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Abbreviations

APSD Auto-Power Spectral Density
AVS Absorber of Variable Strength
AWGN Additive White Gaussian Noise
BOC Beginning Of Cycle

CB Core Batrrel

CNN Convolutional Neural Network
CPSD Cross-Power Spectral Density
CRV Control Rod Vibration

DA Domain Adaptation

EFPD Equivalent Full Power Days
EOC End Of Cycle

FA Fuel Assembly

FAV Fuel Assembly Vibration

FFT Fast Fourier Transform

FSI Fluid-Structure Interaction
GAP Global Average Pooling

HHT Hilbert Huang Transform

InD In reactor middle Detectors
Irb In Iri vicinity Detectors

IRI Incomplete Rod Insertion
JTFS Joint Time Frequency Spectrum
KWU Kraftwerk Union

LSTM Long Short-Term Memory
MAE Mean Absolute Error

ML Machine Learning

MOC Middle of cycle

NRMS Normalized Root Mean Square
PeD Peripheral Detectors

PSD Power Spectral Density

RPV Reactor Pressure Vessel

S3K SIMULATE-3K

SDOF Single Degree of Freedom
SNR Signal to Noise Ratio

SSA Singular Spectrum Analysis
SPND Self-Powered Neutron Detector
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SvD Single Value Decomposition
SVM Support Vector Machines
SSA Singular Spectrum Analysis
TH Thermal-Hydraulic
TP Travelling Perturbation
Summary

This report describes the results of the application of the newly developed tools for reactor noise
analysis, advanced signal processing and machine learning methodologies to actual plant data.
More specifically, the modeling tools developed in WP1 are used to simulate and analyze real plant
measurements from the pre-Konvoi 3-loop NPP at Gésgen, a German pre-Konvoi 4-loop reactor, a
Hungarian VVER-440 reactor and a Czech VVER-1000 reactor. Subsequently, the techniques
developed in WP3 are used to identify the root causes of neutron flux fluctuations in the actual plant
data for the reactors presented above. The results are compared with the simulation results
corresponding to the selected power plants, based on the hypotheses developed for reactor noise
analysis.
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1 Introduction

The Horizon 2020 EU project CORTEX aims at developing techniques that can be used to detect
and characterize operational problems in nuclear reactor cores, before those problems have any
inadvertent effect on plant safety and availability. This is primarily achieved by recording the inherent
fluctuations in neutron flux, using in-core and ex-core instrumentation. Based on the aforementioned
recorded signals, the main objective is to be able to differentiate the anomalies, depending on their
type, location and characteristics, thereby obtaining a deepened understanding of the physical
processes involved.

In this deliverable, actual plant measurements, originating from four different reactors, are going to
be used, in order to demonstrate the applicability, as well as the usefulness of the developed tools
at the previous stages of the project, especially those based on the inversion of the reactor transfer
function complemented by advanced signal processing techniques. Emphasis will be placed on the
detection of abnormal fluctuations, on the understanding of their origin, and on the classification of
the anomalies according to their safety impact.

In Section 2 of the current deliverable, the various modeling software (CORE SIM+, SIMULATE-3K,
FEMFFUSION), either developed within the CORTEX project or not, are briefly introduced. Then the
four reactors are described (German pre-Konvoi 4-loop reactor, Swiss pre-Konvoi 3-loop reactor,
Hungarian VVER-440 reactor, Czech VVER-1000 reactor), together with the corresponding
scenarios of anomalies that were investigated.

In Section 3, fluid-structure interactions simulations are analyzed, starting with the simulations with
the GRS mechanical model, under generic excitation scenarios. Then, noise simulations with an
upgraded version of the system code DYN3D, which includes the ROM for mechanical vibrations of
reactor core internals, for full core analysis of the same pre-Konvoi 4-loop reactor are presented.

In Section 4, the actual plant measurements are being processed, using standard and advanced
signal processing techniques. These range from the Fourier analysis and the computation of the
Auto Power Spectral Densities, to the Hilbert-Huang Transform and the Joint Time Frequency and
Singular Spectra Analysis.

In Section 5, the machine learning-based classification and localization techniques are outlined.
These include the voxel-wise, semantic segmentation for simulated data classification and
localization of multiple, simultaneously occurring perturbations, along with convolutional, recurrent
neural network architectures for perturbation classification and localization. Finally, this report
concludes in Section 6, where some general observations and remarks are being made
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2 Neutron noise simulations

In this Section, the simulations of the neutron noise induced by postulated noise sources in the
reactors considered in Task 4.2 are presented. First, the various modelling software, some of them
developed within the CORTEX project, are briefly introduced. Thereafter, the various reactors are
described, together with the corresponding scenarios of anomalies that were investigated.

2.1 Modelling tools
2.1.1 CORE SIM+

CORE SIM+ is a frequency-domain modelling tool developed at CHALMERS as part of the CORTEX
project (Mylonakis et al., 2020). This tool estimates the effect of macroscopic cross-section stationary
perturbations onto the neutron flux using the two-group diffusion approximation and linear theory.
One group of delayed neutrons is considered. The spatial discretization of the balance equations is
based on finite differences, assuming Cartesian geometry. Depending on the problem of interest,
different numerical methods and non-uniform computational meshes can be selected for effective
numerical performances and accuracy. The simulator can generate neutron noise databases for
nuclear power reactors via the Green’s function method in a fully automated manner. These
databases can be useful to study the neutron noise behavior in a reactor and to train machine
learning algorithms for core monitoring and diagnostics.

2.1.2 SIMULATE-3K

SIMULATE-3K (S3K) is a time-domain commercial core simulator developed by Studsvik
Scandpower (Grandi, 2011). The calculations are performed considering the interdependence
between the neutronics and the thermal-hydraulics. On the neutronic side, the modelling is based
on the time-dependent two-group diffusion approximation and using six groups of delayed neutrons.
The spatial discretization of the balance equations is based on nodal methods. On the thermal-
hydraulic side, the modelling is based on a macroscopic modelling of the mass conservation
equation, momentum conservation equation, and energy conservation equation. For mass and
energy, phasic balance equations are considered, whereas for momentum, a mixture balance
equation is considered. The discretization of the balance equations is based on finite volumes. The
tool does not rely on linear theory, i.e. the non-linear terms are explicitly modelled. Perturbations are
defined in terms of perturbations of variables such as coolant inlet temperature, core flow rate or
water gap thickness (for fuel assembly vibrations and core barrel vibrations) via dedicated scripts
developed by PSI.

2.1.3 FEMFFUSION

FEMFFUSION is a time- and frequency-domain modelling tool developed at UPV as part of the
CORTEX project (Vidal-Ferrandiz et al., 2020a, 2020b). This tool estimates the effect of macroscopic
cross-section stationary perturbations onto the neutron flux using the two-group diffusion
approximation. In the time-domain, non-linear terms are explicity modelled, whereas in the
frequency-domain, linear theory is used. Six group of delayed neutrons are considered. The spatial
discretization of the balance equations is based on finite elements, using a high order continuous
Galerkin method. Any kind of structured or unstructured mesh is allowed, as long as the elements
are composed of quadrilaterals in 2-D or hexahedras in 3-D. In the case of reactors with hexagonal
fuel assemblies, each hexagon is discretized into three quadrilateral cells, as represented in Figure
1. A simple extrusion of this geometry is performed to take the axial variation into account.
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B

make_mesh.py

Figure 1: Spatial discretization of hexagonal fuel assemblies into quadrilaterals.

2.1.4 DYNS3D

DYNB3D is a three-dimensional, time domain reactor code, developed by HZDR (Helmholtz-Zentrum
Dresden-Rossendorf), for thermal reactor cores (Rohde, 2016). It utilizes a three-dimensional nodal
model to solve the two-group or multi-group diffusion equation for neutrons in both Cartesian and
hexagonal-z geometry. The modelling of the thermal hydraulics inside the core is based on a four-
equation model representing the conservation of mass, momentum, energy of the mixture and the
mass balance of the vapour (in the case of a boiling water reactor). These are solved numerically by
the method of characteristics (for the energy conservation) and a so-called MIRONOV scheme (for
the solution of the coupled mass and momentum balance). The coupled neutronic and thermal
hydraulic models are solved via an internal iteration loop until a convergence of the feedback
parameters is reached.

2.2 Description of the considered reactors and of the corresponding
scenarios

2.2.1 German pre-Konvoi 4-loop reactor

The reactor considered hereafter is a 4-loop reactor of pre-Konvoi design. The core layout with the
position of the various neutron detectors (both in-core and ex-core detectors) is given in Figure 2
and in Figure 3. The modelling parameters used in the simulations are representative of the core
conditions corresponding to the noise measurements performed on February 28", 2012, during the
fuel cycle 30, with a soluble boron concentration of 78 ppm, a thermal output of 3730 MWth and an
average coolant temperature of 304.2 °C. A more complete description of the reactor, of the
measuring equipment and of the core conditions can be found in the deliverables D4.2 and D4.3
(Kuentzel et al., 2018; Lipcsei et al., 2018).
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Figure 2: Radial detector position in the German pre-Konvoi 4-loop reactor [reproduced from (Lipcsei
et al., 2018)].
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The modelling of the effect of various noise sources was performed in the frequency-domain using
the CORE SIM+ tool, following the strategy presented in the deliverables D3.1 and D3.2 (Demaziére
and Dokhane, 2019; Dokhane and Mylonakis, 2019). The static macroscopic cross-sections used
for both performing the static CORE SIM+ calculations and on which the noise sources are defined
for carrying out the dynamic calculations were provided by another core simulator, in the present
case SIMULATE-3 (thanks to PSI).The CORE SIM+ tool estimates at the angular frequency w the
neutron noise §¢4(r, w) and §¢,(r, w) in the fast and thermal energy groups, respectively, solution
of the following balance equations:

6¢,(r,w)

(V- [DIO)V] + Zayn(r, )} X [64);& ) "
8501 (r, w) SvEZs 1 (1, w) S, (r, w)

= ¢T‘(r)82 (r (1)) + ¢a 52 (l' (,())] ¢f(l', [61)2 Z(r (l))] [S;(r C())

The definition of the different quantities can be found in Mylonakis et al. (2020). Different postulated
scenarios were then investigated, and the simulations performed accordingly:

e Generic “absorber of variable strength”. In this scenario, a Dirac-like perturbation in point r’
is considered. In such a case, the right-hand side of Eq. (1) is replaced by 6(r —r’) being
introduced either in the fast group or in the thermal group. The corresponding solution to Eq.
(1) is given by the Green’s function G,_,,(r, 1, w), thus giving the neutron noise induced in
the spatial point r and energy group g due to a Dirac-like perturbation in the spatial point r’
and energy group g'. Calculations are performed in the frequency range 0.1 to 25 Hz.

o Axially travelling perturbations at the velocity of the coolant flow. In this scenario, a
perturbation of the coolant is assumed. Although it is more likely that this perturbation is
created outside of the core, we will consider, for the sake of generality, that the perturbation
can also be created inside the core. The perturbation is assumed to travel upwards with the
coolant along the z-axis at a velocity v. For simplicity, it is further assumed that the velocity
is axially independent. Furthermore, the effect of the coolant perturbation is supposed to only
modify the removal macroscopic cross-section, expressed in the frequency-domain as:

0,ifCx, y) # (xo,¥o)
5Zr(r = (.X, v, Z)’ O)) = Ol if(x' }’) = (xO; yo) and z < Zy (2)

6, (%0, Yo, 2o, w)EXP [— @] Lif(x, v) = (x0,¥0) and z = z,

where (x,, yo, o) represents the location in the core in which the perturbation is applied, and
z corresponds to the axial elevation within the core. The perturbation introduced at (x, yo, Zo)
is further assumed to be white, which in the frequency domain has thus no frequency
dependence. The corresponding noise source is then given by:

] = 302, r,0) )

Calculations are performed in the frequency range 0.1 to 25 Hz.

o Fuel assembly vibrations. In this scenario, a fuel assembly is assumed to vibrate in the x-
and/or y-direction. Concerning the vibration mode in the axial direction, several possibilities
exist: the cantilevered beam mode, the simply supported on both sides mode (with its two
first harmonics), and the cantilevered beam and simply supported mode (with its two first
harmonics), as described in the CORTEX deliverable D3.1. Each vibration mode has a given
axial shape and a corresponding eigenfrequency, as summarized in Figure 4. Because of
the homogenization of the material data at the nodal level, the modelling of fuel assembly
vibrations corresponds to the introduction in the (x, y) plane of Dirac-like perturbations at the
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boundary of each homogeneous region, each perturbation being given by the difference of
static macroscopic cross-sections between the moving region and its neighboring region.
Using the notations introduced in Figure 4, denoting by h the displacement in the (x,y) plane
and ¢, and ¢, its projection on the x- and y-directions, respectively, the perturbations of the

macroscopic cross-sections of type « are then given as:

52;,!; (x,z,w) = h(z, ) (x — aO)[Ea,g,I - Zoc,g,n] + h(z, w)6(x — bO)[Z(x,g,II - Zoc,g,m] (4)
523;,!; ,z,w) = h(z,w)6(y — CO)[Za,g,IV - Za,g,ll] + h(z, w)d(y — dO)[Za,g,II - Za,g,V] (9)

The noise source is then given by the following expression:

Si(r,w)] _ 02 1(r, w) Sy 1 (r, w)
s cr o] = 8,65, (,0) + pa@ [ T w)] +¢(r0) [ 0T, o (e ) (6)
A
y
T [ /] h(z, w)
Co gy(z, a)) /ngx(z' w)
1 region | region Il region |11
do
: : ; —
ag by x

Figure 4. Notations used for describing the vibrations of a homogeneous region (labelled II) in
relation to four neighbouring homogeneous regions (labelled I, IIl, IV and V).

The frequencies at which the calculations are performed are given as follows:

o For the cantilevered beam mode: 0.6-1.2 Hz.

o For simply supported on both sides: first mode 0.8-4 Hz, and second mode 5-10 Hz.

o For cantilevered beam and simply supported: first mode 0.8-4 Hz, and second mode
for 5-10 Hz.

e Control rod vibrations. The vibration of a control rod is assumed to be described by a one-
dimensional structure along the z-direction vibrating perpendicularly to the two-dimensional
(x,y) plane. Furthermore, the vibrating rod is assumed to always remain parallel to itself and
to have the most significant effect on the thermal macroscopic absorption cross-section. In
those conditions, the vibration of the rod will create a perturbation of the thermal absorption
cross-section that is represented as:

0%q2(r,t) =y0(z — zp) [5 (rxy —Tpxy — e(t)) - 6(rxy - rp,xy)] (7)

where y is the strength of the perturbation, r, ., is the equilibrium position of the rod in the
(x,y) plane, &(t) is a vector representing the displacement of the rod from its equilibrium
position in the (x,y) plane, and z, represents the axial elevation at which the rod is inserted
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(insertion from the top of the core). ©(z — z,) is the Heaviside function. Using a one-term
Taylor expansion for Eq. (7) and after some algebra, the corresponding induced neutron
noise can be estimated — see CORTEX deliverable D3.1 for the details. Calculations are
performed in the frequency range 0.1 to 20 Hz.

Table 1: Description of the considered fuel assembly vibration modes for the frequency-domain
simulations.

Cantilevered beam

Simply supported
on both sides

Cantilevered beam
and simply
supported

Axial shape of the
displacement
d(z,t) in arbitrary
units as a function
of the relative core

elevation z
first mode in blue, | first mode in blue,
second mode in second mode in
orange orange
Oscillation Ca.0.6-1.2Hz Ca. 0.8 — 4 Hz for Ca. 0.8 — 4 Hz for
frequency the first mode the first mode

Ca. 5-10 Hz for
the second mode

Ca. 5-10 Hz for
the second mode

e Core barrel vibrations. Several modes of vibrations are possible for the core barrel. Only the
so-called beam or pendular mode were considered. Two types of beam or pendular motions
can occur: the so-called in-phase and out-of-phase modes (Blasius, 2018; Demaziére and
Dokhane, 2019). These modes result from the interplay between the oscillations of the
reactor pressure vessel with respect to the environment and the oscillations of the core barrel
with respect to the reactor pressure vessel, to which the core barrel is attached. In the in-
phase mode, the two oscillators move in the same directions, whereas in the out-of-phase
mode, the two oscillators move in opposite directions. For both modes of pendular or beam
motions of the core barrel, the axial shape of the displacement of the active core with respect
to the environment can be described in the same manner as a linear variation from the
bearing points of the reactor pressure vessel downwards. From a neutronic viewpoint, the
modelling of the pendular mode can be performed much alike the modelling of fuel assembly
vibrations earlier described. Core barrel vibrations can be considered as the relative motion
of the active fuel core region with respect to the reflector. Core barrel vibrations can thus be
seen as a collective movement of all fuel assemblies with respect to the reflector. The
perturbations introduced by core barrel vibrations can be considered as localized
perturbations taking place at the boundary between the active core region and the reflector
region. Calculations are performed in the frequency range 7 to 13 Hz.
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For all the scenarios described above and for all relevant frequencies (as described in the CORTEX
deliverables D3.1 and D3.2), the Cross-Power Spectral Densities (CPSD) of the relative induced
neutron noise between detector pairs were estimated, i.e. quantities of the form

99 (r,w)6¢" (r;,w) (8)

CPSDog /gy (T, Ty ) X — - om

were calculated, using the methodology presented in detail in the CORTEX deliverable D3.2. It
should nevertheless be emphasized that contrary to the method described in this deliverable where
the neutron noise §¢(r,w) was used in the CPSD estimates, it is the relative neutron noise
d¢(r,w)/po(r) that was estimated in the present case, so that the simulated data are directly
compatible with the measured data.

The data are provided in the format described in D3.2. Contrary to the method described in D3.2
where the data regarding only the 1/8th of the core were provided, it is the complete dataset that is
provided in the present case. Therefore, the user must skip the process described in the paragraph
3.2.3 of D3.2.

The dataset is used similarly to the one described in D3.2. The use of the dataset is performed in
two fully automated steps. In the first step, the complex quantities §¢,(r,w) and 6¢,(r,w) are
generated for each scenario and for all relevant frequencies. This step is performed with the provided
script “GREEN_POSTPROCESSING” (MATLAB/Python versions available). In the second step, the
CPSDs are computed (see Eq. (8)). Instead of the MATLAB function described in D3.2, the MATLAB
function “DETECTOR_PSD” is used in the current case. This function generates the CPSD of each
detector pair for a selected perturbation.

The simulated data along with the postprocessing scripts were delivered to the concerned CORTEX
partners in February 2020.

2.2.2 Swiss pre-Konvoi 3-loop reactor

The reactor considered hereafter is the Gésgen (KKG) reactor, which is a 3-loop reactor of pre-
Konvoi design. The core layout with the position of the various neutron detectors (both in-core and
ex-core detectors) is given in Figure 5 and in Figure 6. The modelling parameters used in the
simulations are representative of the core conditions corresponding to the noise measurements
performed on February 7", 2018, during the fuel cycle 39, with a soluble boron concentration of
303 ppm, a thermal output of 3002 MWth and an average coolant temperature of 308.5 °C. A more
complete description of the reactor, of the measuring equipment and of the core conditions can be
found in the deliverables D4.1, D4.2 and D4.3 (Pohlus et al., 2018; Kuentzel et al., 2018; Lipcsei et
al., 2018).
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Figure 5. Radial detector position in the Swiss pre-Konvoi 3-loop reactor.

The simulations for this reactor were carried out both in the frequency-domain and in the time-
domain.

Frequency-domain simulations

The modelling of the effect of various noise sources was performed in the frequency-domain using
the CORE SIM+ tool, following the strategy presented in the deliverables D3.1 and D3.2 (Demaziére
and Dokhane, 2019; Dokhane and Mylonakis, 2019). This strategy was briefly summarized in
Section 2.2.1 of this report.

The simulated data along with the postprocessing scripts were delivered to the concerned CORTEX
partners in April/May 2020.
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Figure 6: Axial detector position in the Swiss pre-Konvoi 3-loop reactor [reproduced from (Lipcsei et

al., 2018)].

Time-domain simulations

The following are the steps performed in order to generate the desired simulated data:

1. First, a CASMO-5 model is prepared corresponding to the selected core design for
preparation of the cross-section nuclear library that will be read later by SIMULATE-3K. The
model includes the delta gap model (additional branch calculation in terms of water gap
between fuel assemblies), which generates perturbed two-group macroscopic cross sections
for water-gap variation representative of only static fuel assembly displacement. This allows
S3K to simulate modified water gap width between the fuel assemblies in a time-dependent
manner, in case one or more fuel assemblies are vibrating. The modelling scheme contains
a module that enables the user to impose pre-defined functions representative of the vibration
modes of the fuel assemblies by assigning factored coefficients between zero and one to

each axial node.
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2. Second, after choosing the desired scenario, corresponding SIMULATE-3K input is
prepared, using a MATLAB program, by providing all necessary information about the desired
scenario, e.g. time step and duration of simulation, amplitude fuel assembly vibration,
location of vibrating fuel assemblies, etc. Once the input is ready, the SIMULATE-3K is run
in order to solve the 3D time-dependent neutron diffusion equation.

3. Finally, a MATLAB program is used to extract the time series of the neutron flux of all the in-
core and ex-core neutron detectors. This is done by extracting the data from S3K “cms”
output file and save them in a “.mat” format file, comprising seven matrices.

The S3K based simulation results are stored in a MATLAB format “ScenarioX.mat” (where ScenarioX
is scenario’s title), located in the central FTP repository available to the CORTEX partners in the

path:

/home/PSI/WP3/T3.1.3/2020.02.Dataset8_PSI_CORTEX_ Data_Export

Those data were delivered on February 13", 2020. In total, 366 different scenarios have been
simulated, as given in Table 2. It should be mentioned that although emphasis is put in this section
on the noise measurements performed on February 7%, 2018, during the fuel cycle 39, middle of
cycle (MOC), the data set delivered by PSI contains the simulations corresponding to noise
measurements at beginning of cycle (BOC) conditions for fuel cycle 40, MOC conditions for fuel
cycle 40 and EOC conditions for fuel cycle 40. The various cycle conditions together with the dates
of the noise measurements are summarized in Table 2.

Table 2: Definition of the scenarios modelled with S3K.

Case ID

Scenario
no.

Core
condition

Type

Frequency

Amplitude

Comments

2020-02-Dataset8-
Cla

1-177

BOC 40

Vibration of
one FA in
cantilevered
mode

1.2 Hz

1.0 mm

X-direction

2020-02-Dataset8-
Cilb

1-177

BOC 40

Vibration of
one FA in C-
shape mode

1.2 Hz

1.0 mm

X-direction

2020-02-Dataset8-
Cc2

BOC 40

Random
fluctuation in
inlet
temperature;
synchronized
loops

Mean value
=556.70 °C

MOC 40

Random
fluctuation in
inlet
temperature;
synchronized
loops

Mean value
=557.89 °C

EOC 40

Random
fluctuation in
inlet
temperature;
synchronized
loops

Mean value
=549.11 °C

2020-02-Dataset8-
C3

BOC 40

Random
fluctuation in

2%

Mean value
= 100%
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inlet flow;
synchronized
loops
2 MOC 40 Random - 2% Mean value
flgctuation in = 100%
inlet flow;
synchronized
loops
3 EOC 40 Random - 2% Mean value
fluctuation in = 100%
inlet flow;
synchronized
loops
2020-02-Dataset8- 1 BOC 40 Simplistic 1.2 Hz 1.0 mm + X-direction,
Ca 'blat?ral f 1 °C+ Mean value
vipration o 204 _ °
central 5x5 =556.70 °C,
FA cluster + Mean value
random TH =100%
fluctuations
2 MOC 40 Simplistic 1.2 Hz 1.0 mm + X-direction,
_blatte_ral f +1°C+ Mean value
vioration o 204 _ o
central 5x5 =557.89°C,
FA cluster + Mean value
random TH = 100%
fluctuations
3 EOC 40 Simplistic 1.2 Hz 1.0 mm + X-direction,
_t:attgral f £1°C+ | Mean value
vipration o 204 - °
central 5x5 549.11°C,
FA cluster + Mean value
random TH = 100%
fluctuations
2020-02-Dataset8- 1 BOC 40 Cantilevered 1.2 Hz 1.0 mm + X-direction,
C5 _bm<t)_de . +1°C+ Mean value
vipration o 204 _ °
central 5x5 =556.70 °C,
FA cluster + Mean value
random TH = 100%
fluctuations
2 MOC 40 Cantilevered 1.2 Hz 1.0 mm + X-direction,
'bmct)'de . +1°C+ Mean value
vipration o 204 _ °
central 5x5 =557.89°C,
FA cluster + Mean value
random TH = 100%
fluctuations
3 EOC 40 Cantilevered 1.2 Hz 1.0 mm + X-direction,
_bmo_de f +1°C+ Mean value
vibration o 204 - 549.11 °C,
central 5x5
FA C|uster + Mean Value
random TH = 100%
fluctuations
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Table 3: Core conditions for the measurement campaigns.

Date of the noise 2018-02-07 | 2018-05-15 | 2018-07-10 | 2018-12-11 | 2019-05-X
measurements

Cycle MOC 39 EOC 39 BOC 40 MOC 40 EOC 40
EFPD [days] 223 320 16 171 325
Boron 303 34 911 442 4
concentration [ppm]

Core burnup during 40 44 32 38.3 44.4
the measurement

[MWd/kgHM]

These scenarios are organized in six cases as follows:

1.

2020-01-Dataset8-Cla: Vibration of each fuel assembly individually, in cantilevered
mode at BOC 40, only in the x-direction, sine wave function with nominal frequency of 1.2
Hz, with displacement amplitude of 1.0 mm. This case comprises 177 scenarios
corresponding to each fuel assembly vibration.

2020-01-Dataset8-C1b: Vibration of each fuel assembly individually, in C-shaped mode
at BOC 40, only in the x-direction, sine wave function with nominal frequency of 1.2 Hz,
with displacement amplitude of 1.0 mm. This case comprises 177 scenarios corresponding
to each fuel assembly vibration.

2020-01-Dataset8-C2: Random fluctuations of inlet coolant temperature in all the three
synchronized loops with amplitude of 1 °C around the mean value of 556.70 °C, 557.89 °C
and 549.11 °C at BOC 40, MOC40 and EOC 40, respectively.

2020-01-Dataset8-C3: Random fluctuations of inlet coolant flow in all the three
synchronized loops with amplitude of 2% around the relative value of 100% flow at BOC
40, MOC40 and EOC 40, respectively.

2020-01-Dataset8-C4: Combination of simplistic vibration of 5x5 central cluster of FAs
in the x-direction, following a sine wave function with nominal frequency of 1.2 Hz, with
displacement amplitude of 1.0 mm. and synchronized fluctuations of inlet coolant
temperature in all the three loops and synchronized fluctuations of inlet coolant flow in
all the three loops. Note that, the inlet coolant temperature is randomly fluctuating with
amplitude of ¥1 °C around the mean value of 556.70 °C, 557.89 °C and 549.11 °C at BOC
40, MOC40 and EOC 40, respectively. Also, the inlet coolant flow is randomly fluctuating with
an amplitude of 2% over the relative flow of 100%.

2020-01-Dataset8-C5: Combination of cantilevered mode vibration of 5x5 central cluster
of FAs in the x-direction, following a sine wave function with nominal frequency of 1.2 Hz,
with displacement amplitude of 1.0 mm and synchronized fluctuations of inlet coolant
temperature in all the three loops and synchronized fluctuations of inlet coolant flow in
all the three loops. Note that, the inlet coolant temperature is randomly fluctuating with
amplitude of 1 °C around the mean value of 556.70 °C, 557.89 °C and 549.11 °C at BOC
40, MOC40 and EOC 40, respectively. Also, the inlet coolant flow is randomly fluctuating with
an amplitude of 2% over the relative flow of 100%.

The random fluctuations mentioned above are stochastic fluctuations of the inlet coolant temperature
and coolant flow. The fluctuations are introduced in a synchronous manner in the three coolant loops,
i.e. the fluctuations are identical.

The coolant properties (f; ;) are modified at every time step t using a normally distributed random
number generator, based on the following expression:

fi,j(t) = fi,j(0)+Ai,j -rand
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where f; ;(0) are the initial coolant properties, and A4;; describe the user defined amplitude of
fluctuation of the i*" coolant property at the j¢* coolant loop.

The fuel assemblies are labelled according to Figure 5. In the cases ‘2020-02-Dataset8-C1a’ and
‘2020-02-Dataset8-C1b’, the scenario number ‘n’ = 1 to 177 correspond to the fuel assembly labels
‘Pe’, ‘P7’, ‘P8, ‘P9, ‘P10’, ‘P11’, ’O3’, so on and so forth until ‘A10’, and are meant to be read row

wise.
For cases ‘2020-02-Dataset8-C1a’, ‘2020-02-Dataset8-C1b’, ‘2020-02-Dataset8-C4’ and ‘2020-02-

Dataset8-C5’, the modes of vibrations are illustrated in Figure 7.

For cases ‘2020-02-Dataset8-C2’, ‘2020-02-Dataset8-C3’, ‘2020-02-Dataset8-C4’ and ‘2020-02-
Dataset8-C5’, the synchronized fluctuation of either the inlet coolant temperature and/or flow means
that all core locations are equally affected by the perturbation of these thermal-hydraulic parameters.

0.6-1.2Hz 0.6-1.2Hz 0.8-4.0Hz

Figure 7. Fuel assembly vibrations in simplistic lateral vibration mode, cantilevered mode and C-
shaped mode, respectively.

The results of the 366 simulation scenarios of Dataset8 are provided in MATLAB matrices, in the
same format as introduced above. Every simulation scenario has a duration of 100 s and a time step
of 0.01 s and includes the in/ex-core neutron responses of 36 in-core and 8 ex-core neutron
detectors, respectively, and the time-dependent reactivity (in absolute values and in dollars).

Seven matrices are stored within every ‘.mat’ file:

T: Time domain in seconds.
InDet: Matrix with dimension 10001x36, including the 36 in-core neutron detectors responses

in the time domain.
InDet_labels: Cell array with dimension 1x36, including the labels of the 36 in-core neutron

detectors whose responses are stored in InDet.
ExDet: Matrix with dimension 10001x8, including the 8 ex-core neutron detectors responses

in the time domain.
ExDet_labels: Cell array with dimension 1x8, including the labels of the 8 ex-core neutron
detectors whose responses are stored in ExDet.

rho_abs: Time-dependent reactivity in absolute values (Ak/k, k is keff).

rho_dollar: Time dependent reactivity in dollars (Ak/k/B, B is the delayed neutron fraction).

The output files, placed in five folders with title format ‘2020-02-Dataset8-CX’, have a name format
‘2020-02-Dataset8-CX-CycleY-compact_description-n.mat’, where ‘X’ is the case number, ‘CycleY’
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is the core condition, “compact_description” is the compact name that gives information about the
scenario, and “n” is the fuel assembly number defining the perturbed fuel assembly.

For instance, the compact_description ‘FA1-CantMode-SIN-1.2Hz-1mm stands for vibration of 1
fuel assembly sinusoidally in cantilevered mode at 1.2 Hz with amplitude of 1 mm, as described in
Table 2. Similarly, the compact description ‘FA5x5-SIN-1.2Hz-1mm-ICT-WN-1C-ICF-WN-2P’
stands for vibration of 5x5 central fuel assemblies cluster sinusoidally at 1.2 Hz with amplitude of 1
mm, in combination with inlet coolant temperature fluctuations with white noise with an amplitude of
1 °C, and inlet coolant flow fluctuations with white noise and amplitude of 2%.

2.2.3 Hungarian VVER-440 reactor

The reactor considered hereafter is the unit 2 of the Paks reactor, which is a 6-loop reactor of VVER-
440/213 design. The core layout with the position of the various neutron detectors (both in-core and
ex-core detectors) is given in Figure 8 and in Figure 9. The modelling parameters used in the
simulations are representative of the core conditions corresponding to the noise measurements
performed on March 1%, 2017, during the fuel cycle 32, at 7 EFPD. A more complete description of
the reactor, of the measuring equipment and of the core conditions can be found in the deliverables
D4.2 and D4.3 (Kuentzel et al., 2018; Lipcsei et al., 2018).

Figure 8: Radial detector position in the Hungarian VVER-440 reactor.
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Figure 9: Axial detector position in the Hungarian VVER-440 reactor [reproduced from (Lipcsei et al.,
2018)].

The simulation set is composed of a large number of .dtc files, each one corresponding to one
neutron noise simulation. They are performed with the frequency domain code FEMFFUSION (Vidal-
Ferrandiz et al., 2020a, 2020b). The results of the simulations were delivered in February 2020 using
the central FTP repository available to the CORTEX partners and are available in the path:
/home/upv/3D_VVER440 NOISE

A folder is available for each of the simulated scenarios: GenericAbsorber (for a generic absorber of
variable strength) and TravellingPerturbation (for an axially travelling perturbation). Inside these
folders, there are different subfolders specifying the frequency of the simulated perturbation and of
the corresponding neutron noise. Finally, each .dtc file contains an id specifying the spatial location
of the perturbation.

For example:
/home/upv/3D_VVER440_NOISE/VibratingAbsorber/10Hz/VVER440_EFPD_007_va_17.dtc
indicates a simulation of a generic vibrating absorber in the VVER-440 reactor at the cell number 17.

In each .dtc file, the noise data at each detector position are given. For example, the
/home/upv/3D_VVER440_NOISE/VibratingAbsorber/VVER440_EFPD_007_va_1.dtc starts as:

# det_num det_radial det_axial noise_real part noise_imag part
1 1 1 -1.94642e-06 5.03457e-07
2 1 2 -2.06591e-06 5.80197e-07
3 1 3 -1.82722e-06 5.74047e-07
4 1 4 -1.51262e-06 5.37182e-07
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5 1 5 -1.22962e-06 4.89317e-07
6 1 6 -9.87891e-07 4.,29849e-07
7 1 7 -7.26159e-07 3.3441e-07
8 2 1 -5.28697e-06 1.26956e-06
where:

e The first column indicates the detector number (det_num).

e The second and the third columns are the detector radial identifier (det_radial) and the
detector axial identifier (det_radial).

o Finally, the fourth and fifth numbers are the noise real and imaginary part at the detectors
position for the thermal group. In order to minimize the size of the transferred files, only the
data at the location of detectors and for the thermal group are given. The noise value at the
detectors position is averaged over the hexagonal cell containing the detector. The neutron
noise given in these files is the absolute neutron noise for the thermal group. The relative
neutron noise can be obtained by dividing the absolute neutron noise by the static flux at the
position of the detectors, as:

8¢, (ry,w)
8, rer (i, @) = 2L )

The static neutron flux for the thermal group can be found in the file:
/home/upv/3D_VVER440_NOISE/VVER440_EFPD_007_static.dtc

With the neutron noise data, the CPSD between detectors and auto-power spectral density (APSD)
of a detector can be calculated using the Wiener-Khinchin theorem as:

APSDgy (ry, w) = 6¢p(ry, w) - 6¢™ (1, w) (10)
CPSDsy (1,15, w) = 5¢ (11, w) - §¢* (17, w) (11)

where §¢* represents the complex conjugate of the neutron noise. The APSD and the CPSD data
can be normalized by any arbitrary number. The same normalization would have thus to be used
when analyzing the measurement data.

The reactor was modelled using 421 vertical assemblies discretized in 48 planes, representing a
total of 20208 hexagonal cells. The cross sections data used were transferred by MTA-EK. The
hexagonal cells are numbered using the same convention as the one used by MTA-EK in the
CORTEX deliverable D4.2 (Kuentzel et al., 2019), as represented in Figure 10. Axially, the
numbering is carried out incrementally from the bottom to the top of the system.
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Figure 10: Numbering of the hexagonal cells in the Hungarian VVER-440 reactor.

The modelling of the noise sources follows the same procedure as the one presented in the CORTEX
deliverable D3.1 and summarized in Section 2.2.1 of this report for the following two scenarios:

e Generic absorber of variable strength. A Dirac-like perturbation at the hexagonal cell i is
considered and is directly expressed as a perturbation of the macroscopic cross-sections.
This scenario is particularly important since it can be used to localize any kind of perturbation
that does not fit any of the other categories. The perturbation inserted at each simulation is
setto 6%, ,(c,w) = 0.1 and 6%, ,(c, w) = 0.1, where the hexagonal cell label c is used in the
filename. Three frequencies for the perturbation are considered: 0.1 Hz, 1 Hz and 10 Hz,
giving a total of 20624 simulations.

o Travelling perturbation. This scenario considers a perturbation traveling along a fuel
assembly with the coolant flow, from the inlet (bottom of the core) to the outlet (top of the
reactor). The water flow velocity is set to v = 1.0 m.s™ 1. The perturbed cross section is thus
defined as:

0%s152(c,w) = 1.0 - exp (—Z%i) (12)

Three frequencies for the perturbation are considered: 0.1 Hz, 1 Hz and 10 Hz. This scenario
is simulated for each vertical assembly (including reflectors cells) giving a total of 1263
simulations.

It should be mentioned that the FEMFFUSION static calculations were compared with the C-PORCA
code run at MTA-EK. Rather large differences were detected: about 100 to 200 pcm difference in
the computed effective multiplication factor of the system and about 2% mean error in the relative
power distribution. Those differences are attributed to that fact that no discontinuity factors were
used in FEMFFUSION.
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2.2.4 Czech VVER-1000 reactor

The reactor considered hereafter is the Temelin unit 1 reactor, which is a 4-loop reactor of VVER-
1000 design. The core layout with the position of the various neutron detectors (both in-core and ex-
core detectors) is given in Figure 11 and in Figure 12. The modelling parameters used in the
simulations are representative of the core conditions corresponding to the noise measurements
performed from 17" to 28" of December 2016, at the beginning of the fuel cycle 9. A more complete
description of the reactor, of the measuring equipment and of the core conditions can be found in
the deliverables D4.2 and D4.3 (Kuentzel et al., 2018; Lipcsei et al., 2018).

Figure 11: Radial detector position in the Czech VVER-1000 reactor [reproduced from (Lipcsei et al.,
2018)]. The in-core detectors are labelled as Ndd, and the ex-core detectors are labelled as Xddd.
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Figure 12: Axial detector position in the Czech VVER-1000 reactor [reproduced from (Lipcsei et al.,
2018)]. The in-core detectors are labelled as Ndd, and the ex-core detectors are labelled as Xddd.

The simulation data set is composed of a large number of .dtc files, each one corresponding to one
neutron noise simulation. The results of the simulation were delivered in February 2020 using the
central FTP repository available to the CORTEX partners and are available in the path:

/home/upv/3D_VVER1000_NOISE

A folder is available for each of simulated scenarios: GenericAbsorber (for a generic absorber of
variable strength) and TravellingPerturbation (for an axially travelling perturbation). Inside these
folders, there are different subfolders specifying the frequency of the simulated perturbation and of
the corresponding neutron noise. Finally, each .dtc file contains an id specifying the spatial location
of the perturbation.

The same convention for naming the various files as explained in Section 2.2.3 is used.

It has again to be emphasized that the neutron noise given in these files is the absolute neutron
noise for the thermal group. The relative neutron noise can be obtained by dividing the absolute
neutron noise by the static flux at the position of the detectors, as:

8¢, (riw)
8, rea (i, @) = 2L (13)
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The static neutron flux for the thermal group can be found in the file:
/home/upv/3D_VVER1000_ NOISE/VVER1000_static.dtc

With the neutron noise data, the CPSD between detectors and APSD of a detector can be calculated
using the Wiener-Khinchin theorem as:

APSDgy (1, w) = 6¢p(r;, w) - 6¢™ (1, w) (14)
CPSDsg (1,15, w) = 5 (11, w) - ¢* (1}, w) (15)

where §¢* represents the complex conjugate of the neutron noise. The APSD and the CPSD data
can be normalized by any arbitrary number. The same normalization would have thus to be used
when analyzing the measurement data.

The reactor was modelled using 221 vertical assemblies discretized in 50 planes, representing a
total of 10550 hexagonal cells. The numbering of the hexagonal cells is illustrated in Figure 13.
Axially, the numbering is carried out incrementally from the bottom to the top of the system.

129

Figure 13: Numbering of the hexagonal cells in the Czech VVER-1000 reactor.

The modelling of the noise sources follows the same procedure as detailed in Section 2.2.3.
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3 Fluid-Structure Interactions simulations

3.1 Simulations with the GRS mechanical model under generic excitation

scenarios

3.1.1 Model and input parameters

Geometry noise is the share of neutron noise, which arises from fluid-induced vibrations of the RPV
and its internals. For its simulation, a multidisciplinary approach is necessary (Figure 14). In this
section, the part of the simulation chain representing the mechanical component motions (central
box in Figure 14) is addressed. Simulations with the mechanical model described in CORTEX
Deliverable 1.2 for a German 4-loop pre-Konvoi (Figure 15) under generic excitation scenarios are
performed. In a first approach, reactive fluidic effects are considered in form of parametric studies
on reactive forces from fluidic near-field coupling and fluidic damping.
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Figure 14: Schematic representation of the relations between the disciplines.
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Figure 15: GRS-model of the coupled system of RPV internals.
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For a so far unexplained phenomenon observed in PWR built by KWU, which is characterized by an
in-phase signal correlation in axial direction, an anti-phase signal correlation between opposite core
guadrants, and a 1/w?-like shape of the APSD with an additional peak around 1 Hz, a mechanical
source has been proposed. The phenomenon is associated with a strong neutron-flux signal
increase in the time-interval between about 2000 and 2010 (Seidel, Kosowski, Schiler, & Belblidia,
2015), (Herb, Blasius, Perin, Sievers, & Velkov, 2017), (Pohlus & Paquée, 2018). Simulations of the
mechanical oscillation behavior of the components are expected to give further clues about the
underlying physics of the phenomenon.

Excitation forces acting on core internals encompass a wide field of known and hypothetical
phenomena. These include e.g. turbulent buffeting, pressure oscillations, oscillating mass-flow
profiles, lateral flow, vortex-induced vibrations, seismic accelerations or external mechanical
excitations. In the special case of self-induced oscillations, the oscillation of the system may arise
even from the bidirectional interplay between fluid flow field and the component itself.

In this work, the reactions of the coupled system of RPV internals to generic forced excitation
scenarios are investigated. Stochastic, seismic and self-induced excitations are not considered here.
The generic excitation scenarios include the following:

o Correlated sinusoidal excitation of all FAs with 20 N at 1 Hz.

e Correlated sinusoidal excitation of all FAs with 200 N at 1 Hz.

e Local sinusoidal excitation of 3 of 15 FAs at the core edge with 200 N at 1 Hz.

e Shifted sinusoidal excitation of all FAs with 200N = sin(2m * (1Hz * t + n/15)), n = FA
position.

e Sinusoidal excitation of the core barrel (CB) and (in anti-phase) the RPV with 30 kN at 1 Hz.

For each excitation scenario, studies with different parameters are performed:

e Fluidic damping of the individual FAs either neglected or setto D = 0.5.

¢ Fluidic near-field coupling between FAs/core barrel either neglected or set to k = 20 N/mm.

e Loading pattern either uniform with Type 1 FA (150 N/mm lateral stiffness) or alternately
Type 1/ Type 2 BOL/ Type 2 EOL (150 N/mm, 60 N/mm and 30 N/mm lateral stiffness).

Damping acts on the FAs only if they move relative to the fluid. The assumed value was determined
based on data from shaker table tests and corresponding calculations, which have been performed
in conjunction with seismic analysis (see CORTEX Deliverable 1.2). If the FAs are excited by the
fluid itself and the relative movement is smaller, the damping will decrease as well. A weak fluidic
near-field coupling exists between the FAs, but its magnitude is unclear and cannot be determined
exactly from literature. A parametric study will therefore reveal its potential influence. Lastly, the
parametric variation of loading patterns reflects the heterogeneous core loading and the effect of
lateral stiffness decrease during the cycle.
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3.1.2 Results

Figure 16 shows the calculated oscillatory response of the components to a correlated sinusoid
excitation of all FAs in a heterogeneous loading pattern with 200 N amplitude at 1 Hz with damping
and fluidic coupling enabled. The plots represent the time history of the amplitude at mid height
position of the FAs, assuming that the FA bending shape is predominantly of C-form and pendulum-
like for core barrel and RPV. In the upper part of the diagram, the responses of the FAs are depicted.
The graphs are shifted by 1.6 mm each, which coarsely corresponds to the gap between FAs in the
real reactor. The amplitude is magnified by factor 10 for visualization. In the lower part, the response
of the RPV and the core barrel can be seen in an arbitrary distance to each other and to the FAs.
The amplitude of RPV and core barrel is magnified by factor 1000.

The FAs perform almost uniform oscillations except for the outermost positions, which are influenced
by the coupling to the stiffer core barrel via the fluidic near-field coupling. The oscillation is transferred
to the core barrel via upper and lower fixation of the FAs as well. The core barrel reaction shows an
almost /2 phase-shift and a motion amplitude, which accounts for about 1/2000 of the amplitude of
the FAs. For a real reactor situation, this means, that a significant excitation of the core barrel from
FA oscillations alone is unlikely and the motions of the core barrel observed in reality probably have
mainly other sources, e.g. fluidic forces in the downcomer. The reaction amplitude of the RPV is
even lower (about 1/12 compared to the core barrel) due to its rigidity and the fact that it is not directly
coupled to the FAs.
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Figure 16: Component oscillation from correlated sinusoidal excitation of all FAs with 200 N
amplitude at 1 Hz, damping enabled, fluidic coupling enabled, heterogeneous loading pattern.

The same simulation but with an excitation amplitude of 20 N instead of 200 N (graph not shown
here) reveals an amplitude response of exactly 1/10 size, which is not surprising due to the linearity
of the system. A cliff-edge effect might be seen when collisions between neighbor FAs and the core
barrel/core shroud will be taken into account. Consideration of collisions is one of the objectives in
further model development.

When comparing the results shown in Figure 16 to those of the same excitation case, but without
fluidic coupling (Figure 17), it can be seen that the coupling homogenizes the response amplitude of
all FAs although they differ considerably regarding lateral stiffness. For a real reactor situation, it
means that the FA oscillation amplitudes of core-wide oscillations are not determined by the
individual lateral stiffness of the FAs, but rather by some regional average. This matches the
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observation, that the observed global neutron flux noise increased proportional to the number of FAs
with a new design and lower lateral stiffness (Girardin, Meier, Alander, & Jatuff, 2017). The
simulations with a homogeneous loading pattern thus differ not considerably from those with a
heterogeneous loading pattern and fluidic coupling, except for the general lateral stiffness level.
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Figure 17: Component oscillation as in Figure 16, but fluidic coupling disabled.

When comparing the results shown in Figure 16 to those of the same excitation case, but without
FA damping (Figure 18), it can be seen that the damping suppresses individual motions of the
components, that could otherwise lead to non-sinusoidal chaotic coupled motions of the FAs and the
core barrel. The chaotic behavior can be explained by the double-pendulum-like configuration
between core barrel and FAs. The simulations show that the non-periodic behavior of the signals
observed in PWR built by KWU could not only be a result of an already chaotic excitation, but also
evoked by the interaction and superposition of oscillators with different frequency or phase.
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Figure 18: Component oscillation as in Figure 16, but damping disabled.

Nevertheless, the strong fluidic damping observed in experiments performed in conjunction with
seismic analysis suggests that a purely mechanic oscillation in an otherwise unaffected axial flow is
unlikely. A more likely scenario is that FAs tend to follow a (possibly oscillating) flow field.

When looking at the amplitude response to a local excitation (Figure 19), it could be seen that the
oscillation does not spread over the whole core by fluidic near-field coupling alone. The observation
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is the same for simulations without damping. The global oscillation observed in PWR built by KWU
is thus likely to be an original global phenomenon. It is questionable if collisions between FAs or
other not yet considered coupling phenomena might result in a coupling strong enough to spread
local phenomena over the whole core.
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Figure 19: Component oscillation from local sinusoidal excitation of 3/15 neighbor FAs at the core
edge with 200 N amplitude at 1 Hz, damping enabled, coupling enabled, heterogeneous loading
pattern.

In the amplitude reaction to a shifted sinusoidal excitation (Figure 20), it can be seen that the core
barrel is only excited when the forces acting on the FAs do not compensate each other and a non-
zero net reaction force arises.
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Figure 20: Component oscillation from shifted sinusoidal excitation of all FAs in form 200 N
*sin(2mw*(1 Hz *t+n/15)), n = number of FA, damping enabled, coupling enabled, heterogeneous
loading pattern.

In the case of an excitation of the system of RPV and core barrel instead of FAs (Figure 21), the
reaction is simila