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Abbreviations 
 

APSD Auto Power-Spectral Density 

CPSD Cross Power-Spectral Density 

CNN Convolutional Neural Network 

DAE Denoising Autoencoder 

DNN Deep Neural Network 

FA Fuel Assembly 

GAP Global Average Pooling 

GRNN General Regression Neural Network 

LSTM Long Short-Term Memory 

MP Missing Part 

NCC Normalized Cross-Correlation 

ND Neutron Detector 

NF Neutron Flux 

NN Neutron Noise 

PA Polynomial Approximation 

PSI Paul Scherer Institute 

PWR Pressurized Water Reactor 

RNN Recurrent Neural Network 

OL Oscillation Large 

OS Oscillation Small 

OT Oscillation & Trend 

SPS Parametric Splines 

TL Trend Large 

TS Trend Small 

Summary  
This document outlines and describes the development of deep neural network architectures and 
other machine learning techniques for the unfolding of reactor transfer functions from in-core and 
ex-core neutron detectors, developed in CORTEX Workpackage 3, mainly in Task 3.3. The 
techniques developed utilise simulated modelling of the induced neutron flux of perturbations to 
classify and localise perturbation types and their sources.  
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1 Introduction 

The EU project CORTEX involves the development of monitoring techniques and experimental 
validation that allows detecting anomalies in nuclear reactor cores, such as abnormal vibrations of 
fuel and core internals, flow blockage, coolant inlet perturbations, etc. The monitoring of the so-called 
neutron noise (fluctuations in neutron flux recorded by in-core and ex-core neutron instrumentation), 
on which the methods in this project are based, is a non-intrusive technique.  

 

The current Deliverable presents the CORTEX WP3 contribution towards the following objective: 

“To develop and use machine learning data analysis methodologies for inverting the reactor transfer 
function and recovering the anomaly responsible for the observed fluctuations. Emphasis is put on 
situations where the in-core and ex-core instrumentation is very scarce.”  

 

The aim of the deliverable is to utilize machine learning techniques for the unfolding of reactor 
transfer functions from limited number of neutron flux detectors located throughout the core [ 1 ] - [ 
2 ]. This is a challenging task, examining the potential for machine learning to learn the underlying 
functions within the reactor core from limited information. Machine learning requires a large amount 
of training data to ‘teach’ the algorithm to recognize the necessary features constructing the input 
signals, therefore, simulations of the neutron flux readings induced by core perturbations provide the 
required amounts of training data. Two simulations have been developed for this purpose providing 
data in both the frequency and time domain, CORE SIM [ 3 ] produced by Chalmers and SIMULATE-
3K [ 4 ] by PSI respectively. 

 

The machine learning methodologies presented are based on recent state-of-the-art developments 
in deep learning and deep neural networks (DNNs). Specific progress was made for the estimation 
of the type and position of abnormal fluctuations and perturbations, using classification and 
regression analysis with 2-D and 3-D deep neural networks. Very promising results have been 
obtained when dealing with data simulated in the frequency, as well as in the time domain, which 
will be extended towards real plant data. Moreover, the use of artificial neural networks and other 
machine learning techniques has been also examined for detection of abnormalities in data 
simulated in the time domain.   

 

Three papers have been presented to the IEEE WCCI/IJCNN and SSCI Conferences in 2018 [13], 
two of them co-authored by UoL and Chalmers/PSI groups and one co-authored by ICCS-NTUA and 
PSI. Additionally, in 2019, a poster by UoL has been presented and awarded in the FISA conference 
and a paper by ICCS-NTUA was submitted to ICAAI Conference in 2019. 
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2 Summary of Developments 

2.1 Extraction of model parameter values from data 

 

The work that has been accomplished focuses on designing and developing Deep Neural Network 
(DNN) models that are able to analyse the generated simulated data so as to classify and localise 
anomaly sources from induced neutron noise readings. Identification of such DNN architectures and 
parameters will be examined and used next for the analysis of real plant data in WP4 of the CORTEX 
project. 

 

Analysis of the developed DNNs will continue to be accomplished in the last few months of WP3, so 
as to define the best architectures to be used for real plant data analysis. As more real plant data 
will become available, their analysis will permit us to transfer the acquired knowledge from simulated 
data case to real plant data analysis in the most appropriate way. 

 

2.2 Efficient data analysis by training deep neural networks or using pre-
trained networks through transfer learning   

 

The approaches we developed can be decomposed into two distinct categories dependent on the 
domain of the data generated, for a variety of scenarios, from the two simulators described in 
Deliverables D3.1 and D3.2. The first refers to data generated in the frequency domain by Chalmers 
University of Technology. The second refers to data generated in the time domain by Paul Scherer 
Institute. Distinctly different DNNs have been developed and tested for analysing these types of data, 
as described in the following.  

 

 Frequency Domain  

The frequency domain datasets provide large amounts of data, with different perturbation types 
coming from every possible source location. Furthermore, since the generated signals cover the 
whole three-dimensional (3-D) volume of the simulated core, it was possible to also analyse them in 
the form of two-dimensional (2-D) image slices. This allowed the employment of a variety of powerful 
feature extraction techniques, resulting in effective DNN learning and anomaly detection. The 
provided data have, in most cases, a size of 32x32x26 (a size of 32x32x34 resulted sometimes). 
Since frequency domain data take complex values, each signal is decomposed into its amplitude 
and phase information, which are then analysed using deep learning techniques.  

 

2.2.1.1 2-D Pretrained Convolutional Neural Networks  

The first of the approaches that we developed was based on deep Convolutional Neural Networks 
(CNNs), aiming to perform spatial feature analysis of the 3-D volumes of the induced neutron noise. 
A variety of successful CNNs has been developed the last few years for analysis of 2-D images. To 
take advantage of these developments, a conversion procedure was devised to provide the 3-D 
volumes in a more conventional 2-D format. More specifically, the 3-D volume was unrolled into a 
series of 2-D ‘slices’ to manipulate and utilise more common-place deep learning approaches, 
allowing the learning of spatial feature representations. Using pre-trained DNNs, successfully 
developed for other object analysis tasks, as prior knowledge, and transferring this knowledge to 
initialise our DNN architectures was the basis of our approach.  
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This 2-D unrolling procedure was performed for both the amplitude and phase of the complex signal. 
This resulted in two 2-D matrices, each containing slices of the whole 32x32x26 volume (as shown 
in Figure 1). The two matrices were concatenated to form a three-channel input, as is required in the 
pre-trained CNNs. We selected to duplicate the amplitude information, thus, the first two channels 
were identical, containing the amplitude information; the third channel contained the phase 
information.  

 

Firstly, a pre-trained, Inception-v3, CNN architecture has been utilised with its weights transferred to 
a respective CNN architecture which was then fine-tuned with the CORTEX frequency domain data. 
The obtained results are shown in Table 1, as will be described in the following Section. This 
approach classified the perturbation type into the three considered classes and localised the 
perturbation source to both twelve and forty-eight coarse voxel subsection representations of the 
core, with very high accuracy. In particular, this experiment showed the capability of machine 
learning methods to unfold the reactor transfer function from noise information provided by CORE 
SIM, achieving 99.9% accuracy in classification. 

 

To complicate the problem and make the input more realistic, the input was corrupted in two ways. 
The first involved the addition of white Gaussian noise at signal-to-noise-ratios (SNR) equal to 1 and 
3; the second obscured the signals by setting 25%, 50%, and 75% of the signal values equal to zero, 
i.e., reducing the amount of provided information. Furthermore, the amount of training data was 
lowered from 75% to 25%, reducing the amount of available training data in this case. Despite of 
these corruptions to the training procedure, the network still achieved very good classification 
accuracy and noise localization ability. 

 

A second experiment was then performed, utilizing the information learnt from the CNNs to cluster 
the extracted representations, obtaining a finer resolution for noise localization within the voxel 
representation of the core. A combination of K-means clustering and K-Nearest Neighbor 
approaches were implemented, using the feature representation vector from the final layer of the 
CNN, rather than whole data input. This approach resulted in excellent performance with the 
perturbation source being localized to a single point accuracy within the finer resolution. 

 

Next, a third experiment was based on the use of a denoising autoencoder; this type of CNN was 
trained to reconstruct the signals from their corrupted forms, thus producing a complete 
representation of the input. The reconstruction was evaluated by measuring the normalized cross 
correlation (NCC) metric between the target (original signal) and the reconstructed one. The ncc 
metric ranges between -1.0 (completely differing) to +1.0 (perfectly matching). The reconstruction of 
the corrupted signal achieved a 0.991 NCC value, showing the very good performance of the 
proposed CNN denoising autoencoder. 

 

2.2.1.2 3-D Convolutional Neural Networks 

We then trained 2-D CNNs from scratch, without using a pre-trained CNN, using the CORTEX data. 
The results were also very good as shown in the following Section. As a consequence, we 
considered the possibility to use and train 3-D CNNs from scratch as well. Utilising 3-D CNNs allows 
learning of spatial relationships across all dimensions of the core, with the potential to provide more 
accurate localisation across the z-axial dimension. Given the nature of the signal being generated in 
large 3-D volumes and the addition of hypothetical perturbation scenarios originating anywhere 
within the core, using 3-D DNNs could unfold the transfer function of the generated core mesh.  
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Signals were provided in the same form as above, i.e., as 32x32x26, complex values. These were 
decomposed into their amplitude and phase components, then concatenated together to form a 
volume of size 64x64x26; zero padding was used in the third dimension to obtain these signal 
dimensions. Considering the high performance achieved in the previous study, we focused on the 
experiment with obscured signal values. To implement this and obscure the signals, a mask of size 
32x32 was generated maintaining only 20% of the volume’s information, with the remaining elements 
being set to a zero value. This mask was applied axially along the third dimension of the original 
signal ensuring that the same elements were removed across all samples. 

 

The proposed solution addressed two tasks:   

• classification of perturbation type (three classification tasks)  

• regression, in which the signal is unfolded, identifying (i, j, k) coordinates from where the 
perturbation source originated in the simulated core mesh. 
  

The approach outperformed the previous unfolding approach which used a coarser mesh combined 
with clustering, resulting in lower mean squared error (MSE) and mean absolute error (MAE) 
between the target and predicted coordinates. The classification of perturbation type also remained 
very high, whilst considering only 20% of the measurements of the original 32x32x26 volume. 

 

Following this approach, a new, vastly larger dataset was provided to us, consisting of nine 
perturbation types (including differing modes of vibration) and a finer 32x32x34 core mesh modelling 
boundary sources, providing perturbations at every possible location within the core. This resulted 
in a greater challenge for the network to classify and localise more classes to more locations.  

 

To achieve this, we extended the proposed 3-D CNN architecture outlined above. As was described 
previously, the volumetric complex signal was first decomposed into its amplitude and phase 
components. However, in this approach the two volumes were concatenated along a fourth 
dimension resulting in a volume of 2x32x32x34. Furthermore, instead of corrupting the signals 
through setting a percentage of them to zero, we focused solely on 48 in-core locations and 8 ex-
core locations; these correspond to the 56 neutron flux detectors usually utilized in real plant cores. 
This results in far less readings than previous approaches; in fact we used, instead of 5,325, just 56 
simulated detectors. Additionally, the complex signals have been further pre-processed before being 
decomposed, with the auto-power spectral densities (APSD) and cross-power spectral densities 
(CPSD) being calculated and used, so as to align with real plant readings.  

 

This sparse volumetric representation was then fed as input to an extended 3-D, densely connected, 
CNN, where the classification and regression tasks were performed through the previously described 
architecture, with extensions made for the greater number of classification tasks. Densely connected 
3-D CNNs were implemented and used in this case, due to their ability to allow for the greater flow 
of information / gradients throughout the model architecture, resulting in a greater transportation of 
knowledge of the high and low-level features extracted by the network.  

 

Overall, this approach achieved highly accurate classification results, performing similarly to the 
previously described ones, while classifying in more perturbation types, and regressing to a MAE of 
≈0.3 coordinate positions or ≈4cm within the ≈4m x 4m x 4m core volume. Please note that all of 
these results were achieved with just 56 core detectors strategically spatially placed within the core, 
solidifying the capabilities of machine learning techniques to unfold reactor transfer functions from 
limited core information. 
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 Time Domain 

Signals produced in the time domain were provided in a successive way, by increasing the number 
of scenarios and the complexity of the scenarios. The first set of data included 100 seconds of 
simulated neutron flux readings from 48 in-core detectors and 8 ex-core detectors. The readings 
were measured at a sampling rate of 10 Hz producing 56 vectors (one per detector) of length 10001 
time-steps for a given scenario. The format of these signals was replicated across all time series 
data. It provided a total of fifteen scenarios each of which with the above mentioned 56x10001 
format; these scenarios contained noise induced from 5x5 central fuel assembly vibrations, coolant 
flow fluctuations, and coolant temperature fluctuations. The fifteen scenarios included vibrations with 
differing modes, amplitudes, and then combinations of scenarios. A table of these combinations is 
shown in Table 3. 

  

The signals first underwent signal re-sampling to reduce their length into more appropriate sizes, 
while augmenting the signals to produce more training data. The procedure involved the application 
of sliding windows of 100 time-steps in width and step strides of 5 time-steps. Furthermore, these 
signals were corrupted with the addition of white Gaussian noise at signal-to-noise-ratios 5 and 10; 
the intuition behind this was to test the sensitivity of our model to noisy signals. 

 

Given the sequential nature of the data, recurrent neural networks (RNN) were chosen with the 
premise to extract meaningful temporal features from the signals. RNNs are a special kind of neural 
network designed specifically for sequential information, using learnable memory gates to extract 
information with relevance to previously seen time-steps. More specifically, long short-term memory 
(LSTM) RNNs have been implemented for their known ability to model long-term dependencies 
within the lengthy 100 time-step signals.  

 

To extract meaningful representations from the signals, two stacked LSTM layers had been 
implemented, each comprising of 512 neurons. The LSTM took as input one 100 time-step signal 
from one detector at a time, aiming to classify the type of perturbation. Given that the scenarios 
contained combinations of perturbations, the model aimed to classify each perturbation individually, 
resulting in a multi-class, multi-label problem.  

 

In the performed experiments, the LSTM model demonstrated a high classification accuracy of 97% 
on the clean signals, 81% on signals corrupted with SNR=10 and 77% on signals corrupted with 
SNR=5. Please note, these classification results are for one second of detector readings at one given 
detector location. These results illustrate the potential of machine learning to unfold reactor transfer 
functions within the time domain.  

 

Following this, we were provided with a greater number of simulation scenarios, increasing the 
number to a total of twenty-seven different scenarios, including those from the previous case. The 
new scenarios included a vibration of the central cluster of fuel assemblies in the Y-direction, in 
addition to further combinations of scenarios. The same network as aforementioned, has been 
employed resulting in an accuracy of 93%, 82% and 80% for clean signals, and for signals corrupted 
by noise at SNR=10, and SNR=5 respectively. 

 

The latest dataset provided the ability of localisation of fuel assembly vibrations; 5 scenarios have 
been generated with X-direction fuel assembly vibrations of differing modes and amplitudes, 
including combination with coolant flow and temperature fluctuations. Each scenario contained 193 
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different source locations – one for every (i, j) location within the simulated core mesh – each of 
which provided 100 second measurement readings as in previous scenarios. However, to localise 
the source, spatial relationships between detectors needed to be considered. Therefore, the LSTM 
was modified to receive as input a matrix of 56x100 inputs; all detectors for a 100 time-step window 
were fed into the LSTM-RNN for classification and regression of the i, j location.  

 

The output of the LSTM-RNN resembled that of the 3-D CNN for classification of the perturbation 
type and the regression of the coordinates for the perturbation source. The results show that on 
clean signals the classification accuracy is very high at 99%; this seems consistent with the fact that 
all detectors were utilized for fewer classification types. More importantly, the MAE of the localisation 
of the source is ≈1.3 coordinate positions between the prediction and the target, further showing the 
capability of unfolding within the time domain. 

 

 Time and Frequency Domain 

A combined approach fusing both data types has also been implemented. It is known that, due to 
the nature and differences of the simulators, the respective signals cannot be used completely 
interchangeably. Therefore, a shared feature representation has been utilized. Frequency domain 
signals were fed to the 3-D CNN, and time signals fed to a stacked LSTM-RNN, as was previously 
described. However, both outputs of these networks produce a 512-dimensional vector representing 
the initial signals. These output layers were then combined, fusing the representations of the two 
data domains. This layer was consequently fed to a layer responsible for classification of  all possible 
perturbation types across both domains. If a perturbation type was identified from the frequency 
domain, the network passed the 512-dimensional representation to a regression layer for the 
unfolding and subsequent localisation of the perturbation coordinates (i, j, k). 

 

Two papers and one poster presenting in more detail the above developments have been presented 
at the 2018 IEEE International Joint Conference on Neural networks (IJCNN/WCCI 2018, Brazil, July 
2018), at the 2018 IEEE Symposium Series in Computational Intelligence (SSCI 2018, India, 
November 2018) and FISA 2019 (FISA / EURADWASTE 2019, Romania, June 2019). More 
technical details and further rationale on the above developments are elaborated in the Key 
Developments, in Section 3 of this Deliverable. 

 

 Using CNNs and Wavelet Scaleograms   

 

Experiments have been also performed using features provided by the application of advanced 
signal processing methods to the neutron flux signals. A method has been developed which 
implements this through the application of the discrete wavelet transform (DWT) to the signals and 
the generation of corresponding wavelet scaleograms [14]. Subsequently, those scaleograms are 
provided to a CNN that learns to classify them to the different perturbation types. The method is 
described in detail in Section 3 below. A related paper has been recently submitted to the ICAAI 
Conference. 

 

The proposed methodology was evaluated on data generated by the SIMULATE-3K tool to model 
some basic types of perturbations occurring in nuclear reactors. The tool was built to simulate the 
steady state operation of a Pressurized Water Reactor under specific scenarios. These included 
phenomena such as fuel assembly vibrations (both alone and in groups), as well as coolant flow and 
temperature oscillations. Each of these was simulated for different frequencies and amplitudes.  
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A CNN architecture with 6 layers and around 2.5 million parameters was selected (as shown in 
Figure 11 of Section 3). Various experiments have been performed with clean and noisy signals. 
Results are presented which indicate the ability of the method, based on in-core (ex-core) detectors  
to classify with high accuracy, up to about 99 (83) % at SNR equal to 10, or 96 (78) % at SNR equal 
to 1.   

 

 Using parametric approaches and neural networks  

 

Three methods have been also used and compared for predicting anomalous neutron signals 
obtained by malfunctioning detectors, when dealing with time-domain generated signals.  These 
were the parametric Polynomial Approximation, the semi-parametric Splines and the non-parametric 
General Regression Neural Networks.  

 

The main target was to achieve a high level of detection accuracy, while minimizing the 
computational complexity of the used validation procedure. To this end, the minimum possible 
number of neutron noise signals was sought which – combined with the shortest time window – 
allowed swift, reliable and accurate anomaly source identification (classification and localization). 

 

Results are presented in Section 3 (shown in Tables 8-13). A paper presenting this method has been 
presented at the 2018 IEEE Symposium Series in Computational Intelligence (SSCI 2018, India, 
November 2018). 

 

2.3 Preliminary analysis of plant data and adaptation 

 

The work on preliminary analysis of plant data started in September 2018. The current research has 
focused on first attempts to use the above developments for the monitoring of real plant data 
provided via GRS. Within the next few months we will focus on our developments both in the time 
and frequency domain to adapt and transfer the acquired knowledge to real plant data. 
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3 Key Developments/Contributions 

This section outlines the key developments and contributions achieved within CORTEX WP3 Task 
3.3, following the descriptions made in Section 2. The key developments outline the technical details 
and the rationale behind the techniques that we developed and used in CORTEX. 

3.1 A Deep Learning Approach to Anomaly Detection in Nuclear Reactors   

 

The proposed developments provide a novel 2-D convolutional neural network for the classification 
of perturbation types and unfolding of the reactor transfer function for the localisation of the 
perturbation source. The work utilises simulated data provided by Chalmers in the frequency domain 
and proposes a transfer learning approach, clustering, and denoising methods for effective data 
analysis. These contributions were presented at the 2018 IEEE International Joint Conference on 
Neural networks (IJCNN/WCCI 2018, Brazil, July 2018) [ 5 ]. 

 

The contributions mainly focus on the use of 2-D convolutional neural networks for the unfolding of 
reactor transfer functions, allowing the classification of perturbation type and localisation of its source 
from generated simulations of the induced neutron noise (fluctuations of neutron flux). 

 

 Data Pre-Processing  

The data provided by CORE SIM is a 3-D representation of the induced neutron noise, considered 
as the ideal case where all voxels in the core volume contain readings, simulating a detector at every 
location. Moreover, the output is a clean signal only carrying the information provided by Dirac’s like 
perturbation. The simulation consists of the fast and thermal neutron responses of the same 
scenario, each in the form of a 3-D complex signal arrays of size 32x32x26, with each pair of volumes 
containing a perturbation of different types originating at differing coordinate points i, j, k. The dataset 
is comprised of 19552 instances per frequency (0.1, 1.0 and 10Hz). 

 

To effectively learn meaningful representations within the volume a conversion procedure was 
devised to unroll the volumes into a two-dimensional form, allowing for a more conventional input to 
neural networks and one that can utilize pre-trained networks. Furthermore, due to the nature of the 
complex signals and the limitations of deep neural networks to process these signals, each volume 
was first decomposed into its amplitude and phase. Next, each of these volumes were independently 
‘unrolled’ using the proposed conversion procedure. The unrolling involved the concatenation of axial 
slices into the same plane, resulting in a 2-D array containing each z-axial slice of the core volume, 
where the amplitude of each point refers to the amplitude of the induced neutron noise, the output 
of this procedure can be seen in Figure 1. 
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Figure 1. 2-D array output of the unrolling procedure. (a) Signal Phase (b) Signal Amplitude 

 

To add a further level of realism and complication to the signals, each had been corrupted in two 
manners, the first through the addition of noise and the second by the removal of data. The intuition 
behind the latter is to mimic that in reality only a small number of detectors were present within the 
core volume, therefore removing information is key to simulate real-world conditions. 

 

For the former method of corruption, white Gaussian noise (WGN) had been added to each signal 
at two distinct signal-to-noise-ratios (SNR), SNR=1 and SNR=3. To ensure that the perturbation had 
been influenced, the noise had been added depth-wise to each of the 26 slices of the core volume. 
Obscuring the signals through removal had also been achieved in a similar depth-wise manner, this 
involved setting a percentage of random data points to zero, removing it as input. Three different 
percentages of data were kept for training, 25%, 50%, and 75%, noting this had been applied before 
the training procedure ensuring that the same data points were consistently removed through 
training. 

 

Finally, each of the inputs underwent a volumetric splitting procedure to obtain labels of a well-
defined region rather than the original finer voxel representation. This was achieved by 
compartmentalizing the 32x32x26 volume into either twelve or forty-eight subsections by a factor of 
2x2x3 or 4x4x3 respectively. These newly produced subsections were then utilized as the labels for 
the i, j, k localisation of the perturbation source. This can be illustrated in Figure 2. 

 

 

Figure 2. Visualisation of the volumetric splitting. Left: Twelve Voxels. Right: Forty-eight Voxels 
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 2-D Convolutional Neural Network  

Convolutional neural networks are a specialised type of DNN designed to perform automatic feature 
extraction on known grid-like topologies. This is achieved through a series of volume-wise 
convolutions and multiplications, followed by pooling to reduce the computational complexity of the 
increased number of volumetric channels produced by CNNs. Typically, CNNs receive as input 
image-like structures of width x height x depth, where depth is usually 3 for each of the RGB channels 
of an image. To mimic this the unfolding procedure was applied as aforementioned, this adds the 
further advantage of utilising large-scale image datasets to pretrain a network to learn high-level 
features and transfer this knowledge to the CORTEX datasets.  

 

To input into the CNN, the fast and thermal components of amplitude and phase were concatenated 
together to preserve the integrity of the data. The three-channel input consequently consisted of the 
concatenated amplitude as the first and second channel (both identical) with the third being the 
concatenated phase. Finally, the image was zero-padded to the target dimensions of 299x299x3 to 
correctly allow transferable features from the CNN model. 

 

The CNN architecture was chosen to be that of the Inception-v3 [ 7 ], due to its high capability to 
transferable parameters ratio, including its known effectiveness to perform well on a variety of image-
based tasks. Furthermore, a transfer learning approach was implemented where the Inception-v3 
architecture had been pre-trained on a large-scale image dataset, ImageNet. This is of specific 
interest as the features learnt from pretraining can be transferred to the CORTEX data, potentially 
allowing for faster training with greater performance due to the transfer of learnt general features 
(weights). The fine-tuning procedure consisted of feeding the three-channel signal through the 
Inception-v3 model until the last pooling layer, where a 2048-dimensional vector representation was 
extracted. This representation was fed to a fully connected network outputting to a SoftMax 
classification layer of twelve or forty-eight nodes representing each of the volumetric splitting 
resolutions previously described.  

 

The best performance was achieved with a two layer fully-connected network fed from the pre-
trained Inception-v3 model, the results of which can be seen in Table 1. These hidden layers 
consisted of 2048 units each with Rectified Linear Units (ReLU) activations: 

 

                                                          𝑅𝑒𝐿𝑈: → 𝑓(𝑥) = max(0, 𝑥)                                                               (1) 

    

Furthermore, the regularizing technique Dropout had been implemented to mitigate the effect of 
overfitting in the network. Dropout involves the randomly setting of neurons in the hidden layer of the 
fully-connected network to 0.0, this reduces the learning capacity of the network. In the case of the 
proposed network, the probability of keeping neurons in each hidden layer (𝑛: ≠ 0) was set to 𝑃(𝑛) =
0.8. Finally, to deal with the imbalance of classes when splitting the volume into subsections, it was 
chosen to employ the use of a weighted categorical cross entropy loss function: 

 

                                                          ℒ(𝑥, 𝑥) =  − ∑ 𝜔𝑗𝑥 log (𝑥)𝐽
𝑗=1                                                             (2) 

where: 

                                                          𝜔𝑗 =
max ({𝑁𝑖}𝑖=[1:𝐽])

𝑁𝑗
                                                                                       (3) 
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This loss encourages the model to focus on under-represented classes improving performance. The 

term 𝜔𝑗 is a weight coefficient for the 𝑗𝑡ℎ of all classes 𝐽 as a function of the proportion of instances 

𝑁𝑗 compared to the most densely populated class. 

Table 1 Results of the CNN Inception-v3 Unfolding 

Classes Sensors (%) Signal Train/Val/Test 
(%) 

Pretrained 
Accuracy (%) 

Scratch 
Accuracy (%) 

12 

100 Clean 75-10-15 97.0 99.9 

100 SNR=3 75-10-15 88.7 99.9 

100 SNR=1 75-10-15 84.2 98.0 

25 Clean 50-20-30 93.7 99.9 

25 Clean 25-15-60 93.4 98.4 

25 SNR=1 50-20-30 76.6 94.1 

48 

100 Clean 75-10-15 92.3 99.9 

100 SNR=1 75-10-15 72.9 92.5 

25 Clean 50-20-30 90.3 97.8 

25 Clean 25-15-60 85.1 91.1 

25 SNR=1 50-20-30 65.2 82.3 

 

The results of the CNN unfolding to volumetric subsections for different combinations of signal 
obscuring and dataset size can be seen in Table 1. The highest performance was achieved on the 
twelve class subsections training the CNN from scratch reaching 99.9% accuracy, the pretrained 
CNN performed worse with 97.0% accuracy, this pattern was also the case for the forty-eight 
subsections. These results may be caused by the features being extracted in pre-training, where 
they could be seen as irrelevant to the tasks at hand, potentially ‘confusing’ the network with non-
task dependent information. Furthermore, it is seen that the CNN based unfolding performs well with 
only a 1.5% drop in performance despite reducing the training set size from 75% to 25% of the total 
dataset size for the twelve classes of clean signals. Furthermore, in the forty-eight class problem the 
addition of noise proved the network to be robust, with the clean signals and 25% of sensors 
achieving 97.8%, with the SNR=1 resulting in 82.3% accuracy.  

 

 Localisation through Clustering  

The generation of labels from the dataset involved the volumetric splitting as described previously 
which decreased the granularity of the volume, providing more instances per class resulting in a 
more effective training set. However, it is important for fine localisation to increase granularity, but at 
the trade-off of less instances per class. This trade-off resulted in a methodology to artificially 
increase the resolution of the volume, clustering the predicted subsection to further increase the 
granularity of the prediction. 
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The methodology takes advantage of latent variable representations of the input volume already 
extracted from the previously proposed 2-D CNN. The latent variable is the output of the CNN 
architecture after the last average pooling layer (a 2048-dimensional vector), and has the advantage 
of using learnt feature representations, which conveniently also are far smaller in size in comparison 
to the much larger 299x299x3 raw input.  

 

To elaborate, consider the case of increasing the resolution from twelve volumetric subsections to 
forty-eight using clustering. Each training image was fed to the CNN aforementioned to compute the 
2048-dimensional representation. Each representation vector referring to a corresponding voxel 
location of the twelve subsections is then clustered into one of four through the use of k-means++ 
clustering algorithm, increasing the granularity from twelve to forty-eight sub-clusters. Finally, the 
centroids of these forty-eight sub-clusters were calculated. To classify during testing, all data were 
fed to the trained CNN and their respective representations were classified using a nearest-
neighbour method to one of the forty-eight centroids. 

 

Formally, given the extracted 𝑁[𝐿−1]-dimensional activations (�⃗�1, �⃗�2, … , �⃗�𝑛), from the last fully-
connected layer 𝐿 − 1 (of 𝐿 layers), as latent variable representations of 𝑛 total input images, the 
objective function 

                                                          arg min
𝐶

∑ ∑ ‖𝑥 −  𝜇𝑖‖2
𝒙∈𝐶𝑖

𝑘
𝑖=1                                                     (4)                                         

 

clusters them into 𝑘 sets 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘} as to minimise within-cluster 𝐿2 norms. In the above case 

the 𝑁[𝐿−1]-dimensional activations come from the output of the last pooling layer of the CNN. 

 

Finally, the k-means++ [ 8 ] seeding strategy was used, rather than randomly sampling the initial 
centroids as in the standard k-means approach, leading to faster convergence and generally better 
results [ 8 ]. Furthermore, visualisations of the clustering can be seen in Figure 3 showing the final 
clusters from the 2048-dimensional feature representation. These visualisations were achieved 
using t-Stochastic Neighbour Embedding (t-SNE) as it provides accurate structure revealing maps 
of high-dimensional data in lower dimensions, such as in 2D or 3D. 

 

Figure 3. t-SNE visualisation of k-means (k = 4) of the seventh block; the obtained training set 
clusters are (a-b) and the test set predictions are shown in (c-d) 

 

The results of clustering to a finer granularity for sub-clusters per volumetric subsection were 
promising achieving 95.3% test accuracy when increasing the resolution from twelve to forty-eight 
classes. This indicates the promise for finer prediction, with K-NN approach being implemented 
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further increasing granularity to the original 32x32x26 resolution. This approach achieved an 

impressive localisation error of 1.05 MSE or average Euclidian distance (𝐿2 norm) at 𝑘 = 6. This 
means an average error of just over 1.0 coordinate point in the reactor when localising the source (i, 
j, k). 

 

 Denoising Autoencoder 

Autoencoders are a type of neural network designed to copy its input to an output instead of to a 
particular label. Autoencoders learn an identity function of the input to help learn additional features 
within the network, denoising autoencoders (DAE) on the other hand are forced to learn a denoising 
function of the corrupted input to a target output. This property is especially useful for the denoising 
and reconstruction of signal that have been corrupted, providing clean signals to model of the types 
previously described.  

 

The DAE is constructed of an encoder, to compress and encode the corrupted input 𝑓(𝑥), and a 
decoder for up-sampling and reconstructing the input, forcing the network to learn useful properties 
of the input. The DAE is made of five convolutional layers, four of which have 32 (3x3) filters and 
ReLU activations. The final convolutional layer includes 3 filters of size 3x3 and a sigmoid (σ) 
activation function to reconstruct an image of identical dimensions to the input. Moreover, two max 
pooling layers of filter size 2x2 were used to reduce the representation and finally produce a 
75x75x32 encoding layer. The decoder follows the same pattern but in reverse, as to up-sample the 
encoding volume back to the input size. A diagram of the proposed DAE network can be seen in 
Figure 4. 

 

Figure 4. Depiction of DAE architecture used to solve the corrupted signal reconstruction problem 

 

The network was trained to minimise the mean squared error penalising the network relative to how 
similar the reconstructed input 𝑔(𝑓(𝑥)) is to the original input  𝑥. 

 

                                                       𝑚𝑠𝑒 =
1

𝑛
∑ (𝑥𝑖 − 𝑔(𝑓(𝑥𝑖))2𝑛

𝑖=1                                                        (5) 

Experiments on the DAE were performed on 25%, 50% and 75% of available sensors corrupted with 
SNR=1 and performance measured using normalised cross correlation (NCC), providing a sub-pixel 
image matching evaluation precision (See 6.1.1 for details). The average NCC of the reconstruction 
was 0.991 in the worst case, where -1.0 NCC means the input and reconstruction are completely 
different, with +1.0 NCC representing a complete match. Results of all experiments of the DAE can 
be seen in Table 2 and visualisations in 6.1.2.  
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Table 2. Settings and results of the DAE experiments 

Deep-CNN Autoencoder 

Sensors Signal Train/Test 

Normalised Cross-Correlation (NCC) 

Clean vs Corrupted 
Clean vs 

Reconstructed 

75% Clean 25% / 75% 0.77 0.995 

50% Clean 25% / 75% 0.57 0.995 

25% Clean 25% / 75% 0.37 0.993 

25% SNR=1 25% / 75% 0.36 0.991 

 

3.2 Towards a Deep Unified Framework for Nuclear Reactor Perturbation 
Analysis 

 

The developments made outline a 3-D convolutional neural network approach for the unfolding of 
the reactor transfer function in the frequency domain, a recurrent neural network for classification of 
perturbation type in the time domain, and a unified approach aiming to combine the two domains to 
form a common shared representation. The work in [ 6 ] was presented at the 2018 IEEE Symposium 
Series in Computational Intelligence (SSCI 2018, India, November 2018). 

 

 Data Pre-Processing  

3.2.1.1 Frequency Domain 

The data generated in the frequency domain comes in the form of 3-D volumes, produced by 
Chalmers using the CORE SIM simulation software. The complex 32x32x26 signal volumes, are 
comprised of fast and thermal groups of the same scenario, each containing one perturbation type 
(absorber of variable strength, propagating perturbation originating from the lowest axial position – 
referred to as type 1 hereafter, or randomly sampled from all axial positions – referred to as type 2 
in the following) originating at one voxel location (i, j, k), identically as previously described. Similarly 
to previously developments, the complex signals were decomposed into to their amplitude and phase 
components, due to complex signals not being easily implemented into DNNs.  

 

However, for the proposed method, the 3-D volumes were to be kept in their volumetric state where 
the four volumes of 32x32x26 (fast, thermal, phase, and amplitude) are concatenated together to 
form a 64x64x26 3-D volume for input. Furthermore, to add a level of realism to the input, the volume 
was first corrupted through the removal of information to corrupt the signal. This corruption was 
achieved through the application of a 32x32 mask applied in a depth-wise manner along the 26 
slices. The mask removes information (by multiplying by zero) at two ratios, keeping 5% and 20% of 
the initial measurements of the volume. Finally, as a last step the 64x64x26 volume was zero padded 
to 64x64x32 for manipulation convenience. 
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3.2.1.2 Time Domain 

Data generated in the time domain through the use of SIMULATE-3K by PSI were given in the form 
of fifteen scenarios. Each scenario is presented as 100 second readings sampled at 10Hz for forty-
eight in-core detectors and eight ex-core detectors, resulting in a 56x10001 array of neutron flux 
readings of a given perturbation. The perturbation types and their given properties can be seen in 
Table 3.  

 

Given the limited amount of data presented, it was appropriate to perform data augmentation to 
increase data samples. This augmentation was achieved through re-sampling via a sliding window 
approach, where each window had a width of 100 time-steps (one second) and stride 5 time-steps 
producing 1980 vectors of 100 time-steps per detector, per scenario. Furthermore, to explore the 
effect of noise on the proposed network, white Gaussian noise has been added at two signal-to-
noise-ratios, SNR=10 and SNR=5. 

 

Finally, the simulations are provided with the inclusion of combinations of different scenarios, 
therefore to identify the individual perturbations a one-hot encoding approach has been 
implemented. This encoding seen in Table 3 as ‘ID’ identifies the classes via a separate binary digit, 
noting amplitude variations of perturbations are considered of the same classification. 

 

Table 3. Scenarios provided in deliverables 2018.04.12-Version v2 and 2018.06.04-Version v2 with 
their assigned Binary Class ID for multi-label classification 

Scenario Perturbation Type Frequency Amplitude Binary Class ID 

1 
2 

5x5 Cluster FAs (X) 
5x5 Cluster FAs (X) 

White Noise 
White Noise 

1mm 
0.5mm 

1 0 0 0 
1 0 0 0 

3 
4 

5x5 Cluster FAs (X) 
5x5 Cluster FAs (X) 

1.5Hz 
1.5Hz 

1mm 
0.5mm 

0 1 0 0 
0 1 0 0 

5 Inlet Coolant Temp Random ±1℃ 0 0 1 0 

6 Inlet Coolant Flow Random ±1% 0 0 0 1 

7 Inlet Coolant Temp & Inlet 
Coolant Flow 

Random ±1℃ & ±1% 0 0 1 1 

8 
 

9 

5x5 Cluster FAs (X) & Inlet 
Coolant Temp 

White Noise & 
Random 

1mm & ±1℃ 
 

0.5mm & ±1℃ 

 
1 0 1 0 

10 
 

11 

5x5 Cluster FAs (X) & Inlet 
Coolant Temp 

1.5Hz & Random 1mm & ±1℃ 
 

0.5mm & ±1℃ 

 
0 1 1 0 

12 
 

13 

5x5 Cluster FAs (X) & Inlet 
Coolant Flow 

White Noise & 
Random 

1mm & ±1% 
 

0.5mm & ±1% 

 
1 0 0 1 

14 
 

15 

5x5 Cluster FAs (X) & Inlet 
Coolant Flow 

1.5Hz & Random 1mm & ±1% 
 

0.5mm & ±1% 

 
0 1 0 1 
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 3-D CNN  

Three-dimensional CNNs operate to extract spatial information across a 3-D space using the same 
principles as aforementioned in the 2-D case. 3-D CNNs utilise volume-wise convolutions and 
multiplications with 3-D kernels resulting in a set of 3-D filters learnt to capture spatial patterns, a 
formal description is given in 6.2.1. The choice to implement a 3-D network was the next step to 
achieve localisation of the perturbation source to the resolution of the simulated core. Additionally, it 
makes intuitive sense to utilise the volume as a whole for unfolding the reactor transfer function 
rather than per-slice. 

 

The proposed network is comprised of seven 3-D CNN layers, each CNN layer is followed by a batch 
normalisation layer to normalise the output for faster training, and a ReLU activation to limit the 
values between 0 and 1. The network itself follows a conventional VGG structure in [ 9 ] with the 
addition of additional tricks to increase capability. One of which was the implementation of 1x1x1 
convolutions, these convolutions known as Bottleneck layers are introduced between the 
conventional 3x3x3 layers. This reduces the number of parameters in the network incurred by the 3-
D convolutions and increases the complexity, maintaining an appropriately sized model for faster 
training. Moreover, Max Pooling with 2x2x2 kernels down-samples the input to smaller dimensions 
for computational efficiency. Finally, a Global Average Pooling (GAP) layer produces a 512-
dimensional vector representation as output, averaging over each feature map per channel. A 
depiction of this model can be seen in Figure 6. 

 

The 512-dimensional representations produced by the above CNN were fed to two separate fully-
connected layers, one for the multi-label classification of the perturbation type with three sigmoid 
non-linear units. The second for the regression of perturbation source coordinates containing three 
linear units one for each of the i, j, k coordinates. For the combined perturbation case, the three 
sigmoid units represent the seven possible classes denoted by one-hot encoded binary units as 

 

                                                         𝐶 = {001, 010, 100,101,011,110,111}                                       (6) 

 

where 𝐶 contained all combinations of localised (100), travelling type 1(010), and travelling type 
2(001) previously described. In the case of implementation, the three linear units for regression 
become nine to account for the possibility that all three perturbations may be present at once. 

 

The 3-D convolutional network was trained by the means of minimising the error of multiple 
objectives or tasks (classification and localisation), known as a multi-task problem. A linear weighted 
sum of the individual losses of the tasks is performed, weighting each loss by a coefficient 𝜆𝑖 to 
control the dominance of each task loss over the gradient. This multi-task optimisation objective is 
minimised with respect to 𝑾 where the loss for classification is the negative log-likelihood, and for 

coordinate regression is the L2 loss. 𝑃 and 𝐶 denote the number of perturbation types and location 
coordinates respectively, with 𝜆1, 𝜆2 being tuned weight coefficients for each loss. 

 

       ℒ(𝒟; 𝑾, 𝜆1, 𝜆2) = −
1

𝑁
∑ [

𝜆1

𝑃
∑ [𝑦1

𝑗
log(�̂�1

𝑗
) + (1 − 𝑦1

𝑗
) log(1 − �̂�1

𝑗
)] + −

𝜆2

𝐶
∑ ‖𝑦2

𝑐 − �̂�2
𝑐‖2𝐶

𝑐=1
𝑃
𝑗=1 ]𝑖

𝑁
𝑖=1  (7) 

 

The results obtained in Table 4 were achieved with 𝜆1 = 0.3, 𝜆2 = 0.7 for classification and regression 
respectively. These values were obtained through a hyper parameter grid search which can be seen 
in 6.2.2, the network was trained as previously described only adjusting the values of  𝜆1, 𝜆2. The 
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training procedure was optimised using the Adam optimizer with default parameters and with a batch 
size of 32. 

 

Table 4. Results of the Frequency Domain 3D CNN experiment for perturbation classification and 
localisation regression. (*) Marks combined perturbation scenarios 

Sensors 

(%) 

Train/Valid/Test 

(%) 

Classification 

Accuracy (%) 

(i, j, k) Regression 

MAE MSE 

20 60 / 15 / 25 99.75±0.09 0.2528±0.03 0.1347±0.02 

20 25 / 15 / 60 99.12±0.17 0.4221±0.05 0.4152±0.07 

20 15 / 25 / 60 98.62±0.22 0.5886±0.05 0.8174±0.12 

5 60 / 15 / 25 99.32±0.18 0.326±0.05 0.2086±0.04 

5 25 / 15 / 60 98.34±0.22 0.4818±0.05 0.6044±0.08 

5 15 / 25 / 60 97.27±0.54 0.689±0.1 1.0749±0.25 

20* 60 / 15 / 25 99.82±0.05 0.5602±0.04 1.6036±0.15 

20* 25 / 15 / 60 99.56±0.07 0.8942±0.04 3.5739±0.16 

20* 15 / 25 / 60 99.44±0.08 0.9635±0.06 4.2814±0.19 

5* 60 / 15 / 25 99.47±0.03 0.8809±0.04 3.4424±0.16 

5* 25 / 15 / 60 98.33±0.24 0.5001±0.04 0.6381±0.08 

5* 15 / 25 / 60 97.15±0.15 1.9528±0.11 11.902±0.66 

 

As shown in Table 4 the network achieved high classification performance with 99.75%±0.09 and 
97.15%±0.15 accuracy in the best case and worst case respectively. For regression the difference 
between the best case of 0.2528 ± 0.03 (MAE), 0.1347±0.02 (MSE) and the worst case of 1.95±0.11 
(MAE), 11.90±0.66 (MSE) shows that the introduction of the combined perturbations impacted the 
performance of the network. Whereas, the classification task was seen to be robust to reduction in 
available sensors and introduction of combinations, only differing by ≈2.60%. However, in the best 
case scenario the coordinate prediction was only ≈0.25 coordinate positions from the target on 
average, showing excellent regression at the full core resolution. Overall, the results show that deep 
learning approaches are again able to accurately unfold the reactor transfer function to a high-
resolution volume whilst still achieving good results in the presence of multiple perturbations per 
input. 

 

 LSTM-RNN  

Recurrent neural networks (RNNs) are different specialised type of DNN, designed to learn temporal 
relationships within data. Given the sequential nature of the time-series data provided by PSI, the 
use of RNNs are particularly useful for learning feature of the pre-processed 100 time-step signals. 
In particular, long short-term memory (LSTM) [ 10 ] – a type of RNN unit – were chosen to be 
implemented in this proposed work due to its high-capability to learn long range dependencies within 
data, ideal for the lengthy 100 time-step signals. Specifics on implementation and technical details 
of LSTM-RNNs can be found in the original paper [ 10 ] or [ 6 ]. 
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The LSTM network were constructed of two stacked layers with each LSTM cell containing 512 
neurons, this can be visually depicted in Figure 6. The stacking of LSTM layers allows for an 
increased representational capacity, allowing for a greater potential of learning meaningful 
representations from the signals. The network outputs from the LSTM in a similar fashion to the 
previously described 3-D CNN where a 512-dimensional representational vector of the input signal 
is fed to a four non-linear sigmoid layer for classification. Each of the four sigmoid units represents 
one of the possible classification classes seen in Table 3 in the ID section for binary classification. 

 

The time series data generated and processed as in section 3.2.1.2 Time Domain, contains 
scenarios which are comprised of multiple perturbations per signal, these scenarios as with the 3-D 
instance above are to be classified for all perturbation types per input. This task of multiple 
classifications per input is known as multi-label classification. The proposed approach implements a 
binary cross entropy loss / negative log-likelihood criterion to predict a multiple class per given input. 
The following criterion was minimised to achieve such a result 

 

                                         ℒ(𝑦, �̂�) = −
1

𝑃𝑁
∑ ∑ [𝑦𝑗 log(�̂�𝑗) + (1 − 𝑦𝑗) log(1 − �̂�𝑗)]𝑁

𝑖=1 𝑖
𝑃
𝑗=1                      (8) 

 

where 𝑃 is the number of sigmoid units used as output for the multi-label classification task, and 𝑁 
is the number of samples in a batch.  

 

Using the above LSTM-RNN architecture, individual detector measurements of 100 time-steps in 
length, or one second (1x100) were utilised to detect the presence of each of the fifteen scenarios. 
Moreover, the split of train, validation and test sets were constructed by systematically splitting 
specific detectors. The intuition behind this choice was to ensure that the same scenario from the 
same detector was not present across sets, therefore not invalidating the results. The layout of which 
detectors were chosen to reside in each set is shown in Figure 5 below. Hyperparameters of the 
network were tuned experimentally, optimised with RMSprop, and batch size of 32.  

 

 

Figure 5. Description of detector locations for the signals used in training, validation and test of deep 
LSTM network model in classifying different types and combinations of time domain perturbations 

 

The results of this time series classification were excellent, achieving 97% classification accuracy 
for clean signals with no corruption for just one detector reading per input. Continuing, the addition 
of noise at SNR=10 and SNR=5 resulted in good results, with 81% and 77% classification accuracy 
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respectively. These results further show the effectiveness of machine learning and deep learning 
approaches for the effective unfolding of reactor functions, even in the time domain per detector. 

 

 Combined Approach 

The combination of differing data domains is of great interest to learn as much as possible from a 
limited amount of data, moreover, inputting in different domains each has their specific benefits 
contributing to a better unfolding procedure. The work proposed outlines a unified approach to merge 
learning representations from each domain in a manner illustrated in Figure 6. It is essential to first 
understand and clarify that the data generated from the two different simulation software; CORE SIM 
and SIMULATE-3K, both model different reactor cores in the work reported in this document. This 
results in an incompatibility between the data samples, meaning they cannot be fused early in the 
learning process. Nevertheless, the developed methodology will be capable of handling simulation 
data from different domains but corresponding to the same reactor core, when such simulation data 
are available. 

 

In order to cope with simulation data from different domains, it was chosen to concatenate the 
outputs of each of the previously described models to form a single representation vector containing 
the representations from both domains. This approach was made simpler for the fact that both 
networks output their feature vectors as 512-dimensional representations, thus making the process 
simpler. Additionally, the classification layer of the network fused both the RNN and CNN 
classification layers together forming a seven-unit non-linear sigmoid classification layer to identify 
the occurrence of a given class of both domains. The time-domain data also did not have the ability 
to be localised, meaning that a procedure was implemented to pass the 512-dimensional 
representation to a nine-unit linear output layer to regress coordinate when a perturbation type was 
identified from the frequency domain. This approach can be seen by the XOR gate in Figure 6. 

 

 

Figure 6. Unified framework for time and frequency domain perturbation type classification and 
location regression, using a LSTM network at the top for time domain signals and a 3D CNN below 

for frequency domain signals; both networks output 512 dimensional latent variable representations 
of their inputs, with their flow being controlled by XOR gate logic and a switch (which is activated for 

perturbation coordinate regression in the frequency domain) 

 

The resulting implementation utilises shared latent variables extracted from each of the given 
architectures for the individual domains. Although not entirely unifying, this approach provides the 
grounding for the cases when core simulations or plant data in different domains contains readings 
from the same core physics.  
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3.3 3D Convolutional and Recurrent Neural Networks for Reactor Perturbation 
Unfolding and Anomaly Detection 

 

This work proposes a DNN for the classification and localisation of core perturbations in the 
frequency domain, in addition to an extended dataset in the time-domain. The proposed method also 
utilises the large-scale dataset with an increased core resolution and number of perturbation types, 
resulting in a larger challenge to unfold the reactor functions. The work presented in this section was 
presented at the FISA 2019 conference as part of the FISA/EURADWASTE PhD poster competition 
(FISA 2019, 9th European Commission Conference on EURATOM Research and Training in Safety 
of Nuclear Reactors, Romania, June 2019) [ 12 ]. 

 

 Large-Scale Data Handling 

We have received a new set of outputs in the frequency domain produced in CORE SIM+ by 
Chalmers, resulting in a largely increased number of perturbation types (nine types, including modes 
of vibration, compared to former three types) and source locations. Additionally, the data generated 
is of a finer resolution compared to the previously deliverable, presented in 32x32x34 volumes of 
complex signals. As with the previous developments the complex signals have been decomposed 
into their amplitude and phase components with each of these volumes being concatenated on a 
new fourth dimension to produce a 2x32x32x34 input for the DNN. 

 

The initial challenge of this dataset is the overall size and computation resources to process the 
large amounts of generated data (upwards of 3TB). To ensure that developments could be made in 
a timely manner and that storage of processed data was not of imminent issue, ‘on-line’ scripts were 
developed based on those delivered by Chalmers. These scripts utilise the computational 
components and power available for machine learning, more specifically, the multiple-processor and 
graphics processing unit implementation for faster processing. These developed features allow for 
the generated signals to be pre-processed ‘on-the-fly’ rather than being processed and then stored.  

 

Pre-processing of the generated data follows similar principles as was described above. Firstly, the 
signals were decomposed into their amplitude and phase components; however, only the thermal 
neutron group has been utilised, so as to reduce computational load. The exclusion of the fast group 
was chosen, as it was seen to provide no advantage to the training of the DNN compared to the 
thermal group alone. In addition, neutron detectors are mostly sensitive to the thermal neutron flux 
only. Furthermore, to provide a level of realism to the experimentations, only forty-eight in-core 
detectors and eight ex-core detectors have been used, represented by their voxel locations within 
the core volume. These locations have been systematically chosen to represent the positions of 
where the detectors reside in within the core simulated in CORE SIM+. Lastly, the APSD and CPSD 
of these fifty-six detector readings were calculated using the modified scripts; this aligns the readings 
to be closer to those of real plant readings. The now processed APSD and CPSD of the fifty-six 
detectors per amplitude and phase is then fed to the network, as an 2x32x32x34 volume of data. 

 

 Densely Connected 3-D CNN 

Dense networks [ 11 ] are a powerful convolutional architecture, utilising a number of machine 
learning methods to more effectively learn and transport input representations through the network. 
The main advantage being the increased flow of information / gradients through the use of jump 
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connections between layers, implemented by concatenating feature maps from one layer to all 
preceding layers. More formally,  

 

                                                        𝑋ℓ = 𝐻ℓ([𝑋1, 𝑋2, … , 𝑋ℓ−1])                                                           (9) 

 

where a  ℓ𝑡ℎ hidden layer  𝐻ℓ, receives as input the feature-maps of all preceding hidden layers, 
resulting in 𝑋ℓ. In the context of this contribution, this allows for high and low-level spatial features to 
be more appropriately shared between layers contributing more to the learning of different features. 

 

The proposed network adapts the idea of dense connections to be utilised with 3-D convolutions, 
creating a network construction illustrated by Figure 7 below. Each convolutional layer was followed 
by Batch normalisation and ReLU activation with the last layer implemented being Global Average 
Pooling (GAP), outputting a 256-dimensional representation of the input, two separate fully-
connected layers are used as output of the network. The first is a nine-unit non-linear sigmoid layer 
for the classification of the nine perturbation types, the latter is a three-unit linear layer for the 
regression of the (i, j, k) coordinates of the perturbation source.  

 

Figure 7. Adapted densely connected 3-D CNN for classification and regression of perturbation types 
and source from a simulated core volume; the dense block is shown below 

 

This proposed network was trained to minimise the same multi-task loss function described in 3.2.2, 
with the Adam optimiser using default parameters. Furthermore, the data had been split into 60%, 
15% and 25%, source location wise per frequency for the train, validation, and test sets respectively. 
Finally, a batch size of 32 was used with the same weight coefficients for the multi-task loss function 
of 𝜆1 = 0.3, 𝜆2 = 0.7. The experimentation results show that the increased number of perturbation 
types can be identified effectively with 99.9% and 99.85% accuracy for the full volume and the forty-
eight in-core detectors. Additionally, the performance of the dense connections can be seen in the 
regression tasks, providing a low error, given the increased granularity of the core model. For just 
forty-eight detector readings, the mean absolute error (MAE) and mean squared error (MSE) for the 
localisation of the perturbation source were 0.2954 and 0.3171 respectively. This equates to roughly 
≈4cm error in a (4m x 4m x 4m) volume. 

 

 Time Domain Extension  

Following the success of the time-series approach developed in 3.2.3, an extension was derived for 
the application on the new provided dataset. This dataset referred to twelve additional scenarios, 
compared to the previous cases, creating a total of twenty-seven scenarios. These new scenarios 
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contain a new Y-direction fuel assembly vibration and further combinations of scenarios. This can 
be seen, including the associated values, in Table 5. 

Table 5. All Scenarios with their assigned Binary Class ID for multi-label classification 

Scenario Perturbation Type Frequency Amplitude Binary Class ID 

1 
 

2 

5x5 Cluster FAs (X) & 
Inlet Coolant Temp & 

Inlet Coolant Flow 

White Noise & Random 
& Random 

1mm & ±1℃ & 
±1% 

 
0.5mm & ±1℃ & ±1% 

1 0 1 1 0 0 

3 
 

4 

5x5 Cluster FAs (X) & 
Inlet Coolant Temp & 

Inlet Coolant Flow 

1.5Hz & Random & 
Random 

1mm & ±1℃ & 
±1% 

 
0.5mm & ±1℃ & ±1% 

1 0 1 1 0 0 

5 
6 

5x5 Cluster FAs (Y) 
5x5 Cluster FAs (Y) 

White Noise 
White Noise 

1mm 
0.5mm 

0 0 0 0 1 0 
0 0 0 0 1 0 

7 
8 

5x5 Cluster FAs (Y) 
5x5 Cluster FAs (Y) 

1.5Hz 
1.5Hz 

1mm 
0.5mm 

0 0 0 0 0 1 
0 0 0 0 0 1 

9 
 

10 

5x5 Cluster FAs (X) & 
5x5 Cluster FAs (Y) 

White Noise & White 
Noise 

1mm & 1mm 
 

0.5mm & 0.5mm 
1 0 0 0 0 1 

11 
 

12 

5x5 Cluster FAs (X) & 
5x5 Cluster FAs (Y) 

1.5Hz & 1.5Hz 
1mm & 1mm 

 
0.5mm & 0.5mm 

0 1 0 0 0 1 

 

The data provided is of the same form as previously described. They were processed in the same 
manner, augmented via sliding window and separating detectors from one-another. The train, 
validation and test split has also been constructed via the scheme shown in Figure 5 and corruption 
of the signals by white Gaussian noise took place at SNR=10 and SNR=5. Finally, the same one-
hot encoding technique has been applied with two additional units added for the increased number 
of scenarios. This in-turn means that the LSTM-RNN network outputs to six sigmoid units for multi-
label classification of perturbation types.  

 

The network utilised had been trained as the previously described LSTM-RNN with adjustments 
made for the additional output units. The results remained high with 96.41% accuracy on the clean 
signals, 82.25% for SNR=10, 80.34% for SNR=5. These results although based on extending our 
former developments, help solidify the use of deep learning methodologies for perturbation 
classification. Moreover, it is impressive to obtain such a high accuracy, for so many overlapping 
classifications, from a one second reading at one given detector location only.  

 

3.4 Convolutional Networks based on Scaleograms for Reactor Perturbation 
Unfolding and Anomaly Detection 

 

The main objective of the proposed methodology is to be able to identify the driving perturbation 
from neutron flux signals captured by the in-core and ex-core sensors of a nuclear reactor. This is 
achieved through the application of the discrete wavelet transform (DWT) to the signals and the 
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generation of the corresponding wavelet scaleograms [14]. Subsequently, those scaleograms are 
provided to a CNN that learns to classify them to the different perturbation types. 

 

The experiments performed had two distinct directions: to investigate if scaleograms could be used 
for anomaly detection in nuclear reactors and to identify the optimal time window that should be used 
when performing this sort of analysis. Intuitively, smaller windows would segment the input signal 
into more parts and consequently produce a larger training set for the CNN. However, segmenting 
the signal too much could lead to the perturbation not being captured in the time windows and reduce 
performance. The proposed methodology was evaluated on data generated by the SIMULATE-3K 
tool to model some basic types of perturbations occurring in nuclear reactors.  

 

The scenarios were grouped under four main categories: 

 

1. Fuel assembly vibrations: This category describes a vibration of a single fuel assembly in one 

direction. Four different fuel assemblies were simulated for different conditions (i.e. different type 

of vibration and amplitude). A total of 32 scenarios were generated through this process. 

2. Cluster of fuel assemblies vibrating together: Here a cluster of fuel assemblies located in the 

center of the reactor, vibrate synchronously. 12 scenarios with different combinations of vibration 

frequencies and amplitudes fall into this category. 

3. Coolant flow oscillations: This scenario simulates random oscillations in the flow of the coolant 

by up to ±1%. 

4. Coolant temperature oscillations: This scenario simulates random oscillations in the temperature 

of the coolant by up to ±1𝑜𝐶. 

     

Each scenario consisted of a series of signals from the reactor: 48 from sensors inside the reactor 
(denoted as “in-core”) and 8 from outside (denoted as “ex-core”). Depending on the scenario, the 
signals have a length of either 35 sec or 100 sec and a sampling rate of 0.01s.  The in-core sensors 
are in 8 different axial locations, each taking measurements at 6 different heights  [ 6 ]. The ex-core 
sensors, on the other hand, are placed in 4 locations at 2 different levels. It has been reported that 
due to their spatial symmetry (the 4 ex-core sensors are placed 90𝑜 from one another) some 
vibrations may not be detected at all  [ 6 ]. Due to this, measurements from inside the core should 
also be considered.  

 

A few preprocessing steps were performed on each signal. The first was to re-sample the signals 
using bilinear interpolation, so that they all have the same length, since in some cases the sampling 
rate differed from scenario to scenario. A length of 8192 was selected, as it is the closest power of 
2 to the original length, which helps with the DWT computation. After bringing all signals to the same 
length they were detrended, removing the linear component that best fits the data. Afterwards, the 
mother wavelet that best describes the data was identified. This was done by computing the optimal 
mother wavelet for each scenario and selecting their mode.  

 

In order to evaluate the generalization capability of our methodology, a cross-validation scheme was 
devised where the input signal was partitioned into 𝑘 parts. One of these was used for testing and 

the rest 𝑘 − 1 were used for training the CNN. This procedure was repeated 𝑘 times with a different 
part used for testing. The selection of which signal should be used for testing was consistent for all 
signals in a given run; for example if 𝑘 = 4, for a given run all models were trained of parts 1, 2, 4 
and evaluated on part 3, so that the third part of the input signals wasn't seen by any model.  
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To investigate the minimum signal length that the CNN can be trained on, three values for 𝑘 were 

selected: 𝑘 =  {2, 4, 8}. The latter produced input signals consisting of 8192 / 8 =  1024 points 
(which roughly corresponds to 1.25 seconds). A preprocessed signal that has been split into 8 parts 
is depicted in Figure 8. 

 

Figure 8. A preprocessed (i.e. detrended and resampled) signal, partitioned into k=8 parts 

 

After partitioning the signal into 𝑘 parts, a scaleogram was extracted from each one. Due to the 
imbalance of samples between the classes, both the training and evaluation of the model were 
weighted. The weighted accuracies on the validation sets of the 𝑘 folds were averaged. 

 

A CNN architecture with 6 layers and 2.5 million parameters was selected (as shown in Figure 9). 

 

Figure 9. The CNN architecture employed for classifying the scaleograms 

 

The first convolution layer has 32 filters, a kernel of 11𝑥11 and strides of 4𝑥4, while the second one 
64 filters and a kernel size of 5𝑥5. After both convolutions, max pooling operations are applied with 

kernels of 3𝑥3 and strides of 2𝑥2. Finally, dropout is applied after these pooling layers, with a 
probability of 35%. The architecture is concluded with two fully connected layers, with 256 and 4 



   

        D3.4 Data analysis using machine learning techniques and deep neural networks 

 

GA n°754316 Page 29 of 40 

 

 

neurons respectively; dropout (with 30% probability) is applied after the first. The network was trained 

on a cross-entropy loss with an Adam optimizer with an initial learning rate of 10−4. As mentioned 
previously, the samples were weighted during training to alleviate the class imbalance. 

 

 

Figure 10. Input signal for different signal-to-noise ratios 
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After assessing the ability of the model to discriminate between the four classes, further experiments 
were performed to examine robustness of the technique to external noise. Each input signal was 
imputed with white noise of different SNRs; the signals were processed with the presented methods 
(i.e. detrended, resampled, split into k parts, decomposed by DWT, converted to scaleograms).  

 

A total of 10 cases were examined, with different SNR, in particular, 

106, 105, 104, 103, 102 10, 1, 10−1,  10−2 and 10−3; the higher the value of the SNR, the “cleaner” the 

signal. A sample input signal with noise added to it is depicted in Figure 10. Values higher than 〖

10〗^3 have little visual effect to the signal, while for values lower than 10 the presence of noise in 

the signal is significant. 

 

The first experiment involved using “clean” signals from the reactor. For each type of sensor (i.e. in-
core/ex-core), 3 values of 𝑘 were examined. The mean accuracy of 𝑘 folds is presented in Table 6. 

 

Table 6. The mean fold accuracy for each type of sensor per number of splits 

𝑘 In-core Ex-
core 

2 98.04% 83.33% 

4 99.63% 83.44% 

8 99.85% 93.88% 

 

As expected, partitioning the signal into more parts leads to better overall accuracy, because this 
procedure produced more input signals and in turn more scaleograms. Furthermore, even though 
in-core sensors clearly outperform the ex-core ones, the latter remain reliable and can detect the 
anomalies in most of the cases. 

 

Table 7. Weighted accuracy for both in-core and ex-core sensors for various signal-to-noise ratios 

 𝑘 

  

 2 4 8 

SNR In-core Ex-
core 

In-core Ex-
core 

In-core Ex-
core 

clean 92.80% 70.52% 99.10% 80.47% 99.83% 82.40% 

106 92.48% 71.15% 98.99% 81.46% 99.80% 83.26% 

105 92.19% 68.02% 99.13% 80.73% 99.84% 82.94% 

104 91.46% 73.33% 98.95% 81.15% 99.84% 82.97% 

103 92.88% 66.56% 98.90% 80.78% 99.81% 82.94% 

102 93.18% 67.71% 98.74% 80.99% 99.70% 85.05% 

10 90.68% 73.02% 98.06% 80.78% 99.41% 82.84% 

1 85.40% 68.44% 89.75% 77.24% 95.96% 78.52% 
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10−1 72.36% 23.12% 73.13% 53.85% 70.39% 57.86% 

10−2 13.59% 4.06% 18.94% 4.27% 16.24% 4.51% 

10−3 4.08% 3.33% 3.64% 4.06% 3.64% 3.98% 

 

The input signals were imputed with white noise of various strengths, indicated by the signal-to-noise 
ratio (SNR). The results of the noise experiments can be seen in Table 7. 

 

The framework's overall performance remains unchanged for noisy signals with high values of SNR 
(i.e. low noise). For signals with an SNR of below 10 the performance starts deteriorating. From this 
point on, the noise has a strong presence in the overall signal, making it tough for the network to 

classify. At very low values of SNR (i.e., below 10−1), the signal is dominated by the noise, making 
it virtually impossible to classify without denoising. The trend of the in-core sensors outperforming 
the exterior ones continues throughout this experiment. Figure 11 illustrates this deterioration. 

 

Figure 11. Performance dropoff for different signal-to-noise ratios 

 

 

3.5 Machine learning techniques for predicting detector malfunctioning    

 

In this Section, a method is presented for identifying anomalous detector signals [13]. Simulated 
neutron detectors (NDs) model the time-dependent neutron flux (NF) fluctuations at various radial 
and axial locations in the core. For the purpose of efficiency and timeliness of response, rather than 
utilising all the available ND signals in concert for verifying neutron noise (NN) signal correctness, 
the use of 3-tuples of NDs is proposed. The rationale behind combining the information of sets of 
appropriately selected 3-tuples of NDs for reaching consensus is that, while two NDs are not 
adequate for the task-at-hand (in case of disagreement between a pair of ND signals, it is not 
possible to establish which ND is misbehaving and/or receiving abnormal information), three NDs 
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can be used for competently, as well as confidently deriving signal validity. This number of NDs not 
only simplifies the decision-making process and minimises computational complexity, but also 
boosts robustness of the final decision in cases of failing NDs and/or erroneous/unexpected NN 
signals, thus also accommodating for the far-from-infrequent situation of scarce in- and ex-core 
instrumentation.  

 

In the following, two signals derived from the fuel assembly vibration scenario simulation performed 
by PSI (10-7 vibrating fuel assembly, white noise, 1.1 mm amplitude), named indet1 and indet3 
(collected by neutron detector I1 at Levels 1 and 3, respectively) are used for validating signal indet2 
(collected by neutron detector I1 at Level 2). These signals are shown in Figure 12, with Figure 13 
further demonstrating the pairwise relationships between them, derived by independently 
normalizing each signal in the [0.1, 0.9] interval and subtracting each signal from the other. In all 
Figures in this Section, i.e., Figures 12-16, the x-axis represents time (e.g., 3501 samples of each 
detector, sampled every 0.01 sec for a total duration of 35 seconds), while the y-axis depicts the 
measured neutron noise. The high-frequency fluctuations, which are largely due to the inherent noise 
in the NN signals, trends, as well as transients can be observed at different timestamps and scales. 
Despite their differences (shown in Figure 13), the signals employed for this investigation are highly 

correlated (with their pair-wise correlation coefficients ranging in [0.85, 0.99]). 

 

Figure 12.   The original three indet1-2-3 signals 
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Figure 13.  The pairwise differences of the three signals, indet1-2-3 (after scaling/normalization) 

 

Further to the selection of triplets of signals, the absolute minimal signal length is used for signal 
verification: the {𝑖𝑛𝑑𝑒𝑡1(𝑡), 𝑖𝑛𝑑𝑒𝑡2(𝑡)}, {𝑖𝑛𝑑𝑒𝑡3(𝑡), 𝑖𝑛𝑑𝑒𝑡2(𝑡)} and {[𝑖𝑛𝑑𝑒𝑡1(𝑡), 𝑖𝑛𝑑𝑒𝑡2(𝑡)], 𝑖𝑛𝑑𝑒𝑡2(𝑡)} 
input-output pairs of signals captured at times 𝑡 are employed – in turn – for setting up the targeted 

prediction. During testing, signals 𝑖𝑛𝑑𝑒𝑡1(𝑡′), 𝑖𝑛𝑑𝑒𝑡3(𝑡′) captured at time 𝑡′(≠ 𝑡) , are used for 
predicting 𝑖𝑛𝑑𝑒𝑡2(𝑡′). In case of malfunction, the change (drop) in correlation between one or more 
pairs of signals can act as an early sign of decreasing agreement between them and be further 
exploited for identifying the erroneous signals and/or malfunctioning NDs. It is also possible to 
aggregate the decisions of different combinations of NDs (based, for instance, on signal correlation, 
ND location and distance) for reaching a consensus-driven decision that takes into account each ND 
derived decision while further exploiting the confidence in, as well as the complementarity of, the 
individual decisions. 

 

The following (perturbed, deviating from normal) signals have been derived from 𝑖𝑛𝑑𝑒𝑡1, 𝑖𝑛𝑑𝑒𝑡2 and 

𝑖𝑛𝑑𝑒𝑡3 via injection/addition/juxtaposition of drifts, implemented by adding linear trends to the mean 
value of the original signal; different amplitudes (e.g. small/large trends in Figure 14) are used for 
investigating the capability, as well as the “limit”, of successfully retrieving the original signal. 

 

Figure 14.  Examples of drift 
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Fluctuations simulated by adding sinusoids of different amplitudes and periods to the original signal 
(e.g. small and large oscillations in Figure 15) are also considered. 

 

 

Figure 15.  Examples of fluctuations 

 

Combinations of drift and oscillations (e.g. middle signal in Figure 16) are also considered. 
Intermittencies, where parts of the original signal are missing and are substituted by the (local) mean 
value of the signal overlaid with white noise of varying standard deviation (top signal in Figure 16) 
are also investigated. 

 

Figure 16.  Examples of intermittencies  

 

Three prediction methods, covering the entire parametric through to non-parametric spectrum, are 
used next, namely parametric Polynomial Approximation (PA), Semi-Parametric Splines (SPSs) and 
non-parametric General Regression Neural Networks (GRNNs).  

 

While PA analytically determines the optimal polynomial coefficients that allow input variables 
optimally approximate output variables (by minimising the distance between actual and predicted 
outputs), SPSs employ a set of predefined forms which are, subsequently, combined in a piece-wise 
manner so as to optimally approximate the output variables. The nonparametric GRNN, on the other 
hand, through single-epoch training generates optimal separating hyperplanes between the pattern 
classes. 

 

The GRNN constitutes a two-layer artificial neural network architecture of straightforward as well as 
transparent construction, which makes use of a single tunable parameter (the spread, 𝜎). The value 
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of 𝜎 determines the range of influence of each training pattern, consequently shaping the GRNN 
approximating hyperspace in terms of the available (training) data and the desired continuity of the 
separating hyperplanes. A small value of 𝜎 creates a localized influence of each training pattern on 

the separating hypersurface. Conversely, a large value of 𝜎 makes separating hypersurface more 
general and impervious to outliers and other extreme training patterns.  

 

The nodes of the two GRNN layers represent the input features, with each feature being encoded in 
a single node of the lower layer of the GRNN; as far as the training patterns are concerned, each 
pattern is encoded in a single node of the upper layer of the GRNN. The connections between nodes 
are only possible between nodes of different layers and are, furthermore, limited to pairs of nodes 
(one node from each layer) which are related in a positive or negative manner; expressing whether 
the appearance of the input feature represented by the node of the lower layer is promoted or 
suppressed by the training pattern encoded in the node of the upper layer. The connection weights 
are determined independently for each node of the upper layer; the magnitude of all non-zero 
connections from each node of the upper layer is the same, with the sign of each connection being 
determined by whether the pair of connected nodes expresses a positive, or negative relationship. 

 

GRNN construction is swift, flexible and can be adjusted in an on-line manner. A single presentation 
of the training-set patterns is enough for setting the optimal form of a non-parametric class-
separating hyper-surface such that accurate GRNN responses are returned not only to known inputs, 
but also to novel inputs derived from the same pattern space. By changing 𝜎, the generalization 
potential and robustness to noise of the GRNN is adjusted.  

 

The three prediction methods are implemented independently – yet under identical conditions of data 
normalization and partitioning, using 10-fold cross-validation – for monitoring and concurrently 
identifying ND deviations from steady-state operation and malfunctions. The methods have been 
subsequently compared in terms of accuracy, in two distinct cases: distorted signals; malfunctioning 
NDs.  

 

As reported in [13], the SPS operation has been found slightly – yet not consistently – superior to 
that of PA, demonstrating the advantages of using more degrees of freedom, as these are allowed 
by the specific piece-wise separating hyper-surface construction methodology over PA. The GRNN 
approach has been found  superior to both PA and SPS approaches, demonstrating swift training 
and perfect recall of the entire dataset; robustness to noise and reliability to missing or otherwise 
corrupted data (when substituted by their average or weighted average values) during testing; 
significantly improved prediction accuracy when the GRNN predictions of the different input 
encodings are combined.  

 

The GRNN demonstrates the smallest - by at least one order of magnitude - thresholds for detecting 
erroneous signals (TS, TL, OS, OL, OT, MR), where: TS/TL stands for Trend Small/Large; OS/OL 
stands for Oscillation Small/Large; OT stands for Oscillation & Trend; MP stands for Missing Part. 
Furthermore, the GRNN is comparably more robust to normal operation, with higher thresholds by 
far over PA and SP).  
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4 Conclusions 

Contributions made in WP3 Task 3 have been advantageous to test and demonstrate the capability 
of machine learning methods for the unfolding of reactor transfer functions from limited readings of 
the induced neutron noise. The large number of developments provides a grounding for the 
application to real plant data in the future, helping to gain a greater understanding of the challenges 
and potential approaches to overcome these challenges. The results from all contributions have 
shown that high performance is achieved, iteratively improving with the introduction of more, higher 
resolution, and more challenging data sets. It has been shown that high performance is achieved in 
the frequency, as well as in the time domain, with high robustness to corruption by noise.  

 

4.1 Future Work 

 

As work continues and contributions evolve, localisation of even larger numbers of perturbations at 
a given time will be possible. In addition, uncertainty values can be provided for the predictions, 
giving a high level of trust to the deep learning systems. Adaptation of these models to provide 
validation on real plant data will be the main focus of our future work, aiming to transfer the 
knowledge and developments performed on simulation scenarios to the real plant readings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

        D3.4 Data analysis using machine learning techniques and deep neural networks 

 

GA n°754316 Page 37 of 40 

 

 

5 References 

[ 1 ] Christophe Demazière, Paolo Vinai, Matthew Hursin, Stefanos Kollias and Joachim 
Herb. Noise-based core monitoring and diagnostics – overview of the Cortex project. 
Advances in Reactor Physics, Mumbai, December 2017. 

[ 2 ] Christophe Demazière, Paolo Vinai, Matthew Hursin, Stefanos Kollias and Joachim 
Herb. Overview of the Cortex project. PHYSOR, Mérida, April 2018. 

[ 3 ] Christophe Demaziere. Core sim: a multi-purpose neutronic tool for research and 
education. Annals of Nuclear Energy, 38(12): 2698–2718, 2011. 

[ 4 ] Gerardo Grandi, Jeffrey A. Borkowsky, and Kord S. Smith. Simulate-3k models and 
methodology. SSP-98013, Revision, 6, 2006. 

[ 5 ] Francesco Caliva, Fabio De Sousa Ribeiro, Antonios Mylonakis, Christophe 
Demaziere, Paolo Vinai, Georgios Leontidis, Stefanos Kollias, et al. A deep learning 
approach to anomaly detection in nuclear reactors. IEEE International Joint 
Conference on Neural Networks (IJCNN), Brazil, July 2018. 

[ 6 ] Fabio De Sousa Ribeiro, Francesco Caliva, Dionysios Chionis, Abdelhamid Dokhane,  
Antonios Mylonakis,  Christophe Demaziere,  Georgios Leontidis and Stefanos 
Kollias.  Towards a Deep Unified Framework for Nuclear Reactor  Perturbation  
Analysis.  IEEE Symposium Series on Computational Intelligence (SSCI), India, 
November 2018. 

[ 7 ] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew 
Wojna. Rethinking the inception architecture for computer vision. IEEE Conference 
on Computer Vision and Pattern Recognition, Nevada, USA, June 2016. 

[ 8 ] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. 
18th annual ACM/SIAM Symposium on Discrete Algorithms, pp. 1027–1035. Society 
for Industrial and Applied Mathematics, 2007. 

[ 9 ] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into 
rectifiers: Surpassing human-level performance on imagenet classification. IEEE 
International Conference on Computer Vision and Pattern Recognition, Boston, June 
2015. 

[ 10 ] Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural 
computation, 9(8):1735–1780, 1997. 

[ 11 ] Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. 
Densely connected convolutional networks. IEEE Conference on Computer Vision 
and Pattern Recognition, Hawaii, USA, July 2017. 

[ 12 ] Aiden Durrant, Georgios Leontidis and Stefanos Kollias. 3D Convolutional and 
Recurrent Neural Networks for Reactor Perturbation Unfolding and Anomaly 
Detection. 9th European Commission Conference on EURATOM Research and 
Training in Safety of Reactor Systems and Radioactive Waste Management (FISA 
2019 - Euradwaste’ 19), Romania, 2019. 



   

        D3.4 Data analysis using machine learning techniques and deep neural networks 

 

GA n°754316 Page 38 of 40 

 

 

[ 13 ] Tatiana Tambouratzis, Dionysis Chionis and Abdelhamid Dokhane. General 
Regression Neural Networks for the Concurrent, Timely and Reliable Identification of 
Detector Malfunctions and/or Nuclear Reactor Deviations from Steady-State 
Operation.  IEEE Symposium Series on Computational Intelligence (SSCI), India, 
November 2018. 

[ 14 ] Ervin Sejdic, Igor Djurovic and Ljubica Stankovic. Quantitative Performance Analysis 
of Scalogram as Instantaneous Frequency Estimator. IEEE Transactions on Signal 
Processing,  56(8):3837-3845, 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

        D3.4 Data analysis using machine learning techniques and deep neural networks 

 

GA n°754316 Page 39 of 40 

 

 

6 Annexes  

6.1 A Deep Learning Approach to Anomaly Detection in Nuclear Reactors. 
Supporting Material  

 Normalised Cross-Correlation (NCC)  

 

NCC is an evaluation metric employed to measure the difference between two matrices. In the case 
of these developments, the precision between the corrupted image reconstruction and the original 
image.  

 

Given two three-channelled images A and B, we can quantify their similarity per channel as  

 

                                                    𝑛𝑐𝑐 =
∑ (𝑎𝑖,𝑗−𝜇𝑨)(𝑏𝑖,𝑗−𝜇𝑩)𝑖,𝑗

[∑ (𝑎𝑖,𝑗−𝜇𝑨)
2

𝑖,𝑗 ∑ (𝑏𝑖,𝑗−𝜇𝑩)
2

𝑖,𝑗 ]
0.5                                                    (9) 

 

where 𝑎𝑖,𝑗 and 𝑏𝑖,𝑗 refer to each pixel in 𝐴 and 𝐵 with 𝜇𝑨 and 𝜇𝑩 as their mean pixel intensities per 

channel. The final 𝑛𝑐𝑐 is the average of the three channels, given as ℝ ⋂ [−1,1]. 

 

 

 DAE Visualisations 

 

The figure below shows the reconstruction of the corrupted signals from the convolutional denoising 
autoencoder proposed in section 3.1.4. The original and corrupted signal are shown below, with the 
denoising autoencoder given the corrupted signal as input and aiming to map the function that takes 
such inputs, reconstructing to form an output as close to the original as possible. The output of the 
denoising is shown in (c). 

 

 

 Figure 17. Examples (a-c) of reconstruction provided by DAE when: 75%, 50%, 25% of  sensors were 
used; in each case: left: Original signal, middle: Obscured signal, right: Reconstructed signal 
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6.2 Towards a Deep Unified Framework for Nuclear Reactor Perturbation 
Analysis: Supporting Material 

  3-D Convolutions  

 

Formally, in 3D CNNs one would compute a pre-activated value of a given unit 𝑛𝑖,𝑗,𝑘
[ℓ]

 at   (𝑖, 𝑗, 𝑘) 

position in a 3-D feature map of layer  ℓ, by the summation of the weighted kernel contributions from 

the previous hidden layer’s units  𝑨[𝓵−1]  

 

                                                    𝑛𝑖,𝑗,𝑘
[ℓ]

= ∑ ∑ ∑ 𝑾𝑥,𝑦,𝑧
[𝓵]𝑍−1

𝑧=0 𝑨𝑖+𝑥,𝑗+𝑦,𝑘+𝑧
[ℓ−1]

 𝑌−1
𝑦=0

𝑋−1
𝑥=0                     (10) 

 

where 𝑾𝑥,𝑦,𝑧
[𝓵]

 is a learnt weight of kernel 𝑾 
[𝓵] of dimensions 𝑋 × 𝑌 × 𝑍 in layer 𝓵, which is convolved 

with the previous layer (𝑾 
[𝓵] ∗ 𝑨[𝓵−1]) . 

 

 Grid Search for Loss Weight Coefficients  

 

A grid search of hyper-parameters was conducted to find the most appropriate values for the weight 
coefficients for both classification and regression for the weighted multi-task loss function. The figure 
below shows the error for the classification error, and regression errors (MAE and MSE) for all values 
0.1 – 0.9 at 0.1 increments, this results in values for 0.3 and 0.7 for the classification and regression 
loss weights respectively. These values are then substituted into the multi-task loss function used in 
section 3.2.2 to train the 3-D CNN network proposed. 

 

Figure 18. Weight coefficient grid search for the 3D-CNN classification and regression losses; 
coefficient 0.3 for classification and 0.7 for regression yielded the best performance 

 

 

 

 

 


