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Abbreviations 
 

APSD Auto-Power Spectral Density 

AVS Absorber of Variable Strength 

AWGN Additive White Gaussian Noise 

BOC Beginning Of Cycle 

CB Core Barrel 

CNN Convolutional Neural Network 

CPSD Cross-Power Spectral Density 

CRV Control Rod Vibration 

DA Domain Adaptation 

EFPD Equivalent Full Power Days 

EOC End Of Cycle 

FA Fuel Assembly 

FAV Fuel Assembly Vibration 

FFT Fast Fourier Transform 

FSI Fluid-Structure Interaction 

GAP Global Average Pooling 

HHT Hilbert Huang Transform 

InD In reactor middle Detectors 

IrD In Iri vicinity Detectors 

IRI Incomplete Rod Insertion 

JTFS Joint Time Frequency Spectrum 

KWU Kraftwerk Union 

LSTM Long Short-Term Memory 

MAE Mean Absolute Error 

ML Machine Learning 

MOC Middle of cycle 

NRMS Normalized Root Mean Square 

PeD Peripheral Detectors 

PSD Power Spectral Density 

RPV Reactor Pressure Vessel 

S3K SIMULATE-3K 

SDOF Single Degree of Freedom 

SNR Signal to Noise Ratio 

SSA Singular Spectrum Analysis 

SPND Self-Powered Neutron Detector 
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SVD Single Value Decomposition 

SVM Support Vector Machines 

SSA Singular Spectrum Analysis 

TH Thermal-Hydraulic 

TP Travelling Perturbation 

Summary 
This report describes the results of the application of the newly developed tools for reactor noise 
analysis, advanced signal processing and machine learning methodologies to actual plant data. 
More specifically, the modeling tools developed in WP1 are used to simulate and analyze real plant 
measurements from the pre-Konvoi 3-loop NPP at Gösgen, a German pre-Konvoi 4-loop reactor, a 
Hungarian VVER-440 reactor and a Czech VVER-1000 reactor. Subsequently, the techniques 
developed in WP3 are used to identify the root causes of neutron flux fluctuations in the actual plant 
data for the reactors presented above. The results are compared with the simulation results 
corresponding to the selected power plants, based on the hypotheses developed for reactor noise 
analysis. 
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1 Introduction 

The Horizon 2020 EU project CORTEX aims at developing techniques that can be used to detect 
and characterize operational problems in nuclear reactor cores, before those problems have any 
inadvertent effect on plant safety and availability. This is primarily achieved by recording the inherent 
fluctuations in neutron flux, using in-core and ex-core instrumentation. Based on the aforementioned 
recorded signals, the main objective is to be able to differentiate the anomalies, depending on their 
type, location and characteristics, thereby obtaining a deepened understanding of the physical 
processes involved. 

 

In this deliverable, actual plant measurements, originating from four different reactors, are going to 
be used, in order to demonstrate the applicability, as well as the usefulness of the developed tools 
at the previous stages of the project, especially those based on the inversion of the reactor transfer 
function complemented by advanced signal processing techniques. Emphasis will be placed on the 
detection of abnormal fluctuations, on the understanding of their origin, and on the classification of 
the anomalies according to their safety impact. 

 

In Section 2 of the current deliverable, the various modeling software (CORE SIM+, SIMULATE-3K, 
FEMFFUSION), either developed within the CORTEX project or not, are briefly introduced. Then the 
four reactors are described (German pre-Konvoi 4-loop reactor, Swiss pre-Konvoi 3-loop reactor, 
Hungarian VVER-440 reactor, Czech VVER-1000 reactor), together with the corresponding 
scenarios of anomalies that were investigated. 

 

In Section 3, fluid-structure interactions simulations are analyzed, starting with the simulations with 
the GRS mechanical model, under generic excitation scenarios. Then, noise simulations with an 
upgraded version of the system code DYN3D, which includes the ROM for mechanical vibrations of 
reactor core internals, for full core analysis of the same pre-Konvoi 4-loop reactor are presented. 

 

In Section 4, the actual plant measurements are being processed, using standard and advanced 
signal processing techniques. These range from the Fourier analysis and the computation of the 
Auto Power Spectral Densities, to the Hilbert-Huang Transform and the Joint Time Frequency and 
Singular Spectra Analysis. 

 

In Section 5, the machine learning-based classification and localization techniques are outlined. 
These include the voxel-wise, semantic segmentation for simulated data classification and 
localization of multiple, simultaneously occurring perturbations, along with convolutional, recurrent 
neural network architectures for perturbation classification and localization. Finally, this report 
concludes in Section 6, where some general observations and remarks are being made 
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2 Neutron noise simulations 

In this Section, the simulations of the neutron noise induced by postulated noise sources in the 
reactors considered in Task 4.2 are presented. First, the various modelling software, some of them 
developed within the CORTEX project, are briefly introduced. Thereafter, the various reactors are 
described, together with the corresponding scenarios of anomalies that were investigated. 

 

2.1 Modelling tools 

2.1.1 CORE SIM+ 

CORE SIM+ is a frequency-domain modelling tool developed at CHALMERS as part of the CORTEX 
project (Mylonakis et al., 2020). This tool estimates the effect of macroscopic cross-section stationary 
perturbations onto the neutron flux using the two-group diffusion approximation and linear theory. 
One group of delayed neutrons is considered. The spatial discretization of the balance equations is 
based on finite differences, assuming Cartesian geometry. Depending on the problem of interest, 
different numerical methods and non-uniform computational meshes can be selected for effective 
numerical performances and accuracy. The simulator can generate neutron noise databases for 
nuclear power reactors via the Green’s function method in a fully automated manner. These 
databases can be useful to study the neutron noise behavior in a reactor and to train machine 
learning algorithms for core monitoring and diagnostics. 

 

2.1.2 SIMULATE-3K 

SIMULATE-3K (S3K) is a time-domain commercial core simulator developed by Studsvik 
Scandpower (Grandi, 2011). The calculations are performed considering the interdependence 
between the neutronics and the thermal-hydraulics. On the neutronic side, the modelling is based 
on the time-dependent two-group diffusion approximation and using six groups of delayed neutrons. 
The spatial discretization of the balance equations is based on nodal methods. On the thermal-
hydraulic side, the modelling is based on a macroscopic modelling of the mass conservation 
equation, momentum conservation equation, and energy conservation equation. For mass and 
energy, phasic balance equations are considered, whereas for momentum, a mixture balance 
equation is considered. The discretization of the balance equations is based on finite volumes. The 
tool does not rely on linear theory, i.e. the non-linear terms are explicitly modelled. Perturbations are 
defined in terms of perturbations of variables such as coolant inlet temperature, core flow rate or 
water gap thickness (for fuel assembly vibrations and core barrel vibrations) via dedicated scripts 
developed by PSI. 

 

2.1.3 FEMFFUSION 

FEMFFUSION is a time- and frequency-domain modelling tool developed at UPV as part of the 
CORTEX project (Vidal-Ferràndiz et al., 2020a, 2020b). This tool estimates the effect of macroscopic 
cross-section stationary perturbations onto the neutron flux using the two-group diffusion 
approximation. In the time-domain, non-linear terms are explicitly modelled, whereas in the 
frequency-domain, linear theory is used. Six group of delayed neutrons are considered. The spatial 
discretization of the balance equations is based on finite elements, using a high order continuous 
Galerkin method. Any kind of structured or unstructured mesh is allowed, as long as the elements 
are composed of quadrilaterals in 2-D or hexahedras in 3-D. In the case of reactors with hexagonal 
fuel assemblies, each hexagon is discretized into three quadrilateral cells, as represented in Figure 
1. A simple extrusion of this geometry is performed to take the axial variation into account. 
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Figure 1: Spatial discretization of hexagonal fuel assemblies into quadrilaterals. 

 

2.1.4  DYN3D 

DYN3D is a three-dimensional, time domain reactor code, developed by HZDR (Helmholtz-Zentrum 
Dresden-Rossendorf), for thermal reactor cores (Rohde, 2016). It utilizes a three-dimensional nodal 
model to solve the two-group or multi-group diffusion equation for neutrons in both Cartesian and 
hexagonal-z geometry. The modelling of the thermal hydraulics inside the core is based on a four-
equation model representing the conservation of mass, momentum, energy of the mixture and the 
mass balance of the vapour (in the case of a boiling water reactor). These are solved numerically by 
the method of characteristics (for the energy conservation) and a so-called MIRONOV scheme (for 
the solution of the coupled mass and momentum balance). The coupled neutronic and thermal 
hydraulic models are solved via an internal iteration loop until a convergence of the feedback 
parameters is reached. 

 

2.2 Description of the considered reactors and of the corresponding 
scenarios 

2.2.1 German pre-Konvoi 4-loop reactor 

The reactor considered hereafter is a 4-loop reactor of pre-Konvoi design. The core layout with the 
position of the various neutron detectors (both in-core and ex-core detectors) is given in Figure 2 
and in Figure 3. The modelling parameters used in the simulations are representative of the core 
conditions corresponding to the noise measurements performed on February 28th, 2012, during the 
fuel cycle 30, with a soluble boron concentration of 78 ppm, a thermal output of 3730 MWth and an 
average coolant temperature of 304.2 °C. A more complete description of the reactor, of the 
measuring equipment and of the core conditions can be found in the deliverables D4.2 and D4.3 
(Kuentzel et al., 2018; Lipcsei et al., 2018).  
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Figure 2: Radial detector position in the German pre-Konvoi 4-loop reactor [reproduced from (Lipcsei 
et al., 2018)]. 
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Figure 3: Axial detector position in the German pre-Konvoi 4-loop reactor [reproduced from (Lipcsei 
et al., 2018)]. 
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The modelling of the effect of various noise sources was performed in the frequency-domain using 
the CORE SIM+ tool, following the strategy presented in the deliverables D3.1 and D3.2 (Demazière 
and Dokhane, 2019; Dokhane and Mylonakis, 2019). The static macroscopic cross-sections used 
for both performing the static CORE SIM+ calculations and on which the noise sources are defined 
for carrying out the dynamic calculations were provided by another core simulator, in the present 
case SIMULATE-3 (thanks to PSI).The CORE SIM+ tool estimates at the angular frequency 𝜔 the 
neutron noise 𝛿𝜙1(𝐫, 𝜔) and 𝛿𝜙2(𝐫, 𝜔) in the fast and thermal energy groups, respectively, solution 
of the following balance equations: 

 

 

{𝛁 ⋅ [𝐃(𝐫)𝛁] + Σ𝑑𝑦𝑛(𝐫, 𝜔)} × [
𝛿𝜙1(𝐫, 𝜔)

𝛿𝜙2(𝐫, 𝜔)
]

= 𝝓𝑟(𝐫)𝛿Σ𝑟(𝐫, 𝜔) + 𝝓𝑎(𝐫) [
𝛿Σ𝑎,1(𝐫, 𝜔)

𝛿Σ𝑎,2(𝐫, 𝜔)
] + 𝝓𝑓(𝐫, 𝜔) [

𝛿𝜐Σ𝑓,1(𝐫, 𝜔)

𝛿𝜐Σ𝑓,2(𝐫, 𝜔)
] = [

𝑆1(𝐫, 𝜔)

𝑆2(𝐫, 𝜔)
]

  (1) 

 

The definition of the different quantities can be found in Mylonakis et al. (2020). Different postulated 
scenarios were then investigated, and the simulations performed accordingly: 

• Generic “absorber of variable strength”. In this scenario, a Dirac-like perturbation in point 𝐫′ 
is considered. In such a case, the right-hand side of Eq. (1) is replaced by 𝛿(𝐫 − 𝐫′) being 
introduced either in the fast group or in the thermal group. The corresponding solution to Eq. 
(1) is given by the Green’s function 𝐺𝑔′→𝑔(𝐫, 𝐫′, 𝜔), thus giving the neutron noise induced in 

the spatial point 𝐫 and energy group 𝑔 due to a Dirac-like perturbation in the spatial point 𝐫′ 
and energy group 𝑔′. Calculations are performed in the frequency range 0.1 to 25 Hz. 

• Axially travelling perturbations at the velocity of the coolant flow. In this scenario, a 
perturbation of the coolant is assumed. Although it is more likely that this perturbation is 
created outside of the core, we will consider, for the sake of generality, that the perturbation 
can also be created inside the core. The perturbation is assumed to travel upwards with the 
coolant along the 𝑧-axis at a velocity 𝑣. For simplicity, it is further assumed that the velocity 
is axially independent. Furthermore, the effect of the coolant perturbation is supposed to only 
modify the removal macroscopic cross-section, expressed in the frequency-domain as: 
 

 𝛿Σ𝑟(𝐫 ≡ (𝑥, 𝑦, 𝑧), 𝜔) = {

0, if(𝑥, 𝑦) ≠ (𝑥0, 𝑦0)

0, if(𝑥, 𝑦) = (𝑥0, 𝑦0) and 𝑧 < 𝑧0

𝛿Σ𝑟(𝑥0, 𝑦0, 𝑧0, 𝜔)exp [−
𝑖𝜔(𝑧−𝑧0)

𝑣
] , if(𝑥, 𝑦) = (𝑥0, 𝑦0) and 𝑧 ≥ 𝑧0

  (2) 

 

where (𝑥0, 𝑦0, 𝑧0) represents the location in the core in which the perturbation is applied, and 
𝑧  corresponds to the axial elevation within the core. The perturbation introduced at (𝑥0, 𝑦0, 𝑧0) 
is further assumed to be white, which in the frequency domain has thus no frequency 
dependence. The corresponding noise source is then given by: 

 

 [
𝑆1(𝐫, 𝜔)

𝑆2(𝐫, 𝜔)
] = 𝝓𝑟(𝐫)𝛿Σ𝑟(𝐫, 𝜔)  (3) 

 

Calculations are performed in the frequency range 0.1 to 25 Hz. 

• Fuel assembly vibrations. In this scenario, a fuel assembly is assumed to vibrate in the 𝑥- 
and/or 𝑦-direction. Concerning the vibration mode in the axial direction, several possibilities 
exist: the cantilevered beam mode, the simply supported on both sides mode (with its two 
first harmonics), and the cantilevered beam and simply supported mode (with its two first 
harmonics), as described in the CORTEX deliverable D3.1. Each vibration mode has a given 
axial shape and a corresponding eigenfrequency, as summarized in Figure 4. Because of 
the homogenization of the material data at the nodal level, the modelling of fuel assembly 
vibrations corresponds to the introduction in the (𝑥, 𝑦) plane of Dirac-like perturbations at the 
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boundary of each homogeneous region, each perturbation being given by the difference of 
static macroscopic cross-sections between the moving region and its neighboring region. 
Using the notations introduced in Figure 4, denoting by ℎ the displacement in the (𝑥, 𝑦) plane 
and 𝜀𝑥 and 𝜀𝑦 its projection on the 𝑥- and 𝑦-directions, respectively, the perturbations of the 

macroscopic cross-sections of type 𝛼 are then given as: 

 

 𝛿Σ𝛼,𝑔
𝑥 (𝑥, 𝑧, 𝜔) = ℎ(𝑧, 𝜔)𝛿(𝑥 − 𝑎0)[Σ𝛼,𝑔,𝐼 − Σ𝛼,𝑔,𝐼𝐼] + ℎ(𝑧, 𝜔)𝛿(𝑥 − 𝑏0)[Σ𝛼,𝑔,𝐼𝐼 − Σ𝛼,𝑔,𝐼𝐼𝐼]  (4) 

 𝛿Σ𝛼,𝑔
𝑦 (𝑦, 𝑧, 𝜔) = ℎ(𝑧, 𝜔)𝛿(𝑦 − 𝑐0)[Σ𝛼,𝑔,𝐼𝑉 − Σ𝛼,𝑔,𝐼𝐼] + ℎ(𝑧, 𝜔)𝛿(𝑦 − 𝑑0)[Σ𝛼,𝑔,𝐼𝐼 − Σ𝛼,𝑔,𝑉]  (5) 

 

The noise source is then given by the following expression: 
 

 [
𝑆1(𝐫, 𝜔)

𝑆2(𝐫, 𝜔)
] = 𝝓𝑟(𝐫)𝛿Σ𝑟(𝐫, 𝜔) + 𝝓𝑎(𝐫) [

𝛿Σ𝑎,1(𝐫, 𝜔)

𝛿Σ𝑎,2(𝐫, 𝜔)
] + 𝝓𝑓(𝐫, 𝜔) [

𝛿𝜐Σ𝑓,1(𝐫, 𝜔)

𝛿𝜐Σ𝑓,2(𝐫, 𝜔)
]  (6) 

 

 

 

 

 

 
          𝑎0    𝑏0      𝑥 

Figure 4: Notations used for describing the vibrations of a homogeneous region (labelled II) in 
relation to four neighbouring homogeneous regions (labelled I, III, IV and V). 

The frequencies at which the calculations are performed are given as follows: 

o For the cantilevered beam mode: 0.6-1.2 Hz. 
o For simply supported on both sides: first mode 0.8-4 Hz, and second mode 5-10 Hz. 
o For cantilevered beam and simply supported: first mode 0.8-4 Hz, and second mode 

for 5-10 Hz. 

• Control rod vibrations. The vibration of a control rod is assumed to be described by a one-
dimensional structure along the 𝑧-direction vibrating perpendicularly to the two-dimensional 
(𝑥, 𝑦) plane. Furthermore, the vibrating rod is assumed to always remain parallel to itself and 
to have the most significant effect on the thermal macroscopic absorption cross-section. In 
those conditions, the vibration of the rod will create a perturbation of the thermal absorption 
cross-section that is represented as: 
 

 𝛿Σ𝑎,2(𝐫, 𝑡) = 𝛾Θ(𝑧 − 𝑧0) [𝛿 (𝐫𝑥𝑦 − 𝐫𝑝,𝑥𝑦 − 𝜺(𝑡)) − 𝛿(𝐫𝑥𝑦 − 𝐫𝑝,𝑥𝑦)]  (7) 

 

where 𝛾 is the strength of the perturbation, 𝐫𝑝,𝑥𝑦 is the equilibrium position of the rod in the 

(𝑥, 𝑦) plane, 𝜺(𝑡) is a vector representing the displacement of the rod from its equilibrium 

position in the (𝑥, 𝑦) plane, and 𝑧0 represents the axial elevation at which the rod is inserted 

 
𝜀𝑦(𝑧, 𝜔) 
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𝜀𝑥(𝑧, 𝜔) 

region III 
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(insertion from the top of the core). Θ(𝑧 − 𝑧0) is the Heaviside function. Using a one-term 
Taylor expansion for Eq. (7) and after some algebra, the corresponding induced neutron 
noise can be estimated – see CORTEX deliverable D3.1 for the details. Calculations are 
performed in the frequency range 0.1 to 20 Hz. 

 

Table 1: Description of the considered fuel assembly vibration modes for the frequency-domain 
simulations. 

 Cantilevered beam Simply supported 
on both sides 

Cantilevered beam 
and simply 
supported 

Axial shape of the 
displacement 

𝑑(𝑧, 𝑡) in arbitrary 
units as a function 
of the relative core 

elevation 𝑧  

  

first mode in blue, 
second mode in 

orange 

 

first mode in blue, 
second mode in 

orange 

Oscillation 
frequency 

Ca. 0.6 – 1.2 Hz Ca. 0.8 – 4 Hz for 
the first mode 

Ca. 5 – 10 Hz for 
the second mode 

Ca. 0.8 – 4 Hz for 
the first mode 

Ca. 5 – 10 Hz for 
the second mode 

 

• Core barrel vibrations. Several modes of vibrations are possible for the core barrel. Only the 
so-called beam or pendular mode were considered. Two types of beam or pendular motions 
can occur: the so-called in-phase and out-of-phase modes (Bläsius, 2018; Demazière and 
Dokhane, 2019). These modes result from the interplay between the oscillations of the 
reactor pressure vessel with respect to the environment and the oscillations of the core barrel 
with respect to the reactor pressure vessel, to which the core barrel is attached. In the in-
phase mode, the two oscillators move in the same directions, whereas in the out-of-phase 
mode, the two oscillators move in opposite directions. For both modes of pendular or beam 
motions of the core barrel, the axial shape of the displacement of the active core with respect 
to the environment can be described in the same manner as a linear variation from the 
bearing points of the reactor pressure vessel downwards. From a neutronic viewpoint, the 
modelling of the pendular mode can be performed much alike the modelling of fuel assembly 
vibrations earlier described. Core barrel vibrations can be considered as the relative motion 
of the active fuel core region with respect to the reflector. Core barrel vibrations can thus be 
seen as a collective movement of all fuel assemblies with respect to the reflector. The 
perturbations introduced by core barrel vibrations can be considered as localized 
perturbations taking place at the boundary between the active core region and the reflector 
region. Calculations are performed in the frequency range 7 to 13 Hz. 
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For all the scenarios described above and for all relevant frequencies (as described in the CORTEX 
deliverables D3.1 and D3.2), the Cross-Power Spectral Densities (CPSD) of the relative induced 
neutron noise between detector pairs were estimated, i.e. quantities of the form 

 

 𝐶𝑃𝑆𝐷𝛿𝜙 𝜙0⁄ (𝐫1, 𝐫2, 𝜔) ∝
𝛿𝜙(𝐫1,𝜔)𝛿𝜙∗(𝐫2,𝜔)

𝜙0(𝐫1)𝜙0(𝐫2)
  (8) 

 

were calculated, using the methodology presented in detail in the CORTEX deliverable D3.2. It 
should nevertheless be emphasized that contrary to the method described in this deliverable where 
the neutron noise 𝛿𝜙(𝐫, 𝜔) was used in the CPSD estimates, it is the relative neutron noise 
𝛿𝜙(𝐫, 𝜔) 𝜙0(𝐫)⁄  that was estimated in the present case, so that the simulated data are directly 
compatible with the measured data. 

 

The data are provided in the format described in D3.2. Contrary to the method described in D3.2 
where the data regarding only the 1/8th of the core were provided, it is the complete dataset that is 
provided in the present case. Therefore, the user must skip the process described in the paragraph 
3.2.3 of D3.2. 

 

The dataset is used similarly to the one described in D3.2. The use of the dataset is performed in 
two fully automated steps. In the first step, the complex quantities 𝛿𝜙1(𝐫, 𝜔) and 𝛿𝜙2(𝐫, 𝜔) are 
generated for each scenario and for all relevant frequencies. This step is performed with the provided 
script “GREEN_POSTPROCESSING” (MATLAB/Python versions available). In the second step, the 
CPSDs are computed (see Eq. (8)). Instead of the MATLAB function described in D3.2, the MATLAB 
function “DETECTOR_PSD” is used in the current case. This function generates the CPSD of each 
detector pair for a selected perturbation.  

 

The simulated data along with the postprocessing scripts were delivered to the concerned CORTEX 
partners in February 2020.  

 

2.2.2 Swiss pre-Konvoi 3-loop reactor 

The reactor considered hereafter is the Gösgen (KKG) reactor, which is a 3-loop reactor of pre-
Konvoi design. The core layout with the position of the various neutron detectors (both in-core and 
ex-core detectors) is given in Figure 5 and in Figure 6. The modelling parameters used in the 
simulations are representative of the core conditions corresponding to the noise measurements 
performed on February 7th, 2018, during the fuel cycle 39, with a soluble boron concentration of 
303 ppm, a thermal output of 3002 MWth and an average coolant temperature of 308.5 °C. A more 
complete description of the reactor, of the measuring equipment and of the core conditions can be 
found in the deliverables D4.1, D4.2 and D4.3 (Pohlus et al., 2018; Kuentzel et al., 2018; Lipcsei et 
al., 2018).  
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Figure 5: Radial detector position in the Swiss pre-Konvoi 3-loop reactor. 

 

The simulations for this reactor were carried out both in the frequency-domain and in the time-
domain. 

 

Frequency-domain simulations 

 

The modelling of the effect of various noise sources was performed in the frequency-domain using 
the CORE SIM+ tool, following the strategy presented in the deliverables D3.1 and D3.2 (Demazière 
and Dokhane, 2019; Dokhane and Mylonakis, 2019). This strategy was briefly summarized in 
Section 2.2.1 of this report. 

 

The simulated data along with the postprocessing scripts were delivered to the concerned CORTEX 
partners in April/May 2020. 
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Figure 6: Axial detector position in the Swiss pre-Konvoi 3-loop reactor [reproduced from (Lipcsei et 
al., 2018)]. 

Time-domain simulations 

 

The following are the steps performed in order to generate the desired simulated data: 

1. First, a CASMO-5 model is prepared corresponding to the selected core design for 
preparation of the cross-section nuclear library that will be read later by SIMULATE-3K. The 
model includes the delta gap model (additional branch calculation in terms of water gap 
between fuel assemblies), which generates perturbed two-group macroscopic cross sections 
for water-gap variation representative of only static fuel assembly displacement. This allows 
S3K to simulate modified water gap width between the fuel assemblies in a time-dependent 
manner, in case one or more fuel assemblies are vibrating. The modelling scheme contains 
a module that enables the user to impose pre-defined functions representative of the vibration 
modes of the fuel assemblies by assigning factored coefficients between zero and one to 
each axial node. 
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2. Second, after choosing the desired scenario, corresponding SIMULATE-3K input is 
prepared, using a MATLAB program, by providing all necessary information about the desired 
scenario, e.g. time step and duration of simulation, amplitude fuel assembly vibration, 
location of vibrating fuel assemblies, etc. Once the input is ready, the SIMULATE-3K is run 
in order to solve the 3D time-dependent neutron diffusion equation.  

3. Finally, a MATLAB program is used to extract the time series of the neutron flux of all the in-
core and ex-core neutron detectors. This is done by extracting the data from S3K “cms” 
output file and save them in a “.mat” format file, comprising seven matrices.  

 

The S3K based simulation results are stored in a MATLAB format “ScenarioX.mat” (where ScenarioX 
is scenario’s title), located in the central FTP repository available to the CORTEX partners in the 
path: 

/home/PSI/WP3/T3.1.3/2020.02.Dataset8_PSI_CORTEX_Data_Export 

 

Those data were delivered on February 13th, 2020. In total, 366 different scenarios have been 
simulated, as given in Table 2. It should be mentioned that although emphasis is put in this section 
on the noise measurements performed on February 7th, 2018, during the fuel cycle 39, middle of 
cycle (MOC), the data set delivered by PSI contains the simulations corresponding to noise 
measurements at beginning of cycle (BOC) conditions for fuel cycle 40, MOC conditions for fuel 
cycle 40 and EOC conditions for fuel cycle 40. The various cycle conditions together with the dates 
of the noise measurements are summarized in Table 2. 

 

Table 2: Definition of the scenarios modelled with S3K. 

Case ID Scenario 
no. 

Core 
condition 

Type Frequency Amplitude Comments 

2020-02-Dataset8-
C1a 

1 - 177 BOC 40 Vibration of 
one FA in 

cantilevered 
mode 

1.2 Hz 

 

1.0 mm 

 

X-direction 

 

2020-02-Dataset8-
C1b 

1 - 177 BOC 40 Vibration of 
one FA in C-
shape mode 

1.2 Hz 

 

1.0 mm 

 

X-direction 

 

2020-02-Dataset8-
C2 

1 BOC 40 Random 
fluctuation in 

inlet 
temperature; 
synchronized 

loops 

- ±1°C Mean value 

= 556.70 °C 

 

2 MOC 40 Random 
fluctuation in 

inlet 
temperature; 
synchronized 

loops 

- ±1°C Mean value 
= 557.89 °C 

 

3 EOC 40 Random 
fluctuation in 

inlet 
temperature; 
synchronized 

loops 

- ±1°C Mean value 
= 549.11 °C 

 

2020-02-Dataset8-
C3 

1 BOC 40 Random 
fluctuation in 

- 2% Mean value 

= 100% 
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inlet flow; 
synchronized 

loops 

2 MOC 40 Random 
fluctuation in 

inlet flow; 
synchronized 

loops 

- 2% Mean value 

= 100% 

3 EOC 40 Random 
fluctuation in 

inlet flow; 
synchronized 

loops 

- 2% Mean value 

= 100% 

2020-02-Dataset8-
C4 

1 BOC 40 Simplistic 
lateral 

vibration of 
central 5x5 
FA cluster + 
random TH 
fluctuations 

1.2 Hz 

 

1.0 mm + 
±1 °C + 

2% 

 

X-direction, 

Mean value 

= 556.70 °C, 

Mean value 

= 100% 

2 MOC 40 Simplistic 
lateral 

vibration of 
central 5x5 
FA cluster + 
random TH 
fluctuations 

1.2 Hz 

 

1.0 mm + 
±1 °C + 

2% 

 

X-direction, 

Mean value 

= 557.89 °C, 

Mean value 

= 100% 

3 EOC 40 Simplistic 
lateral 

vibration of 
central 5x5 
FA cluster + 
random TH 
fluctuations 

1.2 Hz 

 

1.0 mm + 
±1 °C + 

2% 

 

X-direction, 

Mean value 

= 549.11 °C, 

Mean value 

= 100% 

2020-02-Dataset8-
C5 

1 BOC 40 Cantilevered 
mode 

vibration of 
central 5x5 
FA cluster + 
random TH 
fluctuations 

1.2 Hz 

 

1.0 mm + 
±1 °C + 

2% 

 

X-direction, 

Mean value 

= 556.70 °C, 

Mean value 

= 100% 

2 MOC 40 Cantilevered 
mode 

vibration of 
central 5x5 
FA cluster + 
random TH 
fluctuations 

1.2 Hz 

 

1.0 mm + 
±1 °C + 

2% 

 

X-direction, 

Mean value 

= 557.89 °C, 

Mean value 

= 100% 

3 EOC 40 Cantilevered 
mode 

vibration of 
central 5x5 
FA cluster + 
random TH 
fluctuations 

1.2 Hz 

 

1.0 mm + 
±1 °C + 

2% 

 

X-direction, 

Mean value 

= 549.11 °C, 

Mean value 

= 100% 
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Table 3: Core conditions for the measurement campaigns. 

Date of the noise 
measurements 

2018-02-07 2018-05-15 2018-07-10 2018-12-11 2019-05-X 

Cycle MOC 39 EOC 39 BOC 40 MOC 40 EOC 40 

EFPD [days] 223 320 16 171 325 

Boron 
concentration [ppm] 

303 34 911 442 4 

Core burnup during 
the measurement 
[MWd/kgHM] 

40 44 32 38.3 44.4 

 

These scenarios are organized in six cases as follows: 

1. 2020-01-Dataset8-C1a: Vibration of each fuel assembly individually, in cantilevered 
mode at BOC 40, only in the x-direction, sine wave function with nominal frequency of 1.2 
Hz, with displacement amplitude of 1.0 mm. This case comprises 177 scenarios 
corresponding to each fuel assembly vibration.  

2. 2020-01-Dataset8-C1b: Vibration of each fuel assembly individually, in C-shaped mode 
at BOC 40, only in the x-direction, sine wave function with nominal frequency of 1.2 Hz, 
with displacement amplitude of 1.0 mm. This case comprises 177 scenarios corresponding 
to each fuel assembly vibration.  

3. 2020-01-Dataset8-C2: Random fluctuations of inlet coolant temperature in all the three 
synchronized loops with amplitude of ±1 °C around the mean value of 556.70 °C, 557.89 °C 
and 549.11 °C at BOC 40, MOC40 and EOC 40, respectively. 

4. 2020-01-Dataset8-C3: Random fluctuations of inlet coolant flow in all the three 
synchronized loops with amplitude of ±2% around the relative value of 100% flow at BOC 
40, MOC40 and EOC 40, respectively. 

5. 2020-01-Dataset8-C4: Combination of simplistic vibration of 5x5 central cluster of FAs 
in the x-direction, following a sine wave function with nominal frequency of 1.2 Hz, with 
displacement amplitude of 1.0 mm. and synchronized fluctuations of inlet coolant 
temperature in all the three loops and synchronized fluctuations of inlet coolant flow in 
all the three loops. Note that, the inlet coolant temperature is randomly fluctuating with 
amplitude of ±1 °C around the mean value of 556.70 °C, 557.89 °C and 549.11 °C at BOC 
40, MOC40 and EOC 40, respectively. Also, the inlet coolant flow is randomly fluctuating with 
an amplitude of 2% over the relative flow of 100%. 

6. 2020-01-Dataset8-C5: Combination of cantilevered mode vibration of 5x5 central cluster 
of FAs in the x-direction, following a sine wave function with nominal frequency of 1.2 Hz, 
with displacement amplitude of 1.0 mm and synchronized fluctuations of inlet coolant 
temperature in all the three loops and synchronized fluctuations of inlet coolant flow in 
all the three loops. Note that, the inlet coolant temperature is randomly fluctuating with 
amplitude of ±1 °C around the mean value of 556.70 °C, 557.89 °C and 549.11 °C at BOC 
40, MOC40 and EOC 40, respectively. Also, the inlet coolant flow is randomly fluctuating with 
an amplitude of 2% over the relative flow of 100%. 

 

The random fluctuations mentioned above are stochastic fluctuations of the inlet coolant temperature 
and coolant flow. The fluctuations are introduced in a synchronous manner in the three coolant loops, 
i.e. the fluctuations are identical.  

 

The coolant properties (𝑓𝑖,𝑗) are modified at every time step 𝑡 using a normally distributed random 

number generator, based on the following expression: 

𝑓𝑖,𝑗(𝑡) = 𝑓𝑖,𝑗(0)+𝐴𝑖,𝑗 ∙ 𝑟𝑎𝑛𝑑 
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where 𝑓𝑖,𝑗(0) are the initial coolant properties, and 𝐴𝑖,𝑗 describe the user defined amplitude of 

fluctuation of the 𝑖𝑡ℎ coolant property at the 𝑗𝑡ℎ coolant loop. 

 

The fuel assemblies are labelled according to Figure 5. In the cases ‘2020-02-Dataset8-C1a’ and 
‘2020-02-Dataset8-C1b’, the scenario number ‘n’ = 1 to 177 correspond to the fuel assembly labels 
‘P6’, ‘P7’, ‘P8’, ‘P9’, ‘P10’, ‘P11’, ’O3’, so on and so forth until ‘A10’, and are meant to be read row 
wise. 

 

For cases ‘2020-02-Dataset8-C1a’, ‘2020-02-Dataset8-C1b’, ‘2020-02-Dataset8-C4’ and ‘2020-02-
Dataset8-C5’, the modes of vibrations are illustrated in Figure 7.  

 

For cases ‘2020-02-Dataset8-C2’, ‘2020-02-Dataset8-C3’, ‘2020-02-Dataset8-C4’ and ‘2020-02-
Dataset8-C5’, the synchronized fluctuation of either the inlet coolant temperature and/or flow means 
that all core locations are equally affected by the perturbation of these thermal-hydraulic parameters. 

 

 

Figure 7: Fuel assembly vibrations in simplistic lateral vibration mode, cantilevered mode and C-
shaped mode, respectively. 

 

The results of the 366 simulation scenarios of Dataset8 are provided in MATLAB matrices, in the 
same format as introduced above. Every simulation scenario has a duration of 100 s and a time step 
of 0.01 s and includes the in/ex-core neutron responses of 36 in-core and 8 ex-core neutron 
detectors, respectively, and the time-dependent reactivity (in absolute values and in dollars). 

Seven matrices are stored within every ‘.mat’ file: 

• T: Time domain in seconds. 

• InDet: Matrix with dimension 10001x36, including the 36 in-core neutron detectors responses 
in the time domain. 

• InDet_labels: Cell array with dimension 1x36, including the labels of the 36 in-core neutron 
detectors whose responses are stored in InDet. 

• ExDet: Matrix with dimension 10001x8, including the 8 ex-core neutron detectors responses 
in the time domain. 

• ExDet_labels: Cell array with dimension 1x8, including the labels of the 8 ex-core neutron 
detectors whose responses are stored in ExDet. 

• rho_abs: Time-dependent reactivity in absolute values (Δk/k, k is keff). 

• rho_dollar: Time dependent reactivity in dollars (Δk/k/β, β is the delayed neutron fraction). 

 

The output files, placed in five folders with title format ‘2020-02-Dataset8-CX’, have a name format 
‘2020-02-Dataset8-CX-CycleY-compact_description-n.mat’, where ‘X’ is the case number, ‘CycleY’ 
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is the core condition, “compact_description” is the compact name that gives information about the 
scenario, and “n” is the fuel assembly number defining the perturbed fuel assembly.  

 

For instance, the compact_description ‘FA1-CantMode-SIN-1.2Hz-1mm’ stands for vibration of 1 

fuel assembly sinusoidally in cantilevered mode at 1.2 Hz with amplitude of 1 mm, as described in 
Table 2. Similarly, the compact description ‘FA5x5-SIN-1.2Hz-1mm-ICT-WN-1C-ICF-WN-2P’ 

stands for vibration of 5x5 central fuel assemblies cluster sinusoidally at 1.2 Hz with amplitude of 1 
mm, in combination with inlet coolant temperature fluctuations with white noise with an amplitude of 
1 °C, and inlet coolant flow fluctuations with white noise and amplitude of 2%. 

 

2.2.3 Hungarian VVER-440 reactor 

The reactor considered hereafter is the unit 2 of the Paks reactor, which is a 6-loop reactor of VVER-
440/213 design. The core layout with the position of the various neutron detectors (both in-core and 
ex-core detectors) is given in Figure 8 and in Figure 9. The modelling parameters used in the 
simulations are representative of the core conditions corresponding to the noise measurements 
performed on March 1st, 2017, during the fuel cycle 32, at 7 EFPD. A more complete description of 
the reactor, of the measuring equipment and of the core conditions can be found in the deliverables 
D4.2 and D4.3 (Kuentzel et al., 2018; Lipcsei et al., 2018).  

 

 

Figure 8: Radial detector position in the Hungarian VVER-440 reactor. 

 



 D4.4 Results of the application and demonstration calculations 

GA n°754316 Page 28 of 192 

 

 

Figure 9: Axial detector position in the Hungarian VVER-440 reactor [reproduced from (Lipcsei et al., 
2018)]. 

 

The simulation set is composed of a large number of .dtc files, each one corresponding to one 
neutron noise simulation. They are performed with the frequency domain code FEMFFUSION (Vidal-
Ferràndiz et al., 2020a, 2020b). The results of the simulations were delivered in February 2020 using 
the central FTP repository available to the CORTEX partners and are available in the path: 

/home/upv/3D_VVER440_NOISE 

A folder is available for each of the simulated scenarios: GenericAbsorber (for a generic absorber of 
variable strength) and TravellingPerturbation (for an axially travelling perturbation). Inside these 
folders, there are different subfolders specifying the frequency of the simulated perturbation and of 
the corresponding neutron noise. Finally, each .dtc file contains an id specifying the spatial location 
of the perturbation. 

 

For example: 

/home/upv/3D_VVER440_NOISE/VibratingAbsorber/10Hz/VVER440_EFPD_007_va_17.dtc 

indicates a simulation of a generic vibrating absorber in the VVER-440 reactor at the cell number 17.  

 

In each .dtc file, the noise data at each detector position are given. For example, the 
/home/upv/3D_VVER440_NOISE/VibratingAbsorber/VVER440_EFPD_007_va_1.dtc starts as: 

# det_num  det_radial  det_axial  noise_real_part  noise_imag_part 

1   1  1  -1.94642e-06   5.03457e-07 

2   1  2  -2.06591e-06   5.80197e-07 

3   1  3  -1.82722e-06   5.74047e-07 

4   1  4  -1.51262e-06   5.37182e-07 
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5   1  5  -1.22962e-06   4.89317e-07 

6   1  6  -9.87891e-07   4.29849e-07 

7   1  7  -7.26159e-07   3.3441e-07 

8   2  1  -5.28697e-06   1.26956e-06 

where: 

• The first column indicates the detector number (det_num). 

• The second and the third columns are the detector radial identifier (det_radial) and the 
detector axial identifier (det_radial). 

• Finally, the fourth and fifth numbers are the noise real and imaginary part at the detectors 
position for the thermal group. In order to minimize the size of the transferred files, only the 
data at the location of detectors and for the thermal group are given. The noise value at the 
detectors position is averaged over the hexagonal cell containing the detector. The neutron 
noise given in these files is the absolute neutron noise for the thermal group. The relative 
neutron noise can be obtained by dividing the absolute neutron noise by the static flux at the 
position of the detectors, as: 
 

 𝛿𝜙2,𝑟𝑒𝑙(𝐫𝑖, 𝜔) =
𝛿𝜙2(𝐫𝑖,𝜔)

𝜙2,0(𝐫𝑖)
  (9) 

 

The static neutron flux for the thermal group can be found in the file: 

/home/upv/3D_VVER440_NOISE/VVER440_EFPD_007_static.dtc 

 

With the neutron noise data, the CPSD between detectors and auto-power spectral density (APSD) 
of a detector can be calculated using the Wiener-Khinchin theorem as: 

 

 𝐴𝑃𝑆𝐷𝛿𝜙(𝐫𝑖, 𝜔) = 𝛿𝜙(𝐫𝑖, 𝜔) ⋅ 𝛿𝜙∗(𝐫𝑖, 𝜔)  (10) 

 𝐶𝑃𝑆𝐷𝛿𝜙(𝐫𝑖, 𝐫𝑗, 𝜔) = 𝛿𝜙(𝐫𝑖, 𝜔) ⋅ 𝛿𝜙∗(𝐫𝑗, 𝜔)  (11) 

 

where 𝛿𝜙∗ represents the complex conjugate of the neutron noise. The APSD and the CPSD data 
can be normalized by any arbitrary number. The same normalization would have thus to be used 
when analyzing the measurement data. 

 

The reactor was modelled using 421 vertical assemblies discretized in 48 planes, representing a 
total of 20208 hexagonal cells. The cross sections data used were transferred by MTA-EK. The 
hexagonal cells are numbered using the same convention as the one used by MTA-EK in the 
CORTEX deliverable D4.2 (Kuentzel et al., 2019), as represented in Figure 10. Axially, the 
numbering is carried out incrementally from the bottom to the top of the system. 
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Figure 10: Numbering of the hexagonal cells in the Hungarian VVER-440 reactor. 

 

The modelling of the noise sources follows the same procedure as the one presented in the CORTEX 
deliverable D3.1 and summarized in Section 2.2.1 of this report for the following two scenarios: 

• Generic absorber of variable strength. A Dirac-like perturbation at the hexagonal cell 𝑖 is 
considered and is directly expressed as a perturbation of the macroscopic cross-sections. 
This scenario is particularly important since it can be used to localize any kind of perturbation 
that does not fit any of the other categories. The perturbation inserted at each simulation is 
set to 𝛿Σ𝑎,1(𝑐, 𝜔) = 0.1 and 𝛿Σ𝑎,2(𝑐, 𝜔) = 0.1, where the hexagonal cell label 𝑐 is used in the 

filename. Three frequencies for the perturbation are considered: 0.1 Hz, 1 Hz and 10 Hz, 
giving a total of 20624 simulations. 

• Travelling perturbation. This scenario considers a perturbation traveling along a fuel 
assembly with the coolant flow, from the inlet (bottom of the core) to the outlet (top of the 

reactor). The water flow velocity is set to 𝑣 = 1.0 m. s−1. The perturbed cross section is thus 
defined as: 
 

 𝛿Σ𝑠,1→2(𝑐, 𝜔) = 1.0 ⋅ exp (−𝑧
𝜔

𝑣
𝑖)  (12) 

 

Three frequencies for the perturbation are considered: 0.1 Hz, 1 Hz and 10 Hz. This scenario 
is simulated for each vertical assembly (including reflectors cells) giving a total of 1263 
simulations. 

It should be mentioned that the FEMFFUSION static calculations were compared with the C-PORCA 
code run at MTA-EK. Rather large differences were detected: about 100 to 200 pcm difference in 
the computed effective multiplication factor of the system and about 2% mean error in the relative 
power distribution. Those differences are attributed to that fact that no discontinuity factors were 
used in FEMFFUSION. 
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2.2.4 Czech VVER-1000 reactor 

The reactor considered hereafter is the Temelin unit 1 reactor, which is a 4-loop reactor of VVER-
1000 design. The core layout with the position of the various neutron detectors (both in-core and ex-
core detectors) is given in Figure 11 and in Figure 12. The modelling parameters used in the 
simulations are representative of the core conditions corresponding to the noise measurements 
performed from 17th to 28th of December 2016, at the beginning of the fuel cycle 9. A more complete 
description of the reactor, of the measuring equipment and of the core conditions can be found in 
the deliverables D4.2 and D4.3 (Kuentzel et al., 2018; Lipcsei et al., 2018).  

 

 

Figure 11: Radial detector position in the Czech VVER-1000 reactor [reproduced from (Lipcsei et al., 
2018)]. The in-core detectors are labelled as Ndd, and the ex-core detectors are labelled as Xddd. 
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Figure 12: Axial detector position in the Czech VVER-1000 reactor [reproduced from (Lipcsei et al., 
2018)]. The in-core detectors are labelled as Ndd, and the ex-core detectors are labelled as Xddd. 

 

The simulation data set is composed of a large number of .dtc files, each one corresponding to one 
neutron noise simulation. The results of the simulation were delivered in February 2020 using the 
central FTP repository available to the CORTEX partners and are available in the path: 

/home/upv/3D_VVER1000_NOISE 

A folder is available for each of simulated scenarios: GenericAbsorber (for a generic absorber of 
variable strength) and TravellingPerturbation (for an axially travelling perturbation). Inside these 
folders, there are different subfolders specifying the frequency of the simulated perturbation and of 
the corresponding neutron noise. Finally, each .dtc file contains an id specifying the spatial location 
of the perturbation. 

 

The same convention for naming the various files as explained in Section 2.2.3 is used. 

 

It has again to be emphasized that the neutron noise given in these files is the absolute neutron 
noise for the thermal group. The relative neutron noise can be obtained by dividing the absolute 
neutron noise by the static flux at the position of the detectors, as: 

 

 𝛿𝜙2,𝑟𝑒𝑙(𝐫𝑖, 𝜔) =
𝛿𝜙2(𝐫𝑖,𝜔)

𝜙2,0(𝐫𝑖)
  (13) 
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The static neutron flux for the thermal group can be found in the file: 

/home/upv/3D_VVER1000_NOISE/VVER1000_static.dtc 

 

With the neutron noise data, the CPSD between detectors and APSD of a detector can be calculated 
using the Wiener-Khinchin theorem as: 

 

 𝐴𝑃𝑆𝐷𝛿𝜙(𝐫𝑖, 𝜔) = 𝛿𝜙(𝐫𝑖, 𝜔) ⋅ 𝛿𝜙∗(𝐫𝑖, 𝜔)  (14) 

 𝐶𝑃𝑆𝐷𝛿𝜙(𝐫𝑖, 𝐫𝑗, 𝜔) = 𝛿𝜙(𝐫𝑖, 𝜔) ⋅ 𝛿𝜙∗(𝐫𝑗, 𝜔)  (15) 

 

where 𝛿𝜙∗ represents the complex conjugate of the neutron noise. The APSD and the CPSD data 
can be normalized by any arbitrary number. The same normalization would have thus to be used 
when analyzing the measurement data. 

 

The reactor was modelled using 221 vertical assemblies discretized in 50 planes, representing a 
total of 10550 hexagonal cells. The numbering of the hexagonal cells is illustrated in Figure 13. 
Axially, the numbering is carried out incrementally from the bottom to the top of the system. 

 

 

 

Figure 13: Numbering of the hexagonal cells in the Czech VVER-1000 reactor. 

 

The modelling of the noise sources follows the same procedure as detailed in Section 2.2.3.  
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3 Fluid-Structure Interactions simulations 

3.1 Simulations with the GRS mechanical model under generic excitation 

scenarios 

3.1.1 Model and input parameters 

Geometry noise is the share of neutron noise, which arises from fluid-induced vibrations of the RPV 

and its internals. For its simulation, a multidisciplinary approach is necessary (Figure 14). In this 

section, the part of the simulation chain representing the mechanical component motions (central 

box in Figure 14) is addressed. Simulations with the mechanical model described in CORTEX 

Deliverable 1.2 for a German 4-loop pre-Konvoi (Figure 15) under generic excitation scenarios are 

performed. In a first approach, reactive fluidic effects are considered in form of parametric studies 

on reactive forces from fluidic near-field coupling and fluidic damping. 

 

 

Figure 14: Schematic representation of the relations between the disciplines. 

 

 

Figure 15: GRS-model of the coupled system of RPV internals. 
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For a so far unexplained phenomenon observed in PWR built by KWU, which is characterized by an 

in-phase signal correlation in axial direction, an anti-phase signal correlation between opposite core 

quadrants, and a 1/ω²-like shape of the APSD with an additional peak around 1 Hz, a mechanical 

source has been proposed. The phenomenon is associated with a strong neutron-flux signal 

increase in the time-interval between about 2000 and 2010 (Seidel, Kosowski, Schüler, & Belblidia, 

2015), (Herb, Bläsius, Perin, Sievers, & Velkov, 2017), (Pohlus & Paquée, 2018). Simulations of the 

mechanical oscillation behavior of the components are expected to give further clues about the 

underlying physics of the phenomenon.  

 

Excitation forces acting on core internals encompass a wide field of known and hypothetical 

phenomena. These include e.g. turbulent buffeting, pressure oscillations, oscillating mass-flow 

profiles, lateral flow, vortex-induced vibrations, seismic accelerations or external mechanical 

excitations. In the special case of self-induced oscillations, the oscillation of the system may arise 

even from the bidirectional interplay between fluid flow field and the component itself. 

 

In this work, the reactions of the coupled system of RPV internals to generic forced excitation 

scenarios are investigated. Stochastic, seismic and self-induced excitations are not considered here. 

The generic excitation scenarios include the following: 

• Correlated sinusoidal excitation of all FAs with 20 N at 1 Hz. 

• Correlated sinusoidal excitation of all FAs with 200 N at 1 Hz. 

• Local sinusoidal excitation of 3 of 15 FAs at the core edge with 200 N at 1 Hz. 

• Shifted sinusoidal excitation of all FAs with 200𝑁 ∗ 𝑠𝑖𝑛(2𝜋 ∗ (1𝐻𝑧 ∗ 𝑡 + 𝑛/15)), n = FA 

position. 

• Sinusoidal excitation of the core barrel (CB) and (in anti-phase) the RPV with 30 kN at 1 Hz. 

 

For each excitation scenario, studies with different parameters are performed: 

• Fluidic damping of the individual FAs either neglected or set to D = 0.5. 

• Fluidic near-field coupling between FAs/core barrel either neglected or set to k = 20 N/mm. 

• Loading pattern either uniform with Type 1 FA (150 N/mm lateral stiffness) or alternately 

Type 1/ Type 2 BOL/ Type 2 EOL (150 N/mm, 60 N/mm and 30 N/mm lateral stiffness). 

 

Damping acts on the FAs only if they move relative to the fluid. The assumed value was determined 

based on data from shaker table tests and corresponding calculations, which have been performed 

in conjunction with seismic analysis (see CORTEX Deliverable 1.2). If the FAs are excited by the 

fluid itself and the relative movement is smaller, the damping will decrease as well. A weak fluidic 

near-field coupling exists between the FAs, but its magnitude is unclear and cannot be determined 

exactly from literature. A parametric study will therefore reveal its potential influence. Lastly, the 

parametric variation of loading patterns reflects the heterogeneous core loading and the effect of 

lateral stiffness decrease during the cycle. 
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3.1.2 Results 

Figure 16 shows the calculated oscillatory response of the components to a correlated sinusoid 

excitation of all FAs in a heterogeneous loading pattern with 200 N amplitude at 1 Hz with damping 

and fluidic coupling enabled. The plots represent the time history of the amplitude at mid height 

position of the FAs, assuming that the FA bending shape is predominantly of C-form and pendulum-

like for core barrel and RPV. In the upper part of the diagram, the responses of the FAs are depicted. 

The graphs are shifted by 1.6 mm each, which coarsely corresponds to the gap between FAs in the 

real reactor. The amplitude is magnified by factor 10 for visualization. In the lower part, the response 

of the RPV and the core barrel can be seen in an arbitrary distance to each other and to the FAs. 

The amplitude of RPV and core barrel is magnified by factor 1000. 

 

The FAs perform almost uniform oscillations except for the outermost positions, which are influenced 

by the coupling to the stiffer core barrel via the fluidic near-field coupling. The oscillation is transferred 

to the core barrel via upper and lower fixation of the FAs as well. The core barrel reaction shows an 

almost π/2 phase-shift and a motion amplitude, which accounts for about 1/2000 of the amplitude of 

the FAs. For a real reactor situation, this means, that a significant excitation of the core barrel from 

FA oscillations alone is unlikely and the motions of the core barrel observed in reality probably have 

mainly other sources, e.g. fluidic forces in the downcomer. The reaction amplitude of the RPV is 

even lower (about 1/12 compared to the core barrel) due to its rigidity and the fact that it is not directly 

coupled to the FAs. 

 

 

Figure 16: Component oscillation from correlated sinusoidal excitation of all FAs with 200 N 

amplitude at 1 Hz, damping enabled, fluidic coupling enabled, heterogeneous loading pattern. 

 

The same simulation but with an excitation amplitude of 20 N instead of 200 N (graph not shown 

here) reveals an amplitude response of exactly 1/10 size, which is not surprising due to the linearity 

of the system. A cliff-edge effect might be seen when collisions between neighbor FAs and the core 

barrel/core shroud will be taken into account. Consideration of collisions is one of the objectives in 

further model development. 

 

When comparing the results shown in Figure 16 to those of the same excitation case, but without 

fluidic coupling (Figure 17), it can be seen that the coupling homogenizes the response amplitude of 

all FAs although they differ considerably regarding lateral stiffness. For a real reactor situation, it 

means that the FA oscillation amplitudes of core-wide oscillations are not determined by the 

individual lateral stiffness of the FAs, but rather by some regional average. This matches the 
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observation, that the observed global neutron flux noise increased proportional to the number of FAs 

with a new design and lower lateral stiffness (Girardin, Meier, Alander, & Jatuff, 2017). The 

simulations with a homogeneous loading pattern thus differ not considerably from those with a 

heterogeneous loading pattern and fluidic coupling, except for the general lateral stiffness level. 

 

 

Figure 17: Component oscillation as in Figure 16, but fluidic coupling disabled. 

 

When comparing the results shown in Figure 16 to those of the same excitation case, but without 

FA damping (Figure 18), it can be seen that the damping suppresses individual motions of the 

components, that could otherwise lead to non-sinusoidal chaotic coupled motions of the FAs and the 

core barrel. The chaotic behavior can be explained by the double-pendulum-like configuration 

between core barrel and FAs. The simulations show that the non-periodic behavior of the signals 

observed in PWR built by KWU could not only be a result of an already chaotic excitation, but also 

evoked by the interaction and superposition of oscillators with different frequency or phase.  

 

 

Figure 18: Component oscillation as in Figure 16, but damping disabled. 

 

Nevertheless, the strong fluidic damping observed in experiments performed in conjunction with 

seismic analysis suggests that a purely mechanic oscillation in an otherwise unaffected axial flow is 

unlikely. A more likely scenario is that FAs tend to follow a (possibly oscillating) flow field. 

 

When looking at the amplitude response to a local excitation (Figure 19), it could be seen that the 

oscillation does not spread over the whole core by fluidic near-field coupling alone. The observation 
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is the same for simulations without damping. The global oscillation observed in PWR built by KWU 

is thus likely to be an original global phenomenon. It is questionable if collisions between FAs or 

other not yet considered coupling phenomena might result in a coupling strong enough to spread 

local phenomena over the whole core. 

 

 

Figure 19: Component oscillation from local sinusoidal excitation of 3/15 neighbor FAs at the core 

edge with 200 N amplitude at 1 Hz, damping enabled, coupling enabled, heterogeneous loading 

pattern. 

 

In the amplitude reaction to a shifted sinusoidal excitation (Figure 20), it can be seen that the core 

barrel is only excited when the forces acting on the FAs do not compensate each other and a non-

zero net reaction force arises. 

 

 

Figure 20: Component oscillation from shifted sinusoidal excitation of all FAs in form 200 N 

*sin(2π*(1 Hz *t+n/15)), n = number of FA, damping enabled, coupling enabled, heterogeneous 

loading pattern. 

 

In the case of an excitation of the system of RPV and core barrel instead of FAs (Figure 21), the 

reaction is similar to the case shown in Figure 16 except for the ratio between core barrel and FA 

response amplitude (note the different amplification factor of the amplitude in the graph). The 

excitation is transferred from core barrel to the FAs predominantly via top and bottom mounting. The 

mid of the FAs, which is plotted here, stays more or less in its position due to its inertia. This indicates 

that a global excitation of the FAs via core barrel excitation is unlikely, although large forces could 

arise in the annular shaped downcomer (Runkel, 1987). The observed signal correlation between 
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core barrel and FA oscillation in PWR built by KWU might come from a concurrent fluidic excitation 

rather than from a strong mechanical coupling. 

 

Figure 21: Component oscillation from sinusoidal excitation of the core barrel and (in anti-phase) 

RPV with 30 kN amplitude at 1 Hz. 

 

3.1.3 Conclusions and outlook 

In this section, simulations with the GRS mechanical model of the coupled system of RPV internals 
(see CORTEX Deliverable 1.2) under generic excitation scenarios considering reactive fluidic effects 
in form of parametric studies are described. The main findings include: 

• The fluidic near-field coupling homogenizes the FA reaction amplitudes, which means that 

the individual amplitudes of core-wide FA oscillations are determined rather by some local 

average of the FA stiffness than by the individual stiffness of the affected FAs. 

• The fluidic damping evoked by FA motions relative to the fluid suppresses individual motions 

of the FAs and withdraws energy from the oscillators. A purely mechanic oscillation seems 

to be unlikely, and the FAs rather tend to follow the (oscillating) flow field. 

• A non-periodic motion behavior may be evoked either by a non-periodic excitation or a 

coupled interaction and superposition of FAs with different frequency and phase. 

• A local oscillation is not spread over the whole core by fluidic near-field coupling or via the 

fixation in the core barrel. A core-wide oscillation is thus unlikely to have a local source. 

• Motions of FAs are transferred to the core barrel only weakly and only if there is a non-zero 

net reaction force. The reaction shows a phase shift. The mechanic transfer in the other 

direction is weak as well, although much higher forces might act on the core barrel. 

 

In a next step, the mechanical model could be enhanced, e.g. by considering collisions between 

neighbouring FAs or additional components. Deeper insights might be also revealed by the 

application of more complex excitation scenarios calculated with hydraulic codes or even a 

bidirectional coupling, which would allow the investigation of hypothetical self-excited oscillations. 
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3.2 Noise simulations with an upgraded version of DYN3D 

3.2.1 Description of the Approach 

Fluid-induced vibrations of the reactor core components affect the neutron flux by changing the local 
material parameters of the fission chain reaction, the moderation of neutrons as well as the cooling 
of the fuel assemblies. The reactor code DYN3D (originally) does not model the impact of these 
effects on the neutron flux in the core. It was therefore necessary to provide a means to couple 
mechanical vibrations of the reactor core components to the neutron flux. For this reason, an 
upgraded version of DYN3D, was used for the work presented hereinafter (which is based on 
previous work described in (Viebach, 2019)). This upgraded version of DYN3D makes it possible to 
simulate the effect of the mechanical vibrations on the neutron flux by changing the nodal cross 
sections based on the node by node elongation of the respective fuel assembly and its adjacent fuel 
assemblies via an average fuel assembly pitch. This procedure admits a coupling of a mechanical 
model, as described in CORTEX Deliverable 1.2, with the neutron flux and thermal hydraulics 
simulations in DYN3D. 

  

The mechanical model that was used to represent the vibrations of the reactor core components of 
a German 4-loop pre-Konvoi reactor is based on a model implemented in Ansys and developed by 
GRS as part of the CORTEX project. This model incorporates the core barrel, the RPV and up to 4 
different classes of fuel assembly types (denoted by types 1-4) with decreasing stiffness. The 
stiffness of a fuel assembly depends on both its material parameters and on the time the fuel 
assembly has been subjected to the neutron field. It is thus an important parameter to model 
geometry noise. Other parameters include the damping and fluidic near-field coupling of the fuel 
assemblies, as described in the previous section. For the investigations presented in this work, no 
damping and no fluidic near-field coupling were used. Consequently, it is expected that the APSDs 
show peaks corresponding to the eigenmodes of the system, which would be expected to be less 
pronounced in the dampened case. The driving force of the vibrations is assumed to be stochastic 
in nature. It is modelled by generating a series of normally distributed random numbers with zero 
expectation value and non-zero standard deviations at a given sampling frequency. In between the 
samples, the values of the driving forces are interpolated – see Viebach (2020). The driving force is 
assumed to be acting on the RPV and the core barrel to which the fuel assemblies are fixed. This 
assumes wide area forces arising, as a result of e.g. the redirection of the coolant flow inside the 
core. 

  

It was anticipated that a detailed model of the mechanical properties of the reactor core in conjunction 
with the simulation of the neutron kinetics and thermal hydraulics, would yield long computing time. 
Therefore, model order reduction techniques were used for the mechanical simulations in order to 
reduce computing time, while maintaining the necessary features of the dynamics. A detailed 
description of these methods and the model can be found in CORTEX Deliverable 1.2.  

  

The approach was tested with a set of generic scenarios with different core loading schemes and 
driving forces. The results of the DYN3D simulations were transformed to the frequency domain for 
the evaluation.  
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Figure 22: Positions for the radial and axial comparison of the analyses in DYN3D. On the left the 
positions for the radial comparison and on the right the axial nodalization in DYN3D with the axial 

positions. 

  

All analyses were performed in the following positions inside the core as depicted in Figure 22: 

• For the axial comparison, the DYN3D positions Ch33-6, Ch33-14, Ch33-25, and Ch33-31 
were used. These correspond approximately to the in-core detector positions L-B11-6, L-
B11-4, L-B11-3 and L-B11-1 (compare Figure 2 and Figure 3).  

• For the radial comparison, the in-core detector positions at L-B11, L-G10, L-J06 and L-O05 
were used. These correspond to the DYN3D positions Ch33-18, Ch114-18, Ch144-18 and 
Ch225-18. 

• In both cases, the detector position L-B11 (Ch33) was used as reference for the evaluation 
of the coherence and the phase. 

 

3.2.2 Results 

In the first scenario, a random distribution of fuel assembly types inside the core according to Figure 
23 was used. This scenario provides a generic baseline “proof of concept” for the approach used. It 
is expected to show the same qualitative behaviour for the APSD and the phase shift between 
detectors is expected to be zero. 

  

The axial comparison of the neutron flux signals is shown in Figure 24. The APSD shows a decrease 
in spectral power for higher frequencies. As expected, the APSDs have pronounced peaks due to 
the lack of damping of the reactor core components. The coherence of the axial detectors is high 
and phase with respect to the reference detector is zero over a wide range of frequencies with only 
narrow jumps to π.  
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Figure 23: Distribution of fuel assembly types for scenario 1 which is a random distribution. Type 1-4 
have decreasing stiffness. The centre fuel assembly is assumed to be fixed in place. 

 

For the radial comparison of neutron flux signals, as shown in Figure 25, the overall shape of the 
APSD is the same for all detectors. The coherence of the signal is high for low frequencies 
decreasing only for the detector opposite of the reference (L-O05 or Ch225). The phase is zero over 
a wide range of frequencies with only small deviations. The results are in agreement with 
expectations. 

  

  

Figure 24: Axial comparison of APSD (left) and coherence and phase (right) for scenario 1. 
Depicted are the detector positions L-B11-6, L-B11-4, L-B11-3 and L-B11-1 corresponding to the 

DYN3D positions Ch33-6, Ch33-14, Ch33-25 and Ch33-31. 
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Figure 25: Radial comparison of APSD (left) and coherence and phase (right) for scenario 1. 
Depicted are the detector positions L-B11, L-G10, L-J06 and L-O05 at mid height corresponding to 

the DYN3D positions Ch33-18, Ch114-18, Ch144-18 and Ch225-18. 

  

The second test scenario was a generic test, where the fuel assemblies are arranged in four rings 
in the core according to Figure 26. This scenario was chosen because it was expected to show a 
phase shift of π for opposite core halves. 

 

Figure 26: Distribution of fuel assembly types for scenario 2 consisting of 4 rings in the core. Type 1-
4 have decreasing stiffness. 
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Figure 27: Axial comparison of APSD (left), coherence and phase (right) for scenario 2. Depicted 
are the detector positions L-B11-6, L-B11-4, L-B11-3 and L-B11-1 corresponding to the DYN3D 

positions Ch33-6, Ch33-14, Ch33-25 and Ch33-31. 

  

  

Figure 28: Radial comparison of APSD (left), coherence and phase (right) for scenario 2. Depicted 
are the detector positions L-B11, L-G10, L-J06 and L-O05 at mid height corresponding to the 

DYN3D positions Ch33-18, Ch114-18, Ch144-18 and Ch225-18. 

The axial APSDs (see Figure 27) show a decrease to higher frequencies with a number of distinct 
peaks in the signal, as in the previous case. The coherence is again close to one over a wide range 
of frequencies and the axial phase with respect to the reference is zero except for small areas. 

  

The radial frequency dependency (see Figure 28) differs from the previous scenario in that the inner 
detector positions (L-J06 and L-G10 corresponding to Ch114 and Ch144) have a lower magnitude 
of the APSD than the outer detector positions (L-B11 and L-O05 corresponding to Ch33 and Ch225). 
The coherence of the exact opposite detector position to the reference is near one over the whole 
frequency range, whereas the other detector positions show high coherence only for low frequencies. 
The opposite detector position with respect to the reference shows an out of phase behaviour. The 
other detector positions are in phase with the reference. These results show that, provided the 
coupling of the fuel assemblies is small (apart from there common fixation onto the core barrel) the 
symmetry of the loading scheme of the core contribute to the out-of-phase behaviour of neutron 
detectors in opposite core halves. 

  

For the third test scenario a distribution of fuel assembly types based on the burnup of a realistic 
core was chosen. The distribution of the fuel assembly types in the core is depicted in Figure 29. 
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The burnup of the fuel assemblies was categorized into 4 categories, where it was assumed that 
more burnup would lead to lower stiffness. 

  

Figure 30 shows the axial comparison of the neutron noise signals. The overall characteristics of the 
APSDs are the same as before. The coherence with respect to the reference detector is near one, 
especially in regions of low frequency. The phase with respect to the reference is zero nearly 
everywhere, except for small frequency bands, where it is 𝜋. 

  

The radial comparison in Figure 31 reveals an overall similar characteristic of the APSDs with slightly 
lower magnitude of the inner detector positions (L-J06 and L-G10 corresponding to Ch114 and 
Ch144) compared to the outer detector positions (L-B11 and L-O05 corresponding to Ch33 and 
Ch225). This is an effect similar to scenario 2 and could thus be attributed to the symmetry of the 
core loading. The coherence of the outer detector position L-O05 with respect to the reference is 
near one, with lower coherence for the inner detectors. The phase with respect to the reference is 
approximately 𝜋 for detector positions in the opposite core half and zero for detector positions in the 
same core half. 

 

Figure 29: Distribution of fuel assembly types for scenario 3, which is a distribution according to the 
burnup of fuel assemblies. Type 1-4 have decreasing stiffness. 
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Figure 30: Axial comparison of APSD (left), coherence and phase (right) for scenario 3. Depicted 
are the detector positions L-B11-6, L-B11-4, L-B11-3 and L-B11-1 corresponding to the DYN3D 

positions Ch33-6, Ch33-14, Ch33-25 and Ch33-31. 

  

  

Figure 31: Radial comparison of APSD (left), coherence and phase (right) for scenario 3. Depicted 
are the detector positions L-B11, L-G10, L-J06 and L-O05 at mid height corresponding to the 

DYN3D positions Ch33-18, Ch114-18, Ch144-18 and Ch225-18. 

  

3.2.3 Conclusion and outlook 

In this section, coupled simulations of a reduced order mechanical model and the reactor core code 
DYN3D were performed. It was shown that a coupling of both tools is possible and yields plausible 
results. It could be demonstrated that under the assumption that the fluidic near-field coupling is very 
weak and that the driving force of the mechanical oscillations is mainly a stochastic force on the core 
barrel and RPV, an out-of-phase behaviour of neutron noise signals in opposite core halves was 
observed. This shows that the loading pattern of a core could be a factor in the noise characteristics 
due to different mechanical properties of the fuel assemblies. 

  

Both the APSDs as well as the coherence and phase of the signals resemble the measurement 
data only qualitatively. In a next step, simulations with damping should be conducted, where it is 
expected that peaks in the APSDs will be smoothed. Also, the fluidic near-field coupling of fuel 
assemblies could be investigated as a reason for the phase observed between different detectors. 
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4 Processing of the neutron noise measurements 

In Deliverable D3.5, Fourier analysis and Hilbert Huang Transform were used to perform an analysis 
on the measurements registered on 15th May 2018 (EOC 39) in the German pre-Konvoi 4-loop 
reactor and on the measurements registered on 27th March 2012 in the Swiss pre-Konvoi 3-loop 
reactor. 

  

The Fourier Analysis results provided a large amount of information. On the one hand, the APSDs 
(Auto Power Spectral Densities) of all the detectors were presented for both all radial and axial 
distributions. On the other hand, a large series of coherences and phases between pairs of in-core 
and ex-core sensors was calculated, the analysis performed were also carried out for the radial and 
axial distributions. The use of Fourier analysis techniques in an extensive way allowed us to 
characterize and determine the neutron noise spectral features during normal operation in both 
reactors.  

 

Hilbert Huang Transform analysis did not provide any further information and presented important 
limitations mainly due to the stationarity of the signals. Hilbert spectrum (time-frequency-amplitude 
spectrograms) does not allow to contribute to the differentiation of the scenarios, or in the 
characterization of the perturbations. The high similarity among all the spectrograms makes the 
differentiation of scenarios quite unfeasible through data visualization. Besides, the univariate 
approach with HHT analysis present difficulties to analyze a spatial-multivariate scenario. It does not 
compile the information in an efficient way – the decomposition process adds more data, but it does 
not provide more information. 

 

Some remarkable spectral characteristics in both measurements were: 

• Linear phase between in-core detectors of the same string. The phase difference 

relationships between in-core sensors of the same string show a very small slope in the low 

frequency range. This slope points out the existence of a transport phenomenon with a quite 

high transit speed.  

• High response amplitude at low frequencies, below 1 Hz. The neutron noise below 1 Hz has 

its highest spectral amplitude around 1 Hz. This characteristic seems to be related to the 

thermal-hydraulic oscillations that are produced in the core and whose response range is 

located around 1 Hz.  

• Out-of-phase relationship between opposite detectors. This has been observed in the 

simulated data when fuel assemblies vibrate. 

• An exponential response amplitude decreasing above 1Hz. 

 

The mentioned Fourier analyses performed in Deliverable D3.5 were also carried out for the rest of 
measurements delivered, the analysis demonstrated that in general terms, the spectral 
characteristics keep almost identical from cycle to cycle. These characteristics were shown and 
detailed in Deliverable D3.5 for both reactors. Therefore, to add the same analysis in the present 
report would not add new information. We instead refer to the Deliverable D3.5. 

 

Axial and radial analysis 

In the following subsections, we consider two types of sensor configurations that we call axial and 
radial analysis. In the axial analysis, we consider all the measurements available from the detectors 
in the same string or radial position. In the radial analysis, we consider all the measurements 
available from the detectors at the same level or axial position. These configurations were used to 
analyze the data from both type of reactors, KWU, and VVER. 

 

The methodology based on Singular Value Decomposition 
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In the current section an approach based on Singular Value Decomposition is presented. This 
methodology is widely used in Modal Analysis as can be seen in (Greiner, 2008; Rainieri & 
Fabbrocino, 2015).  

 

To perform the methodology, in the first place, we calculate a PSD matrix which is arranged as 
follows: 
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where 𝐺𝑦𝑦 is the PSD matrix of measured response channels. The dimension of 𝐺𝑦𝑦 is 𝑛𝑥𝑛, being 
𝑛 the number of the measurement channels considered. When the PSD is calculated in a single 
signal, it is denominated auto power spectral density (APSD), but in the case of considering two 
different signals, we call it cross power spectral density (CPSD). 

 

As a reminder, PSD is defined as the Fourier transform of the auto correlation signal. The PSD 
function can be visualized as how the power of a single signal is distributed within the frequency 
spectrum. The Integral of the PSD over a certain frequency range denotes the energy contained in 
the signal at that frequency range. Due to the fact that the direct component from pre-Konvoi 4-loop 
and VVER-1000 were not available, and to standardize the analysis in the report, the APSDs have 
been normalized in order to ensure that the area below the curve is equal to the signal’s variance. 

 

Thereafter, the singular value decomposition or SVD is performed. In general terms the singular 
value decomposition of an 𝑚𝑥𝑛 matrix 𝐴 is the following factorization: 

 

 
HA U V=   (17) 

 

𝛴 is a diagonal matrix that contains the real singular values in descending order. For a Hermitian 

and positive definite matrix, such as the PSD matrix 𝐺𝑦𝑦, it follows that 𝑈 and 𝑉 are identical and 
contains the respective singular vectors. The decomposition can be rewritten as: 

 

 
H

yyG U U= 
 

(18) 

 

The singular value decomposition is performed for each of the matrices at each frequency. 

The number of nonzero elements in the diagonal of the singular matrix corresponds to the rank of 
each spectral density matrix. The singular vectors correspond to an estimation of the mode shapes 
and the corresponding singular values are the spectral densities of the SDOF system expressed in 
Eq. (18). 

 

If only one mode is dominating at a particular frequency, then only one singular value will be 
dominating at this frequency. In the case of close or repeated modes, there will be as many 
dominating singular values as there are close or repeated modes. 

 

In case of resonance, only one or a few close modes contribute to the motion. Thus, there is only 
one term in Eq. (18), which means that there is only one singular value dominating in the SVD and 
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the corresponding singular vector is an estimate of the mode shape for that resonance frequency. 
Therefore, the first singular vector is a good approximation of the mode shape vector for that 
frequency. 

 

In other words, the singular values establish a hierarchy of the dominant phenomenon taking place 
at a particular frequency range. The bigger the singular value, the more dominant is the phenomenon 
associated to the singular value at that frequency. It also allows to condense a large amount of 
information considering as many detectors as required in each type of analysis. The possibility to 
condense information allow us to observe in detail the global noise spectral characteristics of several 
signals at the same time. It is important to mention that the modulus and phases observed in the 
singular vectors have strong analogies with the traditional calculation of the coherence and phase 
relationships. 

 

Processed data for machine learning analysis 

As a part of the current task, to continue deepening in the neutron noise, the data from all the 
measurements available of three reactors (pre-Konvoi 4-loop, pre-Konvoi 3-loop, and the VVER-
1000) were processed and stored in .mat files. The processed data was delivered to be analyzed 
through machine learning tools. 

 

The format and structure of the files were designed in order to compile the most relevant information 
and to ease the use in the analysis. Considering all the possible pairs of detectors, each file contains 
for the in-core and the ex-core detectors: 

• Matrixes with PSDs (APSDs and CPSDs). 

• Matrixes with coherences, and phases. 

• Statistic parameters. Matrixes that contains the NRMS, the skewness and the kurtosis for all 
the detector signals. 

• Labels that describe the order of the detectors considered in the matrixes. 

• General information about the type of reactor, cycle, date of the register, and measurement 
parameters. 

 

The main objective of the current Section 4 is to present a brief summary of the results that helps to 
explain what we found in the data, to draw general conclusions about the neutron noise spectral 
characteristics in the reactors as well as to develop better ways to present the data that allow more 
suitable monitoring and visualization. 

 

Subsections 4.1 and 4.2 present a summary of the results obtained in both KWU reactors, firstly 
based on the singular values and secondly, on the singular vectors. The axial analysis considers the 
six detectors of the string J06, the radial analysis the eight detectors at level 2. Subsection 4.3 
summarizes the analyses performed on the VVER-440. Subsection 4.4 presents the analysis based 
on recorded signals in the VVER-1000. In this case, the analyses are based on Fourier, JTFS and 
SSA analysis techniques. 
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4.1 German pre-Konvoi 4-loop reactor 

In this section, Singular Value Decomposition (SVD) was applied on the measurement registered on 
17th April 2014. In total, this measurement considers 45 in-core and 8 ex-core neutron detectors. 
There are 3 locations, G14-2, C04-1, and G10-3 which are not included in the analysis because they 
consider pressure measurements.  
 
Two types of approaches are considered in the analysis, axial and radial (eight and six detectors, 
respectively). In both cases we have considered the radial and axial locations where all the sensors 
seem to behave normally, that is, detectors in the string J06 and J02 and in the level 4. 
 

Note that we have as many singular values as detectors considered in the analysis. Nevertheless, 
only the first singular values are important in amplitude. The singular values go in decreasing values 
and they never cross each other.  

 

In the case of the singular values, the first singular one is the global envelope of the highest 
amplitudes, whilst the next singular values are below it and show somehow the resulting amplitude 
due to secondary phenomena. The first singular vector has strong analogies with the calculation of 
the phase relationship. This analogy is found in both analyses, axial and radial. 

 

4.1.1 Axial Analysis 

Figure 32 and Figure 34 upper side show the APSDs of the six detectors of the string J02 and J06 
respectively. In the lower side we can see the three first corresponding singular values.  

 

In Figure 33 and Figure 35 we can observe the phase distribution of the first three singular vector 
corresponding to each string J02 and J06 respectively. J02 is near the periphery and J06 is near the 
centre. 

 

Some general observations on the singular values are summarized below – see Figure 32 and 
Figure 34: 

• In both radial positions (J02 and J06), the three singular values show a very similar behaviour 
in the radial analysis.  

• The larger differences among the three singular values are located in the low-frequency 
range, below 2 Hz, in the thermal-hydraulic range. However, the differences in amplitude are 
very important until approximately 15 Hz. 

• Above 15 Hz approximately, the difference in amplitude among the singular values decrease 
to the minimum.  

• Singular values 2 and 3 are separated from singular value 1 and show a remarkable lower 
amplitude in the low-frequency range (in the thermal-hydraulic peak and the resonance at 
7.5 Hz).  

• The singular values show different configurations in the frequency range. We can see that in 
some resonances only one or two singular values are important, in other resonances like the 
one at 25 or 50 Hz, all the singular values seem to be influenced. 

 

General observations on the singular vectors are drawn below – see Figure 33 and Figure 35: 

• In both radial positions (J02 and J06), the corresponding singular vectors show a very similar 
phase distribution in the radial analysis. As mentioned, there is radial symmetry between 
strings J02 and J06. 

• In the phase distribution, we can distinguish two zones. The first zone, up to 15 Hz and the 
second zone above 15 Hz. In the first zone, we have a series of linear patterns mainly in the 
low frequency range that show the existence of a transport phenomenon in the first singular 
vector. In the second zone, the pattern is chaotic. 
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• The singular vectors 2 and 3 exhibit patterns different to the singular vector 1. We can also 
appreciate some clear linear phases with different slopes. 

• We can observe that these phase distributions are much more complex than those in the 
simulations evaluated in Deliverable D3.3. 

 

 

Figure 32: APSDs of the detectors in the string J02 (in the upper side). Singular values 1 to 3 of the 
axial analysis of the detectors in the string J02 (in the lower side). 

 



 D4.4 Results of the application and demonstration calculations 

GA n°754316 Page 52 of 192 

 

Figure 33: Singular vectors 1 to 3 of the axial analysis of the detectors in the string J02. 
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Figure 34: APSDs of the detectors in the string J06 (in the upper side). Singular values 1 to 3 of the 
axial analysis of the detectors in the string J06 (in the lower side). 
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Figure 35: Singular vectors 1 to 3 of the axial analysis of the detectors in the string J06. 

 

4.1.2 Radial Analysis 

Figure 36 upper side shows the APSDs of the eight detectors at level 4, respectively. In the lower 
side, we can see the three first corresponding singular values.  

 

In Figure 37, we can observe the phase distribution of the first three singular vector corresponding 
to the detectors at level 4. 

 

Some general observations on the singular values are given below - see Figure 36: 

• In the radial analysis (Level 4), the three singular values show less differences than in the 
case of axial analysis. The separation among them is smaller than in the axial analysis.  

• In some resonances, only one or two singular values are important, in other resonances like 
the one at 25 or 50 Hz, all the singular values overlap. 

 



 D4.4 Results of the application and demonstration calculations 

GA n°754316 Page 55 of 192 

 

Figure 36: APSDs of the detectors in the level 4 (in the upper side). Singular values 1 to 3 of the radial 
analysis of the detectors in the level 4 (in the lower side). 

 

Some general observations on the singular vectors are summarized hereafter – see Figure 37: 

• In the first singular vector, we can observe that above 15 Hz approximately, the phase 
distribution is random. 

• In the case of singular vector 2 and 3, the phase distribution is random above 10 Hz. 

• Singular vectors 2 and 3 exhibit patterns different to the singular vector 1. 

• In the radial analysis, we can notice the absence of clear linear phases like in the axial case. 
This points out to the non-existence of transport phenomena in the axial direction. 

 

As seen in Figure 37, the phase distribution in each singular vector is different. There are strong 
analogies between the calculation of the phase relationship and the singular vector 1. In order to 
illustrate this, Figure 38 on the left shows the zones of the reactor which are out of phase for the 3.5-
6 Hz range and, Figure 38 on the right hand side, shows the phase-behaviour for the 7-8.5 Hz range. 
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Figure 37: Singular vectors 1 to 3 of the radial analysis of the detectors in the Level 4. 

 

 

 

Figure 38: Phase distribution of the Singular vector 1. (3.5 - 6) Hz on the left hand side and (7 – 8.5) 
Hz on the rigth hand side. 
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4.2 Swiss pre-Konvoi 3-loop reactor 

In this section, the Singular Value Decomposition methodology was applied on the measurement 
(MOC40) corresponding to cycle 40. In total, the measurement considers 36 in-core and 8 ex-core 
neutron detectors. There were also 5 defective sensors in the considered measurement: G02-6, 
C08-4, J06-2, N08-2, N08-4. 
 
Two types of analysis are considered, axial and radial (six detectors in both cases). In both cases, 
we have considered the radial and axial locations where all the sensors seem to behave normally, 
that is, detectors in the string J14 and in the level 3. 
 

Note that we have as many singular values as detectors considered in the analysis. Nevertheless, 
only the first singular values are important in amplitude. The singular values go in decreasing values 
and they never cross each other.  

 

In the case of the singular values, the first singular one is the global envelope of the highest 
amplitudes, whilst the next singular values are below it and show somehow the resulting amplitude 
due to secondary phenomena. The first singular vector has strong analogies with the calculation of 
the phase relationship. These analogies are found in both analyses, axial and radial. 

 

4.2.1 Axial Analysis 

Figure 39 upper side, show the APSDs of the six detectors of the string J14. In the lower side, we 
can see the three first corresponding singular values.  

 

In Figure 40, we can observe the phase distribution of the first three singular vectors corresponding 
to the string J14. 

 

Some general observations on the singular values are presented below – see Figure 39: 

• The three singular values show a very similar behaviour in the radial analysis.  

• The larger differences among the three singular values are located in the low-frequency 
range, below 2 Hz, in the thermal-hydraulic range. However, the differences in amplitude are 
very important until approximately 15 Hz. 

• Above 15 Hz approximately, the difference in amplitude among the singular values decrease 
to the minimum.  

• The singular values 2 and 3 are separated from singular value 1 and show a remarkable 
lower amplitude in the low-frequency range (in the thermal-hydraulic peak and the resonance 
at 7.5 Hz).  

• The singular values show different configurations in the frequency range. We can see that in 
some resonances not all the singular values represent them, only one or two singular values 
are important, in other resonances like the one at 25 or 50 Hz, all the singular values overlap. 

• We can observe that these phase distributions are much more complex than those in the 
simulations evaluated in Deliverable D3.3. 
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Figure 39: APSDs of the detectors in the string J14 (in the upper side). Singular values 1 to 3 of the 
axial analysis of the detectors in the string J14 (in the lower side). 
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Figure 40: Singular vectors 1 to 3 of the axial analysis of the detectors in the string J14. 

 

Some general observations on the singular vectors are summarized hereafter – see Figure 40: 

• In the phase distribution, we can distinguish two zones. The first zone, up to 15 Hz and the 
second zone above 15 Hz. In the first zone, we have a series of linear patterns mainly in 
the low frequency range that shows the existence of a transport phenomenon in the first 
singular vector. In the second zone, the pattern is chaotic. 

• The singular vector 2 and 3 exhibit patterns different from the singular vector 1. We can 
also appreciate some clear linear phases with different slopes. 

 

4.2.2 Radial Analysis 

Figure 41 upper side shows the APSDs of the six detectors at level 3, respectively. In the lower side, 
we can see the three first corresponding singular values.  

 

In Figure 42, we can observe the phase distribution of the first three singular vectors corresponding 
to the detectors at level 3, respectively. 
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Figure 41: APSDs of the detectors in the level 3 (in the upper side). Singular values 1 to 3 of the radial 
analysis of the detectors in the level 3 (in the lower side). 

 

Some general observations on the singular values are drawn below – see Figure 41: 

• In the radial analysis (level 3), the three singular values show less differences than in the 
case of axial analysis. The separation among them is smaller than in the axial analysis.  

• In some resonances, only one or two singular values are important, in other resonances like 
the one at 25 or 50 Hz, all the singular values overlap. 

 
Some general observations on the singular vectors are detailed below – see Figure 42: 

• In the first singular, vector we can observe that above 20 Hz approximately, the phase 
distribution is random. 

• In the case of the singular vectors 2 and 3, the phase distribution is random above 10 Hz. 

• The singular vectors 2 and 3 exhibit patterns different from the singular vector 1. 

• In the radial analysis, we can notice the absence of clear linear phases like in the axial case. 
This points out the non-existence of transport phenomena in the axial direction. 

 

As seen in Figure 42, the phase distribution in each singular vector is different. There are strong 
analogies between the calculation of the phase relationship and the singular vector 1. In order to 
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illustrate this, Figure 43 on the left shows the zones of the reactor which are out of phase for the 3.5-
6 Hz range and, Figure 43 on the right hand side, shows the phase-behaviour for the 7-8.5 Hz range. 
 

 

Figure 42: Singular vectors 1 to 3 of the radial analysis of the detectors in the Level 3. 

 

 

Figure 43: Phase distribution in Singular vector 1 (3.5 - 6) Hz on the left hand side and (7 – 8.5) Hz on 
the rigth hand side. 

 



 D4.4 Results of the application and demonstration calculations 

GA n°754316 Page 62 of 192 

4.3 Hungarian VVER-440 reactor 

Three measurements of fuel cycle 32 of Unit 2 of the Paks VVER 440/213 reactor were made 
available for the project: one from the beginning (BOC), one from the middle (MOC) and one from 
the end of the cycle (EOC), or more exactly measurements at 7, 149 and 335 effective full power 
days (EFPD) (see Table 4). The measurements are one hour long with 100 Hz sampling frequency. 

Table 4: Dates of the available measurements 

date EFPD [days] relative to cycle 

2017-01-03 11.59.58 7.96 BOC 

2017-05-26 12.00.03 149.73 MOC 

2017-11-29 12.00.12 335.13 EOC 

 

4.3.1 Available signals in the measurement 

The VVER 440 measurements contain 288 in-core neutron noise signals and 44 thermocouple noise 
signals. Here a short summary is given. For more details, we refer to Section 4 of deliverable D4.3 
(Lipcsei et al., 2018) where the main features of the VVER 440 reactor, its detectors and the 
measurement system are described, as well as the measured data collected within subtask 4.1.1 
are provided. 

 

The stationary (DC) and fluctuating (AC) parts of the signals are produced with filters and measured 
separately. The filters applied are as follows: 

• DC: low pass 0.4 Hz. 

• AC: high pass: 0.03 Hz, low pass 40 Hz, notch: 50 Hz. 

 

The DC parts of the signals are digitally down-sampled and stored at 3.125 Hz. 

 

4.3.1.1 In-core neutron noise signals 

The reactor core of the VVER 440/213 reactors are equipped with uncompensated Rh SPND 
detectors: detector chains are installed in the central tube of 36 fuel assemblies (their positions are 
shown on the left side of Figure 44). Each chain consists of 7 detectors and a compensation cable 
(see Figure 44, right), the latter is also measured as the 8th detector of the chain and can serve as a 
background detector. 
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Figure 44: Radial arrangement of the SPND chains (left) and axial positions of the detectors in the 
chains (right). 

  

4.3.1.2 Thermocouple signals 

Thermocouples (TCs) are installed and measured at each loop of the hot and cold leg of the reactor 
vessel as well as at the outlet of several fuel assemblies. In Figure 45, the assemblies equipped with 
core outlet thermocouples are marked with red hexagons, while the TCs used in the measurements 
are highlighted with yellow markers. 
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Figure 45: Radial positions of the measured core outlet thermocouples (with yellow markers). 

 

4.3.1.3 Normalization 

The signals are normalized with their DC as commonly used for the noise signals of western-type 
reactors. However, it is important to emphasize that the SPND detectors used here have two 
important features which reduce the usability of this normalization. 

 

The neutron detectors are Rh SPNDs, having only 6-7% of prompt signal part in steady state 
depending on the manufacturing technology of the detectors. 

 

Additionally, these SPNDs are uncompensated, thus the measured signals contain a non-
neglectable part from the detector cables of different length. Hence, the estimation formula of the 
neutron noise provided in page 65 of deliverable D4.3 (Lipcsei et al., 2018) is applicable only when 
the fluctuating signals contain global noise only. 

 

4.3.2 Settings and results of the calculations 

The spectra of the measurements were calculated in MATLAB and provided in separate .mat files to 
the CORTEX partners.  

 

4.3.2.1 Parameter setting of the Fourier Transform 

The Fourier Transforms (FTs) are calculated with a window width of 4096, Hanning window and 50% 
overlapping. This results in 2049-point width spectra, the frequency point of which are from 0 to 50 
Hz with increments of 100/4096 Hz. 

 

4.3.2.2 Content and structure of the provided data 

All results of the same measurement are stored in a variable structure called ‘Data’. The fields of the 
structure are listed and explained in Table 5. 

 



 D4.4 Results of the application and demonstration calculations 

GA n°754316 Page 65 of 192 

Table 5: Field structure of the stored results 

Field name Data type Description 

Incore_psd_phase 

Thermo_psd_phase 

{288×288 cell} 

{44×44 cell} 

The upper triangles of these matrices contain data: 
[2049×2 double], the columns of which are absolute 
value and phase of the complex CPSD. Coherence can 
be calculated from the absolute values of the CPSDs. 

Incore_Stat 

Thermo_Stat 

[288×4 double] 

[44×4 double] 

DC, NRMS, Skewness and Kurtosis of the signals 

Label_Stat_Param {1×4 cell} {‘DC’ ‘NRMS’ ‘Skewness’ ‘Kurtosis’} 

meaning of the columns of the *_Stat matrices 

frequency [2049×1 double] frequency values assigned to the rows of the 
*_psd_phase matrix elements 

Cycle char array cycle and EFPD of the measurement 

Date char array date of the start of the measurement 

Reactor char array reactor type 

label_incore 

label_thermo 

{1×288 cell} 

{1×44 cell} 

names of the signals 

 

In addition to the .mat files, a folder called ‘plots’ was uploaded on the server used for delivering the 
data to the CORTEX partners. This folder contains graphs of the auto and cross spectra of the SPND 
signals for an easier overview of the results. Each graph contains the spectra of the detector signals 
of the same SPND chain. Two kind of arrangements are provided for each chain:  

• APSD*.wmf 8 APSDs of the same SPND chain in one graph (Figure 46). 

• CPSD*.wmf 8 APSDs and all phases and coherences in a matrix arrangement (Figure 47). 

 

Figure 46: APSDs of chain 06-41. 
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Figure 47: Auto and cross spectra of chain 06-41.  
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4.4 Czech VVER-1000 reactor 

This section presents the Fourier and Singular Spectrum analysis performed on the VVER-1000 
reactor signals. The techniques used were the calculation of Auto Power Spectral Density (APSD), 
the coherence with phase relationships between pairs of sensors, JTFS spectrograms in FFT 
analysis and non-parametric SSA techniques in time and frequency domain. 

 

4.4.1 Measurement considered and detectors 

For the FFT, two types of analysis are considered, axial and radial (16 and 4 detectors, respectively). 
Figure 48, upper part, shows the 16 positions of the detectors considered in the radial analysis at 
level 5. Figure 48, lower part, shows the 16 strings considered in the axial analysis, 4 detectors at 4 
levels (1, 3, 5, and 7). In the VVER-1000, level 1 is the lowermost and the level 9 is the uppermost. 
 

The measurement considered in the FFT analysis was registered on September 23th, 2013 and 
correspond to the cycle 12 when the core burn-up and loading conditions are closer to the ones 
corresponding to the KWU measurements. Each measurement consists of sets of 16 channels in 
different levels and different strings. The measurements are divided in 4 sets of 16 measurements;  

Fa 1, strings; (N20, N22, N24, N27) 
Fa 3, strings; (N38, N40, N41, N47) 
Fa 4, strings; (N06, N08, N11, N15) 
Fa 6, strings; (N51, N54, N56, N57) 

 

The measurements considered in the JTFS analysis cover the selected SPND signal behaviour in 
the vicinity of the migrating fuel assembly CF06 during the cycles C09 –C12 (Figure 49) before the 
IRI occurrence at EOC 12 (Figure 50-Figure 51), i.e. strings N31, N15, N38 and N41. 

 

The SSA analysis investigates the sensor structures, as shown in the upper part of Figure 48, for 
raw data pre-processing, frequency observations and detrending signal studies, for the data coming 
from the cycle C09. 
 

All data sets are divided into three regions for the solution of IRI problem, core mid and periphery 
behavior, taking the cycle C09 as reference. All data sets are recorded during the physical tests of 
neutron instrumentation calibration at the very start of the cycle. The SPND data are also 
supplemented by date from ionization chambers and reactor cover accelerometers. The data sets 
corresponding to the noise plant measurements and the detector arrangements are described in 
more detail in an internal WP4 Progress Report on subtask T4.2.3 (Stulik et al., 2020). 

 

It is necessary to realize the difference between the measurements at the KWU units and the 
VVER1000 data sets. While the KWU data sets were recorded at various core burnup, the VVER 
1000 data were recoded during physical neutron instrumentation tests at BOC in four consecutive 
cycles, each starting with fresh fuel load.  

 



 D4.4 Results of the application and demonstration calculations 

GA n°754316 Page 68 of 192 

 

Figure 48: Radial layout of the detectors considered in the analysis. 
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Figure 49: Fuel assembly CF06 migration during the fuel cycles C09 – C12. 

 
 

 

 

Figure 50: Burn-up condition of the fuel assemblies in the CF06 vicinity in U1C09 – U1C12. 

 

 

 

Figure 51: Selection of SPND in the close vicinity of the migrating fuel assembly CF06 in U1C09 – U1C12.  

 

4.4.2 FFT analysis 

4.4.2.1 APSDs 

This section presents and describes the APSDs calculated. Firstly, we present the APSDs of the 
four sensors for the sixteen strings considered. In the second place, we present the APSDs 
corresponding to the sixteen detectors at level 5. 

 

 APSDs in the same string 

Figure 52 to Figure 55 present the APSDs for the in-core detectors in the same radial position (four 
levels per string), the radial positions considered are: 

Fa 1, strings; (N20, N22, N24, N27) 
Fa 3, strings; (N38, N40, N41, N47) 
Fa 4, strings; (N06, N08, N11, N15) 
Fa 6, strings; (N51, N54, N56, N57) 
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Figure 56 presents the RMS values at the axial levels 3, 5 and 7 relative to the lowermost level (axial 
level 1) for the configuration sets Fa1, 3, 4 and 6 in the 0 – 50 Hz band from the calculated APSDs. 

In the analyzed VVER-1000, level 1 is the lowermost level and level 7 is the uppermost level. 

 

 

Figure 52: APSDs of the sensors in the strings N20, N22, N24, and N27 – from top to bottom, 
respectively – and at levels 1, 3, 5, 7. 
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Figure 53: APSDs of the sensors in the strings N38, N40, N41, and N47 – from top to bottom, 
respectively – and at levels 1, 3, 5, 7. 
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Figure 54: APSDs of the sensors in the strings N06, N08, N11, and N15 – from top to bottom, 
respectively – and at levels 1, 3, 5, 7. 
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Figure 55: APSDs of the sensors in the strings N51, N54, N56, and N57 – from top to bottom, 
respectively – and at levels 1, 3, 5, and 7. 
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Figure 56: RMS values of 3,5,7 axial levels 3, 5 and 7 in relation to the lowermost level (axial level 1) 
for configuration sets Fa1, 3, 4 and 6 in the 0 – 50 Hz band from the calculated APSDs.  
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 APSDs in the same axial position 

Figure 57 presents the APSDs for all the in-core detectors in the same axial position, at level 5 (16 
detectors).  

 

Figure 57: APSDs of the 16 detectors at level 5. To make the figure more readable, the 16 APSDs are 
divided into two graphs. 

 
Some general observations on the APSDs are summarized below: 

• The profiles of the APSDs are very similar to each other below 7 Hz.  

• Above 7 Hz, the number of resonances presented in each APSD is different and depends 
highly on the location. 

• However, for the APSDs of the detectors in the same string, we can observe regular 
patterns in the axial analysis – see Figure 52 to Figure 55. 

• Regarding the content of the signal, most of the energy signal is located at low frequencies 
below 2 Hz, but the content generally increases above 7 Hz due to (a) the resonances and 
(b) the background noise that increases in amplitude in many cases – see Figure 52 to 
Figure 57. 

• Regarding the location of the signal energy, we can state that out of the 63 monitored 
SPNDs, in almost 90% of the cases, the relative RMS value is the highest at the lowest 
level (i.e. level 1), as shown in Figure 56 for the 0 – 50 Hz band from the calculated APSDs. 
This conclusion is also confirmed by the JTFS spectrograms in Figure 61 – Figure 63, in 
accordance with the results given in the deliverable D3.3 (Stulik et al., 2019). 
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• We can observe a series of common resonance peaks in the axial analyses. Nevertheless, 
in the radial analysis, we can see that the resonances have a high dependency on the 
locations, except with the resonance at 9.5 Hz that is present in all the APSDs. 

 

4.4.2.2 Coherences and Phases 

These sections present and describe the coherence and phase relationships considered 
representative. Firstly, the coherence and phase between detectors in the same string are 
considered. Thereafter, detectors in different radial positions for both in-core and ex-core detectors 
are analyzed. All coherences and phases are represented up to 50 Hz. 

 

 Coherence and phase relationships in the same string 

The coherence and phase relationships are presented between pairs of sensors in the same in-core 
radial position. Figure 58 presents the coherences and phases in only one radial position (same 
string), taking as reference the detectors at level 1. The strings considered are: N22, N41, N15, N57. 
Note that Lv 1 and Lv 7 are the lowermost and the uppermost levels, respectively, in the analysis. 

 

 

Figure 58: Coherences and phases in the strings N22, N41, N15, N57 (the last index in the legend 
represents the axial level). 
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 Coherence and phase relationships at the same level 

In this subsection, we present the coherence and phase relationships between different in-core radial 
positions.  

 

In Figure 59, three sets of detectors are considered, each set highlighted in a specific colour: blue, 
red, or green, and the reference sensors taken in the upper left side for each set. The coherence 
and phase relationships calculated between the reference detectors and those located on the 
opposite side within the same set (i.e. having the same colour) are represented in Figure 60. 

 

 

Figure 59: The three sets of detectors used for the analysis of coherence and phase between 
opposite detectors. 
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Figure 60: Coherences and phases between detectors in opposite regions for the three sets 
considered. 

 
 
Some general observations on the coherences are summarized below, based on Figure 58, Figure 
59 and Figure 60: 

• In all the axial analyses given in Figure 58, at low frequencies, the linear phase observed in 
the KWU reactor is not visible. In the present case, an out-of-phase relation up to 9 Hz 
exists. Above 9 Hz, the detectors are in phase, like in the KWU case. 

• In the case of the radial analysis given by Figure 60, both sides of the reactor are in phase 
for the resonances at 1 Hz (thermal-hydraulic) and 9 Hz. For the remaining frequency range, 
the phase is random. 

• For the green set of detectors phase, a phase relationship at 13 Hz and a high coherence at 
13 Hz, 18 Hz and around 30 Hz are visible – see Figure 60 lower part.  

 

4.4.3 JFTS analysis 

This section discusses possible aspects for subsequent processing of time data in the successive  
C09 – C12 cycles. The JTFS spectrograms have XYZ coordinates in [Hz] for frequency, in [s] for 
time, and for PSD amplitude in [1/Hz2] given in dB. The PSD sequences in the 0 - 150 Hz range are 
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processed with sliding Hanning window in time intervals of 10 sec with resulting frequency resolution 
of 100 mHz. It should be noted that X-Z JTFS spectrograms are plotted in their maximum amplitude 
values, so that we can see the frequency dispersion of the peaks through the whole time of record. 
A more detailed description can be found in the internal WP4 Progress report (Stulik et al., 2020).  

 

IRI sequences IrD 

This part describes the nature of the time data measured during the fuel assembly CF06 migration 
through the core. The range of JTFS view includes selected SPND signals primarily in the vicinity of 
the migrating fuel assembly CF06 during the cycles C09 –C12 (Figure 61) before the IRI occurrence 
at EOC C12 (Figure 62 and Figure 63), i.e. strings N31, N15, N38 and N41. 

2D spectrograms of the selected relevant fuel assemblies from the CF06 assembly vicinity are 
presented in Figure 61 to show the spectral dynamics of the core behavior in the lowermost axial 
level (i.e. level 1) during cycles C09 – C12. In most cases, this level shows the largest number of 
neutron field transients with respect to the imbalance of thermal and hydrodynamic conditions at the 
entrance to the core. This space can thus be a source of perturbations which are further moving 
along the height of the axial neutron field profile of the reactor. 

It is possible to observe the transient phenomena during the 12 minutes measurement intervals in 
these JTFS spectrograms. In this way, it is possible to obtain substantial knowledge before 
processing the time data and also before the subsequent training of DNN aimed at finding the 
possible symptoms of the IRI phenomena. 

 

Middle core InD 

Middle core time series datasets are specified by fuel assembly configuration sets Fa1, Fa3, Fa4 
and Fa6, the location of which are given in lower part of Figure 48. The JTFS 2D spectrograms on 
all levels of the N41 string in Figure 63 supplement the APSDs computed in cycle C12 and shown in 
Figure 52. It can be seen that the lowermost level has the highest RMS value over the whole 
frequency range – see Figure 56. We can see on Figure 64 the same situation as in the previous 
C11 cycle, with a similar relation as to the RMS values of the string levels but with different spectral 
PSD signatures (magnitudes, frequencies) during the time record. 

 

Core periphery PeD 

The core periphery behavior can be investigated via the time series datasets of the fuel assembly 
configuration sets AccXnnInn1-4, of which the location and the description of the signal behaviour 
are given with great detail in the Deliverable D3.3 (Stulik et al., 2019). 
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Figure 61: 2D spectrograms of the selected relevant fuel assemblies from the CF06 vicinity in the 
cycles C09 – C12. 
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Figure 62: 2D spectrograms of N41 string in the C11 cycle. 
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Figure 63: 2D spectrograms of N41 string in the C12 cycle. 
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4.4.4 Singular Spectrum Analysis 

As mentioned in Section 4.4.1, the data used for the SSA investigation comes from the cycle C09. 
The data are in their initial form, i.e. they are not normalised and are in an unconditional form. 
Nevertheless, they contain all substantial time and frequency domain elements suitable for 
detrending purposes. 

 

4.4.4.1 Cycle C09 and the SSA methodology 

The data come from the excel files 69-Zona3.xlsx, 71-Zona5.xlsx, 75-Zona1_X_N.xlsx and 77-
Zona7_X_N.xlsx and were placed in the zip file U1C09.zip made available to the CORTEX partners.  

 

It is important to point out that the sampling frequency is 1000 Hz and the duration 15 min. 

 

In Figure 64, we notice a trend in the in-core rhodium Self Powered Neutron Detector sensors 
(SPND) before achieving a steady state. 

 

Also, Figure 64 shows that the sensors N623 and N393 present a specific behaviour in comparison 
to the other SPND sensors. 

 

4.4.4.2 Detrending with the SSA methodology 

In order to analyse the neutron noise, it is necessary firstly to detrend the signal acquired online. In 
Figure 65, we can see the presence of a trend for the sensor N315. Thus, we choose to apply the 
SSA methodology. 

 

Figure 66 gives the evolution of the eigenvalues. The ideal grouping of eigenvectors is in pairs, 
where each pair has a similar eigenvalue, but differing phase which usually corresponds to sin-
cosine-like pairs. Hence, from the shape of the leading singular values, we affect the first four factors, 
that is to say not paired values, to the trend. 

 

In Figure 67, we see the reconstruction using the first four factors for the trend (S1). We can visualize 
the result in Figure 68 and at last, by difference between the raw data and the trend, the neutron 
noise estimation in Figure 69. 

 

4.4.4.3 Raw data preprocessing 

The overview of the whole Power Spectral Density Neutron Noise demonstrates: 

• That the power spectrum still shows a 1/f spectral distribution at low frequencies below 
around 2 Hz. 

• The presence of the 50 Hz frequency with its multiple (e.g. 100, 150, 200, 250, 300, 350, 400 
and 450 with a high energy) 

• A high energy at frequency 120 Hz. 
 

In Figure 70, we can see that the frequencies 50 Hz and harmonics associated appear on all the 
signals except on the ex-core signals and the in-core sensor N623. At this point, it is necessary to 
notice that at 50 Hz the third harmonics of main circulation pump appears with its 1000 
revolutions/min. Except the 120 Hz frequency, the range of the spectra to be studied lies between 0 
and 50 Hz. 

 

Doing a Singular Spectrum Analysis on such an input signal will highlight on the first factors these 
features. Indeed, the eigenvalue profile is related to the power spectrum ordered from the largest 
value to the smallest one. Such features are nevertheless not interesting in the study of the frequency 
structure. The SSA was thus carried out on a filtered signal instead. We applied a high pass filter 
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with a cut frequency equal to 2 Hz and several stop band to remove the 50 Hz and the harmonics – 
see Figure 71. 

 

The record duration, around a quarter of an hour, with a sampling frequency equal to 1 kHz give 
good conditions for detecting the very low frequencies with FFT. The range under 2 Hz thus allows 
detecting the effect of the delayed neutrons – see Figure 72. 

 

In fact, we see that, except for the frequency at 120 Hz, the range of interest for the time being is 
between 2 Hz and 50 Hz. 

 

4.4.4.4 Frequency observation up to 50 Hz 

We can see in Figure 71 (as well as in the overview given in Figure 70) that in fact the frequency 
range of interest is below 50 Hz. Thus, it is possible to decimate the signal by a factor 10 without 
losing information (except the frequency at 120 Hz) for further analysis. 

 

Figure 73 shows the Power Spectral Density on several frequency ranges after the decimation: 

• Global: all the frequencies, from 0 to 50 Hz. 

• Part-1: the very low frequencies, certainly the delayed neutron frequency range. 

• Part-2: the range of interest according to us. 

• Zoom-part-2: a zoom on the part-2. 

 

In Figure 73, we can observe the presence of a frequential spreading (cf. part-2 and zoom-part-2). 
In fact, there is certainly a shift of the frequency values in time. It is thus important to keep in mind 
this non stationarity for the physical analysis. 

 

4.4.4.5 SSA analysis on the detrended signal 

At this stage, we have detrended our signal and reduce the range of the spectral range to improve 
our analysis. We will do again the SSA approach to describe the spectral content. Actually, we will 
do two SSA, as explained in the two following sections. 

 

The first SSA on the pre-processed signal 

As expected, the leading eigenvalues – see Figure 74 – shows now only eigenvectors organised in 
pairs, there is no trend any longer, only oscillations. We decomposed the signal in 300 components 
but only 60 have been represented. Figure 75 shows the correlation matrix which propose to keep 
about twenty eigenvalues to reflect the maximum frequency response. In order to describe the 
spectral content, we first realise a classification of the components in 10 classes marked by a colour 
in Figure 76. This classification is similar to the so-called correlation clustering of variables used in 
multivariate statistics. We use the Ward criterion for the agglomerative algorithm. 

 

Then, the power spectrum of every class was estimated employing Welch's method and we 
compared the spectra by superposition in Figure 77 with the same colours of Figure 76. The SSA 
improves the resolution of the spectrum as we can see in Figure 78 where we have superposed only 
four classes to facilitate the visualisation. We did a zoom of the spreading – see Figure 73 zoom-
part-2. 

 

But, although we calculated the SSA on 300 factors, we have no description of the low frequency 
domain. The intensity of the power spectrum for the low frequencies is too low and is considered as 
noise. So, we decided to pre-process again the raw data in order to enhance the low frequencies 
part of the spectrum and doing another SSA to describe the resulting power spectrum. 
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The second SSA on the signal with enhanced low frequencies 

In order to give larger weights to the low frequencies, we applied a low pass filter on the signal. We 
defined an order 4 Butterworth filter with a cut off frequency of 20 Hz. We show in Figure 79 the 
filtering result. We fixed again the number of factors to calculate to 300. We can again keep around 
twenty components – see Figure 80 and Figure 81 – and do a classification on 10 classes – see 
Figure 82. But now we can access the spectrum description of the low frequency part. The SSA is 
able to extract two principal low frequencies – see Figure 83 –  which could even be three 
frequencies, as we can see in Figure 84. We noticed that it was important to ask for many factors in 
the calculation because, if we calculate only one hundred factors, the SSA extracts only one low 
frequency as we can see in Figure 85. 

 

Figure 86 and Figure 87 give some details on the separability of the classes. We only represented 
the classes 1, 4, 7, 10 to facilitate the observation. The position of the classes can be observed in 
Figure 82 with the same colour code. 

 

4.4.4.6 Summary of the exploratory analysis with the SSA 

Before classifying the sensors by neural network, it is important to analyse the power spectrum on a 
sensor alone for a better understanding. We noticed that: 

• It was necessary to detrend the SPND sensor signal with SSA. 

• SSA is able to improve the frequency resolution but there are many frequencies certainly due 
to the non-stationarity of the neutron noise. 

• It is necessary to pre-process the data to study the low frequencies by SSA. 

 

We would like now to extract some pertinent parameters from this analysis in order to prepare the 
step of images creation and sensors cross analysis. Besides, we applied the SSA on the decimated 
signal on all sensors in order to assess the trend of every sensor. We now have to detrend every 
sensor and repeat the analysis described above. 

 



 D4.4 Results of the application and demonstration calculations 

GA n°754316 Page 86 of 192 

 

 Figure 64: Overview of the cycle U1-C09 in time domain. 
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Figure 65: Trend of the N315 in-core-sensor (Self Power Neutron Detector). 

 

 

Figure 66: SSA eigenvalues. 
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Figure 67: Assessment of the trend by the SSA analysis. 
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Figure 68: SSA detrending. 

 

Figure 69: SSA neutron noise assessment. 
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Figure 70: Overview of the cycle U1-C09 in the spectral domain. 

 

Figure 71: SSA applied on the filtered signal. 
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Figure 72: Cycle U1-C09 in the low frequency domain. 
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Figure 73: PSD overview on decimated signal (factor 10) 

 

Figure 74: Eigenvalues after detrending. 
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Figure 75: Correlation matrix on the detrended data. 

 

Figure 76: Factors classification on the detrended data. 



 D4.4 Results of the application and demonstration calculations 

GA n°754316 Page 94 of 192 

 

Figure 77: Spectral decomposition obtained by SSA on the detrended data. 

 

 

Figure 78: Spectral decomposition obtained by SSA on the detrended data, zoom on the frequency 
domain to highlight the SSA resolution. 
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Figure 79: Enhancing the low frequencies by a low pass filter. 

 

 

Figure 80: Eigenvalue after detrending with enhancement of the low frequencies. 
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Figure 81: Correlation matrix with enhancement of low frequencies. 

 

Figure 82: Factors classification with enhancement of the low frequencies. 
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Figure 83: Spectral decomposition with enhancement of the low frequencies. 

 

Figure 84: Spectral decomposition with enhancement of the low frequencies – zoom to highlight the 
improvement resolution by the SSA. 
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Figure 85: Calculating only 100 factors for the SSA extracts only one low frequency. 

 

 

Figure 86: Special decomposition with enhancement of the low frequencies – zoom. 
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Figure 87: Spectral decomposition with enhancement of the low frequencies – zoom. 

 

4.4.4.7 SSA analysis on every sensor from the cycle C09 UJV data 

We did the SSA analysis for every axial sensor at a given radial position. We only describe hereafter 

the generated graphs made available to the CORTEX partners via the internal repository. From this 

analysis, we will extract the trend in order to continue the investigation, as described in the previous 

section on the N315 sensor. There are graphs pertaining to the decomposition and the reconstruction 

analysis. 

 

 Decomposition analysis 

We show the results generated by the decomposition analysis for every radial position, e.g. the four 
axial sensors associated. We propose the following graphs: 

1. The time evolution with the falling in of the eigenvalues. 
2. The spectrum assessed by the periodogram calculation. 
3. The first high contribution SSA eigenfactors. 
4. The first paired vectors. 
5. The correlation matrix. 
6. The dendrogram of the hierarchical factors classification highlighting the selected classes. 
7. The spectrum assessment for every class with the location (black dashed line) of the local 

maximum frequencies. 

 

 Reconstruction analysis 

We propose two graphs: 

1. A reconstruction graph with two groups of factors chosen from their decreasing contribution 
and the slowly varying shape. 

2. A reconstruction graph with the groups obtained by the classification in order to estimate the 
type of variation introduced by every group. 

Figure 88 displays an example for the radial position N31. 
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Figure 88: Analysis of radial position N31. 

 

 Overview of the frequencies calculation 

On every spectrum obtained by the combination of every factors grouped by the classification, we 
can do the calculation of the principal frequencies searching for the local maximum. We decided to 
eliminate the frequencies whose amplitude is lower than -100 dB. These frequencies are marked on 
the graphs with a vertical black dotted line. The local-maximum values are calculated in a span of 
201 values, e.g., according to the sample frequency, a resolution of about 1 Hz. We can notice that 
many frequencies are highlighted with a very close order of magnitude. There are different 
interpretations for that. The frequency may not be constant during the acquisition duration leading to 
some shift. Another explanation can be that we looked for a too high resolution. It would be better to 
smooth the periodogram with a larger span which will decrease the number of the local minima. The 
frequency values will have a more physical sense. Thus, if there are too many values very close to 
each other, it will take the average for further interpretation. Table 6 below gives an example of local 
frequencies for the radial position N31. 
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Table 6: Local frequencies for the N31 radial position 

Radial position   Axial sensor Class Frequency (Hz) Amplitude (dB) 

N31   N311 Class_1 33.1219753 -97.16674 

    Class_2 32.2360494 -48.95410 

    Class_2 32.6251852 -50.02958 

    Class_2 32.8069136 -50.80886 

    Class_2 33.2444444 -39.21205 

    Class_2 38.3200000 -87.38939 

    Class_3 32.4533333 -94.65402 

    Class_3 38.3308642 -50.24730 

    Class_4 39.1575309 -56.92726 

    Class_5 37.7165432 -63.51254 

   N313 Class_1 0.2177083 -58.18020 

    Class_1 0.3875000 -59.72159 

    Class_2 0.3927083 -58.31108 

    Class_3 33.2958333 -67.19375 

    Class_4 38.3229167 -67.98242 

    Class_5 39.1677083 -73.49147 

   N315 Class_1 0.2054321 -54.66819 

    Class_1 0.4088889 -56.01788 

    Class_2 33.2483951 -57.18374 

    Class_3 26.5441975 -73.30871 

    Class_3 26.7950617 -73.11428 

    Class_3 27.9911111 -79.92930 

    Class_4 27.6395062 -70.20252 

    Class_5 26.3160494 -73.62914 

   N317 Class_1 0.2222222 -58.19729 

    Class_1 32.1461728 -61.57921 

    Class_1 32.2765432 -60.83816 

    Class_1 32.6212346 -63.66363 

    Class_1 32.8237037 -64.52763 

    Class_1 33.2454321 -52.82293 

    Class_2 38.3456790 -62.04431 

    Class_3 24.8118519 -62.96398 

    Class_4 39.1832099 -72.23649 

    Class_5 25.4706173 -73.26446 

 

 Conclusion 

We showed that the SSA methodology allow us to explore the time domain in order to extract the 
trend and the oscillation part of the signals. After revealing the different spectral components of the 
signal, we are able to assess the value of the frequencies with a better resolution than that appearing 
in the periodograms. The parameters chosen for the SSA and spectral analysis give us sometimes 
many frequencies in a very small range. We have to interpret these results following some physical 
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reasoning. In order to adjust the degree of precision, we can launch again the analysis asking for 
further refinement. The analysis has been carried out in such a way to generate a reproducible 
document automating the data processing. Thus, we can investigate different periodograms 
smooths, SSA decomposition (number of eigenvectors) and reconstruction (results of factor 
classifications). The next step of this work will be to improve the raw data, taking into account the 
sensors characteristics, and to perform a physical analysis crossing the signals features with the 
sensor locations and the operating physical quantities. Presently, the work in progress consists in 
detrending every sensor thanks to the results obtained by the SSA analysis on the raw data, keeping 
the first factors of every SSA. We will do again SSA calculation on the detrended data for further 
physical investigation and extract some pertinent parameters in order to prepare the phase of images 
creation and sensors cross analysis. 
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5 Machine learning-based anomaly classification and localization 

In this section, machine learning techniques for anomaly classification and localization are going to 
be presented, based both on simulated data and actual plant measurements for the four reactor 
types examined in this deliverable. The typical analysis procedure for each reactor involves feature 
extraction, followed by comparisons with the simulated data. Subsequently, unsupervised learning 
methodologies are applied on the processed signals (namely, clustering) and finally, the machine 
learning-based anomaly classification and localization techniques are derived.  

 

5.1 Feature Extraction 

Feature extraction of feature engineering is the task of identifying those characteristics in data that 
are most helpful in describing their statistical properties. Since the quality of the obtained features 
greatly influences the performance of machine learning algorithms, this task is an important step 
prior to the application of the actual classification and localization procedures. In principle, various 
signal processing techniques may be used to transform the raw data into meaningful representations 
that help the training of ML algorithms.  

 

In the following paragraphs, the extracted features from the plant measurements are going to be 
described in more detail. If 𝑆(𝑡) is the signal in the time domain (e.g. neutron flux captured by the 
detectors) and 𝑊 is a time window (a hyper-parameter), then we consider the following basic 

features over 𝑊: 

 

Mean Value of signal 𝜇𝑖   =
1

𝑊
 ∑ 𝑆(𝑡)𝑊+𝑖

𝑡=𝑖   (19) 

Standard deviation of signal 𝜎𝑖  =  √
1

𝑊
 ∑ (𝑆(𝑡) − 𝜇𝑖)

2𝑊+𝑖
𝑡=𝑖   

(20) 

Minimum of signal 𝑚𝑖𝑛𝑖<𝑡<𝑊+𝑖 𝑆(𝑡)  (21) 

Maximum of signal 𝑚𝑎𝑥𝑖<𝑡<𝑊+𝑖 𝑆(𝑡)  (22) 

Energy of signal 𝐸𝑖   =  ∑ |𝑆(𝑡)|2𝑊+𝑖
𝑡=𝑖   (23) 

 

5.1.1 The frequency domain 

The Fourier Transform is one of the most dominant transformation used in signal processing. It takes 
the time-domain signal and decomposes it to its frequency components. In this work, the Fourier 
Transform is going to be used to construct the following features: 

• Energy of the whole spectrum of frequencies that were found in the signal. 
● Finding the top-k (usually 3 or 5) frequencies with the highest energy. These frequencies are 

called the dominant frequencies and will help with matching and comparing them with the 
simulated signals. 

● Extracting the spectrogram of a signal. The spectrogram is a heat map that represents the 
spectrum of the frequencies as it changes over time. The horizontal axis represents the time 
and the vertical one the frequency. The different amplitudes of each frequency are displayed 
as different intensity colors, out of a selected color map. Spectrograms are extremely useful 
because information of both the frequency domain, but, also, the time domain of a signal are 
compressed in a single image. This image can be processed by Machine Learning 
techniques, such as Neural Networks, and produce state-of-the-art results, which are going 
to be analyzed in a later subsection.  

● Computing the APSD of a signal proves to be an additional useful feature, which depicts how 
the power of a signal is distributed across all frequencies that are present. It can detect 
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transient effects that last only a small amount of time by comparing APSDs from adjacent 
time windows.  

● Another feature like APSD is the CPSD. The difference between them is that the CPSD is 
the correlation between two spectral densities. In other words, it shows the distribution of 
power of the cross-correlation function of two signals. In our setting, the two different signals 
are originating from two different sensors, measured during the same period. It is extremely 
useful to find various relations between different sensors across the whole spectrum, but also 
over time. 

 

In continuous signals, a very important feature is the derivative. Its significance lies in the fact that it 
indicates the rate of change of the signal and it can identify sudden changes in its behavior. Since 
we are dealing with discrete signals, we cannot compute the derivative directly, but instead, we can 
compute the difference over consecutive time steps (𝑑(𝑡)  =  𝑆(𝑡 + 1)  −  𝑆(𝑡)). Obviously, the 

(discrete) difference may also be treated like a signal that has the same length to 𝑆(𝑡) minus one 
and the energy of the discrete difference may also be calculated. 

 

Finally, another mathematical transformation linked with the Fourier Transform that can prove to be 
essential, is the Cepstrum. There are three variants that are mostly used, the Power, the Complex 
and the Real Cepstrum. The Real Cepstrum is computed as: 

 

 𝐶𝑝 =   |ℱ−1{𝑙𝑜𝑔(|ℱ{𝑆(𝑡)}|2)}|2 (24) 

 

where ℱ is the Fourier Transform and ℱ−1 is its inverse. Generally, Cepstrum is used in speech 
analysis and pitch recognition, but, also, in machine vibration analysis. It can detect echoes in signals 
or other anomalies. 

 

5.1.2 Machine learning-based feature extraction 

Apart from using the formulas discussed above, we may also directly employ machine learning 
models to find useful representation of data and consequently, to extract new features. In the past, 
this was primarily achieved with techniques like the Principal Component Analysis of the Latent 
Dirichlet Allocation, but recently, more advanced techniques are used, like the Autoencoders, as 
illustrated in Figure 89. 

 

Figure 89: Basic Autoencoder architecture. 
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Autoencoders are a type of neural network that can reduce the dimensionality of the input space 
without losing significant information or knowledge from the data. The Autoencoder architecture 
consists of two parts, the encoder and the decoder. The task of the encoder is to transform the input 
into a space with less dimensions through multiple neural network layers. In other words, the output 
of the encoder is a compressed version of the input that preserves the most salient features. The 
decoder takes as input this encoding and tries to reconstruct the initial input of the network. So, the 
autoencoder is trained as a supervised model, where the output must match the input, while reducing 
data dimensions internally.  

 

 

Figure 90: Example of Convolutional Autoencoder Architecture. 

 

Various autoencoder types have been proposed in the literature. For two-dimensional data (e.g. 
spectrograms of signals), the Convolutional Autoencoder is among the optimal choices. This specific 
type utilizes Convolutional layers to construct the compressed encoding, while the decoder uses 
Deconvolutional layers or Upsampling layers to reconstruct the two-dimensional data as good as 
possible. An example of Convolutional Autoencoder Architecture is displayed in Figure 90. Another 
useful type of Autoencoder is the Recurrent Autoencoder. As the name implies, this Autoencoder 
uses Recurrent layers, such as LSTM (Long Short-Term Memory) units, in both the encoder and the 
decoder. This architecture is commonly employed when the dataset consists of signals, sequences, 
and any time series type of data. A typical Recurrent Autoencoder Architecture is displayed in Figure 
91.  

 

5.2 Comparisons between plant measurements and simulated data 

This subsection discusses the comparisons between plant measurements and the provided 
simulated data. The latter predominately came from two different simulation setups. The first is 
SIMULATE-3K, which produces signals in the time domain, and the second is CORE SIM+, which 
produces signals in the frequency domain. The frequency domain data simulate both the Swiss pre-
Konvoi 3-loop reactor, as well as the German pre-Konvoi 4-loop reactor. On the other hand, the time 
domain simulated data correspond to the Swiss 3-loop reactor. The comparison will be made 
between features extracted from both real and simulated signals. 

 

The purpose of this comparison is twofold. Firstly, to tackle large deviations between the real and 
the simulated signals. Secondly, to search whether specific simulated perturbations are occurring 
within the real plant measurements. 
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Figure 91: Recurrent Autoencoder with signals as its input. 
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5.3 Unsupervised learning 

Unsupervised learning methodologies aim to extract knowledge from or to recognize patterns in data 
that are not accompanied by labels. This is extremely helpful in this setting, since actual plant 
measurements are unlabeled, i.e. we are unaware if any perturbations (and which) are taking place.  

 

The conducted analysis will have two objectives: (i) clustering and (ii) anomaly detection. Clustering 
tries to find similar samples out of a dataset and eventually divide the dataset into the right amount 
of groups (clusters). This can help us identify different reactor core states, especially those evolving 
through time. On the other hand, the goal of anomaly detection is to specify which part of the dataset 
seems more out of place compared to the rest. This becomes important to distinguish any outliers 
hidden in the data (i.e. any perturbations).  

 

In order to perform the aforementioned tasks, the data must be transformed into a smaller shape. It 
is a known fact that as the feature space grows, the more difficult it becomes for a clustering (or 
anomaly detection) algorithm to perform well. So, there is a need to reduce the dimensionality of the 
data. For this task, we employ the Autoencoders presented in Subsection 5.1.2. Then, the reduced 
data are processed with the following unsupervised algorithms: 

• k-Means tries to group the dataset samples into k clusters based on a metric (most commonly 
used is the Euclidean distance). At first, it initializes k cluster centers and at each iteration, it 
assigns every data sample to the cluster that minimizes that metric. It converges when no 
further changes in cluster centers or cluster assignments are observed. 

• Mean-Shift clustering is based around creating centroids, typically using a Gaussian kernel, 
and updating them by the mean of the data points. Kernels influence which data point belongs 
to which centroid. Different type of kernels may perform better at different situations.  

• Spectral clustering is best suited for multivariate distributions. It takes advantage of a 
similarity matrix of the data points in order to compute the Laplacian matrix. Then, it calculates 
the k first eigenvectors (trying to cluster the data in k groups) and shapes them into matrices. 
These matrices are then provided as input to a k-Means like algorithm to construct the final 
clusters of the dataset.  

• DBSCAN is a density-based clustering algorithm that groups together nearby data points 
with high density and singles out any outliers in low-density regions. 

• One-class SVM (Support Vector Machine) is an anomaly detection algorithm that tries to fit 
the whole dataset in the smallest possible hypersphere. After training, every data sample that 
lies outside that space is regarded as an outlier, while the rest are considered normal 
instances.  

• Isolation Forest is an anomaly detection algorithm that partitions the data points in a tree, 
by splitting them based on the value of a random feature. After the construction of the tree, 
out of all the external nodes (leaves), the ones with the shortest path length are considered 
the outliers. 

 

5.4 German pre-Konvoi 4-loop reactor 

The German pre-Konvoi 4-loop reactor measurements consist of 3 different cycles, 30, 31 and 32. 
In the reactor, there exist 64 detectors, divided in four categories: (i) in-core, (ii) ex-core, (iii) 
temperature and (iv) pressure. In total, 450.560 data points have been sampled (sampling rate is 
250 Hz). The signals contained a DC component that has been removed. Additionally, a linear trend 
has also been detected and removed. Figure 92 displays an example signal before and after DC 
component and linear trend removal. 
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Figure 92: Example of in-core signal for the German 4-loop reactor. 

 

5.4.1 Feature Extraction 

5.4.1.1 Cycle 30 

Figure 93 displays the Mean, Variance, Energy, Energy of Differences, Minimum value, Maximum 
Value and Cepstrum of a window in time of in-core sensor J06-3. For the Energy and Energy of 

Differences, the unit of measurement is 𝑉2. For all the features, except Cepstrum, the x-axis is time 
windows. One time window is 10 seconds or 2500 time steps. The unit of Cepstrum is Volt and its x-
axis is seconds. 

 



 D4.4 Results of the application and demonstration calculations 

GA n°754316 Page 109 of 192 

 

Figure 93: In-core sensor J06-3. 

 

Figure 94 displays the most dominant frequencies of the same in-core sensor (J06-3). 
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Figure 94: Most dominant frequencies of the J06 family of sensors. 

Some observations are summarized below: 

● The most dominant frequencies are located below 3 Hz with the small exception of the 50 Hz 
frequency. 

● There are no extreme spikes from the energies or variance. 

 

Figure 95 displays the Mean, Variance, Energy, Energy of Differences, Minimum value, Maximum 
Value and Cepstrum of a window in time of the ex-core sensor X-R135-O. 
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Figure 95: Ex-core sensor X-R135-O. 

 

Figure 96 displays the most dominant frequencies of the ex-core sensors X-R045, X-R315, X-R225 
and X-R315. 
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Figure 96: Most dominant frequencies of the ex-core sensors X-R045, X-R315, X-R225 and X-R315. 
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Some observations are given below: 

● A similar behavior to the in-core ones is observed, with the dominant frequencies being < 
3 Hz. 

  

Figure 97 displays the Mean, Variance, Energy, Energy of Differences, Minimum value, Maximum 
Value and Cepstrum of a window in time of the temperature sensor T-N12-A. 

 

 

Figure 97: Temperature sensor T-N12-A. 

Figure 98 displays the most dominant frequencies of the temperature sensors T-N12-A, T-C04-A, T-
G10-A, T-G14-A, T-J02-A, T-J06-A, T-N12-A and T-O05-A. 
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Figure 98: Most dominant frequencies of temperature sensors T-N12-A, T-C04-A, T-G10-A, T-G14-A, 
T-J02-A, T-J06-A, T-N12-A and T-O05-A. 
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Some observations are summarized hereafter: 

• We can see that beyond the <3 Hz frequencies being dominating, the 22 Hz and 30 Hz 
components are also present. 

 

Figure 99 displays the Mean, Variance, Energy, Energy of Differences, Minimum value, Maximum 
Value and Cepstrum of a window in time of the pressure sensors P-R025-E and P-R155-E. 

 

Figure 99: Pressure sensors P-R025-E and P-R155-E. 

 

Figure 100 displays the most dominant frequencies of the pressure sensors P-R025-E and P-R155-
E. 

 

 

Figure 100: Most dominant frequencies of pressure sensors P-R025-E and P-R155-E 
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Some observations are given below: 

● It is obvious that a much richer variety of frequencies are present in the pressure sensors. 
The most important peaks seem to be approximately around <5 Hz, 20 Hz, 25 Hz, 40 Hz and 
100 Hz. 

 

5.4.1.2 Cycles 31 & 32 

In cycles 31 and 32, a similar behavior was detected regarding the change of frequencies over time. 
An interesting observation is the behavior of in-core sensors L-G10-2 and L-G10-6, which exhibit a 
high energy signal difference among the 3 cycles – see Figure 101 and Figure 102. 
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Figure 101: Energy difference characteristics of the in-core sensor L-G10-02 among the 3 cycles. 
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Figure 102: Energy difference characteristics of the in-core sensor L-G10-06 among the 3 cycles. 

 

5.4.2 Comparison with simulated data 

In this subsection, a spatial comparison will be made between the simulated data on the frequency 
domain and the actual plant measurements. The spatial comparison will determine areas where 
given perturbations are more likely to exist. This is achieved through the computation of the cosine 
similarity between the CPSDs of the actual measurements and the simulated data, for the different 
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location where a perturbation might occur. Then, a heatmap will be created with the similarity scores 
from each position in the grid where a perturbation has been simulated. Thus, we will be able to 
compare the likelihood of a perturbation happening in all areas of the reactor, but, also, we can 
compare the similarities between different perturbations. 

 

From the feature and frequency analysis, we concluded that one of the most dominant frequencies 
of all signals in the 4-loop reactor is the 1Hz frequency. Thus, we have selected the 1Hz frequency 
for the simulated perturbations. The CPSDs were calculated between all fully working sensors (in 
cycle 30, 3 sensors were removed because of defects); 53 in total. Because the simulated data 
consist of only a single frequency, we selected only the CPSD value of that specific frequency from 
the plant measurements. So, a matrix of size 53x53 has been constructed for both real and simulated 
data for each perturbation. It should also be noted that the hyperparameters of ellipticity (𝑘) and the 

direction of the vibration (𝜃) for fuel assembly and core barrel vibrations were kept constant at 0 both 
(the definition of those hyperparameters can be found in the CORTEX deliverable D3.1). 

 

The examined perturbations include: (i) Absorber of Variable Strength (AVS), (ii) Travelling 
Perturbation (TP), (iii) Control Rod Vibration (CRV) and (iv) (Cantilevered, Supported, Cantilevered 
and Supported) Fuel Assembly Vibration (FAV). 

 

5.4.2.1 Absorber of Variable Strength 

Since neutron detectors are mostly sensitive to the energy group 2, the AVS experiments have been 
predominately focused on that group. Because there are many levels to plot, we selected the ones 
with the maximum similarity – see Figure 103. Both in energy group 1 and 2, maximum similarity 
occurred at coordinates (16,15,18), where the first coordinate corresponds to the horizontal axis, the 
second to the vertical axis and finally the third to the z-axis. 

 

 

 

 

Figure 103: Heatmap of similarities of group 2 (z=18). 
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5.4.2.2 Travelling Perturbation 

The TP experiments – see Figure 104 – showed a maximum similarity of 0.63 at (15,13). In this 
case, the coordinate system is two-dimensional (horizontal and vertical axis, respectively). 

 

 

Figure 104: Heatmap of similarities of TP. 

 
 

5.4.2.3 Control Rod Vibration 

CRV experiments were conducted at two different levels on the z-axis, where z = {18, 31}. The 
maximum similarity for the z=18 level is located at (15,5) with value equal to 0.571 – see Figure 105. 
On the other hand, the maximum similarity of z=31 level is located at (17,3) with value equal to 0.448 
– see Figure 106. 
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Figure 105: Heatmap of similarities of CRV at z=18. 

 

Figure 106: Heatmap of similarities of CRV at z=31. 

 

5.4.2.4 Fuel Assembly Vibration 

FAV experiments included Cantilevered mode, Supported mode and Cantilevered and Supported 
mode. In the first mode, maximum similarity was found at (11,9) with value equal to 0.751 – see 
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Figure 107. In the second mode, Maximum similarity was found at (15,15) with value equal to 0.752 
– see Figure 108. Finally, in the third mode, maximum similarity was found at (15,13) with value 
equal to 0.766 – see Figure 109. 

 

Figure 107: Heatmap of similarities of Cantilevered FAV. 
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Figure 108: Heatmap of similarities of Supported FAV. 

 

 

Figure 109: Heatmap of similarities of Cantilevered and Supported FAV. 
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5.4.3 Clustering 

The clustering of the signals of the German pre-Konvoi 4-loop reactor has been performed, using 
the Autoencoder architecture of Figure 110, along with various clustering algorithms. 

 

 

Figure 110: Autoencoder architecture used in the clustering of the German pre-Konvoi 4-loop 
signals. 

 

The signals have been split into 10 s windows. Then, the spectrograms of each signal have been 
extracted and have been subsequently provided to the Autoencoder, which compressed them to a 
small vector of constant size (in our case, the vector has been set to 100). The reduced size helps 
the unsupervised algorithms to better group and distinguish each sample. After that, the clustering 
algorithms take the encoded form of each signal and separate them into clusters. The number of 
clusters that the signals will be divided into is a significant hyperparameter. We decided to set the 
number equal to 2, in order to force the algorithm to separate normal reactor states from outliers. In 
a similar manner to the clustering approach discussed above, the anomaly detection algorithms 
divided the data into normal and anomalous states. 

 

Different algorithms tend to find different clusters, as every algorithm can find a different pattern of 
the data, providing better insight on the structure of the problem and the datasets. Any results that 
agree with each other have extra credibility, meaning that a robust pattern might have been 
identified, one that groups signals in an optimal manner. Because signals have been divided into 
two clusters, one of them is termed to be the majority cluster and the other the minority one, 
representing a slight abnormality. However, it is not necessary for abnormalities to occur and when 
in fact they do not, it is going to be noted. Below we are going to present the proportion of time 
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windows that got classified in the minority cluster and show how it can be connected with the results 
found from the feature extraction and analysis step discussed before. 

 

Using the k-Means algorithm, we can see in Figure 111 that the sensors that appear to have the 
most out of the ordinary behavior are L-G10-2, L-G10-6, L-N12-2, L-J06-5, which quite agree with 
the observation made in the feature extraction section. Especially, sensor L-G10-2 seems to be 
extremely different from the rest, belonging to the minority cluster in its entirety. This means that 
almost every time window of L-G10-2 does not belong to the majority of the rest of the time windows. 

 

 

Figure 111: k-Means clustering of in-core signals. 

 

Mean-Shift clustering still assigns L-G10-2 to the minority class, with the other 3 detectors mentioned 
above having a reduced proportion, as can be seen in  Figure 112. These are similar results to k-
Means clustering, despite the difference in proportions. 

 

 

Figure 112: Mean-shift clustering of in-core signals. 

 

DBSCAN did not identify any patterns that could distinguish somehow the signals or any time 
windows that could be considered anomalous. One-Class SVM, on the other hand, exhibits a similar 
behavior to the first two clustering algorithms, as shown in Figure 113, identifying 3 more sensors 
with similar behavior (L-O05-2, L-N12-4 and L-O05-4). Even though their proportions are quite 
smaller, it still is an indication of the algorithms’ ability to locate abnormal behavior at various time 
windows. 

 

 

Figure 113: One-class SVM of in-core signals. 

 



 D4.4 Results of the application and demonstration calculations 

GA n°754316 Page 126 of 192 

The Isolation Forest algorithm displayed similar results (Figure 114). Sensor L-G10-2 is the sensor 
that stands out again with L-N12-2, L-G10-6 and L-J06-5 coming next. 

 

Figure 114: Isolation forest of in-core signals. 

 

In conclusion, the unsupervised clustering and anomaly detection algorithms exhibited similar 
results. The sensors that have been identified as not normal were L-G10-2, L-N12-2, L-G10-6 and 
L-J06-5 – see Figure 115. Further analysis may reveal the causes of this differentiation. 
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Figure 115: Location of signals exhibiting an abnormal behaviour (in red cycles). 

 

5.4.4 Voxel-wise, semantic segmentation for simulated data classification and localisation 
of multiple, simultaneously occurring perturbations. 

Handling multiple, simultaneously occurring perturbations is vital to successful classification of real 
plant measurements given that it is entirely probable, and in fact more than likely, that multiple 
perturbations will occur at the same time. Therefore, we propose a 3D convolutional, voxel-wise, 
semantic segmentation network extended from the deliverable D3.5 (Montalvo et al., 2020), trained 
and tested on CORE SIM+ (Mylonakis et al., 2020) reactor specific simulations.  

  

This section outlines the data pre-processing, model architecture, and results trained and tested on 
the CORE SIM+ simulations of the German pre-Konvoi 4-loop. However, the data pre-processing 
and model are identical for both CORE SIM+ datasets (German and Swiss pre-Konvoi) with 
exception to input and output mesh dimensionality. Therefore, when discussing the Swiss pre-Konvoi 
4-loop in Section 5.5.6, we refer to this section for implementation details and model architecture. 
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CORE SIM+ simulation data pre-processing 

The dataset utilized in this section is the CORE SIM+ frequency domain dataset, for German pre-
Konvoi 4-loop. However, this section also applies to Swiss pre-Konvoi 3-loop simulations, as both 
these reactor specific simulations are processed and handled identically, with exception to their 
dimensionality. For convenience, we will describe the process referring to the German reactor mesh 
of dimensions 34x34x34. However, to describe the Swiss reactor mesh, simply undertake the same 
process with mesh dimensions 32x32x42. Additional details will be given in Section 5.5.6 regarding 
the Swiss reactor. 

  

The core stage of data pre-processing is the additive combination of single perturbations scenarios 
provided by the CORE SIM+ simulations. The combination process is like that described in the 
deliverable D3.5 (Montalvo et al., 2020), in which a selected number of perturbation scenario 
examples are combined within the same frequency, ensuring that no perturbations combined 
originate from the same source location. Also, as with all datasets, we maintain that perturbations 
originating from the same source location cannot be found across train, validation and test sets, 
avoiding the network testing on data it was trained on. 

  

Before combination, the APSDs/CPSDs for the 36 in-core and 8 ex-core detectors are computed for 
each data sample (a single perturbation scenario for a given source location and frequency). At this 
stage, vibration parameters kappa and theta are provided in the APSD/CPSD calculation, where 𝛫 

= {0.25, 0.5, 0.75, 1.0} and 𝛳 = {¼π, ½π, ¾π, π} respectively. 𝛫 and 𝛳 parameterize the vibration 
spectra of simulated vibrating perturbations, where Κ ∈ [0,1] is the ellipticity or anisotropy of the 

vibrations, and ϴ ∈ [0, 𝜋] is the preferred direction of the vibration. Furthermore, for isotropic 
vibrations Κ = 0 , for vibrations along a straight-line having angle ϴ, Κ = 1 (Demazière and Dokhane, 

2019). The retrieval of vibration parameters, 𝛫 and 𝛳, are to be treated as a classification tasks, 
which for a vibration perturbation, we aim to classify which vibration parameter values relates to that 
noise response. The process of vibration parameter retrieval is discussed in the following section. 

  

The combination of the data samples itself is performed via the addition of APSD/CPSD values. 
Although this may introduce complications due to cross-correlation of noise, it has been determined 
that given the time frame and scope of this project, combining noise before the APSD/CPSD 
calculation is a relatively challenging implementation undertaking. Nevertheless, the combined 
perturbation’s APSDs/CPSDs are utilized as the input to the network. More specifically, the input into 
the network consists of the APSDs of every possible voxel position (34x34x34 voxels); the APSDs 
of the 48 detectors embedded into a volume (where all voxels but those of the detectors at their 
corresponding locations are zeros); the coherence of selected detectors with all other detectors 
embedded in the same manner as with the APSD. These volumes are concatenated channel-wise 
to produce a (n+1)x34x34x34 volume, where n is the number of detectors chosen for the coherence 
of a detector with all other detectors. The ‘n+1’ originates from the fact that we also use the APSD 
of the detectors. 

  

As with all previous methods in the frequency domain, the complex signals are decomposed into 
amplitude and phase components for use with ML frameworks. This results in a 2(n+1)x34x34x34 
input volume. For the value of n, we conclude that 8 specifically chosen detectors for the coherence 
calculation is a good trade-off between number of channels and computation load, the detectors are: 
C4 axial 1, C4 axial 6, N12 axial 1, N12 axial 6, J2 axial 1, J2 axial 6, J6 axial 1, and J6 axial 6. We 
had concluded that using the coherence of all detectors to all other detectors introduces too many 
channels as an input to the network when utilizing our current approach. This results in a 
computational load that is too large to handle, therefore we only utilize the coherence between all 
detectors to 8 specific detectors as input. The use of all detectors is an ongoing investigation. 

  

Finally, to help reduce computational load of the large core volumes and multiple channels, we 
reduce the core mesh by half, averaging across a 2x2x2 sub-section of the volume resulting in a 
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2(n+1)x17x17x17 volume. The intuition behind this choice is firstly, computational load. Secondly, 
given that CORE SIM+ models each assembly as 2x2 sub-assemblies, it is reasonable to assume 
for the case of classification and localization that a perturbation happening in a sub-assembly can 
be considered as occurring in the entire assembly. 

 

3D fully-convolutional, semantic segmentation network for classification and localization of 
multiple, simultaneously occurring perturbations 

A semantic segmentation network, extended from the deliverable D3.5 has been developed, inspired 
from (Kaul et al., 2020) to perform semantic segmentation on weakly supervised data (noisy, limited 
or imprecise sources are used in supervised ML tasks). Semantic segmentation is a methodology 
for the “linking” of each pixel in an input sample to a semantic (class) label, which has been mainly 
used in object detection and image-anomaly problems. In perturbation classification and localization, 
we aim to link each voxel in the input sample to a classification of the source voxel (i,j,k) at which 
that perturbation originates. 

 

Figure 116: Fully-convolutional, modified RSS-Net architecture for pixel-wise semantic segmentation.  

 

An encoder-decoder network is employed to extract high-dimensional feature representations of the 
input, with these latent vectors being decoded to the volumetric size of the input volume predictions 
– see Figure 116. The green arrows represent the concatenation of feature maps; the red arrows 
represent trilinear up sampling; the purple arrows represent direction/flow of the network. For 
network architecture details, refer to Table 7. 
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Table 7: Parameter values per layer for the fully-convolutional, semantic segmentation model 
depicted in Figure 116. 

Layer In Shape Out Shape In Feature Out 
Feature 

Kernel 
Size 

Stride Padding Dilation 

Conv_Enc_0 17x17x17 17x17x17 2(n+1) 32 7 1 3 1 

Conv_Enc_1 17x17x17 15x15x15 32 32 5 1 3 2 

Conv_Enc_2 15x15x15 15x15x15 32 64 5 1 2 1 

Conv_Enc_3 15x15x15 8x8x8 64 64 3 2 2 2 

Conv_Enc_4 8x8x8 8x8x8 64 48 1 1 0 1 

Pyr_Base_0 8x8x8 8x8x8 64 128 3 1 1 1 

Pyr_Base_1 8x8x8 8x8x8 128 128 3 1 2 2 

Pyr_Base_2 8x8x8 8x8x8 128 128 3 1 1 1 

Pyr_Base_3 8x8x8 8x8x8 128 128 3 1 2 2 

Pyr_0 8x8x8 8x8x8 128 128 1 1 0 1 

Pyr_1 8x8x8 8x8x8 128 128 3 1 1 1 

Pyr_2 8x8x8 8x8x8 128 128 3 1 2 2 

Pyr_3 8x8x8 8x8x8 128 128 3 1 3 3 

Conv_Cat 8x8x8 8x8x8 128 * 4 128 1 1 0 1 

Conv_Dec_0 8x8x8 8x8x8 128 + 48 64 3 1 1 1 

Conv_Dec_1 8x8x8 8x8x8 64 32 3 1 1 1 

Conv_Mask_C 17x17x17 17x17x17 32 10 3 1 1 1 

Conv_Mask_K 17x17x17 17x17x17 32 5 3 1 1 1 

Conv_Mask_T 17x17x17 17x17x17 32 5 3 1 1 1 

 

The model proposed and depicted in Figure 116 is a variation of (Kaul et al., 2020) in which a fully 
convolutional network is employed, utilizing an encoder-decoder structure. As with the deliverable 
D3.5, the output of the network is a prediction mask of perturbation classes of size 17x17x17, where 
each voxel represents perturbation origin and classification of that perturbation. Like with the 
deliverable D3.5, this network replaces pooling operations with strided convolutions to reduce 
information lost to down sampling. Also dilated convolutions (Wei et al., 2018) are introduced to 
capture more information with a larger receptive field, consequently assisting with the sparse nature 
of a limited number of detectors. Furthermore, we utilize CoordConv (Liu et al, 2018) to help maintain 
spatial information of the features. This is achieved by informing convolution kernels where they are 
in relation to the input activation, by introducing layer-wise cartesian coordinates of voxel positions. 
A notable design feature is the spatial pyramid pooling block (four bottom blocks of the network). It 
is implemented to learn rich semantic features at various scales, using four convolutions of differing 
kernel size, stride, and dilation to capture different information across scales.  

 

In addition to our modified RSS-Net, we output three prediction masks, a classification mask, and 
two vibration parameter masks (𝛫 and 𝛳). Given three output segmentation tasks, the network is 
trained to minimize a weighted sum of three focal losses, one for each task. Focal loss (Lin et al., 
2017) is given in Equation 25 where 𝛾 represents a tunable focusing parameter to adjust the rate 
that easy-examples are down-weighted. The final loss is given by Equation 26. 
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𝑃 is the number of perturbation classification types. Subscripts 1, 2, and 3 represent tasks: 
perturbation classification, 𝛫 vibration parameter retrieval, and 𝛳 vibration parameter retrieval 
respectively.  

 

Additionally, a logarithmic class weighting scheme from (Kaul et al., 2020) has been employed to 
combat class imbalance between foreground classes (perturbations) and background classes (no 
perturbation). The loss function is weighted, α, depending on the true class using logarithmic 
weighting. The ‘background’ or nothing class is given a weight of 0.25 as this was empirically found 
to be the most appropriate weight for the classification task. 

 

Experimental results on CORE SIM+ simulated data 

Experimental results have been obtained for different numbers of combined perturbations. We aim 
to see how our model performs given different quantities of simultaneously occurring perturbations. 
As previously described, single perturbations are additively combined with the number of randomly 
chosen combinations lying within the range [1, x], where x denotes the maximum number of 
combinations for that experiment. In this case we choose x to be 15, 30, and 45. 

 

The training procedure utilized the Stochastic Gradient Descent (SGD) optimization procedure for 
back propagation, with a starting learning rate of 0.01, decaying by a factor of 0.1 when the validation 
loss plateaus for 10 epochs within a threshold of 0.025. Additionally, a batch size of 64 was used 
and a gamma of 2 implemented as the modulating factor of the Focal Loss previously defined. The 
results of experiments are outlined in Table 8 for classification, Table 9 for retrieval of vibration 
parameter 𝛫, and Table 10 for retrieval of vibration parameter 𝛳. 

 

Table 8: German pre-Konvoi 4-loop simulated, per perturbation classification voxel accuracies for 
voxel-wise semantic segmentation of the unseen test set. 

Per Class Voxel Prediction Accuracies * 

No. 

Comb 

No. 

Det 

Accuracy (%) 

BG AVS CANT SF SS CSF CSS CR TP BV 

15 56 99.08  90.47 92.98 86.49 93.02 97.62 97.22 83.06 94.74 100.00 

30 56 99.64  85.97 81.48 90.48 97.37 90.24 95.12 90.21 93.25 100.00 

45 56 99.35 82.28 88.00  87.50 89.23 90.00 92.42 88.99  93.20 100.00 

* Note: AVS = Absorber of Variable Strength, CANT = Fuel Assembly Vibration Cantilevered, SF = Fuel Assembly Vibration Supported 

First, SS = Fuel Assembly Vibration Supported Second, CSF = Fuel Assembly Vibration Cantilevered Supported First, CSS = Fuel 
Assembly Vibration Cantilevered Supported Second, CR = Control Rod Vibration, TP = Travelling Perturbation, BV = Core Barrel Vibration, 
BG = Background / No Class 

 

Table 9: German pre-Konvoi 4-loop simulated, per perturbation vibration parameter, kappa, 
classification accuracies for the unseen test set. 

Per Class Voxel Prediction Accuracies for Kappa Vibration Parameter 

No.  

Comb 

No.  

Det 

Accuracy (%) 

BG 𝛫=0.25 𝛫=0.5 𝛫=0.75 𝛫=1.0 

15 56 58.39 39.11 10.14 26.13 38.85 

30 56 25.58 45.95 14.34 28.52 39.57 

45 56 34.22 33.01 11.56 42.76 20.63 
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Table 10: German pre-Konvoi 4-loop simulated, per perturbation vibration parameter, theta, 
classification accuracies for the unseen test set. 

Per Class Voxel Prediction Accuracies for Theta Vibration Parameter 

No.  

Comb 

No.  

Det 

Accuracy (%) 

BG 𝛳=¼π 𝛳=½π 𝛳=¾π 𝛳=π 

15 56 67.19 43.94 19.13 25.28 47.68 

30 56 32.87 33.44 20.39 30.42 33.89 

45 56 55.61 28.81 19.35 32.79 22.25 

  

Accuracy per class is the performance metric of choice, defining the number of correctly classified 
voxels belonging to that class across the volume, averaged across the test set. In addition to per 

class accuracy metric, normalized confusion matrices are provided in Figure 117 for the best 
performing model. Note that these models have been ran only once and the best results presented 
above. Other methodologies have results presented as the mean of multiple runs. Nevertheless, 
given the computation time to process this data, this was found impractical in the present time frame. 

 

As can be seen in Table 8 the results of classification and localization of multiple, simultaneously 
occurring perturbations performs well across all numbers of combinations. As we cannot see truly 
the performance from per class accuracies, it is further confirmed by the normalized confusion 
matrices shown below. It is noticed that it is often the case that the drop of performance comes from 
miss classifying a perturbation as not being present, i.e. not detecting a perturbation, false negatives. 
This is somewhat more promising from our perspective given that the network can determine 
between classes with high accuracy showing that our model learns good semantic understanding of 
the input volume. The issue of false negatives mainly arises in the absorber of variable strength 
classification. We make the assumption – as we will elaborate on later – that the more varied nature 
of absorber of variable strength origin introduces vastly larger variance into localizing this class 
complicating such localization. Work will continue to improve the detection of perturbations in the 
case of high numbers of simultaneous perturbations.  

 

Figure 117: Normalized confusion matrix for each run of differing max combinations for per class per 
voxel classification accuracy for German pre-Konvoi simulations. This ground truth against 

predicted voxels per classification. Left: max number of combinations = 15. Middle: max number of 
combinations = 30. Right: max number of combinations = 45. 
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It is also to be noted that increasing the number of simultaneous perturbations impacts the 
performance of more sporadic perturbations such as absorber of variable strength. We conjecture 
that due to the more uniform structure of fuel assembly vibrations, control rod, and barrel vibrations 
that there are far fewer variations of which this perturbation can originate, somewhat simplifying the 
problem for these classifications. This is further supported by the reduction in absorber of variable 
strength accuracy as number of combined perturbations increases. Additionally, this hypothesis can 
be visually supported by Figure 119 where predictions of absorber of variable strength tend to be 
less precise, with predictions occupying the space around the ground truth (the true source location 
of the simulated perturbation) source location. On the other hand, the travelling perturbation is 
predicted at the top and bottom of the core volume at the same azimuthal coordinates, giving a more 
precise prediction. 

 

As for retrieval of vibration parameters, more work is necessary to improve the accuracy of the 
parameter retrieval. It is a non-trivial task given the number of additional noise sources coming from 
various other perturbations that obscure the noise induced by vibrations. Additionally, with the 
current system, the retrieval of these parameters relies heavily on the performance of the 
classification and localization. In future, we aim to reduce this dependency and investigate more 
appropriate pre-processing steps to ensure that information is maintained and most appropriately 
utilized in the feature extraction process. We believe there is much room for improvement given more 
time for tuning, and further testing regarding these values. We will continue our efforts to ensure that 
classification, localization and parameter retrieval of multiple, simultaneous perturbations is of the 
best quality we can produce. 

 

5.4.5 Self-supervised domain adaptation for real plant data training and inference 

It is important to ensure that robust and effective networks are developed to allow for accurate 
adaptation and inference of real plant data from models trained with simulation data. Therefore, we 
utilize models trained and tested on vast quantities of simulated data from Section 5.4.4 to transfer 
knowledge to make predictions given real plant data. More specifically, we utilize a method of domain 
adaptation through self-supervision to learn to reduce the naturally occurring domain shift between 
simulated and real plant measurements. 

 

As with the previous Section 5.4.4, we define the data pre-processing and ML implementation with 
the German pre-Konvoi 4-loop. However, the methods described here are identical to the Swiss 
reactor with exception to core dimensionality. Details discussing the difference to the Swiss pre-
Konvoi are given in Section 5.5.7. 

Figure 118: Visualizations of predictions and ground truth perturbation classifications and localizations 
in the core volume for x = 15. The prediction and ground truth of 3 absorber of variable strength 
perturbations (left two plots); the prediction and ground truth of 2 absorber of variable strength 

perturbations and 1 travelling perturbation (tight two plots). 
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Plant measurement pre-processing 

Self-supervised domain adaptation (DA) utilizes both simulated and real plant data to train the 
network. DA aims to train a network to perform the necessary tasks whilst also minimizing the 
difference between source (simulated) and target (real) domains interpreted by the network. 
Therefore, we utilize the same pre-processing for the simulated German pre-Konvoi 4-loop described 
in Section 5.4.4. 

 

As for the real plant data, we first take processed measurements from UPM – the process of which 
is described in Section 4 and the deliverable D3.5 (Montalvo et al., 2020) – and aim to arrange them 
in a manner that is identical to that of the simulated data. The reasoning is that we want for data 
inputs from both domains to be identical in arrangement. To achieve this, we embed all detector 
APSDs into a 17x17x17 volume at their corresponding locations within the core. We additionally 
provide further inputs using coherence of selected detectors to all other detectors, as done with the 
simulated data. The value for n remains the same, 8, as does the detectors chosen – the detectors 
are: C4 axial 2, C4 axial 6, N12 axial 1, N12 axial 6, J2 axial 1, J2 axial 6, J6 axial 1, and J6 axial 6. 

  

Moreover, it is also documented that for measurements from the 4-loop pre-Konvoi, certain detectors 
are in fact pressure detectors and not simulated. Consequently, we remove these detectors (G14-2, 
C04-1, and G10-3) from the input of both real and simulated data. Furthermore, we do not include 
temperature sensors throughout our work, only considering the in-core and ex-core neutron 
detectors. Given that we have available only one set of real measurements with limited number of 
samples with the intention to perform inference on the frequencies that the simulations provide, we 
split the real plant measurements into a train and test set. Note we do not need validation as we 
have no metric of performance as the data is unlabeled, therefore a validation set is redundant. The 
train set of real data is constructed of the samples from frequencies that lie in between the 
frequencies simulated, e.g. 11.5 Hz. The test set is therefore constructed of the frequencies that are 
simulated, e.g. 11 Hz, 12 Hz. The test set samples are the predictions presented in the following 
section. 

 

Unsupervised domain adaptation through self-supervision for multiple, simultaneously 
occurring perturbation classification and localization 

To provide a short summary, domain adaptation considers the setting in which the task between 
each distribution setting source and target remain the same, yet the distributions themselves differ. 
The difference between the source and target distributions is commonly referred to the covariate 
shift, or domain shift, where DA aims to learn a discriminative classifier or other predictor in the 
presence of a shift. We aim to learn a discriminative classifier for classifying perturbations in the 
presence of a domain shift from simulated to real data, the classifier is trained to align the two 
domains in some shared feature space represented by the discriminative model. Self-supervised 
learning on the other hand, is a methodology for learning good representations from unlabeled data 
by auxiliary tasks, which are generated from the data itself rather than by human interaction/labelling. 
Predicting by how much an input has been rotated is one example of such auxiliary task. The goal 
of this is to learn good generalized features of the input that can be considered useful for downstream 
semantic tasks.  

 

The methodology we employ is unsupervised domain adaptation through self-supervision, proposed 
by (Sun et al., 2020). The idea is to achieve alignment between the source and target domains 
through training a model on the same task for both target and source domains simultaneously. As 
we do not have labelled in the target domain, we use self-supervised auxiliary tasks to provide a 
unified task across domains. Each task is designed to induce alignment through capturing 
information that is structurally relevant across both domains. This encourages the network to align 
both domains through the understanding of spatial augmentation. 
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Depicted in Figure 119 is the network architecture and training procedure for both input domains and 
output tasks. The feature extractor network is that proposed in Section 5.4.4 pre-trained on only 
simulated data. Both the source and target domain data are used simultaneously to train the network. 
Both are fed through the network identically to the simulated case. However, the output of the feature 
extractor network is the layer before the classification layers. This is due to the addition of the 
auxiliary tasks that do not provide any downstream classification. Both source and target domain 
data are fed to the auxiliary tasks: rotation prediction, flip prediction, and patch prediction. Each of 
the auxiliary tasks provide an individual loss in addition to the loss produced by source domain 
classification tasks. The combination of these losses via weighted sum produce the final loss to 
minimize during training. The auxiliary loss is given by Equation 27 and the weighted sum given by 
Equation 28. 

 

 
1

1
ˆ ˆ ˆ ˆ( , ) log( ) (1 ) log( )

C
c c c c

T T T T T T T

C

L y y y y y y
C =

 =  + −     (27) 

 

1 2 3 1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

ˆ ˆ ˆ( , ; , , , ) ( ( , ) ( , ) ( , ))

ˆ ˆ ˆ                                         ( , ) ( , ) ( , )

S T

T T T T T T T T T

L X X FL y y FL y y FL y y

L y y L y y L y y

     =  +  + 

+ + +

W
  (28) 

 

T is a given auxiliary task; C is the number of classes for the auxiliary task T. 𝜆1, 𝜆2, 𝜆3 and FL are 

defined in Equation 25. 

 

The pretext tasks are simple SoftMax, linear classification layers, each aiming to correctly classify 

which augmentation has been applied to both source and target input data volumes. The rotation 

task aims to classify whether the input has been rotated by 0, 90, 180, or 270 degrees clockwise. 

Flip Task aims to classify if the input has not been flipped, horizontally flipped, or vertically flipped. 

Lastly the patch task breaks the volume into four sub volumes, one of which is fed to the network. 

The network is tasked to predict which of the four sub-volumes was fed into the network. 

 

At inference time, the target domain data of the desired frequencies are input to the feature extractor, 

a resulting set of predictions are made for perturbation classification, and vibration parameters 𝛫 

and 𝛳. Prediction masks made for each frequency are presented in the following sub-section along 

with comparisons with the signal analysis methodologies presented throughout this report. The 

network had been trained identically to the simulated case for 1 - 45 randomly combined 

simultaneous occurring perturbations. 
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Figure 119: Self-supervised domain adaptation network depicting the previously defined 
segmentation network (feature extractor). The three auxiliary tasks and three supervised down-

stream (supervised) tasks are shown. The red arrows represent flow of source (simulated) data and 
the blue arrows represent flow of target (real) data. 

 

Anomaly prediction and analysis of plant measurements 

The results of inference on real plant measurements for the German pre-Konvoi 4-loop for middle of 
cycle 30 are discussed here. The model was trained on simulated data and domain adaption 
methodology applied to reduce covariance shift, the details of which are previously discussed. 
Additionally, we only consider the prediction of anomaly type/classification and source location of 
the anomaly, we do not predict the vibration parameters or amplitudes in this case. Moreover, we 
also do not predict the control rod vibrations insertion level, instead we trained the model to predict 
a control rod vibration, assuming that it occurs in that assembly throughout the whole assembly 
height. We display such anomalies with axial views (top down) of the assemblies for clearer 
interpretation, all figures are defined with a voxel-wise Cartesian coordinate system (i, j , k). 

 

This sub-section places emphasis on comparison to analytical signal processing techniques made 
in the deliverable D3.5. Of course, the predictions made are not validated, nor can be considered 
accurate at this stage. Further processing and analytical comparisons need to be made to ensure 
the correct adaptation to reduce domain shift has taken place and that the model is in fact capable 
of performing inference on real plant measurements. On the other hand, the initial predictions are 
positive and align with some aspects of the signal processing findings.  
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First, we notice that in the lower frequencies there is a consistent prediction of travelling perturbations 
originating from the lower level cartesian coordinates, (2, 2), (12, 2), (2, 12), and (12, 12) travelling 
vertically upwards in the core, from k=0 to k=16. This anomaly is present in the frequency ranges 
0.1 Hz – 2 Hz, aligning with the analysis provided in the deliverable D3.5 section 2.4.3.1 and Section 
4.1 of this deliverable in which it is hypothesized that transport phenomenon is present. This can be 
seen visually in Figure 120 where 0.5 Hz, 0.7 Hz, 1 Hz, and 2 Hz prediction maps are shown. For 
additional detail, the model itself has been trained with travelling perturbations originating from all 
possible (i,j) cartesian coordinates within the core at the lowest vertical level of the core (k=0), in 
other words, any axial position in the core, not just the inlet locations, avoiding possible bias towards 
the inlet locations. This is due to the model being trained for a large variation of origin locations 
meaning a random prediction, or a prediction from misunderstood input would not result in such 
uniform origins. This adds further weight to the prediction that travelling perturbations are present 
within the same regions across many frequencies.  

 

Throughout the lower frequencies, there is a consistent block of control rod-vibrations running 
diagonally when viewing on a horizontal plane (i, j cartesian plane), this can be seen in the second 
and third columns of Figure 121. Throughout the measurement period of MOC 30, the control rods 
are located by the black crosses in the following figures. Throughout the measurement period control 
rods remain stationary, inserted 3 axial levels into the core from top to bottom for the real plant 
measurements.. The control rod predictions are somewhat consistent with the locations of the control 
rods, showing signs of variance in the predictions. Moreover, every prediction made – if not at a 
control rod location – is located at neighboring positions at furthest. Finally, again at the lower 
frequencies, we observe a fuel assembly vibration prediction in the area (13, 13, -) which is indicated 
by the magenta and yellow voxels. We are skeptical of this reading given how close it lies to the 
predicted travelling perturbation. Additionally, as fuel assembly vibration response does not occur at 
these low frequencies we conjecture that this is merely a mis-classification of travelling perturbation.  
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Figure 120: Prediction masks for the German pre-Konvoi 4-loop MOC 30. Frequencies 0.1 Hz, 0.5 Hz, 
0.7 Hz, 1 Hz, 2 Hz, ordered row wise from top to bottom. Axial (top down) views of all assembly, 

control rod, and travelling perturbations are shown (column 2), along with figures separating control 
rod (column 3) from fuel assembly and travelling perturbations (column 4). Grey pixels represent 
outside of the pressure vessel and the black crosses represent the position of the control rods. 

 

Into the higher frequencies, we observe continued travelling perturbations in region seen in the lower 
frequencies. Additionally, the predictions are more sporadic across frequencies, becoming less 
consistent than with the lower frequencies. Notably, in the range 5 Hz-7 Hz, our model predicts a 
central cluster of vibrating fuel assemblies of a cantilevered second supported mode, running 
diagonally. This again aligns with the out-of-phase relationships defined in the deliverable D3.5 
section 2.4.3.2 describing such phenomena. 
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Figure 121: Prediction masks for the German pre-Konvoi 4-loop MOC 30. Frequency 5 Hz showing 
central fuel assembly of cantilevered supported second mode (light pink voxels). Axial (top down) 
views of all assembly, control rod, and travelling perturbations are shown (column 2), along with 

figures separating control rod (column 3) from fuel assembly and travelling perturbations (column 4). 
Grey pixels represent outside of the pressure vessel and the black crosses represent the positions of 

the control rods. 

 

Finally, the higher frequencies do not show much variation across frequencies 15 Hz – 25 Hz. All 
within this range show the same vertically travelling perturbations originating near all four inlets, and 
a variety of absorber of variable strength perturbations throughout the central core. This pattern is 
common across all higher frequencies, an example of which is given below. 

 

 

Figure 122: Prediction masks for the German pre-Konvoi 4-loop MOC 30. Frequency 18 Hz showing 
very few anomalous readings, with travelling perturbations shown in purple. Axial (top down) views 
of all assembly, control rod, and travelling perturbations are shown (column 2), along with figures 
separating control rod (column 3) from fuel assembly and travelling perturbations (column 4). Grey 
pixels represent outside of the pressure vessel and the black crosses represent the position of the 

control rods. 

The results presented of the real plant data analysis, although initial, look promising. Similar 
phenomena identified in signal analysis approaches correspond to our predictions. However, we still 
have many unanswered questions and doubts of our model predictions. Firstly, the vast amounts of 
control rod vibration predictions cast doubt onto how well our model has learnt features belonging to 
control rod vibrations, although the predictions made do in-fact align and lie within a margin of one 
assembly from a present control rod in nearly all cases (exception to 5 Hz). Secondly, the lack of 
validation for our output will in-turn induce doubt. However, it is important that we consider these 
predictions a fundamental block on which we continue to work and build upon our proposed methods. 
It is positive to see that predictions are being made with alignment to characteristics seen in signal 
analysis. Moreover, it is vital to gain some validation of these predictions to ensure that our model 
produces are accurate.  
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5.5 Swiss pre-Konvoi 3-loop reactor 

The Swiss pre-Konvoi 3-loop reactor measurements correspond to different burnups and boron 
concentrations and describe different cycle phases, namely MOC39, EOC39, BOC40, MOC40 and 
EOC40. This dataset of 5 time periods has been further analyzed and processed for the extraction 
of useful features and the identification of patterns related to different perturbation types and their 
localization. The provided data were neutron noise measurements, that had a duration of 
approximately 50 minutes and a sampling rate of 250 Hz. These measurements contained both AC 
and DC components, which have been normalized. Figure 123 and Figure 124 show an example of 
these signals before and after normalization. Additionally, simulated data have been provided both 
in the frequency and in the time domain.  

 

 

Figure 123: Example of internal signal of the Swiss 3-loop reactor (cycle 39). 

 

 

Figure 124: Example of internal signal of the Swiss 3-loop reactor (cycle 40). 
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Since some of the detectors were defective, the subsequent analyses have been performed on a 
subset of the in-core, ex-core detectors and thermocouples that were functional in all measurements. 
As a result, out of the 50 available detectors, we have considered only 45 signals.  

 

5.5.1 Feature Extraction 

5.5.1.1 Cycle 39 

Figure 125 displays the Mean, Variance, Energy, Energy of Differences, Minimum value, Maximum 
Value and Cepstrum of a window in time of in-core sensor L-C08-3. For the Energy and Energy of 

Differences, the unit of measurement is 𝑉2. For all the features, except Cepstrum, the x-axis is time 
windows. One time window is 10 seconds or 2500 time steps. The unit of Cepstrum is Volt and its x-
axis is seconds. 
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Figure 125: In-core sensor L-C08-3. 

 

This is how most of the features from the in-core sensors look like, but there are some exceptions in 
the N08 family of sensors – see Figure 126. 
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Figure 126: In-core sensor L-N08-5. 

 

Some observations are summarized below: 

● The energy of differences seems constant over time, but it drops to almost zero in the end. 
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● The cepstrum has a completely new behavior than the rest of the signals. Instead of 
oscillating between (-0.002, 0.002), its variance has increased to 0.005 and at the beginning 
of the signal it displays some extreme peaks at 0.025, which tend to decrease over time. 

The above observations about the differences between those sensors can be also seen in the most 
dominant frequencies in Figure 127 below. 

 

Figure 127: Most dominant frequencies of in-core sensors L-C08-3, L-J06-6, L-N08-5, L-N08-1 and L-
G10-2. 

 

Some observations are given hereafter: 



 D4.4 Results of the application and demonstration calculations 

GA n°754316 Page 145 of 192 

● The main differences of the dominant frequencies lie in the magnitude of the frequencies 
around 30 Hz, where sensors N08 and G10 have much higher energy than the rest of the 
sensors. 

● It is also important to note that, in every sensor, the spectrum <10 Hz seems to gather the 
majority of the energy. Nevertheless, in N08 and G10 sensors, the energy of that spectrum 
is reduced. 

 

Ex-core and temperature sensors exhibit a similar behavior. In the former, the dominant frequencies 
lie below 10 Hz – see Figure 128. This is the case with the latter as well, with the exception of the 
50 Hz frequency – see Figure 128. 

 

 

Figure 128: Energy spectrum of the X-1125-U ex-core sensor. 

 

Figure 129: Energy spectrum of the T-G10-33 temperature sensor. 

 

5.5.1.2 Cycle 40 

In cycle 40, the most interesting observations can be summarized in the following points: 

● Just like the previous cycle, three families of sensors seem to stand out: N08, G10, J14. 
● In BOC40 and EOC40, the J14 sensors – see Figure 133 – exhibit a high energy compared 

to others. 
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● The N08 – see Figure 130 – sensors have high peaks in their cepstrum and in EOC40 they 
exhibited one of the highest peaks in energy out of all the measurements (around the 200th 
second). 

● The N08 sensors also show the lowest energy in frequencies below 5 Hz – see Figure 132 – 
compared to the rest, while their dominant frequency is around 30 Hz. Frequencies around 
50 Hz seem to always exist in a medium magnitude of energy – see Figure 131. 

 

 

Figure 130: In-core sensor L-NO8-4. 
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Figure 131: Energy spectrum of the L-N08-3 sensor. 

 

 

Figure 132: Energy spectrum of the L-N08-6 sensor. 
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Figure 133: In-core sensor L-J14-4. 

 

5.5.2 Comparison with simulated signals 

The purpose of the comparison between plant measurements and the simulated signals in the time 
domain is the recognition of patterns between them, for the preemptive identification of possible 
sources of perturbation on reactor cores. The objective is to draw insight about the reactor core 
function across cycles and across different phases of the same cycle. 

 

Two different approaches have been tested: spectrograms and PSD features. For the first approach, 
different 25-second windows have been sampled out of the 50-minute long real measurements and 
have subsequently been compared with the simulated perturbations at different locations.  
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For the latter approach, a different methodology has been followed. It involved the direct computation 
of the APSDs and CPSDs for both plant measurements and simulated data. This analysis produces 
vectors of power spectral densities that can be compared with distance metrics like cosine similarity 
or Euclidean distance. If plant measurements align well to a simulated perturbation, we can consider 
that as a strong indicator of the existence of that perturbation in the reactor core. This, as well as the 
computation of the magnitude-squared coherence and cross-power spectral density between the 
simulated data and real measurements, can be used both as features for a Machine Learning model 
or as standalone predictors of the ongoing perturbation. 

 

The APSDs of specific detectors of plant measurements were compared with data from simulations 
– see Table 11. The header of the table holds the name of the plant measurement, whereas each 
subsequent row calculates the cosine similarity between each simulated perturbation occurring at 
specific phase of the cycle 40, with the plant measurements. The first column describes the label of 
the various simulated scenarios in the time domain. From this comparison, two key observations can 
be made: firstly, that the simulated data, especially at BOC40, are more aligned with their respective 
plant measurements, indicating that the simulation of the core conditions of the reactor core at that 
specific cycle was successful. Secondly, it is shown that the C4 dataset of PSI, constituting of the 
vibration of a 5x5 central cluster and thermal and hydraulic perturbations is more similar to the real 
measurements, indicating the possible presence of those specific perturbations on the reactor core 
during cycle 40. 

 

Another metric that has been studied for the comparison between simulated and real measurements 
is the magnitude-squared coherence, which is a number between 0 and 1 for each frequency found 
on both signals. In order to compute similarity, a heuristic has been used that summed the results 
that were above a specific threshold (0.001 in our case), in order to more accurately count the 
frequencies that have some correlation between the real measurements and the simulated data – 
see Table 12. 

 

Table 11: Cosine similarity between real and simulated on L-G10-1 detector. 

 

 

 BOC40 MOC40 EOC40 

MOC40_C3 0.004905 0.00816 0.011941 

MOC40_C4 0.062265 0.048613 0.044893 

EOC40_C5 0.017604 0.036273 0.046624 

BOC40_C5 0.011682 0.024079 0.032079 

EOC40_C2 0.014655 0.030935 0.040351 

EOC40_C4 0.026229 0.022848 0.023822 

BOC40_C2 0.023391 0.044589 0.056346 

BOC40_C4 0.150573 0.122492 0.112968 

BOC40_C3 0.006519 0.009391 0.0131 

EOC40_C3 0.005951 0.01355 0.019356 

MOC40_C5 0.012338 0.021074 0.026876 

MOC40_C2 0.010378 0.021446 0.028429 
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Table 12: Coherence comparison between real and simulated data. 

 

5.5.3 Clustering 

Clustering is performed in a similar manner to the German 4-loop reactor case (Section 5.4.3), with 
the analysis being based on the same clustering and anomaly detection algorithms. The metric used 
is again the proportion of minority (or anomaly) class in a signal of a sensor in order to categorize it 
as an out of the ordinary case. 

 

K-Means separated the signals in 2 clusters. While the separation was not as one sided as the other 
algorithms, meaning that the number of samples per cluster is not entirely in favor of the “normal” 
cluster, nonetheless, it was able to distinguish outlier behavior. In Figure 134 below, we can see that 
sensors L-G10-6, L-N08-1, L-G10-1 and L-N08-5 show signs of abnormality in MOC 39 and EOC 
39. During BOC40, more sensors exhibited “irregular” behavior. These were located in the family of 
N08 sensors and especially sensor L-N08-4 kept the same patterns during MOC 40 and EOC 40.  

 

Mean-Shift clustering did not manage to find any significant outlier patterns in the signals and, thus, 
single out any sensors. DBSCAN distinguished only one sensor that was behaving out of the ordinary 
and that was sensor L-N08-3. The severity of the anomaly reached a peak in BOC 40, which matches 
the results of k-Means. 

 

On the other hand, One-Class SVM did recognize multiple outliers in all parts of cycles 39 and 40. 
The most significant observation is that the family of N08 sensors still have high proportion of minority 
cluster time windows and, as a result, are labelled as abnormal, just like in k-means. Figure 135 
below exhibits that, in BOC40, there is an increased number of sensors behaving out of the ordinary. 

 

Isolation Forest put less sensors in the minority category. However, sensors L-N08-1, L-N08-4, L-
N08-6 and L-G10-1 are still present, like in the previous cases – see Figure 136. 

 

 BOC40 MOC40 EOC40 

MOC40_C3 0.009557 0.019712 0.007323 

MOC40_C4 0.001016 0.019722 0.001063 

EOC40_C5 0.00103 0.021602 0 

BOC40_C5 0 0.008476 0 

EOC40_C2 0.021099 0.032139 0.018274 

EOC40_C4 0 0.10728 0 

BOC40_C2 0.049638 0.048282 0.040419 

BOC40_C4 0 0.009815 0 

BOC40_C3 0 0.022292 0 

EOC40_C3 0 0.012489 0 

MOC40_C5 0.009927 0.022367 0.006242 

MOC40_C2 0 0.01355 0 
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Figure 134: k-Means clustering. 

 

Figure 135: One-class SVM. 
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Figure 136: Isolation Forest. 

 

Overall, the sensors that have been constantly considered to be abnormal were L-G10-1, L-G02-1, 
L-G10-6 and most of the N08 sensors. Figure 137 below pinpoints the position of these sensors in 
the reactor core. 

 



 D4.4 Results of the application and demonstration calculations 

GA n°754316 Page 153 of 192 

 

Figure 137: Location of N08 sensors in the reactor core (green cycles). 

 

5.5.4 Localization 

Extending earlier work (Tagaris, 2019), (Ioannou, 2020), we have used the time-domain simulations 
for the vibration of one FA in cantilevered mode for the localization task, specific to the conditions of 
BOC40 (PSI dataset 2020-02-Dataset8-C1a - Table 2). The simulated datasets contained 
measurements from 36 in-core detectors (6 different radial positions at 6 different axis levels) and 8 
out-core detectors (4 different radial positions at 2 different axis levels). A Deep Learning architecture 
has been created, based on the spectrograms of the signals. 

 

An important design choice has been the selection of the subset of detectors that should be 
considered for the localization task. This choice is crucial as more detector signals pinpoint more 
accurately the source of the perturbation, but it is sometimes impractical to consider all of them as 
some may be defective or may not be present in actual measurements. In order for our model to 
generalize better to previously unseen configurations, an additional input has been given, specifying 
the (x, y) coordinates of the detectors on the core.  

 

Four different subsets of detectors have been chosen as input to the Deep Learning models. These 
include: (i) a signal from one in-core detector, (ii) a signal from 3 in-core detectors, (iii) signals from 
3 in-core detectors plus the 8 ex-core detectors and finally (iv) signals from all available detectors. 

 

Spectrogram creation is a task that involves several hyper-parameters. Due to the small duration of 
the signals representing each perturbation (100 seconds), different random windows of 25 seconds 
have been chosen. Additionally, a Hamming window of 50% overlap and a size of 128 data points 
has been used. The last 25 signal seconds were also kept out, for evaluation purposes. Figure 138 
displays example spectrograms, used to train the models. As the entire power spectrum of the signal 
lies on small frequencies, only the frequencies below 10 Hz have been used for the plots. 
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Figure 138: Example spectrograms. The colorbar outlines the power of a frequency at a specific time 
in logarithmic scale. Yellower colors represent more power of a frequency. This aligns with the fact 
that the neutron noise signals have the majority of their power spectrum in low frequency ranges. 

 

Four different Convolutional Neural Networks architectures have been trained on the different input 
subsets. The proposed architecture is summarized in Figure 139. 

 

 

Figure 139: Convolutional Neural Network Architecture. The input is a 1-channel image, whose width 
equals to the time window used and whose height corresponds to the frequencies. The power of a 

specific frequency at a specific time is expressed in logarithmic scale. 

 

The results of the training and the test phase of each CNN architecture is depicted in Figure 140. In 
all cases, the training loss steadily decreases over time. This implies that the CNNs can successfully 
recognize the location of a perturbation on the training data. However, the aim of these models is to 
generalize well to unseen data. From that perspective, it is shown that the CNN trained with signal 
from only one detector as input fails to generalize well. This result is expected, as information from 
only one position in the grid cannot accurately capture all phenomena. It is also shown that input 
from signals from all detectors yields the best discriminative ability for this specific task. Another 
important result of this analysis is that a CNN architecture manages to generalize well, even though 
its input consists of only a subset of in-core detectors. This latter observation signifies the applicability 
of the proposed method to missing input. 
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Figure 140: Training and evaluation results for the four different subsets of detectors. Epochs 
represent the passes of the training dataset through the Neural Network. As a loss metric, the Mean 

Absolute Error was used, which measures the difference between actual x-y coordinates of 
perturbations and the predictions produced by the network. 

 

Predictions from the best trained model on previously unseen data are shown in Figure 141 below. 
These results underline the robustness of the proposed method on simulated data and indicate that 
Machine Learning algorithms may be used for the accurate localization of a perturbation on a reactor 
core. 
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Figure 141: Localization model predictions. The 4 different subfigures show a top view of the reactor 
core, in which a perturbation is occurring. The positions of both the location of perturbation and its 
prediction are shown in blue and green circles, respectively. The x-axis is measured from 1-15 from 

left to right, and the y-axis from A to P from bottom to top according to Figure 137. 

 

5.5.5 Time series Simulate-3K simulation perturbation classification and localization 

The time domain simulations correspond to the Simulate-3K (Grandi, 2011) simulation data for the 
Swiss 3-Loop pre-Konvoi for cycle 40. The simulated dataset (Dataset8) is composed of 
perturbations originating from both static and non-static locations, therefore introducing both 
classification and localization tasks into the dataset. We present a convolutional, recurrent neural 
network to classify and localize perturbations within a given time frame, i.e. 100 time-steps (1 
second), or 250-time steps (2.5 seconds). This network provides a robust and accurate basis pre-
trained and tested on the simulated Swiss 3-Loop pre-Konvoi to perform inference on the real plant 
readings. 
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Simulate-3K simulation data pre-processing 

To align with previous deliverables and developments, the time series data has been pre-processed 
similarly to previous developments in (Kollias et al. 2019 and Montalvo et al., 2020). Each data 
sample is augmented via a sliding window to first produce more data samples than delivered in 
DataSet8, and secondly to reduce the computational demand. The sliding window is either 100 time-
steps (1 second) or 250 time-steps (2.5 seconds), with a 25 time-step and 50 time-step overlap 
respectively. Moreover, this window is applied across all 36 in-core detectors and 8 ex-core detectors 
producing 160 samples of size (44 x 100), and 60 samples of size (44 x 100) respectively for window 
length, per scenario. The expanded dataset is also split into training, testing and validation sets for 
the training procedure, ensuring that samples with perturbations originating from the same core 
location are not present across sets. Additionally, as with previous deliverables, additive white 
gaussian noise (AWGN) has been added at signal to noise ratio (SNR) 3 and 1 to help ensure 
robustness to noise is promoted throughout the network. Lastly, windowed signals are normalized 
to have zero mean and standard deviation of one, applied feature wise.  

  

Furthermore, to more closely align simulated data to real plant data, and to perform inference on 
such data, defective detectors in the real data samples are also removed from the simulation data 
samples. This ensures that the network learns data inputs that are present in the real data, 
consequently, not to confuse the network at inference time by removing data features. 

 

LSTM-CNN network for time series classification and localization of single perturbations 

Localization of perturbation origin is a non-trivial task in the time-domain, this is due to the necessity 
of embedding spatial understanding into the learning procedure of time-series signals. To promote 
learning of spatial features, CNNs are employed and to understand the temporal nature of the data 
RNNs are utilized, more specifically Long Short-Term Memory (LSTM) cells. The network in Figure 
142, depicts the procedure to first learn temporal features in the data by means of the LSTM, and 
then use CNNs to learn more structural features produced from the output of the learnt temporal 
features. This combination of temporal and structural feature learning allows for both classification 
and localization of perturbation origin. For a more detailed explanation of RNNs and LSTMs, refer to 
the deliverable D3.4 (Kollias et al, 2019).  

  

The LSTM network is constructed of two layers each with 128 units, outputting feature vectors of 
128 dimensions for every 100 or 250 time-steps. These 100 vectors of 128 dimensions are input into 
a four-layer one-dimensional CNN, where each CNN layer is followed by Batch Normalization and 
ReLU activation function. The resulting output of the CNN are 256x5 feature vectors. Global Average 
Pooling (GAP) is applied to the CNN output for dimensionality reduction to allow for linear 
classification and regression. The network output is a two-neuron linear regression layer of the 
cartesian coordinates in the horizontal plane of the perturbation origin (i and j), and a six-neuron, 
sigmoid activated layer for the multi-label, multi-class classification. 
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Figure 142: LSTM-CNN network for the feature extraction of structural and temporal features. The 
time series signal is fed to a two-layer LSTM network of 128 units and then passed to a four-layer 

CNN network. The output is reduced in dimensionality by a GAP layer before being fully connected to 
a six-neuron Sigmoid and 2-neuron output layers. 

 

The network has been trained with Stochastic Gradient Descent (SGD) to minimize the multi-task 
loss in Equation 29 comprised of multi-class binary classification loss (the first term inside the outer 
sum of Equation 29), and L1 / MAE loss in Equation 33. 
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P refers to the number of perturbation types to classify and C refers to the number of cartesian 
coordinates to regress, in this case 2, (i, j). Mean absolute error refers to the difference between two 
continuous variables, in this case the cartesian coordinates of the perturbation origin (i, j). This is 
formally defined in Equation 33. 

 

In addition to this, the learning rate is reduced during training by a factor of 0.1 when validation loss 
plateaus within a threshold of 0.025. This encourages the network to settle into more appropriate 
minima in the learning space, starting with a large learning rate to avoid poor local minima, and 
settling within a minimum once a good one has been found. Furthermore, dropout is employed in 
the LSTM, setting 20% random neurons to zero for each training batch. L1 regularization (weight 
decay) of 0.001 is introduced to penalize the cost function, both of these methods help reduce the 
potential of overfitting in the network, improving generalization to the test set. 

 

Experimental results on Simulate-3K simulated data 

The aforementioned network is trained and evaluated on two differently augmented sets, either 100 
time-steps, or 250 time-steps, details of which are previously stated. The intention of which is to 
analyze the performance of localization given a longer signal and therefore consider if 100 time-
steps (1 second) is satisfactory to enable the appropriate localization of perturbation origin. 

  

Experimental results of the classification task are presented using accuracy and F1-score metrics. It 
should be noted that in the case of this dataset, there is an imbalance of number of samples per 
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class, meaning that accuracy cannot be considered as the most appropriate metric. Therefore, we 
state F1-score and confusion matrices to be more appropriate measures of classification 
performance. The definitions of the evaluation metrics are as followed: 
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+

  (30) 
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Table 13: Results of classification of perturbations and localization of the coordinates of a vibrating 
fuel assembly (i, j), in the time-domain utilizing the proposed LSTM-CNN model. Mean and standard 

deviation of 3 runs are presented. 

Classification and Localization of Single Perturbations in the Time Domain. 

Window Size SNR Value Classification Metrics Regression Metrics 

Acc Error (%) F1-Score MAE MSE 

100 No Noise 0.205±0.015 0.9947±0.000
2 

0.3604±0.018 0.7447±0.094 

100 3 4.041±0.140 0.8689±0.004
8 

1.2836±0.002 3.8943±0.051 

100 1 5.990±0.070 0.8219±0.001
5 

1.4064±0.004 4.3927±0.004 

250 No Noise 0.390±0.045 0.9875±0.001
9 

0.4189±0.012 1.0881±0.037 

250 3 2.825±0.055 0.9160±0.000
3 

1.2403±0.001 3.8570±0.005 

250 1 5.825±1.805 0.8354±0.010
6 

1.3321±0.012 4.1282±0.049 

 

Results of all experiments are given in Table 13. Firstly, it is noticed that increasing signal length 
which is fed into the network does not provide significant performance improvements. It is to be 
expected that the performance will improve given the longer signal, however, it comes as a surprise 
that a larger window size reduces the classification performance by, at best case, ≈0.19%. We 
conjecture that longer signals introduces more variation in signal response, introducing a greater 
challenge to classification. On the other hand, longer signals lengths improve localization 
performance, but only by a small margin, 0.04 MAE at best case, which does not warrant 
performance to computational cost of longer signals. We do not know how perturbations with low 
frequency (well below 1 Hz) will respond to such a change, due to such perturbations not being 
simulated. We therefore suggest this as a potential direction of future work to confirm if the 
aforementioned findings still hold under this new case. 
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The good performance across Dataset8 for the Swiss pre-Konvoi 3-loop provides a strong basis for 
performing inference on real plant data. This work has much room for further investigation and 
exploration, such as blended methodologies to most appropriately leverage simulated data for use 
in making predictions in real plant measurements. We intend to continue work on this subject, 
focusing on domain adaption and transfer learning to achieve the best possible performance when 
testing on real plant data. 

 

5.5.6 Voxel-wise, semantic segmentation for simulated data classification and localisation 
of multiple, simultaneously occurring perturbations 

As alluded in Section 5.4.4 whilst proposing our 3D convolutional, voxel-wise, semantic 
segmentation network for the German pre-Konvoi 4-loop, one model has been developed to 
undertake both the German and Swiss pre-Konvoi reactors. Hence, this section will define the 
changes in dimensionality of reactor mesh, detectors, and outputs to our developed approach. 
Furthermore, we will provide experimental results for the CORE SIM+ simulated Swiss pre-Konvoi 
3-loop MOC 39 for a varying number of simultaneously occurring perturbations, additively combined. 

 

CORE SIM+ simulation data pre-processing 

As with the German pre-Konvoi, our single perturbations have been additively combined, split, and 
manipulated following the same processing pipeline. The change of reactor architecture in-turn 
arises as a change of reactor mesh dimensions. The Swiss pre-KONOVI has the dimensions 
32x32x42, producing 2(n+2) volumes of size 16x16x21, each concatenated channel-wise 
(2(n+2)x16x16x21).  

  

The same number of maximum additive combinations to be experimented are: 15, 30 and 45. 
However, the Swiss reactor contains fewer detectors – 44 opposed to the Germans 56 – as well as 
different locations of the detectors. For all details involving the data pre-processing of the CORE 
SIM+ reactor specific simulations, refer to Section 5.4.4 for the German pre-Konvoi 4-loop, 
substituting the aforementioned Swiss pre-Konvoi parameters. 

 

3D fully-convolutional, semantic segmentation network for classification and localization of 
multiple, simultaneously occurring perturbations 

Similarly to data pre-processing, the model proposed in Section 5.4.4 is identical in structure for both 
German and Swiss reactors. We therefore state that only the volume input, output and activation 
dimensionality are different between the reactors. Additionally, the training procedure and details of 
which remain unchanged, for full model details substitute German reactor volumetric 
dimensionalities for Swiss in Section 5.4.4. 

 

Experimental results on CORE SIM+ simulated data 

Table 14 shows the experimental results for different numbers of combined perturbations, x = {15, 
30, 45}, where number of combined single perturbations are in the range [1, x]. The training 
procedure remains the same as for the German reactor case, employing Stochastic Gradient 
Descent (SGD) optimization procedure for back propagation, with a starting learning rate of 0.01, 
decaying by a factor of 0.1 when the validation loss plateaus for 10 epochs within a threshold of 
0.025. A batch size of 64 was used, gamma of 2 for Focal Loss focus parameter. Moreover, the 
results of experiments for retrieval of vibration parameter 𝛫, and 𝛳 can be found in Table 15 and 
Table 16 respectively.  
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Table 14: Swiss pre-Konvoi 3-loop simulated, per perturbation classification voxel accuracies for 
voxel-wise semantic segmentation of the unseen test set. 

Per Class Voxel Prediction Accuracies * 

No. 

Comb 

No. 

Det 

Accuracy (%) 

BG AVS CANT SF SS CSF CSS CR TP BV 

15 56 99.43 87.64 89.47 82.14 82.93 89.66 86.11 93.05 91.16 100.00 

30 56 99.68 84.45 83.72 92.86 86.54 86.49 81.63 87.85 90.48 100.00 

45 56 99.11 80.95 79.41 82.50 90.79 85.71 90.14 89.86 91.81 100.00 

* Note: AVS = Absorber of Variable Strength, CANT = Fuel Assembly Vibration Cantilevered, SF = Fuel Assembly Vibration Supported 

First, SS = Fuel Assembly Vibration Supported Second, CSF = Fuel Assembly Vibration Cantilevered Supported First, CSS = Fuel 
Assembly Vibration Cantilevered Supported Second, CR = Control Rod Vibration, TP = Travelling Perturbation, BV = Core Barrel Vibration, 
BG = Background / No Class 

Table 15: Swiss pre-Konvoi 3-loop simulated, per perturbation vibration parameter, kappa, 
classification accuracies for the unseen test set. 

Per Class Voxel Prediction Accuracies for Kappa Vibration Parameter 

No.  

Comb 

No.  

Det 

Accuracy (%) 

BG 𝛫=0.25 𝛫=0.5 𝛫=0.75 𝛫=1.0 

15 56 96.51 65.33 22.18 68.86 42.48 

30 56 95.17 69.93 20.07 60.51 68.35 

45 56 94.50 54.05 26.30 64.49 53.87 

  

Table 16: Swiss pre-Konvoi 3-loop simulated, per perturbation vibration parameter, theta, 
classification accuracies for the unseen test set. 

Per Class Voxel Prediction Accuracies for Theta Vibration Parameter 

No.  

Comb 

No.  

Det 

Accuracy (%) 

BG 𝛳=¼π 𝛳=½π 𝛳=¾π 𝛳=π 

15 56 91.28 73.26 55.11 57.85 41.26 

30 56 88.57 69.70 17.71 64.34 28.71 

45 56 87.46 56.82 72.92 65.64 52.81 

 

Accuracy per class is the performance metric of choice, it is the number of correctly classified voxels 
belonging to that class. In addition to per class accuracy metric, normalized confusion matrices are 
provided in Figure 143 for the best performing model. Note that these models have been ran only 
once and the best results presented above. Other methodologies have results presented as the 
mean of multiple runs. Given the computation time to process this data, such methodologies were 
found impractical in the present time frame. 

 

The experimental results presented in Table 14 show similar findings to that found for the German 
reactor in Section 5.4.4. We observe that our model correctly classifies between perturbation types 
with high accuracy, whilst false negatives make up the majority of lost performance. We believe 
further time spent on tuning and training will improve the performance of false negatives. On the 
other hand, the issue of false negatives is something that has continually impacted performance, 
with large number of perturbations masking weaker signals causing the miss classification. However, 
it is observed from the confusion matrices in Figure 143 that the per class performance is in fact 
good showing good semantic understanding. 
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Figure 143: Normalized confusion matrix for each run of differing max combinations for per class per 
voxel classification accuracy for swiss pre-Konvoi simulations. This ground truth against predicted 

voxels per classification. Left: max number of combinations = 15. Middle: max number of 
combinations = 30. Right: max number of combinations = 45. 

 

 

Figure 144: Visualizations of predictions and ground truth perturbation classifications and 
localizations in the core volume for x = 15 and x = 30. The prediction and ground truth of 7 absorber 
of variable strength perturbations and 1 travelling perturbation (top two plots). The prediction and 

ground truth of 1 absorber of variable strength perturbation, one control rod vibration and 1 
travelling perturbation (bottom two plots). 

 

As with the results of the German pre-KONOVI simulations, the Swiss pre-KONOVI exhibits the 
same degradation of sporadic perturbation performance as the number of simultaneous 
perturbations increases. It is observed that the same effect of absorber of variable strength 
perturbations performance decreases whilst perturbations originating from more uniformed origins 
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do not see as much of a decrease. As we conjecture in Section 5.4.4 we attribute this to the greater 
variation of origin of absorber of variable strength. Additionally, the slightly overall lower performance 
of the Swiss pre-Konvoi simulations can be attributed to the larger mesh dimensions, meaning more 
voxels are present and adding more difficulty to the localization procedure. Although, untested we 
can make the assumption that a reduced mesh size or relaxed localization requirements will reduce 
the variation in source localization, consequently simplifying the localization task. We plan to test 
coarser mesh dimensions in the future, however with some hesitation, as the goal is still set at 
accurately and confidently making predictions at the core mesh dimensions. Additionally, as we 
introduce a coarser mesh, we also introduce the potential of having multiple perturbations occurring 
in the same voxel, consequently outputting multiple prediction for the same voxel, not possible for 
this current architecture. 

 

Finally, we observe the same behavior as in Section 5.4.4 for the retrieval of vibration parameters. 
However, we do observe that for many combined perturbations the performance does marginally 
increase over both the smaller values. Further investigations are needed to understand this behavior 
and we conclude that more work is necessary for the accurate prediction of vibration perturbation 
parameters. Furthermore, we acknowledge, as we did in Section 5.4.4, that we aim to re-evaluate 
our approach to vibration parameter prediction and potentially adjust to obtain better performance. 
Nevertheless, we will continue work on this aspect as well as all other of the classification procedure 
to improve our results and provide a more appropriate base for inference on real plant 
measurements. 

 

5.5.7 Self-supervised domain adaptation for real plant data training and inference 

The self-supervised domain adaptation model proposed in Section 5.4.5 to promote alignment 
across domains from simulated (source) to real plant measurements (target) remains largely 
unchanged across reactors. As with the prior sections for the Swiss pre-KONOVI 3-loop, we 
elaborate on changes in mesh dimensionality, detectors and outputs to the model that inherently 
vary across different reactor types. Moreover, we provide predictions made on the processed data 
of the Swiss pre-Konvoi 3-loop MOC 39, using our model trained in a semi-supervised manner. 

 

Plant measurement pre-processing 

The data pre-processing pipeline remains unchanged from both Section 5.4.4 and Section 5.4.5 for 
the simulated and real plant measurements respectively, with omission to core dimensionality and 
detectors available. Input into the model is a 2(n+2)x16x16x21 volumes embedded with 39 detectors. 
This is both the case for simulated and real data given that 5 of the 44 detectors available are 
defective, therefore we exclude them from the input. The defective detectors are: G02-6, C08-4, J06-
2, N08-2, and N08-4. For details regarding the data pre-processing, please refer to section for 
simulated data and Section 5.4.5 for real plant measurements, substituting the German pre-Konvoi 
4-loop dimensions, detectors and parameters for the Swiss pre-Konvoi 3-loop values. 

 

Unsupervised domain adaptation through self-supervision for multiple, simultaneously 
occurring perturbation classification and localization 

The self-supervised, domain adaptation model of the 3D convolutional semantic segmentation 
network proposed in Section 5.4.4 is implemented for use in both German and Swiss pre-Konvoi 
settings. We perform the same training procedure, with the pre-processed source and target data 
adjusted for Swiss reactor dimensions, etc. We perform the same auxiliary tasks aiming to align the 
two domains, then performing inference on the trained model with selected frequencies. The 
prediction masks for classification and vibration parameters 𝛫, and 𝛳 for plant measurements are 
visually and numerically shown in the following sub-section, along with comparisons made to signal 
processing analysis. 
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Anomaly prediction and analysis of plant measurements 

The results of inference on real plant measurements for the Swiss pre-Konvoi 3-loop for middle of 

cycle 39 are discussed here. As with Section 5.4.5, the model was trained on simulated data and 

domain adaption methodology applied to reduce covariance shift. Here comparisons are made to 

the predictions made by our trained and adapted model from the signal analysis conclusions made 

previously in this deliverable and in the deliverable D3.5. It is also necessary to note that these 

results are a prediction of a network with no ground truth value in the adaptation procedure, therefore 

cannot be considered as entirely accurate without further analysis and validation. Finally, as with 

Section 5.4.5, we only consider the prediction of anomaly type/classification and source location of 

the anomaly, we do not predict the vibration parameters or amplitudes in this case. Moreover, we do 

not predict the control rod vibrations insertion level, instead we trained the model to predict a control 

rod vibration, assuming that it occurs in that assembly throughout the whole height of the core. 

Although extremely unrealistic in the present analysis, future analyses will consider actual control 

rod locations. Furthermore, as with Section 5.4.5, we display such anomalies with axial views (top 

down) of the assemblies for clearer interpretation, and all figures are defined with a voxel-wise 

Cartesian coordinate system (i, j , k), and grey pixels representing the area outside of the pressure 

vessel. 

 

First, for the lower frequencies, below 7 Hz, we observe very distinct blocks of axial travelling 

perturbations shown by purple voxels in Figure 145. These distinct areas of travelling perturbations 

are less pronounced in later frequencies. This observation aligns with the signal analysis in Section 

4.2 and the deliverable D3.5 section 2.3.3 of the presence of such phenomena, specifically transport 

phenomena within this frequency range. Additionally, we notice four distinct areas of travelling 

perturbations rather than the three inlets of the swiss reactor travelling vertically from bottom (k=0) 

to top (k=20) in the core volume. Although a simple observation, this provides some intuition that our 

model may be misclassifying an additional anomaly. On the other hand, the four areas of travelling 

perturbations could quite possibly be attributed to the four-fold symmetry of the core. Further analysis 

is required to make such conclusions, however, we conjecture that this is potentially a fuel assembly 

vibration, as it is consistently classified as such. Furthermore, as such vibrations do not occur at 

these frequency, we hypothesize that this vibration could be the result of a transport phenomenon. 

As such, the vibration of assemblies could be the result of oscillations of the coolant, which is 

observed here, resulting in the fuel assembly being excited at lower than natural frequencies.  

 

In addition to the previous observation, we observe a cluster of fuel assembly vibrations present 

throughout the lower frequency range 2 Hz – 9 Hz which reside centered at radial coordinates (5,7). 

Furthermore, we notice as with the German pre-Konvoi that large quantities of control rod vibrations 

are present in the predictions, potentially being the result of underperforming feature extraction of 

control rod vibrations. Conversely, the control rod predictions are somewhat consistent with the 

locations of the control rods, similarly to that seen with the German pre-KONVOI. The control rod 

predictions seen in the following figures depict this, with the predictions aligning with the reactor 

control rod layout with some variance in its prediction of one control rod. We must note that for these 

reactor measurement predictions our model predicts a large quantity of control rods which inspires 

further investigation. As with Section 5.4.5, we attribute these to misclassification in the lower 

frequency ranges, and potential poor alignment from the domain adaptation techniques for this 

specific anomaly. More investigations will be undertaken to support our claims in the future. 
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Figure 145: Prediction masks for the Swiss pre-Konvoi 3-loop MOC 39. Frequencies 0.1 Hz, 0.5 Hz, 
0.7 Hz, 1 Hz, 5 Hz, ordered from top to bottom row wise. Axial (top down) views of all assembly, 

control rod, and travelling perturbations are shown (column 2), along with figures separating control 
rod (column 3) from fuel assembly and travelling perturbations (column 4). Grey pixels represent 
outside of the pressure vessel and the black crosses represent the position of the control rods. 

 

At the middle of our prediction frequency range, we see clear and large cluster of fuel assembly 

vibrations of mode second simply supported at 7 Hz. This large block is shown in Figure 146 where 

previously largely present travelling perturbations are no longer observed. This large block of 

vibrations could be the cause of the axial level phase behavior reported in the deliverable D3.5 

section 2.3.3.2. However, further validation and analysis must be undertaken before conclusions can 

be made. 
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Figure 146: Prediction masks for the Swiss pre-Konvoi 3-loop MOC 39. Frequency: 7 Hz. Purple 
voxels represent travelling perturbations and light green represent control rod vibrations, dark green 

absorber of variable strength and magenta fuel assembly vibration. Axial (top down) views of all 
assembly, control rod, and travelling perturbations are shown (column 2), along with figures 

separating control rod (column 3) from fuel assembly and travelling perturbations (column 4). Grey 
pixels represent outside of the pressure vessel and the black crosses represent the position of the 

control rods. 

 

Finally, at the higher frequencies (10 – 25 Hz), we observe very little in regard to signification output, 

instead we see consistently scattered absorber of variable strength clusters in vertically structure 

columns. We do not have any intuition if these anomalies are supported by signal analysis. However, 

the lack of fuel assembly vibrations at these higher frequencies show our model has not made any 

misclassification of such no-existent anomalies within these ranges. The prediction mask of 12 Hz 

is shown below in Figure 147. 

 

 

Figure 147: Prediction masks for the Swiss pre-Konvoi 3-loop MOC 39. Frequency: 12 Hz. Purple 
voxels represent travelling perturbations and light green represent control rod vibrations, dark green 

absorber of variable strength. Axial (top down) views of all assembly, control rod, and travelling 
perturbations are shown left to right shown (column 2), along with figures separating control rod 

(column 3) from fuel assembly and travelling perturbations (column 4). Grey pixels represent outside 
of the pressure vessel and the black crosses represent the position of the control rods. 

 

We conclude that, similarly to the German pre-Konvoi predictions, phenomena identified in signal 

analysis approaches correspond to our predictions. Yet the prediction masks for the Swiss pre-

Konvoi are far more chaotic and less clear in terms of anomaly cluster structure. We still observe 

vast numbers of control rod vibrations which we attribute to misclassification through poor domain 

alignment, and potentially a poorly learnt feature extractor for these classes. Although there are still 

doubts in terms of validation of our approach, this is a vital step in continuing research and 

implementation of machine learning. As with Section 5.4.5, it is essential to gain some validation of 

these predictions and continue work to fully understand and adjust our methodologies to combat 

potential misclassification and localization of anomalies. 
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5.6 Hungarian VVER-440 reactor 

Data provided by MTA-EK include three measurements of fuel cycle 32 of Unit 2 of the Paks VVER 
440/213 reactor during 3 different time periods (beginning, middle and end of cycle, respectively). 
For the purposes of analysis and machine learning adaptation, the provided data in the time domain 
have been firstly processed in a similar way to the pre-Konvoi 3-loop and 4-loop plant 
measurements. As the measurements were already normalized, the only subsequent processing 
was the detrending of the signals by subtracting their mean.  

 

5.6.1 Feature Extraction 

The Hungarian VVER-440 reactor has quite many differences from the 3-loop and 4-loop reactors 
that have been examined previously, regarding feature analysis and extraction. One of the most 
important changes that were observed were the dominant frequencies of the signals and the overall 
distribution of the spectrum. Pre-Konvoi 3-loop and 4-loop reactors usually had multiple low 
frequencies and one or two single higher ones. This is not the case for the Hungarian reactor. Figure 
148 below displays the dominant frequencies of some example in-core sensors. For the Energy and 

Energy of Differences, the unit of measurement is 𝑉2. For all the features, except Cepstrum, the x-
axis is time windows. One time window is 10 seconds or 1000 time steps. The unit of Cepstrum is 
Volt and its x-axis is seconds. 
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Figure 148: Dominant frequencies of 15-32-4, 04-43-4, 04-43-3, 22-36-6, 17-58-4 & 22-39-7 in-core 
sensors. 

 

Some observations are presented below: 

● The most dominant frequency still lies under 5 Hz. 
● It is clear that a continuous spectrum of frequencies is present, in contrast with the previous 

reactors, where the most dominant frequencies were specific and discrete. 

 

Figure 149 below displays some basic features extracted from in-core sensor 04-37-4. 
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Figure 149: In-core sensor 04-37-4. 

 

Apart from the in-core sensors, there also exist three other types of sensors in the VVER-440 reactor: 
(i) on the leg (Figure 150), (ii) on the cable (Figure 151) and (iii) at the exit (Figure 152). Leg and exit 
sensors are thermocouples, while the sensors on the cable measure the signal (Volts).  
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Figure 150: leg-5 sensor. 
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Figure 151: 22-39-cable sensor. 
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Figure 152: exit-20 sensor. 
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5.6.2 Clustering 

The setup for the clustering of the signals of VVER-440 reactor is similar to the previous ones. 

 

k-Means did not separate the signals in minority and majority clusters, meaning that there is not a 
large difference in the number of samples between the two clusters. This probably shows that there 
are not quite distinguishable anomaly cases and more or less the data can be divided into two equal 
clusters. Figure 153 below displays the cluster with the fewer signals. 

 

Figure 153: k-Means clustering on VVER-440 reactor signals. 

 

Mean-Shift, DBSCAN and One-class SVM did not find any irregularities in the data and did not 
produce a minority cluster. Considering the results of the k-Means as well, it is rather safe to assume 
that there are not probably any sensor that recorded any anomalous behavior.  

 

Isolation Forest produced the following results shown in Figure 154, that come in agreement with k-
Means clustering. As we can observe during BOC and EOC more outliers are detected. The sensors 
that have exhibited the most out of the ordinary behavior are 8-57-3, 11-32-3, 22-39-6, 7-48-4 and 
4-43-3. 
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Figure 154: Isolation forest on VVER-440 reactor signals. 

 

Figure 155 below shows the position of the aforementioned sensors on the grid. 
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Figure 155: VVER-400 sensors exhibiting out of the ordinary behavior (in red circles). 

 

5.6.3 FEMFFUSION simulated single perturbation classification and localisation.  

The VVER 440 reactor has been modelled using the FEMFFUSION (Vidal-Ferràndiz et al., 2020a, 
2020b) simulation tools, producing simulated neutron flux responses for 252 detectors for two 
different scenarios of induced perturbation at varying origins. These simulations, like those produced 
by CORE SIM+, are in the frequency domain. This poses the question of how our previously 
developed models in the deliverable D3.4 (Kollias, et al. 2019) perform in the same domain of data, 
i.e. frequency domain, for a different reactor architecture and configuration. Therefore, we test the 
model presented in (Demazière et al., 2020) with the simulations produced by FEMFFUSION for the 
hexagonal VVER440 reactor for perturbation types: Absorber of Variable Strength and Travelling 
Perturbation. 

 

FEMFFUSION simulation data pre-processing 

The primary concern of pre-processing VVER-440 reactor simulations is the hexagonal structure of 
the reactor, and henceforth the hexagonal spatiality in which we aim to localize perturbations. 
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Standard CNNs – neural networks that we utilize in our approach for frequency domain feature 
extraction – require data to be in a known grid-like topology, specifically a square lattice 
arrangement. Although work has been proposed to allow hexagonal lattice structures, these are not 
commonplace in ML, rather it is more typical to convert the hexagonal grid to square grid. 
Additionally, given that we aim to compare the results of the VVER-440 to the generic pre-Konvoi 
from the deliverable D3.4, it is necessary to utilize the same network. Therefore, we convert the 
hexagonal grid to a square grid via offsetting every other row to form a 25x25x48 volume of the 
VVER-440 core. This conversion is visually depicted in Figure 156. 

 

 

Figure 156: Visual depiction of the shifted column approach to the conversion of a hexagonal lattice 
to square lattice for the implementation into proposed ML models. 

Pre-processing of the VVER-440 simulated data samples has been handled in a similar manner to 
those proposed in the deliverable D3.4 (Kollias, et al. 2019). The dataset is first split into train, 
validation, and test sets (70%,15%,15% respectively), ensuring that for each set the perturbation 
origin per perturbation type does not appear across sets. Each individual data sample APSD is 
computed from the induced neutron flux detector readings, and the APSD of each detector is placed 
within a 25x25x48 volume of zeros in its corresponding location. Note its hexagonal location is 
transformed to the square lattice VVER440 core volume. This procedure embeds spatial 
understanding into the volume. The volume is decomposed into amplitude and phase components 
of APSD detector values, as complex values are not supported in ML frameworks. Thus, producing 
a 2x25x25x48 volume to be fed into the model. Finally, the volume is normalized to have zero mean 
and a standard deviation of one. 

 

3D densely connected, fully-convolutional neural network for single perturbation 
classification and localization 

As aforementioned, it is of interest to evaluate the performance of the developed models in different 
reactor settings, e.g. architecture, configuration. This case examines the performance given a 
change in reactor architecture. The ML model to be trained and evaluated is the model presented in 
(Demazière et al., 2020) and the deliverable D3.4 (Kollias, et al. 2019) for a close comparison with 
the CORE SIM+ simulated data for a generic PWR.  

  

The network is fully described in the deliverable D3.4, however, given different reactor architectures 
and difference in perturbation scenarios, the network has been adapted. Firstly, the 3D CNN 
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DenseNet (Gao et al. 2017) input and GAP dimensionality have been modified to accommodate 
different input dimensions from 2x32x32x32 to 2x25x25x48. Secondly, the output layer is changed 
from SoftMax categorical cross entropy and replaced with a single sigmoid neuron. The second 
change is more fundamental to the performance comparisons, where FEMFFUSION simulation 
provides two perturbation scenarios (binary classification), while CORE SIM+ provides five 
scenarios. This results in the classification output of the network being a single neuron for binary 
classification, and therefore trained to minimize the binary cross entropy loss. 

 

 

Figure 157: 3D fully-convolutional neural network for the classification and localization of single 
perturbations in the frequency domain, proposed in (Demazière et al., 2020). 

 

As with (Demazière et al., 2020), the network was trained with the Adam optimizer to minimize the 
multi-task loss in Equation 29. Similarly to section 5.5.5, this loss is comprised of the L1 loss Equation 
33 for regression of the i,j,k coordinates of perturbation origin, and a binary cross entropy loss 
Equation 29 where =1. For details regarding training procedures and model architectures, refer to 
D3.4 (Kollias, et al. 2019) and (Demazière et al., 2020). 

 

Experimental results on FEMFFUSION simulated data 

Experiments have been conducted to classify perturbation type and regress its source coordinates 
under different values of additive white gaussian noise: No Noise, SNR=3, SNR=1. The results of 
these experiments are given in Table 17 and confusion matrix of each experiment in Figure 158. 
Each model is trained three times per experiment, and the mean and standard deviation of the three 
runs presented below. 

Table 17: Results of VVER-440 classification of perturbations and localization of the coordinates of 
classified perturbations, simulated in FEMFFUSION utilizing the 3D fully-convolutional model. Mean 

and standard deviation of 3 runs are presented. 

Binary Classification and Localization of Single Perturbations in VVER440 Simulations 

SNR Classification Metrics Regression Metrics 

Acc Error (%) F1-Score MAE MSE 

No Noise 0.28±0.022 0.996±0.002 0.796±0.006 1.690±0.017 

3 0.75±0.086 0.992±0.009 1.760±0.013 7.979±0.078 

1 1.79±0.154 0.976±0.012 1.854±0.021 9.021±0.083 

 

Results show that for binary classification of classes absorber of variable strength (AVS) and 
travelling perturbation (TP) in the VVER440 simulations, performance is excellent. For all 
experiments, even with the addition of noise at SNR=1 the network was able to determine between 
the two at near perfect accuracy. As for localization performance, the network performs worse than 
the generic PWR demonstrated in the deliverable D3.4 by some considerable margin. Although at 
first this may appear to be negative, we find this is an expected drop in performance. Moreover, even 
though this is worse performance than in the deliverable D3.4, a MAE of approximately 0.8 is an 
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excellent result, localizing these perturbations to within one assembly on average over the test 
dataset. 

 

 

Figure 158: Confusion matrices of prediction of absorber of variable strength or travelling 
perturbation under different SNR of AWGN. No noise (left); SNR=3 (middle); SNR=1 (right). 

Furthermore, we conjecture that the worse performance when making comparisons to the 
deliverable D3.4 is primarily due to the dataset size. This is in fact a large contributing factor to the 
aforementioned training procedure, where far fewer examples are presented in the VVER440 
simulations in comparison to the generic PWR simulations provided by CORE SIM+. Simply put, the 
network has fewer examples to learn from and with less variation in signal response, resulting in less 
information. We conclude this is also the reasoning behind the drop of regression performance with 
the addition of AWGN, as limiting the variety in the training data results in fewer robust features 
learnt. Furthermore, the conversion procedure from a hexagonal lattice to a square lattice could be 
an additional cause for greater localization error, where spatial understanding may be misinterpreted 
by the network. This may require more specialized methods to ensure hexagonal spatial 
understanding is learnt or maintained in the future. 

 

5.7 Czech VVER-1000 reactor 

Data provided by UJV included measurements of 4 cycles from the Temelin Power Plant. These 
measurements have been taken between cycles 9-12. Unlike the reactors discussed previously, it is 
known that a problem occurred at the end of cycle 12. The problem of IRI (Incompatible Rod 
Insertion), as this operational failure is called, constitutes a good evaluation of the robustness of the 
proposed tools and techniques. 

 

5.7.1 Feature Extraction 

The measurements of this reactor pertain to three types of sensors: (i) in-core (Figure 159), (ii) ex-
core (Figure 160) and (iii) accelerometers (Figure 161). For the Energy and Energy of Differences 

the unit of measurement is 𝑉2. For all the features, except Cepstrum, the x-axis is time windows. 
One time window is 10 seconds or 10000 time steps. The unit of Cepstrum is Volt and its x-axis is 
seconds. 

 

 



 D4.4 Results of the application and demonstration calculations 

GA n°754316 Page 179 of 192 

 

Figure 159: In-core sensor N277. 
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Figure 160: ex-core sensor X027. 
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Figure 161: accelerometer sensor A513. 

 

 

It is known that during cycle U1C12 an issue occurred. Therefore, it is interesting to compare the 
dominant frequencies from different sensors between the previous cycles and cycle 12. The left 
column of Figure 162 depicts the energy of the captured signals of three in-core sensors during cycle 
10 and the right column of Figure 163 depicts the energy of the same sensors during cycle 12. 
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Figure 162: Energies of in-core sensors N157, Ν161 & N371 during cycle 10 (left column) and cycle 12 
(right column). 
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Figure 163: Energies of in-core sensors N471 & N485 during cycle 10 (left column) and cycle 12 (right 
column). 

 

Some observations are summarized below: 

● It is clear that the energy per frequency has increased greatly during cycle 12. 
● At some cases, especially sensor N485, more dominant frequencies seem to have emerged. 
● Other sensors, like N157 and N471, have fewer dominant frequencies. 

 

5.7.2 Clustering 

Since simulated data for this type of reactor were only recently generated, we proceed with the 
clustering approaches discussed in Section 5.3. 

 

k-Means shows an abundance of sensors that display signs of anomaly – see Figure 164. 
Specifically, in cycle U1C09, seven sensors have been singled out, with N027 and N367 being the 
ones with the higher proportions. It is also clear that the following cycles show a continuous increase 
of anomalous sensors. In cycle U1C12, there is the biggest peak of the number of sensors that 
exhibit an anomaly. Some sensors, like N623, N531, N191, were also found in the previous cycles, 
but others like N481, N521, N411 started exhibiting outlier signals in the last cycle. 
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Figure 164: k-Means clustering on VVER-1000 reactor signals. 

 

Mean Shift shows less sensors with outlier behavior overall, but still the majority is located in cycle 
U1C12 – see Figure 165. The main “minority cluster” sensors are N623, N371, N191, N531, N027. 
Their proportions seem to have decreased compared to the K-Means ones. 
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Figure 165: Mean-shift clustering on VVER-1000 reactor signals. 

 

In the first two cycles, DBSCAN results are in compliance with the other clustering algorithms, 
regarding sensors N027, N371 and N623 – see Figure 166. It also supports the observation that 
cycle U1C12 has by far the most cases that exceed the other 3 cycles. 
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Figure 166: DBSCAN clustering on VVER-1000 reactor signals. 

 

One-Class SVM displays a more polarizing view than the other clustering algorithms – see Figure 
167. It reveals that the first three cycles only have a couple of sensors that exhibit an abnormal 
behavior, while in cycle U1C12 almost the same number of sensors have been labelled as 
anomalous cases as the rest of the algorithms. It also seems that the sensors found were the same 
as the ones in the previous cases. 
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Figure 167: One-class SVM on VVER-1000 reactor signals. 

 

The Isolation Forest exhibited a different result – see Figure 168. Although the number of sensors in 
the high minority cluster is larger in cycle U1C12, their respective proportions are not as high as 
depicted in the other clustering attempts. Nonetheless, the same groups of sensors again appear to 
exhibit outliers, like N623, N627, N371, N027. 
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Figure 168: Isolation Forest on VVER-1000 reactor signals. 

 

The overall analysis showed that, in all examined cycles, sensors N027, N367, N623, N627, N371, 
N531, N191 detect signals that exhibit out of ordinary behavior. Additionally, every algorithm 
suggested that there was an increase in anomaly cases during the last cycle, U1C12, which does 
agree with the fact that a known problem occurred during that cycle. Figure 169 below shows the 
position of the aforementioned sensors on the grid. 
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Figure 169: VVER-1000 sensors exhibiting out of the ordinary behavior (in red cycles). 
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6 Conclusions 

This report provided a detailed analysis on the application of the tools developed, both within the 
framework of the CORTEX project and outside of it, for reactor noise analysis, advanced signal 
processing and machine learning methodologies on actual plant data, yielding interesting results. 
More specifically, the studied fluid-structure interaction simulations with the GRS mechanical model, 
under generic excitation scenarios revealed, among other things, that core-wide oscillations are 
unlikely to have a local source or that motions of fuel assemblies are transferred to the core barrel 
only weakly and only if there is a non-zero net reaction force.  
 
Additionally, the coupled simulations of a reduced order mechanical model and the reactor core code 
DYN3D provided plausible results. It was demonstrated that under the assumption that the fluidic 
near-field coupling is very weak and that the driving force of the mechanical oscillations is mainly a 
stochastic force on the core barrel and RPV, an out-of-phase behavior of neutron noise signals in 
opposite core halves could be observed. This shows that the loading pattern of a core could be a 
factor in the noise characteristics due to different mechanical properties of the fuel assemblies. 
 
The application of the signal processing techniques on both plant measurements and simulated data 
confirmed previous findings, like the linear phase between in-core detectors of the same string, the 
high response amplitude at low frequencies (below 1 Hz), a characteristic that seems to be related 
to the thermal-hydraulic oscillations produced in the core. In addition, the SSA methodology allowed 
us to explore the time domain in order to extract the trend and the oscillation part of the signals. After 
revealing the different spectral components of the signal, we were able to assess the value of the 
frequencies at an advanced resolution.  
 
Finally, the application of machine learning-based techniques helped both in anomaly classification 
and the localization of the perturbations. Using a variety of unsupervised learning algorithms, 
detector signals have been grouped to two classes, the majority and the minority one, with the latter 
containing those signals whose characteristics appeared to be extraordinary. It was further 
demonstrated that certain signals have been classified by the majority of the examined techniques 
as not normal, an indication of their suitability for the given task. Lastly, the different deep learning 
architectures for perturbation localization achieved very good results on the simulated data and at 
the same time they reveal new insights, like strong indications of fuel assembly oscillations at 
frequencies different from their natural frequencies, on the actual plant measurements. 
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