refer to previous time points. Since the lowest possible time is 0, and no move may refer
to time points before this, this is enough to demonstrate dialogue termination. We consider
possible moves individually.

why(¬A,T) A did(A, T) response closes the dialogue immediately. why(A, T) is the only
other possible response.

why(A, T) A didnt(A, T) closes the dialogue immediately. The only other response,
assert(�,T − 1) refers to a previous time point.

assert(�,T) is closed immediately by an accept, not_in_library or precedence move.
We therefore need only consider why(�,T) or assert(��, T) . We note that in the latter case,
given the move’s conditions, a third assert cannot occur, meaning that why(��, T) will
be asked in response, or a closing move will be made. We therefore need only consider
why(�,T).

4  Note that this should never occur as this assertion follows an assert(B,T ,T �) from the other dialogue par-
ticipant, requiring the belief to have held in their trace.
5  Note that if T = 0 , this utterance can be made if B ∉ �M

e
[0].

Autonomous Agents and Multi-Agent Systems (2022) 36:29 	

1 3

Page 19 of 27  29

why(�,T  ) The only legal response is a set of assert(B,T �, T − 1) such that T � ≤ T − 1 .
Therefore, each consider a time before T.

assert(B,T �, T) An accept(B,T �, T) will close this move. We must therefore consider
assert(¬B,T ��, T) and why(B, T). We show that responses to these will either close the dia-
logue or deal with earlier time points.

assert(¬B,T �, T) An accept(¬B,T �, T) will close this move, meaning we need to show
that the only other legal response — why(¬B,T) ends up considering time points previous
to T.

why(B, T) and why(¬B,T) . Both of these moves are closed by appropriate percept
moves. The only alternative is an assert(�,T − 1) move, which considers time T − 1.

It is also clear that given the requirements that stage[0] = � , and that percept moves
are the only ones which can refer to this time, that no dialogue will refer to an earlier time
point than T = 0 . 	� ◻

Turning to the question of dialogue complexity, we demonstrate that the worst case
length of a dialogue depends on the number of plans in the plan library and the size of plan
guards for each plan.

Corollary 2  The complexity of creating a dialogue is polynomial in the size of the plan
library and plan’s guard.

Proof  Let k be the total number of plans in the plan library. Since moves cannot be repeated
the maximum number of (plan) asserts which can take place in any branch of the tree is k.
Furthermore, the dialogue can branch whenever a why(�,T) is asked, with a factor equal
to the number of beliefs in the guard of the plan (call these g). Finally, from the previous
theorem, we know that a dialogue can take place for at most T time points, meaning that
the upper bound for the number of moves is O(gTk) . 	� ◻

The following proposition states that if a disagreement within the dialogue participant’s
views (M) exists, its root cause — the difference in plans, perceptions or beliefs which led
to it — can be detected by the dialogue, assuming that some aspect of the disagreement
was already known to the dialogue participants (e.g., a difference in perceived action).

Proposition 4  Given two agents for which M ≠ M≃ and for which aM
ex
[T] ≠ aM

�

ex
[T] , there

is a dialogue which terminates with a not_in_library , precedence or percept move.

Proof  We know from Proposition 3 that all dialogues terminate. We show that there is at
least one belief or plan that is not accepted.

Note that since there is a disagreement in actions, the dialogue can initiate by asking
why the disagreed upon action was executed, meaning that we can ignore did/didnt moves.

Assume the proposition is false. This would mean that there is agreement on which plan
was executed. But there is a disagreement in actions, which means that M believes a plan
with head aM

ex
[T] was executed, while M′ believes a plan with head aM≃

ex
[T] . Therefore this

is a contradiction. The only way to close the dialogue is either with a not_in_library , or
precedence move, asking why the plan was selected, or for another plan to be asserted lead-
ing to the same arguments as above. Therefore only the question regarding why a plan was
chosen does not (eventually) close the move. In turn, this leads to a disagreement about

	 Autonomous Agents and Multi-Agent Systems (2022) 36:29

1 3

 29   Page 20 of 27

beliefs, which can only be resolved via a percept disagreement, or by asking about further
plans, over which there must (as above) be a disagreement. 	� ◻

It follows trivially that at least one dialogue participant will be able to identify the disa-
greement by examining their M and O.

The results above suggests a simple strategy for identifying the root cause of a disagree-
ment, namely to never accept when a disagreement exists, and always ask why about such
disagreements. Such disagreement dialogues can be contrasted from confirmatory dia-
logues, where one participant may wish to confirm that the other’s internal trace matches
their own. A simple strategy for such confirmatory dialogues involves always asking why
where possible, accepting only when no other move exists.

Finally it can be easily shown that if both M and M′ are identical, all dialogues will
terminate with did/didnt moves (if the initial why asks about a move that did/didn’t occur),
accept, or percept moves. In other words, no disagreement will be identified.

6 � Implementation

We have implemented SimpleBDI and our dialogue explanation system in Python6. In our
system two agents execute the program. Perceptions are supplied to each agent individu-
ally at certain time steps – allowing for differences in execution to occur because of dif-
fering perceptions. Once execution is completed, a trace of the actions performed by the
two agents is used to detect points where their behaviour diverged and these points can be
used to start a dialogue. For convenience the first agent in the dialogue is referred to as the
human, though it should be noted that our dialogues are in fact generated by two software
agents conversing.

Figure 3 shows a sample dialogue generated by our system for Example 1. In this exam-
ple when the robot reached the waypoint it perceived that the terrain was no longer safe
and so did not move to the final location. The human asks why it did not make this move.
The robot and human agree that it was at the waypoint, and that it had a goal to move to the
final location, but they realise they disagree that the terrain was safe and the robot explains
that it no longer believed the terrain to be safe from time point 15.

Figure 4 shows a dialogue for a different example. In this example the robot is charged
with performing routine remote inspections of some site (e.g., a nuclear waste storage facil-
ity). When it performs its daily inspection it should inspect the walls of the facility (if they
are scheduled for inspection) and the stored barrels (if they are stored for inspection). In
this scenario, both tasks have equal precedence. This simple program is shown in Listing 3.

6  Source code can be found at https://​github.​com/​jhudsy/​BDIex​plana​tion.​git.

https://github.com/jhudsy/BDIexplanation.git

Autonomous Agents and Multi-Agent Systems (2022) 36:29 	

1 3

Page 21 of 27  29

Figure 4 shows a dialogue generated for an instance where the human believes that the
wall inspection should have priority over barrel inspection. The human asks why the robot
did not inspect the wall, the robot counters by asking why the human thought it should
inspect the wall. They both explain the plan they thought applicable at that point and the
human asserts that they thought the wall inspection plan had priority. Since both plans had
equal priority, the robot is now aware of where the source of disagreement occurs. Com-
municating this to the human is outside the scope of the dialogue, but is easily done.

7 � Dialogue strategies

Our current dialogue mechanism can produce dialogues with many seemingly redundant
digressions (at least to human eyes). While the dialogues we show in Figs. 3 and 4 are
compact these were selected from a large number of potential dialogues we generated and
were selected specifically since they intuitively “make sense”. However at many points in a
dialogue a player has multiple options – for instance asking about any of the components of
the guard on a plan, whether they agree or disagree with it. We therefore need to consider
a strategy for the dialogues, and to this end, we must distinguish between confirmatory
dialogues and disagreement dialogues. In the first case the participants are interested in
establishing only that they have reasoned in the same way, while in the second case the
participants are seeking to identify some cause of disagreement. Clearly, these different
approaches require different dialogue strategies in which some set of heuristics may guide
the choice of utterances during the dialogue in order to achieve the overarching dialogue
goal more efficiently.

We focus here on defining a strategy for disagreement dialogues with a view to
identifying at least one difference in the participants’ plans or observations. Our strat-
egy depends upon the assumption that some difference has been observed in the traces
of the two participants. The dialogue opens when one participant asks either why(A, T)

human: Why Not move2 at 17
robot: Why move2 at 17
human: Selected at_waypoint,goal_move_to_location,safe_terrain, -(2)>

do(move2),-goal_move_to_location,-at_waypoint,+at_location,+goal_take_sample, at 16
robot: Why select at_waypoint,goal_move_to_location,safe_terrain, -(2)>

do(move2),-goal_move_to_location,-at_waypoint,+at_location,+goal_take_sample, at 16
human: +at_waypoint at time 14 and it remained so until at least 16
robot: I agree +at_waypoint between 14 and 16
human: +goal_move_to_location at time 11 and it remained so until at least 16
robot: I agree +goal_move_to_location between 11 and 16
human: +safe_terrain at time 6 and it remained so until at least 16
robot: -safe_terrain at time 15 and it remained so until at least 16
human: Why -safe_terrain at 15
robot: I perceived -safe_terrain at 15

Fig. 3   Sample Dialogue for Example 1

human: Why Not inspect_wall at 14
robot: Why inspect_wall at 14
human: Selected wall_scheduled,daily_inspection, -(2)> do(inspect_wall), at 13
robot: Selected barrels_scheduled,daily_inspection, -(2)> do(inspect_barrels), at 13
human: wall_scheduled,daily_inspection, -(2)> do(inspect_wall), has precedence in my plan library

Fig. 4   Sample Dialogue for Plan Priority Example

	 Autonomous Agents and Multi-Agent Systems (2022) 36:29

1 3

 29   Page 22 of 27

or why(¬A,T) (i.e., why, or why not, does some action appear in the trace at time T).
Unlike the basic dialogue described in Tables 2 and 3, we now introduce the additional
move condition that aM

ex
[T] = A (resp. ≠ A ) — i.e., if the participant asks why(A, T)

then it is because they expected to observe A (or resp. did not expect to observe A).
The strategy imposes extra conditions on several other dialogue moves – for

instance why(B, T) now requires that the agent asking this did not believe B at time
T. These additional conditions are shown in Table 4. Closure conditions and effects
remain the same. Given we have imposed additional constraints on the dialogue we
need to show that it remains the case that if there is an open move, a response to the
open move continues to be possible.

Proposition 5  Given a dialogue using our disagreement strategy and an open move, a
response to the open move that is consistent with the strategy is always possible.

Proof  We refer back to the proof of Proposition 2. We need only consider the cases from
that proof where the possible response was one of the moves which have an additional con-
dition under the strategy. These are:

why(¬A,T  ) In the proof of Proposition 2, why(A, T) was needed to provide a possible
response in the situation were action A was not in the second participant’s trace at time T.
In this situation why(A, T) is also legal under the strategy.

assert(�,T) In the proof of Proposition 2, why(�,T) was needed to provided a possible
response if the plan was in the second participant’s library but could not be selected for
execution at time T. In this situation why(�,T) is also legal under the strategy.

assert(B,T , T �) In the proof of Proposition 2, why(B, T) was needed to provide a pos-
sible response if the belief B did not hold at time T. In this situation why(B, T) is also legal
under the strategy.

assert(¬B,T , T �) In the proof of Proposition 2, why(¬B,T) was needed to provide a pos-
sible response if B appeared in the second respondent’s trace at time T. In this situation
why(¬B,T) is also legal under the strategy. 	� ◻

It is interesting to note that we do not need to concern ourselves with the applica-
bility of why(¬A,T) in the above proof. This move only ever initiates a dialogue (see
Table 2) and our strategy restricts this to only initiating disagreement dialogues rather
than confirmatory dialogues.

The final component of the disagreement strategy involves a dialogue participant
making a why move whenever it can according to the rules of the dialogue. If multiple

Table 4   Additional constraints
on why and why not questions
introduced by the strategy

Utterance Move condition Additional
strategy con-
dition

why(¬A,T) stageM[T] = � aM
ex
[T] = A

why(A, T) stageM[T] = � aM
ex
[T] ≠ A

why(�,T) � = �O[T] � ≠ �M[T]

why(B, T) B ∈ B
O[T] B ∉ B

M[T]

why(¬B,T) B ∉ B
O[T] B ∈ B

M[T]

Autonomous Agents and Multi-Agent Systems (2022) 36:29 	

1 3

Page 23 of 27  29

such moves are possible, one is selected at random. The effect of this is that dialogue
participants will always query actions, plans or beliefs they disagree with, homing in
on points where their traces do not align.

Unlike disagreement strategies, confirmatory strategies would potentially require
the dialogue participants to validate their full traces; identifying heuristics for this
class of strategies (for example based on opponent modelling) is left for future work.

8 � Discussion and future work

We noted in Sect. 2 that the advantages of human-to-human explanatory dialogue over
more static explanation techniques (such as, for example, written text or a one-shot utter-
ance) include the ability to focus the explanation on the relevant portions of the domain;
skip unnecessary detail; and make use of background information already known to the
other party. Our proposed dialogue provides some of these advantages. More specifically,
the selective use of why questions allows one dialogue participant to focus in only on those
areas of discussion where they disagree with the other party, and ignore those portions
where they believe an explanation is not needed (though, by leaving that branch of the dia-
logue open, they can return to it if necessary). However, our dialogue does not assume any
domain specific knowledge held by other parties, and follows a very prescriptive structure,
requiring an explanation to always start at an action before moving down to plans, beliefs,
and then back to plans and/or percepts.

A dialogue participant can make multiple utterances in some stages of the dialogue. For
example, a possible response to a why(�,T) move, could be a single assert(b1, _,T − 1) move
followed by a sub-dialogue to close this assertion, after which a second assert(b2, _,T − 2)
move can be made followed by another sub-dialogue. Alternatively, a response consisting
of multiple moves of the form assert(b1, _,T − 1),… , assert(bn, _,T − 1) could be made,
closing the original why move, but leaving all the assertions open until dealt with. Rules
covering turn taking (for example) would then instantiate specific dialogues, but this would
not affect the dialogue properties described previously. In other words, our formalism
describes a family of possible dialogues, and experiments investigating which of these is
most suitable for providing explanation is left as an avenue for future work.

Our work makes an important assumption, namely that both dialogue participants apply
the SimpleBDI semantics correctly to their internal version of the BDI program. In other
words, the disagreements we identify come about from omissions or differences in the plan
library, in the initial set of beliefs held by the dialogue participants, or differences in beliefs
regarding the input trace �e . Extending the dialogue to deal with fallible participants who
may simply forget a belief or who do not apply an applicable rule is another strand of
future work, as doing so will provide for a dialogue more suited to humans acting as dia-
logue participants.

At worst, our dialogue identifies only a single disagreement between participants. We
assume that between dialogues, participants update their beliefs about the program execu-
tion trace and therefore, on rerunning the dialogue would identify different disagreements.
Determining how such belief updates should take place is outside the scope of the paper,
but serves as another important avenue of future work. Related to this, allowing the partici-
pants to update their M models during the trace (with concomitant effects on O′ and O

′
 )

would enable more disagreements to be discovered during single instance of the dialogue.
Such work would require, at the very least, the addition of moves to retract beliefs [32].

	 Autonomous Agents and Multi-Agent Systems (2022) 36:29

1 3

 29   Page 24 of 27

An orthogonal direction of future work involves extending our approach to a multi-agent
system, rather than considering an individual agent in isolation. The presence of an agent
communication language (such as KQML or FIPA ACL) whose semantics are described
in terms of impacts on agent beliefs, goals and the like means that our dialogue could be
extended to include the effects of such communication events in a natural manner.

Explanation has become an important area of AI research. Much of the work in the
domain focuses on the explainability of machine learning systems [1], but several recent
papers consider explanation related to planning systems. For example, there has been work
on argument based planning [23], and explaining automated planning [8, 18], with the lat-
ter extending an idea by Caminada et al. of using a proof dialogue [3] to explain the behav-
iour of an automated planner [7, 21]. We note that the latter works also consider how to
translate formal utterances (as per our dialogue) into natural language, and believe that this
will be an interesting and fruitful avenue of research.

Several other argumentation based approaches to explanation have been proposed in
the literature (e.g., [9, 28, 36]). While these approaches could be adapted to explain the
behaviour of BDI systems, we are unaware of such adaptations, which would — at least
— require instantiating BDI specific concepts related to time, beliefs, goals, and the like
as rules, which could then be combined into arguments, and over which explanation dia-
logues could then operate. It is worth noting that in the context of BDI specifically, sev-
eral researchers have investigated how argumentation can be applied to drive the reasoning
cycle. [20] makes use of abstract argumentation semantics to select goals within a BDI sys-
tem, while [22] extends Jason [5] to perform reasoning using argumentation schemes [31].
The arguments generated by these and similar systems can potentially be used to drive
explanation, as per the proof dialogue approach used by [7].

In contrast, our current work does not utilise an argumentation-theoretic semantics to
underpin it. Instead, it could be viewed as a dialogue game built using argument schemes
and critical questions [32] created for the BDI domain, in the tradition of work in informal
logic [31] and practical reasoning [2].

Winikoff [34] and Hindriks [15] both consider providing explanations for BDI lan-
guages in the context of debugging. Hindriks’ work was later expanded by Koeman et al.
[16]. These systems all generate explanations using a formal semantics over a trace of pro-
gram execution. Harbers [14] generates explanations for BDI systems using goal hierar-
chy paired with a behaviour log. Winikoff et al. [35] uses a concept of preferences to help
produce explanations from BDI program execution traces. While all of these systems —
like us — use execution traces to provide explanations for BDI program, none compare
conflicting traces through dialogue to guide the generation of the explanation towards the
concerns of the user.

Sreedharan et al. [29] consider the question of explanations in the context of AI Plan-
ning and, like us, explicitly identify the need to reconcile the human mental model with
execution to generate an explanation. They pre-generate a set of explanations that are
intended to reveal specific aspects of the Planning system’s model (for instance that a par-
ticular location must be visited in particular circumstances) and then use machine learning
to determine which explanations are most likely to explain which observable transitions in
the system behaviour. These are then presented to users when they label some particular
transition as inexplicable. More recent work [30] examines how plans can be explained
through abstraction (i.e., by ignoring some elements of an environmental state). Applying
this idea of abstraction to our work may result in a useful dialogue strategy, and we intend
to investigate this possibility as future work. In the context of planning, [17] describes how
hypothetical plans can be generated which can be compared to the original plan, serving

Autonomous Agents and Multi-Agent Systems (2022) 36:29 	

1 3

Page 25 of 27  29

a similar function to our two dialogue participants. However, these approaches ignore the
dialogical aspects of our solution and are grounded in planning, reducing the importance of
concepts such as percepts.

Apart from the research mentioned above, there are several additional strands of future
work we intend to explore. Perhaps the most obvious involves a detailed empirical evalu-
ation of the dialogue across multiple domains, and with users having different levels of
expertise. Based on the results noted by [21, 36], we believe that our system will be shown
to have a positive effect on user understanding of system behaviour. Another direction of
research involves investigating the link between dialogue and formal argumentation (noted
by Caminada et al. [7]). Move sequences such as assert(�,T) , assert(��, T) imply a con-
tradiction in the dialogue participant’s views which — through the dialogue — are instan-
tiated into attacking arguments. We therefore intend to investigate an argument-theoretic
semantics for the dialogue presented in this paper, potentially allowing for stronger links
with other explainable AI approaches underpinned by argumentation [3, 10, 21], aiming
to enable more efficient dialogues through the introduction of concepts such as burden of
proof [24]. We also intend to further investigate the effects of strategy on dialogue prop-
erties. While our results provide worst-case upper bounds for dialogue length, and pro-
pose a simple strategy for disagreement dialogues, more complex strategies which consider
what the other participant’s knowledge and goals are [25] may — at least in the average
case — significantly reduce the number of moves that need to be made. Finally, extend-
ing SimpleBDI may result in more complex dialogues. Allowing, for example, a non-strict
ordering over plans could allow participants to argue about the unobserved effects of plans,
requiring looking forwards as backwards over time, and such enrichment could be a fruitful
direction of future work.

9 � Conclusions

We presented a family of dialogues allowing two dialogue participants to identify if, and
where, a divergence of views exists between them with regards to a BDI agent’s opera-
tion. Our dialogue aims to be general enough to capture two external observers discussing
the behaviour of a (third) BDI agent, but we believe that in practice, one of the dialogue
participants will be the BDI agent, seeking to explain its actions to the second participant,
typically a human. Such explanations then focus on divergences in the views of the partici-
pants with regards to the perceptions, plans and underlying beliefs of the BDI system, and
we show that when a divergence exists with regards to what action should have taken place,
the dialogue enables the root cause of the divergence to be detected.

Acknowledgements  This work arose out of conversations at a Lorentz Workshop on the Dynamics of
Multi-Agent Systems (2018). Thanks are due Koen Hindriks and Vincent Koeman for their input. The work
was supported by the UKRI/EPSRC RAIN [EP/R026084], SSPEDI [EP/P011829/1] and FAIR-SPACE
[EP/R026092] Robotics and AI Hubs and the Trustworthy Autonomous Systems Verifiability Node [EP/
V026801/1].

Author contribution  Both authors contributed equally to the work, and author names are listed in alphabeti-
cal order.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article

	 Autonomous Agents and Multi-Agent Systems (2022) 36:29

1 3

 29   Page 26 of 27

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial
intelligence (xai). IEEE Access, 6, 52138–52160.

	 2.	 Atkinson, K., & Bench-Capon, T. (2007). Practical reasoning as presumptive argumentation using
action based alternating transition systems. Artificial Intelligence, 171(10), 855–874. https://​doi.​org/​
10.​1016/j.​artint.​2007.​04.​009.

	 3.	 Baroni, P., Gabbay, D., Giacomin, M., & van der Torre, L. (2018). Handbook of Formal Argumenta-
tion. College Publications

	 4.	 Belle, V., & Papantonis, I. (2021). Principles and practice of explainable machine learning. Frontiers
in Big Data, 4, 39.

	 5.	 Bordini, R., Hübner, J., & Wooldridge, M. (2007). Programming multi-agent systems in AgentSpeak
Using Jason. UK: Wiley.

	 6.	 Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming Multi-Agent Systems in
AgentSpeak Using Jason (Wiley Series in Agent Technology). Hoboken, NJ, USA: John Wiley and
Sons Inc.

	 7.	 Caminada, M.W., Kutlak, R., Oren, N., & Vasconcelos, W.W. (2014). Scrutable plan enactment via
argumentation and natural language generation. In: Proceedings of the 2014 international confer-
ence on Autonomous agents and multi-agent systems, pp. 1625–1626. International Foundation for
Autonomous Agents and Multiagent Systems (2014)

	 8.	 Collins, A., Magazzeni, D., & Parsons, S. (2019). Towards an argumentation-based approach to
explainable planning. In: Proceedings of the 2nd ICAPS Workshop on Explainable Planning
(XAIP-2019), p. 5

	 9.	 Cyras, K., Fan, X., Schulz, C., & Toni, F. (2017) Assumption-based argumentation: Disputes,
explanations, preferences. FLAP 4(8) . http://​www.​colle​gepub​licat​ions.​co.​uk/​downl​oads/​ifcol​
og000​17.​pdf

	10.	 Čyras, K., Letsios, D., Misener, R., & Toni, F. (2019). Argumentation for explainable scheduling.
In: Proceedings of the AAAI Conference on Artificial Intelligence, 33: 2752–2759

	11.	 Dastani, M. (2008). 2apl: A practical agent programming language. Autonomous Agents and Multi-
Agent Systems, 16(3), 214–248. https://​doi.​org/​10.​1007/​s10458-​008-​9036-y

	12.	 Dennis, L., Fisher, M., Webster, M., & Bordini, R. (2012). Model Checking Agent Programming
Languages. Automated Software Engineering, 19(1), 5–63.

	13.	 Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Van Staa, T., & Delaney, B. (2013). Analys-
ing the Suitability of Multiagent Methodologies for e-Health Systems. In J. P. Müller & M. Cossen-
tino (Eds.), Agent-Oriented Software Engineering XIII (pp. 134–150). Berlin Heidelberg, Berlin,
Heidelberg: Springer.

	14.	 Harbers, M. (2011). Explaining agent behaviour in virtual training. Ph.D. thesis, SIKS Dissertation
Series . No. 2011-35

	15.	 Hindriks, K. V. (2012). Debugging is explaining. In I. Rahwan, W. Wobcke, S. Sen, & T. Sugawara
(Eds.), PRIMA 2012: Principles and Practice of Multi-Agent Systems (pp. 31–45). Berlin Heidel-
berg, Berlin, Heidelberg: Springer.

	16.	 Koeman, V., Dennis, L.A., Webster, M., Fisher, M., & Hindriks, K. (2019) The "Why did you do
that?" Button: Answering Why-questions for end users of Robotic Systems. In: Proceedings of the
7th International Workshop in Engineering Multi-Agent Systems. Montreal, Canada . http://​cgi.​csc.​
liv.​ac.​uk/​~lad/​emas2​019/​accep​ted/​EMAS2​019_​paper_​27.​pdf

	17.	 Krarup, B., Cashmore, M., Magazzeni, D., & Miller, T. (2019) Model-based contrastive explana-
tions for explainable planning. In: ICAPS 2019 Workshop on Explainable AI Planning (XAIP)

	18.	 Mahesar, Q., & Parsons, S. (2021) Argument schemes and dialogue for explainable planning.
CoRR abs/2101.02648 . arxiv:​2101.​02648

	19.	 Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267, 1–38. https://​doi.​org/​10.​1016/j.​artint.​2018.​07.​007

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.artint.2007.04.009
https://doi.org/10.1016/j.artint.2007.04.009
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
https://doi.org/10.1007/s10458-008-9036-y
http://cgi.csc.liv.ac.uk/%7elad/emas2019/accepted/EMAS2019_paper_27.pdf
http://cgi.csc.liv.ac.uk/%7elad/emas2019/accepted/EMAS2019_paper_27.pdf
http://arxiv.org/abs/2101.02648
https://doi.org/10.1016/j.artint.2018.07.007

Autonomous Agents and Multi-Agent Systems (2022) 36:29 	

1 3

Page 27 of 27  29

	20.	 Morveli Espinoza, M., Possebom, A.T., & Tacla, C.A. (2019). Argumentation-Based Agents that
Explain Their Decisions. In: Proceedings of the 8th Brazilian Conference on Intelligent Systems
(BRACIS), pp. 467–472. IEEE, Salvador, Brazil . https://​doi.​org/​10.​1109/​BRACIS.​2019.​00088

	21.	 Oren, N., van Deemter, K., & Vasconcelos, W.W. (2020). Argument-Based Plan Explanation, pp.
173–188. Springer International Publishing, Cham . https://​doi.​org/​10.​1007/​978-3-​030-​38561-3_9.

	22.	 Panisson, A.R., Engelmann, D.C., & Bordini, R.H. (2021). Engineering explainable agents: An
argumentation-based appraoch. In: Proceedings of the 9th International Workshop on Engineering
Multi-Agent Systems

	23.	 Pardo, P., & Godo, L. (2018). A temporal argumentation approach to cooperative planning using
dialogues. Journal of Logic and Computation, 28(3), 551–580.

	24.	 Prakken, H., Reed, C., & Walton, D. (2005). Dialogues about the burden of proof. In: Proceedings
of the 10th International Conference on Artificial Intelligence and Law, ICAIL ’05, pp. 115–124.
ACM, New York, NY, USA . https://​doi.​org/​10.​1145/​11654​85.​11655​03.

	25.	 Rienstra, T., Thimm, M., & Oren, N. (2013). Opponent models with uncertainty for strategic argu-
mentation. In: Twenty-Third International Joint Conference on Artificial Intelligence

	26.	 Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., & Müller, K. (eds.): (2019).Explainable
AI: Interpreting, Explaining and Visualizing Deep Learning, Lecture Notes in Computer Science,
11700. Springer

	27.	 Shin, D. D. (2021). The effects of explainability and causability on perception, trust, and acceptance:
Implications for explainable AI. International Journal of Human-Computer Studies, 146, 102551.

	28.	 Sklar, E.I., & Azhar, M.Q. (2018). Explanation through argumentation. In: Proceedings of the 6th
International Conference on Human-Agent Interaction, HAI ’18, p. 277-285. Association for Comput-
ing Machinery, New York, NY, USA . https://​doi.​org/​10.​1145/​32844​32.​32844​70.

	29.	 Sreedharan, S., Olmo, A., Mishra, A.P., & Kambhampati, S. (2019) Model-free model reconciliation.
In: IJCAI

	30.	 Sreedharan, S., Srivastava, S., & Kambhampati, S. (2021). Using state abstractions to compute person-
alized contrastive explanations for AI agent behavior. Artificial Intelligence, 301, 103570.

	31.	 Walton, D. (2008). Informal Logic: A Pragmatic Approach, 2 edn. Cambridge University Press .
https://​doi.​org/​10.​1017/​CBO97​80511​808630

	32.	 Walton, D., & Krabbe, E.C. (1995). Commitment in dialogue: Basic concepts of interpersonal reason-
ing. SUNY press

	33.	 Weigang, L., de Souza, B. B., Crespo, A. M. F., & Alves, D. P. (2008). Decision support system in tac-
tical air traffic flow management for air traffic flow controllers. Journal of Air Transport Management,
14(6), 329–336.

	34.	 Winikoff, M. (2017). Debugging agent programs with Why? questions. In: Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’17, pp. 251–259. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Richland, SC

	35.	 Winikoff, M., Dignum, V., & Dignum, F. (2016). Why bad coffee? explaining agent plans with valu-
ings. In: A. Skavhaug, J. Guiochet, E. Schoitsch, F. Bitsch (eds.) SAFECOMP, LNCS, vol. 9923, pp.
521–534. Springer

	36.	 Čyras, K., Rago, A., Albini, E., Baroni, P., & Toni, F. (2021). Argumentative xai: A survey. In: Z.H.
Zhou (ed.) Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, pp. 4392–4399. International Joint Conferences on Artificial Intelligence Organization .
https://​doi.​org/​10.​24963/​ijcai.​2021/​600. Survey Track

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1109/BRACIS.2019.00088
https://doi.org/10.1007/978-3-030-38561-3_9
https://doi.org/10.1145/1165485.1165503
https://doi.org/10.1145/3284432.3284470
https://doi.org/10.1017/CBO9780511808630
https://doi.org/10.24963/ijcai.2021/600

	Explaining BDI agent behaviour through dialogue
	Abstract
	1 Introduction
	2 Explainable systems
	3 The SimpleBDI language
	3.1 SimpleBDI
	3.2 Relationship of SimpleBDI to existing BDI languages
	3.2.1 Goals
	3.2.2 Action sequences
	3.2.3 Multiple intentions

	4 Dialogues
	4.1 Dialogue — Intuitions
	4.2 Dialogue participant model
	4.3 Dialogue initiation and termination
	4.4 Utterances

	5 Dialogue properties
	6 Implementation
	7 Dialogue strategies
	8 Discussion and future work
	9 Conclusions
	Acknowledgements
	References

