Vertex F-algebra structures on the complex oriented homology of H -spaces

Jacob Gross ${ }^{\text {a }}$, Markus Upmeier ${ }^{\text {b,* }}$
a The Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
b Department of Mathematics, University of Aberdeen, Fraser Noble Building, Elphinstone Rd, Aberdeen, AB24 3UE, UK

A R T I C L E I N F O

Article history:

Received 27 August 2021
Received in revised form 10 January 2022
Available online 20 January 2022
Communicated by C.A. Weibel

MSC:

17B69; 55N20

Keywords:

Vertex algebra
Formal group law
Generalized cohomology
H-space

Abstract

We give a topological construction of graded vertex F-algebras by generalizing Joyce's vertex algebra construction to complex-oriented homology. Given an Hspace X with a $B \mathrm{U}(1)$-action, a choice of K-theory class, and a complex oriented homology theory E, we build a graded vertex F-algebra structure on $E_{*}(X)$ where F is the formal group law associated with E. © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction and results . 2
2. Formal groups laws and vertex F-algebras . 4
3. Complex oriented cohomology and Chern classes . 6
4. Proof of Theorem 1.1 . 8
5. Proof of Theorem 1.2 . 10

Acknowledgements . 13
References . 13

[^0]https://doi.org/10.1016/j.jpaa.2022.107019
0022-4049/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction and results

The algebraic topology of moduli stacks, arising for example in algebraic geometry and gauge theory, is of fundamental importance for the study of invariants. Let \mathcal{A} be an additive \mathbb{C}-linear dg-category, whose τ-stable objects we wish to classify, for τ a stability condition. The category \mathcal{A} has an associated moduli stack $\mathcal{M}_{\mathcal{A}}$ by [19]. In [8], Joyce constructs a graded vertex algebra on the ordinary homology $H_{*}\left(\mathcal{M}_{\mathcal{A}}\right)$. Vertex algebras are algebraic structures with origins in conformal field theory which can be regarded as singular commutative rings whose operation $Y: V \otimes V \rightarrow V((z))$, the state-to-field correspondence, takes values in Laurent series. This profound algebraic structure is used to describe wall-crossing formulas relating the virtual fundamental classes $\left[\mathcal{M}_{\mathcal{A}}\right]_{\mathcal{T}}^{\text {virt }},\left[\mathcal{M}_{\mathcal{A}}\right]_{\tau^{\prime}}^{\text {virt }} \in H_{*}\left(\mathcal{M}_{\mathcal{A}}\right)$ for different stability conditions. These are powerful tools for computing invariants.

Motivated by physics, many authors currently investigate refined invariants such as K-theoretic Donaldson-Thomas invariants [5,6,13,18]. Here the virtual classes should be viewed in K-homology $K_{*}\left(\mathcal{M}_{\mathcal{A}}\right)$. As a first step towards extending wall-crossing formulas to refined invariants, we here extend Joyce's construction to any generalized (complex oriented) homology theory E_{*} with associated formal group law $F(z, w)$. Our main result constructs a vertex F-algebra structure on $E_{*}\left(\mathcal{M}_{\mathcal{A}}\right)$ in the sense of Li [14].

In addition, our construction of vertex F-algebra works in greater generality, namely for any topological H -space (i.e. abelian group up to homotopy) with an action of $B \mathrm{U}(1)$.

Let E^{*} be a complex oriented generalized cohomology theory with associated formal group law $F(z, w)$ over its coefficient ring R_{*}, see $\S 3$. As a preliminary result, we present a Laurent-polynomial version of the Conner-Floyd Chern classes (see Definition 3.4) with values in E^{*}.

Theorem 1.1. For every class $\theta \in K^{0}(X)$ in the topological K-theory of topological space X there is an R_{*}-linear transformation

$$
(-) \cap C_{z}^{E}(\theta): E_{*}(X) \longrightarrow E_{*}(X) \llbracket z \rrbracket\left[z^{-1}\right] \quad a \longmapsto a \cap C_{z}^{E}(\theta),(1.1)
$$

of degree $-2 r$ if θ has constant rank $r \in \mathbb{Z}$, with the following properties:
(a) (Naturality.) For continuous $f: X^{\prime} \rightarrow X, \theta \in K^{0}(X)$, and $a^{\prime} \in E_{*}\left(X^{\prime}\right)$

$$
\begin{equation*}
f_{*}\left(a^{\prime} \cap C_{z}^{E}\left(f^{*}(\theta)\right)\right)=f_{*}\left(a^{\prime}\right) \cap C_{z}^{E}(\theta) \tag{1.2}
\end{equation*}
$$

(b) (Direct sums.) For $\zeta, \theta \in K^{0}(X)$ and $a \in E_{*}(X)$ we have

$$
\begin{equation*}
a \cap C_{z}^{E}(\zeta+\theta)=\left[a \cap C_{z}^{E}(\zeta)\right] \cap C_{z}^{E}(\theta) . \tag{1.3}
\end{equation*}
$$

(c) (Normalization.) For a complex line bundle $L \rightarrow X$ and $a \in E_{*}(X)$ we have

$$
\begin{equation*}
a \cap C_{z}^{E}(L)=a \cap F\left(z, c_{1}^{E}(L)\right) \tag{1.4}
\end{equation*}
$$

More generally, for any $\theta \in K^{0}(X)$ we have

$$
\begin{equation*}
a \cap C_{z}^{E}(L \otimes \theta)=i_{z, c_{1}^{E}(L)}\left(a \cap C_{F\left(z, c_{1}^{E}(L)\right)}^{E}(\theta)\right) \tag{1.5}
\end{equation*}
$$

Here, as usual, the variable z has degree -2 . We prove Theorem 1.1 in $\S 4$. The notations used in (1.4) and (1.5) will be explained in Notations $3.9 \& 4.1$ below.

For our main result, let X be an H-space with an operation $\Phi: X \times X \rightarrow X$ that is associative, commutative, and has a unit $e \in X$ up to homotopy. Recall that the classifying space $B \mathrm{U}(1)$ for complex line bundles
is an H -space with the tensor product $\mu_{B \mathrm{U}(1)}$ and trivial bundle $e_{B \mathrm{U}(1)}$. Assume there is an action Ψ of $B \mathrm{U}(1)$ on X up to homotopy, meaning $\Psi \circ\left(\operatorname{id}_{B \mathrm{U}(1)} \times \Psi\right) \simeq \Psi \circ\left(\mu_{B \mathrm{U}(1)} \times \mathrm{id}_{X}\right)$ and $\Psi\left(e_{B \mathrm{U}(1)},-\right) \simeq \mathrm{id}_{X}$. Suppose $\Psi(e,-) \simeq e$ is an h-fixed point and $\Phi \circ(\Psi \times \Psi) \circ \delta \simeq \Psi \circ\left(\Phi \times \operatorname{id}_{B U(1)}\right)$, where $\delta\left(x_{1}, x_{2}, g\right)=\left(x_{1}, g, x_{2}, g\right)$. The set of connected components $\pi_{0}(X)$ is a monoid with unit $\Omega=[e]$ and operation $\alpha+\beta=\Phi_{*}(\alpha \boxtimes \beta)$ and we partition $X=\coprod_{\alpha \in \pi_{0}(X)} X_{\alpha}$. Write $\Phi_{\alpha, \beta}: X_{\alpha} \times X_{\beta} \rightarrow X_{\alpha+\beta}, \Psi_{\alpha}: B \mathrm{U}(1) \times X_{\alpha} \rightarrow X_{\alpha}$ for the restrictions. Let $\theta_{\alpha, \beta} \in K^{0}\left(X_{\alpha} \times X_{\beta}\right)$ for all α, β.

Theorem 1.2. Given (X, Φ, e, Ψ) as above, suppose the following identities hold for all $\alpha, \beta, \gamma \in \pi_{0}(X)$:

$$
\begin{align*}
\left(\Phi_{\alpha, \beta} \times \operatorname{id}_{X_{\gamma}}\right)^{*}\left(\theta_{\alpha+\beta, \gamma}\right) & =\pi_{\alpha, \gamma}^{*}\left(\theta_{\alpha, \gamma}\right)+\pi_{\beta, \gamma}^{*}\left(\theta_{\beta, \gamma}\right), \tag{1.6}\\
\left(\operatorname{id}_{X_{\alpha}} \times \Phi_{\beta, \gamma}\right)^{*}\left(\theta_{\alpha, \beta+\gamma}\right) & =\pi_{\alpha, \beta}^{*}\left(\theta_{\alpha, \beta}\right)+\pi_{\alpha, \gamma}^{*}\left(\theta_{\alpha, \gamma}\right), \tag{1.7}\\
\left(\Psi_{\alpha} \times \operatorname{id}_{X_{\beta}}\right)^{*}\left(\theta_{\alpha, \beta}\right) & =\pi_{B \mathrm{U}(1)}^{*}(\mathcal{L}) \otimes \pi_{\alpha, \beta}^{*}\left(\theta_{\alpha, \beta}\right), \tag{1.8}\\
\left(\mathrm{id}_{X_{\alpha}} \times \Psi_{\beta}\right)^{*}\left(\theta_{\alpha, \beta}\right) & =\pi_{B \mathrm{U}(1)}^{*}(\mathcal{L})^{\vee} \otimes \pi_{\alpha, \beta}^{*}\left(\theta_{\alpha, \beta}\right), \tag{1.9}\\
\left.\theta\right|_{X_{\alpha} \times\{\Omega\}} & =0,\left.\quad \theta\right|_{\{\Omega\} \times X_{\beta}}=0, \tag{1.10}\\
\sigma^{*}\left(\theta_{\beta, \alpha}\right) & =\left(\theta_{\alpha, \beta}\right)^{\vee} . \tag{1.11}
\end{align*}
$$

Here σ swaps the factors of $X_{\alpha} \times X_{\beta}$ and $\mathcal{L} \rightarrow B \mathrm{U}(1)$ is the universal line bundle with dual \mathcal{L}^{\vee}. With the F-shift operator $\mathcal{D}(z)$ of (3.3) below, the graded R_{*}-module

$$
\begin{equation*}
V_{*}=\bigoplus_{\alpha \in \pi_{0}(X)} E_{*-\mathrm{rk} \theta_{\alpha, \alpha}}\left(X_{\alpha}\right) \tag{1.12}
\end{equation*}
$$

is a graded nonlocal vertex F-algebra $\left(V_{*}, \mathcal{D}, \Omega, Y\right)$ with state-to-field correspondence

$$
\begin{equation*}
Y(a, z) b=\left(\Phi_{\alpha, \beta}\right)_{*}\left(\mathcal{D}_{\alpha}(z) \boxtimes \operatorname{id}_{E_{*}\left(X_{\beta}\right)}\right)\left[(a \boxtimes b) \cap C_{z}^{E}\left(\theta_{\alpha, \beta}\right)\right] . \tag{1.13}
\end{equation*}
$$

Similarly, the graded R_{*}-module

$$
\begin{equation*}
\bar{V}_{*}=\bigoplus_{\alpha \in \pi_{0}(X)} E_{*-2 \mathrm{rk} \theta_{\alpha, \alpha}}\left(X_{\alpha}\right) \tag{1.14}
\end{equation*}
$$

becomes a graded vertex F-algebra $\left(\bar{V}_{*}, \mathcal{D}, \Omega, \bar{Y}\right)$, where

$$
\begin{equation*}
\bar{Y}(a, z) b=\left(\Phi_{\alpha, \beta}\right)_{*}\left(\mathcal{D}_{\alpha}(z) \boxtimes \operatorname{id}_{E_{*}\left(X_{\beta}\right)}\right)\left[(a \boxtimes b) \cap \bar{C}_{z}^{E}\left(\theta_{\alpha, \beta}\right)\right] \tag{1.15}
\end{equation*}
$$

uses the operation of degree $-4 \operatorname{rk} \theta_{\alpha, \beta}$ defined by

$$
c \cap \bar{C}_{z}^{E}\left(\theta_{\alpha, \beta}\right)=\left[c \cap C_{z}^{E}\left(\theta_{\alpha, \beta}\right)\right] \cap C_{\iota(z)}^{E}\left(\sigma^{*}\left(\theta_{\beta, \alpha}\right)\right), \quad c \in E_{*}\left(X_{\alpha} \times X_{\beta}\right) .
$$

Here $\iota(z)$ is the inverse for F (see $\S 2$). The proof of Theorem 1.2 is given in $\S 5$.
As a special case, our result applies to the topological realization $X=\mathcal{M}_{\mathcal{A}}^{\text {top }}$ of a moduli stack. Taking direct sums in the additive category defines Φ making $\mathcal{M}_{\mathcal{A}}$ into an H -space. Moreover, scaling morphism by $\mathrm{U}(1)$ defines an operation Ψ of the quotient stack $[* / / \mathrm{U}(1)]$, endowing $\mathcal{M}_{\mathcal{A}}^{\text {top }}$ with the required action of $B \mathrm{U}(1)=[* / / \mathrm{U}(1)]^{\text {top }}$. As shown in Proposition 3.3 below, this action yields an F-shift operator $\mathcal{D}(z)$. The K-theory classes $\theta_{\alpha, \beta}$ are given by the Ext-complexes in the dg-category \mathcal{A}, which satisfy (1.6)-(1.11). In geometric examples, one may wish to incorporate signs $\epsilon_{\alpha, \beta}$ into (1.15). These are related to orientations, see [8, §8.3]. The orientation problems were solved in the series [9-11]. For simplicity, we ignore this additional data here and set up a symmetrized construction without signs.

2. Formal groups laws and vertex F-algebras

In the section, we will keep everything general and assume the following setup. Later, the data R_{*} and $F(z, w)$ will arise naturally from a complex oriented cohomology theory, see $\S 3$, and V_{*} will be constructed from an H-space as in (1.12).

Notation 2.1.

- R_{*} a graded commutative ring with unit. Write R^{*} for the same ring with the reverse grading, $R^{n}=R_{-n}$, $n \in \mathbb{Z}$, and R for the ring with the grading removed
- V_{*} a graded module over R_{*}
- z, w variables of degree -2
- $F(z, w)$ a graded formal group law over R_{*}
- $V \llbracket z \rrbracket$ the formal power series $\sum_{i=0}^{\infty} a_{i} z^{i}$; a ring when $V=R$
- $V((z))$ the R_{*}-module of Laurent series $\sum_{i=-\infty}^{+\infty} a_{i} z^{i}$ with its partially defined product. The fact that $V((z))$ is not a ring frequently causes confusion.
- The meromorphic series $V \llbracket z \rrbracket\left[z^{-1}\right]$; a ring when $V=R$.
- $i_{z, w}: V \llbracket z, w \rrbracket\left[z^{-1}, w^{-1}, F(z, w)^{-1}\right] \rightarrow V((z, w))$ expands $F(z, w)^{-N}$, see Notation 2.4. We have $i_{z, w}\left(V \llbracket z, w \rrbracket\left[F(z, w)^{-1}\right]\right) \subset V((z)) \llbracket w \rrbracket$.
- $(-1)^{a}$ means $(-1)^{\text {degree }(a)}$

Definition 2.2. A graded formal group law over R_{*} is a formal power series $F(z, w)=\sum_{i, j \geqslant 0} F_{i j} z^{i} w^{j} \in$ $R \llbracket z, w \rrbracket$ with $F_{i j} \in R_{2 i+2 j-2}$ satisfying

$$
\begin{equation*}
F(z, w)=F(w, z), \quad F(z, 0)=z, \quad F(F(z, w), v)=F(z, F(w, v)) . \tag{2.1}
\end{equation*}
$$

There exists a unique power series $\iota \in R \llbracket z \rrbracket$ with $F(z, \iota(z))=0$, the inverse. Note that $\iota(\iota(z))=z$ and $\iota(F(\iota(z), w))=F(z, \iota(w))$.

Example 2.3.

(i) The additive formal group law \mathbb{G}_{a} over \mathbb{Z} (in degree zero) is defined by $F(z, w)=z+w$, and the inverse is $\iota(z)=-z$.
(ii) The multiplicative formal group law \mathbb{G}_{m} over \mathbb{Z} is defined by $F(z, w)=z+w+z w$ and has $\iota(z)=$ $(1+z)^{-1}-1=-z+z^{2}-z^{3}+\cdots$.
(iii) There is a universal formal group law $\mathbb{G}_{\mathbf{u}}$ over the Lazard ring R_{L} generated by variables $F_{i j}$ subject to the relations contained in (2.1).

Notation 2.4. It follows from (2.1) that for a general formal group law

$$
F(z, w)=z+w+O(z w), \quad \iota(z)=-z+O\left(z^{2}\right) .
$$

Write $F(z, w)=z(1+w / z+w G(z, w))$ and expand using the binomial theorem

$$
\begin{equation*}
i_{z, w} F(z, w)^{n}=\sum_{k=0}^{\infty}\binom{n}{k} z^{n-k} w^{k}(1+z G(z, w))^{k} \in R \llbracket w \rrbracket((z)), \quad n \in \mathbb{Z} . \tag{2.2}
\end{equation*}
$$

As the k-th summand has w-degree $\geqslant k$, this converges as a formal power series. Define $i_{w, z} F(z, w)^{n} \in$ $R \llbracket z \rrbracket((w))$ by expanding $F(z, w)=w(1+z / w+z G(z, w))$ similarly. We extend $i_{z, w}$ and $i_{w, z}$ to $V \llbracket z, w \rrbracket\left[z^{-1}, w^{-1}\right]\left[F(z, w)^{-1}\right]$ by linearity.

Note that $i_{z, w} F(z, w)^{-n} \cdot F(z, w)^{n}=1$ and $i_{w, z} F(w, z)^{-n} \cdot F(z, w)^{n}=1$ for all $n \geqslant 0$. For every $P(z, w)=\sum_{n \geqslant-N} a_{n}(z, w) F(z, w)^{n} \in V \llbracket z, w \rrbracket\left[z^{-1}, w^{-1}\right]\left[F(z, w)^{-1}\right]$ we thus have

$$
\begin{equation*}
F(z, w)^{N}\left(i_{z, w} P(z, w)-i_{w, z} P(z, w)\right)=0 . \tag{2.3}
\end{equation*}
$$

Definition 2.5. Let V_{*} be a graded R_{*}-module and F a graded formal group law over R_{*}. An F-shift operator is a graded R_{*}-linear map $\mathcal{D}(z): V \rightarrow V \llbracket z \rrbracket$ with

$$
\begin{equation*}
\mathcal{D}(0)=\operatorname{id}_{V}, \quad \mathcal{D}(z) \circ \mathcal{D}(w)=\mathcal{D}(F(z, w)) . \tag{2.4}
\end{equation*}
$$

Example 2.6. Let $R_{*}=\mathbb{Q}, V=\mathbb{Q}[w]$. Then $\mathcal{D}(z)(f(w))=e^{z \frac{d}{d w}} f(w)$ defines a \mathbb{G}_{a}-shift operator. The relation $\mathcal{D}(z)(f(w))=f(z+w)$ motivates the terminology.

We now define vertex F-algebras. For $F=\mathbb{G}_{\mathrm{a}}$ we recover ordinary vertex algebras, see Frenkel-Ben-Zvi [3], Frenkel-Lepowsky-Meurman [4], and Kac [12].

Definition 2.7. Let $F(z, w)$ be a graded formal group law over R_{*}. A graded nonlocal vertex F-algebra is a graded R_{*}-module V_{*}, a vacuum vector $\Omega \in V_{0}$, an F-shift operator $\mathcal{D}(z)$, and a graded R_{*}-linear state-tofield correspondence

$$
\begin{equation*}
V \otimes_{R} V \longrightarrow V \llbracket z \rrbracket\left[z^{-1}\right], \quad a \otimes b \longmapsto Y(a, z) b, \tag{2.5}
\end{equation*}
$$

satisfying the following axioms:
(a) Vacuum and creation: $Y(a, z) \Omega$ is holomorphic for all $a \in V$ and

$$
\begin{align*}
\left.Y(a, z) \Omega\right|_{z=0} & =a, \tag{2.6}\\
Y(\Omega, z) & =\operatorname{id}_{V} . \tag{2.7}
\end{align*}
$$

(b) F-translation covariance: for all $a \in V$ we have

$$
\begin{align*}
Y(\mathcal{D}(w)(a), z) & =i_{z, w} Y(a, F(z, w)), \tag{2.8}\\
\mathcal{D}(z) \Omega & =\Omega . \tag{2.9}
\end{align*}
$$

(c) Weak F-associativity: for all $a, b, c \in V$ there exists $N \geqslant 0$ with

$$
\begin{equation*}
F(z, w)^{N} Y(Y(a, z) b, w) c=F(z, w)^{N} i_{z, w} Y(a, F(z, w)) Y(b, w) c . \tag{2.10}
\end{equation*}
$$

A graded nonlocal vertex F-algebra is a graded vertex F-algebra if, in addition,

$$
Y(a, z) b=(-1)^{a b} \mathcal{D}(z) \circ Y(b, \iota(z)) a, \quad \text { for all } a, b \in V .(2.11)
$$

Remark 2.8. It is a consequence of (2.6)-(2.11) that for all $a, b, c \in V$ there exists $N \geqslant 0$ with

$$
\begin{equation*}
(z-w)^{N} Y(a, z) Y(b, w) c=(-1)^{a b}(z-w)^{N} Y(b, w) Y(a, z) c . \tag{2.12}
\end{equation*}
$$

So our definitions agree with those given by Li [14] in the ungraded case.

3. Complex oriented cohomology and Chern classes

Let E^{*} be a generalized cohomology theory, see for example Rudyak [16, Ch. II, §3]. Thus, for every pair $A \subset X$ of topological spaces there is defined a graded abelian group $E^{*}(X, A)$. Continuous maps $f:(X, A) \rightarrow$ (X^{\prime}, A^{\prime}) induce homomorphisms $f^{*}: E^{*}\left(X^{\prime}, A^{\prime}\right) \rightarrow E^{*}(X, A)$ that depend only on the homotopy class of f. For a pointed space $x_{0} \in X$ write $\widetilde{E}^{*}(X)=E^{*}\left(X,\left\{x_{0}\right\}\right)$ for reduced cohomology. The smash product of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ is the quotient $X \wedge Y=(X \times Y) /(X \vee Y)$ with one-point union $X \vee Y=\left(X \times\left\{y_{0}\right\}\right) \cup$ $\left(\left\{x_{0}\right\} \times Y\right)$ collapsed to become the new base-point. As part of the structure, E^{*} comes equipped with natural suspension isomorphisms $\sigma_{X}: \widetilde{E}^{*}(X) \rightarrow \widetilde{E}^{*+1}\left(X \wedge \mathcal{S}^{1}\right)$.

Suppose E^{*} is a multiplicative generalized cohomology theory. Then there is a bilinear cross product $\boxtimes: E^{*}(X, A) \otimes E^{*}(Y, B) \rightarrow E^{*}(X \times Y, X \times B \cup A \times Y)$ and units $1_{X} \in E^{0}(X)$, both natural. If we let $R_{*}=E_{*}(\mathrm{pt})$ be the coefficient ring, then $R^{*}=E^{*}(\mathrm{pt})$ for the reverse grading, which is the reason for this convention in Notation 2.1. Pulling the cross product back along the diagonal makes $E^{*}(X)$ a graded commutative unital R^{*}-algebra for the cup product ' \cup ' over R^{*}. Dually, there is a homological cross product that in particular makes $E_{*}(X)$ a graded module over R_{*}. There is a cap product

$$
E_{a}(X) \otimes_{R} E^{b}(X) \longrightarrow E_{a-b}(X), \quad a \otimes \varphi \mapsto a \cap \varphi
$$

which is R_{*}-linear, unital $a \cap 1=a$, and natural $f_{*}\left(a \cap f^{*}\left(\varphi^{\prime}\right)\right)=f_{*}(a) \cap \varphi^{\prime}$, where $f: X \rightarrow X^{\prime}$ and $\varphi^{\prime} \in E^{b}\left(X^{\prime}\right)$. See Rudyak [16] for further properties.

Definition 3.1. The suspension isomorphism shows that $\widetilde{E}^{*}\left(\mathbb{C P}{ }^{1}\right) \cong \widetilde{E}^{*}\left(\mathcal{S}^{2}\right) \cong R^{*-2}$ is a free R_{*}-module on a single generator. A multiplicative cohomology theory E^{*} is complex orientable if $i^{*}: \widetilde{E}^{*}\left(\mathbb{C P} \mathbb{P}^{\infty}\right) \rightarrow \widetilde{E}^{*}\left(\mathbb{C P}{ }^{1}\right)$ is surjective, where $\mathbb{C} \mathbb{P}^{\infty} \cong \operatorname{colim}_{m} \mathbb{C P}^{m}$ and $i: \mathbb{C P}^{1} \hookrightarrow \mathbb{C} \mathbb{P}^{\infty}$. A complex orientation is a choice of $\xi_{E} \in \widetilde{E}^{2}\left(\mathbb{C P}{ }^{\infty}\right)$ such that $i^{*}\left(\xi_{E}\right)$ generates the R_{*}-module $\widetilde{E}^{*}\left(\mathbb{C P}^{1}\right)$.

The presence of the permanent cycle $\left.\xi_{E}\right|_{\mathbb{C P}^{m}}$ implies that the Atiyah-Hirzebruch spectral sequence $H^{p}\left(\mathbb{C P}^{m} ; E^{q}(\mathrm{pt})\right) \Longrightarrow E^{p+q}\left(\mathbb{C P}^{m}\right)$ collapses, see Adams [1, p. 42]. Hence we have canonical isomorphisms

$$
E^{*}\left(\mathbb{C P}^{m}\right) \cong R\left[\xi_{E}\right] /\left(\xi_{E}^{m+1}\right), \quad E^{*}\left(\mathbb{C} \mathbb{P}^{\infty}\right) \cong \lim E^{*}\left(\mathbb{C} \mathbb{P}^{m}\right) \cong R \llbracket \xi_{E} \rrbracket
$$

More generally, let $P \rightarrow X$ be a bundle of projective spaces $\mathbb{C} \mathbb{P}^{m}$ and suppose that $w \in E^{*}(P)$ restricts on every fiber P_{x} to generators $1_{P_{x}},\left.w\right|_{P_{x}}, \ldots,\left.w^{m}\right|_{P_{x}}$ of the R_{*}-module $E^{*}\left(P_{x}\right)$. Then Dold's theorem implies that $E^{*}(P)$ is a free $E^{*}(X)$-module on $1_{P}, w, \ldots, w^{m}$, see [2, (7.4)]. In particular,

$$
\begin{equation*}
E^{*}\left(X \times \mathbb{C} \mathbb{P}^{\infty}\right) \cong E^{*}(X) \llbracket \xi_{E} \rrbracket, \quad E^{*}\left(\mathbb{C} \mathbb{P}^{\infty} \times \mathbb{C} \mathbb{P}^{\infty}\right) \cong R \llbracket \pi_{1}^{*}\left(\xi_{E}\right), \pi_{2}^{*}\left(\xi_{E}\right) \rrbracket . \tag{3.1}
\end{equation*}
$$

Definition 3.2. Let ξ_{E} be a complex orientation of E^{*}. Write $\mathcal{L} \rightarrow \mathbb{C P}{ }^{\infty}$ for the universal complex line bundle with $\left.\mathcal{L}\right|_{L}=L$. Recall that $\mathbb{C P}^{\infty}=B U(1)$ is an H-space with operation a classifying map $\mu_{\mathbb{C}}{ }^{\infty}: \mathbb{C} \mathbb{P}^{\infty} \times \mathbb{C} \mathbb{P}^{\infty} \rightarrow \mathbb{C} \mathbb{P}^{\infty}$ of the tensor product $\pi_{1}^{*}(\mathcal{L}) \otimes \pi_{2}^{*}(\mathcal{L})$ and unit t_{0} the trivial line bundle. The associated formal group law $F=\sum_{i, j \geqslant 0} F_{i j} z^{i} w^{j}$ is defined by the expansion

$$
\begin{equation*}
\mu_{\mathbb{C} \mathbb{P}^{\infty}}^{*}\left(\xi_{E}\right)=\sum_{i, j \geqslant 0} F_{i j} \xi_{E}^{i} \boxtimes \xi_{E}^{j}, \quad F_{i j} \in R^{2-2 i-2 j}=R_{2 i+2 j-2} . \tag{3.2}
\end{equation*}
$$

As in $\left[1\right.$, p. 42] the homology $E_{*}\left(\mathbb{C} \mathbb{P}^{\infty}\right)$ is the free R_{*}-module on the dual generators $t_{n}, n \geqslant 0$, of degree $2 n$ characterized by $\left\langle t_{n}, \xi_{E}^{m}\right\rangle=\delta_{n}^{m}$.

Proposition 3.3. Let $\left(E^{*}, \xi_{E}\right)$ be a complex oriented cohomology theory with associated formal group law $F(z, w)$. Suppose $\Psi: B \mathrm{U}(1) \times X \rightarrow X$ satisfies the axioms for a group action of the H-space $B \mathrm{U}(1)$ on X up to homotopy. Then

$$
\begin{equation*}
\mathcal{D}(z)(a)=\sum_{k \geqslant 0} \Psi_{*}\left(t_{k} \boxtimes a\right) z^{k}, \quad a \in E_{*}(X), \tag{3.3}
\end{equation*}
$$

defines an F-shift operator on $E_{*}(X)$.
Proof. Since $\Psi\left(t_{0}, x\right)=x$ is neutral, $\mathcal{D}(0)=\operatorname{id}_{E_{*}(X)}$. Define coefficients $F_{i j}^{n}$ by $F(z, w)^{n}=\sum_{i, j \geqslant 0} F_{i j}^{n} z^{i} w^{j}$. Then $\left(\mu_{\mathbb{C P}}{ }^{\infty}\right)_{*}\left(t_{i} \boxtimes t_{j}\right)=\sum_{n \geqslant 0} F_{i j}^{n} t_{n}$, and so

$$
\begin{aligned}
\mathcal{D}(z) \circ \mathcal{D}(w)(a) & =\sum_{i, j \geqslant 0} \Psi_{*}\left(t_{i} \boxtimes \Psi_{*}\left(t_{j} \boxtimes a\right)\right) z^{i} w^{j} \\
& =\sum_{i, j \geqslant 0} \Psi_{*}\left(\left(\mu_{\mathbb{C P}}\right)_{*}\left(t_{i} \boxtimes t_{j}\right) \boxtimes a\right) z^{i} w^{j} \\
& =\sum_{i, j, n \geqslant 0} \Psi_{*}\left(t_{n} \boxtimes a\right) F_{i j}^{n} z^{i} w^{j}=\mathcal{D}(F(z, w)) .
\end{aligned}
$$

Definition 3.4. Let $V \rightarrow X$ be a complex vector bundle of rank n with zero section 0_{X}. The bundle of projective spaces $\mathbb{P}(V)=\left(V \backslash 0_{X}\right) / \mathbb{C}^{*}$ carries a tautological line bundle $\mathcal{L}_{V} \rightarrow \mathbb{P}(V)$ with $\left.\mathcal{L}_{V}\right|_{L}=L$. Its classifying map $f_{\mathcal{L}_{V}}: \mathbb{P}(V) \rightarrow \mathbb{C} \mathbb{P}^{\infty}$ is unique up to homotopy. Define $w=f_{\mathcal{L}_{V}}^{*}\left(\xi_{E}\right)$ using the complex orientation. By the above, $E^{*}(\mathbb{P}(V))$ is a free $E^{*}(X)$-module with basis $1_{\mathbb{P}(V)}, w, \ldots, w^{n-1}$. The ConnerFloyd Chern classes are defined by expanding w^{n} in this basis:

$$
\begin{equation*}
c_{0}^{E}(V)=1, \quad 0=\sum_{i=0}^{n}(-1)^{i} c_{i}^{E}(V) \cdot w^{n-i}, \quad c_{i}^{E}(V)=0(\forall i>n) \tag{3.4}
\end{equation*}
$$

Naturality under pullback is obvious. There is a Whitney sum formula [2, p. 47]

$$
\begin{equation*}
c_{k}^{E}(V \oplus W)=\sum_{i=0}^{k} c_{i}^{E}(V) c_{k-i}^{E}(W) . \tag{3.5}
\end{equation*}
$$

For complex line bundles $\mathcal{L}_{L} \rightarrow \mathbb{P}(L)$ is isomorphic to $L \rightarrow X$ so $c_{1}^{E}(L)=f_{L}^{*}\left(\xi_{E}\right)$ for the classifying map f_{L} of L. In particular,

$$
\begin{equation*}
c_{1}^{E}\left(L_{1} \otimes L_{2}\right)=F\left(c_{1}^{E}\left(L_{1}\right), c_{1}^{E}\left(L_{2}\right)\right) . \tag{3.6}
\end{equation*}
$$

Moreover, $c_{1}^{E}(\mathbb{C})=0$ as ξ_{E} is reduced. Hence $c_{i}^{E}\left(\mathbb{C}^{N}\right)=0$ for every trivial bundle.
Example 3.5. Ordinary cohomology $E^{*}=H^{*}$ has a complex orientation ξ_{H} in $H^{2}\left(\mathbb{C} \mathbb{P}^{\infty}\right)=\lim H^{2}\left(\mathbb{C P}^{m}\right)$ that is Poincaré dual to the fundamental class $\left[\mathbb{P}^{m-1}\right] \in H_{m-2}\left(\mathbb{C P}^{m}\right)$ with orientation of $\mathbb{C P}{ }^{m-1}$ fixed by the complex structure. We obtain the ordinary Chern classes, and $c_{1}\left(L_{1} \otimes L_{2}\right)=c_{1}\left(L_{1}\right)+c_{1}\left(L_{2}\right)$ implies $F_{H}=\mathbb{G}_{\mathrm{a}}$.

Example 3.6. Topological K-theory $E^{*}=K^{*}$ on compact spaces is the group completion of isomorphism classes of complex vector bundles. Write $\mathcal{L}_{m}=\left.\mathcal{L}\right|_{\mathbb{C P}^{m}}$ for the tautological complex line bundle over $\mathbb{C P}^{m}, \mathbb{C}$ for the trivial bundle, and $\left[\mathcal{L}_{m}\right], 1 \in K^{0}\left(\mathbb{C P}^{m}\right)$ for their classes in K-theory. The classes $\left[\mathcal{L}_{m}\right]-1 \in \widetilde{K}^{0}\left(\mathbb{C P}^{m}\right)$ are compatible under restriction and define a complex orientation $\xi_{K} \in \widetilde{K}^{2}\left(\mathbb{C} \mathbb{P}^{\infty}\right)=$ $\lim \widetilde{K}^{0}\left(\mathbb{C P}^{m}\right)$. Here $F_{K}=\mathbb{G}_{\mathrm{m}}$ is the multiplicative formal group law, as

$$
\mu^{*}([\mathcal{L}]-1)=\left[\mu^{*}(\mathcal{L})\right]-1=\left[\pi_{1}^{*}(\mathcal{L}) \otimes \pi_{2}^{*}(\mathcal{L})\right]-1=\mathbb{G}_{\mathrm{m}}([\mathcal{L}]-1,[\mathcal{L}]-1) .
$$

For a complex vector bundle $V \rightarrow X$ of rank n one has $\pi^{*}(V)=\mathcal{L}_{V} \oplus \mathcal{L}_{V}^{\perp}$ over the projectivization $\pi: \mathbb{P}(V) \rightarrow X$ and \mathcal{L}_{V}^{\perp}. The formal power series $\Lambda_{t}([V])=1+[V] t+\left[\Lambda^{2} V\right] t^{2}+\ldots \in K^{0}(X) \llbracket t \rrbracket$ has inverse $\Lambda_{-t}([V])$, so $\Lambda_{t}([V]-[W])=\Lambda_{t}([V]) \Lambda_{-t}([W])$. As $\left[\mathcal{L}_{V}^{\perp}\right]=\pi^{*}[V]-[\mathcal{L}]$ has rank $n-1$, the n-th coefficient of $\Lambda_{t}\left(\left[\mathcal{L}_{V}^{\perp}\right]\right)=\Lambda_{t}\left(\left[\pi^{*}(V)\right]\right) \Lambda_{-t}(\mathcal{L})$ is $0=\left[\Lambda^{n}\left(\mathcal{L}_{V}^{\perp}\right)\right]=\sum_{p=0}^{n}(-1)^{n-p}\left[\Lambda^{p}(V)\right] \cdot[\mathcal{L}]^{n-p}$. Putting $[\mathcal{L}]=w+1$ and comparing to (3.4), $c_{i}^{K}(V)=\sum_{p=0}^{i}(-1)^{i+p}\binom{n-p}{n-i}\left[\Lambda^{p}(V)\right]$.

Example 3.7. As in Quillen [15], complex cobordism $\Omega_{\mathrm{U}}^{n}(X)$ for X a smooth manifold is the set of smooth maps $f: Z \rightarrow X$ of codimension $\operatorname{dim} X-\operatorname{dim} Z=n$ with a complex structure the stable normal bundle, modulo cobordism. The complex orientation $\xi_{\Omega} \in \Omega_{\mathrm{U}}^{2}\left(\mathbb{C P}^{\infty}\right)=\lim \Omega_{\mathrm{U}}^{2}\left(\mathbb{C P}^{m}\right)$ is given by $\mathbb{C} \mathbb{P}^{m-1} \hookrightarrow \mathbb{C} \mathbb{P}^{m}$, and $\mathbb{C} \mathbb{P}^{m-1}$ is the zero set of a section of \mathcal{L}_{m}^{*}. So for complex line bundles $c_{1}^{\Omega \mathrm{U}}(L)$ is represented by the zero set $s^{-1}(0)$ of a generic section $s: X \rightarrow L$. The formal group law is the universal law \mathbb{G}_{u}, see Adams [1, Part I, §8].

Lemma 3.8. Let $V \rightarrow X$ be a complex vector bundle over a finite $C W$ complex. Then each of the ConnerFloyd Chern classes $c_{i}^{E}(V)$ is nilpotent.

Proof. There is a finite open cover $X=\bigcup_{\lambda=1}^{N} U_{\lambda}$ with U_{λ} contractible and $\left.V\right|_{U_{\lambda}}$ trivial. From the long exact sequence of the pair $\left(X, U_{\lambda}\right)$ we see that we may lift $c_{i}^{E}(V)$ along $j_{\lambda}^{*}: E^{2 i}\left(X, U_{\lambda}\right) \rightarrow E^{2 i}(X)$ to a class $x_{\lambda} \in E^{2 i}\left(X, U_{\lambda}\right)$. The diagram

$$
\begin{gathered}
\prod_{\lambda=1}^{N} E^{2 i}\left(X, U_{\lambda}\right) \xrightarrow{\cup} E^{2 i N}\left(X, \bigcup_{\lambda=1}^{N} U_{\lambda}\right)=E^{2 i N}(X, X)=\{0\} \\
\prod_{\lambda=1}^{N} j_{\lambda}^{*} \\
\prod_{\lambda=1}^{N} E^{2 i}(X) \xrightarrow[j^{*}]{u} \\
E^{2 i N}(X)
\end{gathered}
$$

commutes by naturality of ' \cup ', so $c_{i}^{E}(V)^{N}=\prod_{\lambda=1}^{N} j_{\lambda}^{*}\left(x_{\lambda}\right)=j^{*}\left(\prod_{\lambda=1}^{N} x_{\lambda}\right)=0$.
Notation 3.9. When X is a finite CW complex, it follows that we may substitute w by $c_{1}^{E}(L)$ in the formal group law $F(z, w)$. To define the right hand side of (1.4) also for infinite CW complexes X, let $\left\{X_{i} \mid i \in I\right\}$ be the direct system of finite subcomplexes $X_{i} \subset X$ ordered by inclusion. The pro-group E-cohomology is the inverse limit $\hat{E}^{*}(X)=\lim E^{*}\left(X_{i}\right)$. The family of all restrictions $F\left(z, c_{1}^{E}\left(\left.L\right|_{X_{i}}\right)\right)$ determines an element we write $F\left(z, c_{1}^{E}(L)\right) \in \hat{E}^{*}(X) \llbracket z \rrbracket$. As homology and direct limits commute, see [17, Prop. 7.53], we have $E_{*}(X)=\operatorname{colim} E_{*}\left(X_{i}\right)$ and therefore a well-defined cap product $E_{*}(X) \otimes \hat{E}^{*}(X) \rightarrow E_{*}(X)$. This defines (1.4) in general.

4. Proof of Theorem 1.1

Step 1: Vector bundles over finite CW complexes. For a complex line bundle $L \rightarrow X$ over a finite CW complex X define $C_{z}^{E}(L)=F\left(z, c_{1}^{E}(L)\right)$. For $V \rightarrow X$ a rank n complex vector bundle we proceed by the splitting principle. As in Definition 3.4 over the projectivization $p: \mathbb{P}(V) \rightarrow X$ we can split off a line bundle from $p^{*}(V)$ and $p^{*}: E^{*}(Y) \rightarrow E^{*}(X)$ is injective. Iterating, we find $q: Y \rightarrow X$ and line bundles $L_{1}, \ldots, L_{n} \rightarrow Y$ with $L_{1} \oplus \cdots \oplus L_{n}=q^{*}(V)$ and $q^{*}: E^{*}(Y) \rightarrow E^{*}(X)$ is injective. By (3.5), the class $q^{*}\left(c_{k}^{E}(V)\right)$ is the k-th elementary symmetric polynomial in the Chern roots $c_{1}^{E}\left(L_{1}\right), \ldots, c_{1}^{E}\left(L_{1}\right)$. As the expression

$$
\begin{equation*}
F\left(z, c_{1}^{E}\left(L_{1}\right)\right) \cup \cdots \cup F\left(z, c_{1}^{E}\left(L_{n}\right)\right)=q^{*}\left(C_{z}^{E}(V)\right) \tag{4.1}
\end{equation*}
$$

is a symmetric polynomial in the Chern roots, the fundamental theorem of symmetric polynomials implies it has a (unique) preimage $C_{z}^{E}(V)$ in $E^{*}(X) \llbracket z \rrbracket$. The map (1.1) is obtained by combining the class $C_{z}^{E}(V)$ with the cap product

$$
\cap: E_{*}(X) \otimes E^{*}(X) \llbracket z \rrbracket \rightarrow E_{*}(X) \llbracket z \rrbracket .
$$

(a) For naturality, let $f: X^{\prime} \rightarrow X$ and use the pullback $Q: Y^{\prime}=X^{\prime} \times_{X} Y \rightarrow X^{\prime}$ with its canonical map $F: Y^{\prime} \rightarrow Y$ to split $V^{\prime}=f^{*}(V)$ as $Q^{*}\left(V^{\prime}\right) \cong F^{*} q^{*}(V) \cong F^{*}\left(L_{1}\right) \oplus \cdots \oplus F^{*}\left(L_{n}\right)$. Naturality of the

Conner-Floyd Chern classes implies that the pullback $F^{*} q^{*}\left(C_{z}^{E}(V)\right)=Q^{*} f^{*}\left(C_{z}^{E}(V)\right)$ of (4.1) along F is $Q^{*} C_{z}^{E}\left(V^{\prime}\right)$. Thus,

$$
\begin{equation*}
C_{z}^{E}\left(f^{*}(V)\right)=f^{*}\left(C_{z}^{E}(V)\right) . \tag{4.2}
\end{equation*}
$$

(b) Let $V, W \rightarrow X$ be vector bundles. Pick $q: Y \rightarrow X$ such that both $q^{*}(V)=L_{1} \oplus \cdots \oplus L_{n}$ and $q^{*}(W)=S_{1} \oplus \cdots \oplus S_{m}$ split into line bundles with q^{*} injective. Then $q^{*} C_{z}^{E}(V)$ equals (4.1), $q^{*} C_{z}^{E}(W)=$ $F\left(z, c_{1}^{E}\left(S_{1}\right)\right) \cup \cdots \cup F\left(z, c_{1}^{E}\left(S_{m}\right)\right)$, and

$$
q^{*} C_{z}^{E}(V \oplus W)=F\left(z, c_{1}^{E}\left(L_{1}\right)\right) \cup \cdots \cup F\left(z, c_{1}^{E}\left(S_{m}\right)\right)=q^{*} C_{z}^{E}(V) \cup q^{*} C_{z}^{E}(W) .
$$

Hence

$$
\begin{equation*}
C_{z}^{E}(V \oplus W)=C_{z}^{E}(V) \cup C_{z}^{E}(W) . \tag{4.3}
\end{equation*}
$$

This proves that cap product with $C_{z}^{E}(V)$ satisfies Theorem 1.1(a)\&(b). Part (c) holds by construction. For (d), in the case of line bundles the operation $(-) \cap F\left(z, c_{1}^{E}(L)\right)=\sum_{i, j \geqslant 0} F_{i j} z^{i}\left[(-) \cap c_{1}^{E}(L)^{j}\right]$ has degree -2 , as $F_{i j} \in R_{2 i+2 j-2}$. It then follows from (4.1) that in general $(-) \cap C_{z}^{E}(V)$ has degree $-2 \operatorname{rk}(V)$.
(e) Let $V \rightarrow X$ be a vector bundle, $L \rightarrow X$ a complex line bundle, and suppose $q^{*}(V)$ splits as above. Then $q^{*}(L \otimes V)=\left(q^{*}(L) \otimes L_{1}\right) \oplus \cdots \oplus\left(q^{*}(L) \otimes L_{n}\right)$ and so

$$
\begin{aligned}
q^{*} C_{z}^{E}(L \otimes V) & =F\left(z, c_{1}^{E}\left(q^{*}(L) \otimes L_{1}\right)\right) \cup \cdots \cup F\left(z, c_{1}^{E}\left(q^{*}(L) \otimes L_{n}\right)\right) \\
& \stackrel{(3.6)}{=} F\left(z, F\left(q^{*} c_{1}^{E}(L), c_{1}^{E}\left(L_{1}\right)\right)\right) \cup \cdots \cup F\left(z, F\left(q^{*} c_{1}^{E}(L), c_{1}^{E}\left(L_{n}\right)\right)\right) \\
& \stackrel{(2.1)}{=} F\left(F\left(z, q^{*} c_{1}^{E}(L)\right), c_{1}^{E}\left(L_{1}\right)\right) \cup \cdots \cup F\left(F\left(z, q^{*} c_{1}^{E}(L)\right), c_{1}^{E}\left(L_{n}\right)\right) \\
& =q^{*} C_{F\left(z, c_{1}^{E}(L)\right)}^{E}(V) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
C_{z}^{E}(L \otimes V)=C_{F\left(z, c_{1}^{E}(L)\right)}^{E}(V) . \tag{4.4}
\end{equation*}
$$

Step 2: Extension to K-theory of finite CW complexes. So far, we have constructed a homomorphism $C_{z}^{E}:(\operatorname{Vect}(X), \oplus) \rightarrow\left(E^{*}(X) \llbracket z \rrbracket, \cup\right)$ on the monoid of complex vector bundles $V \rightarrow X$ up to isomorphism over a finite CW complex. We claim that every class $C_{z}^{E}(V)$ is invertible in the larger ring $E^{*}(X) \llbracket z \rrbracket\left[z^{-1}\right]$. Indeed, there exists a vector bundle $W \rightarrow X$ with $V \oplus W \cong \mathbb{C}^{N}$ trivial and therefore $C_{z}^{E}(V) \cup C_{z}^{E}(W)=$ $C_{z}^{E}\left(\underline{\mathbb{C}}^{N}\right)=F\left(z, c_{1}^{E}(\underline{\mathbb{C}})\right)^{N}=z^{N}$. As X is a finite CW complex, its topological K-theory is the group completion of $(\operatorname{Vect}(X), \oplus)$ whose universal property allows us to uniquely extend the homomorphism to $C_{z}^{E}: K^{0}(X) \rightarrow\left(E^{*}(X) \llbracket z \rrbracket\left[z^{-1}\right], \cup\right)$. It is easy to check that properties (a)-(d) continue to hold.

Notation 4.1. As X is a finite CW complex, we may write $\theta=[V]-\left[\mathbb{C}^{\ell}\right]$. Expand $C_{z}^{E}(V)=\sum_{n \geqslant 0}^{\infty} C_{n}(V) z^{n}$. Then

$$
\begin{equation*}
C_{z}^{E}(\theta)=\sum_{n \geqslant 0} C_{n}(V) z^{n-\ell} . \tag{4.5}
\end{equation*}
$$

In Notation 2.1 we have defined $i_{z, w}\left(F(z, w)^{-\ell} \sum_{n \geqslant-\ell}^{\infty} C_{n}(V) F(z, w)^{n}\right)$ as a holomorphic series in w which we can substitute by the nilpotent $c_{1}^{E}(L)$, see Lemma 3.8. This defines $i_{z, c_{1}^{E}(L)} C_{F\left(z, c_{1}^{E}(L)\right)}^{E}(\theta) \in$ $E^{*}(X) \llbracket z \rrbracket\left[z^{-1}\right]$ for finite X. When X is infinite, the classes for the restrictions of θ to all finite subcomplexes $X_{i} \subset X$ define $i_{z, c_{1}^{E}(L)} C_{F\left(z, c_{1}^{E}(L)\right)}^{E}(\theta) \in \hat{E}(X)((z))$ in pro-group E-cohomology, see Notation 3.9.

We prove (e). As just seen, $C_{z}^{E}(L)=F\left(z, c_{1}^{E}(L)\right)$ is invertible in $E^{*}(X) \llbracket z \rrbracket\left[z^{-1}\right]$. Therefore $i_{z, w} F\left(z, c_{1}^{E}(L)\right)^{n}=F\left(z, c_{1}^{E}(L)\right)^{n}$ for all $n \in \mathbb{Z}$. Using Notation 4.1, we have

$$
\begin{aligned}
C_{z}^{E}(L \otimes \theta) & \stackrel{(4.3)}{=} C_{z}(L \otimes V) C_{z}(L)^{-\ell} \\
& \stackrel{(4.4)}{=} C_{F\left(z, c_{1}^{E}(L)\right)}(V) F\left(z, c_{1}^{E}(L)\right)^{-\ell} \\
& =\sum_{n \geqslant 0} C_{n}(V) F\left(z, c_{1}^{E}(L)\right)^{n-\ell}=i_{z, c_{1}^{E}(L)} C_{F\left(z, c_{1}^{E}(L)\right)}^{E}(\theta)
\end{aligned}
$$

Step 3: Infinite complexes. Let $\left\{X_{i} \mid i \in I\right\}$ be the direct system of finite subcomplexes of a CW complex X ordered by inclusion. Write $\iota(i): X_{i} \subset X$ and $\iota(i, j): X_{i} \subset X_{j}$ for the inclusions. For $\theta \in K^{0}(X)$, Step 2 yields for each $i \in I$ a map

$$
\begin{equation*}
E_{*}\left(X_{i}\right) \xrightarrow{\cap C_{z}\left(\iota(i)^{*} \theta\right)} E_{*}\left(X_{i}\right) \llbracket z \rrbracket\left[z^{-1}\right] \xrightarrow{\iota(i)_{*}} E_{*}(X) \llbracket z \rrbracket\left[z^{-1}\right] . \tag{4.6}
\end{equation*}
$$

By naturality, $\iota(i, j)_{*}(a) \cap C_{z}^{E}\left(\iota(j)^{*} \theta\right)=\iota(i, j)_{*}\left(a \cap C_{z}^{E}\left(\iota(i)^{*} \theta\right)\right)$ so the maps (4.6) determine a homomorphism $E_{*}(X) \cong \operatorname{colim} E_{*}\left(X_{i}\right) \rightarrow E_{*}(X) \llbracket z \rrbracket\left[z^{-1}\right]$ on the colimit, using that homology and direct limits commute, see [17, Prop. 7.53]. Equivalently, the restrictions $C_{z}^{E}\left(\left.\theta\right|_{X_{i}}\right)$ define a class $C_{z}^{E}(\theta) \in \hat{E}^{*}(X)((z))$ in pro-group E cohomology. Using the cap product $E_{*}(X) \otimes \hat{E}^{*}(X)((z)) \rightarrow E_{*}(X)((z))$ we can define $(-) \cap C_{z}^{E}(\theta): E_{*}(X) \rightarrow$ $E_{*}(X)((z))$ which, a priori, has a larger codomain.

Finally, properties (a)-(e) pass to the limit.
Step 5: General topological spaces. By the CW approximation theorem, there is a CW complex X^{\prime} with a weak homotopy equivalence $f: X^{\prime} \rightarrow X$. Then

$$
a \cap C_{z}(\theta)=f_{*}\left(f_{*}^{-1}(a) \cap C_{z}\left(f^{*} \theta\right)\right)
$$

is well-defined, since this equation holds for a homotopy equivalence $f: X^{\prime} \rightarrow X^{\prime}$ by (1.2). With this definition, the properties (a)-(e) carry over to X.

5. Proof of Theorem 1.2

We verify Definition 2.7(a)-(c) for the graded module $V_{*}=\bigoplus E_{*-\mathrm{rk}} \theta_{\alpha, \alpha}\left(X_{\alpha}\right)$, vacuum vector $\Omega=e_{*}(1)$, F-shift operator (3.3), and state-to-field correspondence (1.13). Here, e : pt $\rightarrow X_{0}$ is the H -space unit and $1 \in E_{0}(\mathrm{pt})=R^{0}$.

Writing $|a|_{V}=|a|+\operatorname{rk} \theta_{\alpha, \alpha}$ for the shifted degree, we have

$$
\left.|Y(a, z) b|_{V}=\mid Y(a, z) b\right)\left.\left|+\operatorname{rk} \theta_{\alpha+\beta, \alpha+\beta}=\left(|a|-\operatorname{rk} \theta_{\alpha, \alpha}\right)\left(|b|-\operatorname{rk} \theta_{\beta, \beta}\right)=|a|_{V} \cdot\right| b\right|_{V}
$$

for $a \in E_{*-\mathrm{rk} \theta_{\alpha, \alpha}}\left(X_{\alpha}\right), b \in E_{*-\mathrm{rk} \theta_{\beta, \beta}}\left(X_{\beta}\right)$, so that Y preserves the grading of V_{*}.
(a) Let $a \in E_{*}\left(X_{\alpha}\right), b \in E_{*}\left(X_{\beta}\right)$. As e is a fixed point, $\Psi_{*}\left(t_{k} \boxtimes \Omega\right)=0$ for $k>0$ and $\Psi_{*}\left(t_{0} \boxtimes \Omega\right)=\Omega$. Hence $\mathcal{D}(z) \Omega=\Omega$. Let $\varphi=\left(e, \operatorname{id}_{X_{\beta}}\right): X_{\beta} \rightarrow X_{\Omega} \times X_{\beta}$. Then

$$
\begin{aligned}
(\Omega \boxtimes b) \cap C_{z}^{E}\left(\theta_{\Omega, \beta}\right) & =\varphi_{*}(b) \cap C_{z}^{E}\left(\theta_{\Omega, \beta}\right) \\
& =\varphi_{*}\left(b \cap \varphi^{*} C_{z}^{E}\left(\theta_{\Omega, \beta}\right)\right) \stackrel{(1.10)}{=} \varphi_{*}(b \cap 1)=\Omega \boxtimes b,
\end{aligned}
$$

and so $Y(\Omega, z) b=\left(\Phi_{\Omega, \beta}\right)_{*}(\mathcal{D}(z) \Omega \boxtimes b)=b$, proving (2.7). Similarly,

$$
Y(a, z) \Omega=\left(\Phi_{\alpha, \Omega}\right)_{*}\left(\mathcal{D}(z) \boxtimes \operatorname{id}_{X_{\Omega}}\right)(a \boxtimes \Omega)=\mathcal{D}(z)(a)
$$

is holomorphic with $\mathcal{D}(0)(a)=a$ for $z=0$, proving (2.6).
(b) We have already shown $\mathcal{D}(z) \Omega=\Omega$. To prove (2.8), we first need a lemma.

Lemma 5.1. For the universal complex line bundle $\mathcal{L} \rightarrow \mathbb{C} P^{\infty}$ and $n \in \mathbb{Z}$

$$
\begin{equation*}
\sum_{k \geqslant 0} t_{k} \cap i_{z, c_{1}^{E}(\mathcal{L})} F\left(z, c_{1}^{E}(\mathcal{L})\right)^{n} w^{k}=\sum_{\ell \geqslant 0} t_{\ell} i_{z, w} F(z, w)^{n} w^{\ell} . \tag{5.1}
\end{equation*}
$$

Moreover, for all $a \in E_{*}\left(X_{\alpha}\right), b \in E_{*}\left(X_{\beta}\right)$ we have

$$
\begin{align*}
& \left(\mathcal{D}_{\alpha}(w) a \boxtimes b\right) \cap C_{z}^{E}\left(\theta_{\alpha, \beta}\right)=\left(\mathcal{D}_{\alpha}(w) \times \operatorname{id}_{X_{\beta}}\right)\left[(a \boxtimes b) \cap i_{z, w} C_{F(z, w)}^{E}\left(\theta_{\alpha, \beta}\right)\right], \tag{5.2}\\
& \left(a \boxtimes \mathcal{D}_{\beta}(w) b\right) \cap C_{z}^{E}\left(\theta_{\alpha, \beta}\right)=\left(\operatorname{id}_{X_{\alpha}} \times \mathcal{D}_{\beta}(w)\right)\left[(a \boxtimes b) \cap i_{z, w} C_{F(z, t(w))}^{E}\left(\theta_{\alpha, \beta}\right)\right] . \tag{5.3}
\end{align*}
$$

Proof. Introduce the expansion $i_{z, w} F(z, w)^{n}=\sum_{i \in \mathbb{Z}, j \geqslant 0} F_{i j}^{n} z^{i} w^{j}$. Then

$$
\begin{equation*}
t_{k} \cap i_{z, c_{1}^{E}(\mathcal{L})} F\left(z, c_{1}^{E}(\mathcal{L})\right)^{n}=t_{k} \cap \sum_{\substack{i \in \mathbb{Z} \\ j \geqslant 0}} F_{i j}^{n} z^{i} c_{1}^{E}(\mathcal{L})^{j}=\sum_{\substack{i \in \mathbb{Z} \\ j \geqslant 0}} F_{i j}^{n} z^{i} t_{k-j}, \tag{5.4}
\end{equation*}
$$

where $t_{k}=0$ for $k<0$. Summing (5.4) over all k, the summands with $k<j$ vanish, so we may restrict the sum to $k \geqslant j$ and reindexing by $\ell=k-j$ gives (5.1):

$$
\sum_{i \in \mathbb{Z}} \sum_{\ell \geqslant 0} \sum_{\ell \geqslant 0} F_{i j}^{n} z^{i} w^{j} t_{\ell} w^{\ell}=\sum_{\ell \geqslant 0} t_{\ell} i_{z, w} F(z, w)^{n} w^{\ell}
$$

For (5.2) we compute

$$
\begin{aligned}
& \left(\mathcal{D}_{\alpha}(w) a \boxtimes b\right) \cap C_{z}^{E}\left(\theta_{\alpha, \beta} \stackrel{(3.3)}{=} \sum_{k \geqslant 0}\left(\Psi_{\alpha} \times \operatorname{id}_{X_{\beta}}\right)_{*}\left(t_{k} \boxtimes a \boxtimes b\right) \cap C_{z}^{E}\left(\theta_{\alpha, \beta}\right) w^{k}\right. \\
& =\left(\Psi_{\alpha} \times \operatorname{id}_{X_{\beta}}\right)_{*} \sum_{k \geqslant 0}\left(t_{k} \boxtimes a \boxtimes b\right) \cap\left(\Psi_{\alpha} \times \operatorname{id}_{X_{\beta}}\right)^{*} C_{z}^{E}\left(\theta_{\alpha, \beta}\right) w^{k} \\
& \stackrel{(1.8)}{=}\left(\Psi_{\alpha} \times \operatorname{id}_{X_{\beta}}\right)_{*} \sum_{k \geqslant 0}\left(t_{k} \boxtimes a \boxtimes b\right) \cap C_{z}^{E}\left(\mathcal{L} \boxtimes \theta_{\alpha, \beta}\right) w^{k} \\
& \stackrel{(1.5)}{=}\left(\Psi_{\alpha} \times \operatorname{id}_{X_{\beta}}\right)_{*} \sum_{k \geqslant 0}\left(t_{k} \boxtimes a \boxtimes b\right) \cap i_{z, c_{1}^{E}(\mathcal{L})} C_{F\left(z, c_{1}^{E}(\mathcal{L})\right)}^{E}\left(\theta_{\alpha, \beta}\right) w^{k} \\
& \stackrel{(5.1)}{=}\left(\Psi_{\alpha} \times \operatorname{id}_{X_{\beta}}\right)_{*} \sum_{\ell \geqslant 0}\left(t_{\ell} \boxtimes a \boxtimes b\right) \cap i_{z, w} C_{F(z, w)}^{E}\left(\theta_{\alpha, \beta}\right) w^{\ell} \\
& =\left(\mathcal{D}_{\alpha}(w) \times \operatorname{id}_{X_{\beta}}\right)\left[(a \boxtimes b) \cap i_{z, w} C_{F(z, w)}^{E}\left(\theta_{\alpha, \beta}\right)\right] .
\end{aligned}
$$

For (5.3) we similarly use (1.9) which replaces $c_{1}^{E}(\mathcal{L})$ by its formal inverse $\iota\left(c_{1}^{E}(\mathcal{L})\right)$ above, so the same argument with $F(z, \iota(w))$ in place of $F(z, w)$ gives (5.3).

It is now easy to verify (2.8): Let $a \in E_{*}\left(X_{\alpha}\right), b \in E_{*}\left(X_{\beta}\right)$. Then

$$
\begin{aligned}
& Y\left(\mathcal{D}_{\alpha}(w) a, z\right) b \stackrel{(1.13)}{=}\left(\Phi_{\alpha, \beta}\right)_{*}\left(\mathcal{D}_{\alpha}(z) \boxtimes \operatorname{id}_{\beta}\right)\left[\left(\mathcal{D}_{\alpha}(w) a \boxtimes b\right) \cap C_{z}^{E}\left(\theta_{\alpha, \beta}\right)\right] \\
& \stackrel{(5.2)}{=}\left(\Phi_{\alpha, \beta}\right)_{*}\left(\mathcal{D}_{\alpha}(z) \mathcal{D}_{\alpha}(w) \boxtimes \operatorname{id}_{\beta}\right)\left[(a \boxtimes b) \cap i_{z, w} C_{F(z, w)}^{E}\left(\theta_{\alpha, \beta}\right)\right] \\
& \stackrel{(2.4)}{=} i_{z, w} Y(a, F(z, w)) b .
\end{aligned}
$$

(c) Firstly, $\Phi \circ(\Psi \times \Psi) \circ \delta \simeq \Psi \circ\left(\Phi \times \operatorname{id}_{B \mathrm{U}(1)}\right)$ and $\Delta_{*}\left(t_{k}\right)=\sum_{i+j=k} t_{i} \boxtimes t_{j}$ imply

$$
\begin{equation*}
\mathcal{D}_{\alpha+\beta}(z)\left(\Phi_{\alpha, \beta}\right)_{*}=\left(\Phi_{\alpha, \beta}\right)_{*}\left(\mathcal{D}_{\alpha}(z) \boxtimes \mathcal{D}_{\beta}(z)\right) . \tag{5.5}
\end{equation*}
$$

Let $a \in E_{*}\left(X_{\alpha}\right), b \in E_{*}\left(X_{\beta}\right), c \in E_{*}\left(X_{\gamma}\right)$. On the one hand

$$
\begin{aligned}
& Y(Y(a, z) b, w) c=\left(\Phi_{\alpha+\beta, \gamma}\right)_{*}\left(\mathcal{D}_{\alpha+\beta}(w) \boxtimes \operatorname{id}_{\gamma}\right) \\
& \quad\left[\left(\Phi_{\alpha, \beta}\right)_{*}\left(\mathcal{D}_{\alpha}(z) \boxtimes \operatorname{id}_{\beta}\right)\left[(a \boxtimes b) \cap C_{z}^{E}\left(\theta_{\alpha, \beta}\right)\right] \boxtimes c \cap C_{w}^{E}\left(\theta_{\alpha+\beta, \gamma}\right)\right] \\
& \stackrel{(5.5)}{=} \quad\left(\Phi_{\alpha+\beta, \gamma}\right)_{*}\left(\Phi_{\alpha, \beta}\right)_{*}\left(\mathcal{D}_{\alpha}(w) \boxtimes \mathcal{D}_{\beta}(w) \boxtimes \mathrm{id}_{\gamma}\right) \\
& \quad\left[\left(\mathcal{D}_{\alpha}(z) \boxtimes \operatorname{id}_{\beta} \boxtimes \mathrm{id}_{\gamma}\right)\left((a \boxtimes b \boxtimes c) \cap C_{z}^{E}\left(\theta_{\alpha, \beta}\right) \cap\left(\Phi_{\alpha, \beta} \times \mathrm{id}_{\gamma}\right)^{*} C_{w}^{E}\left(\theta_{\alpha+\beta, \gamma}\right)\right)\right] \\
& (2.4),(5.2) \\
& = \\
& \quad\left[\left(\Phi_{\alpha+\beta, \gamma}\right)_{*}\left(\Phi_{\alpha, \beta}\right)_{*}\left(\mathcal{D}_{\alpha}(w) \mathcal{D}_{\alpha}(z) \boxtimes b \mathcal{D}_{\beta}(w) \boxtimes \operatorname{id}_{\gamma}\right)\right. \\
&
\end{aligned}
$$

and on the other hand

$$
\begin{aligned}
& i_{z, w} Y(a, F(z, w)) Y(b, w) c=i_{z, w}\left(\Phi_{\alpha, \beta+\gamma}\right)_{*}\left(\mathcal{D}_{\alpha}(F(z, w)) \boxtimes \operatorname{id}_{\beta+\gamma}\right) \\
& \quad\left[\left(a \boxtimes\left(\Phi_{\beta, \gamma}\right)_{*}\left(\mathcal{D}_{\beta}(w) \boxtimes \operatorname{id}_{\gamma}\right)\left[(b \boxtimes c) \cap C_{w}^{E}\left(\theta_{\beta, \gamma}\right)\right]\right) \cap C_{F(z, w)}^{E}\left(\theta_{\alpha, \beta+\gamma}\right)\right] \\
& \stackrel{(5.5),(1.7)^{\prime}}{=} i_{z, w}\left(\Phi_{\alpha, \beta+\gamma}\right)_{*}\left(\mathrm{id}_{\alpha} \boxtimes \Phi_{\beta, \gamma}\right)_{*}\left(\mathcal{D}_{\alpha}(F(z, w)) \boxtimes \operatorname{id}_{\beta} \boxtimes \mathrm{id}_{\gamma}\right) \\
& \quad\left[\left(\mathrm{id}_{\alpha} \boxtimes \mathcal{D}_{\beta}(w) \boxtimes \mathrm{id}_{\gamma}\right)\left[(a \boxtimes b \boxtimes c) \cap C_{w}^{E}\left(\theta_{\beta, \gamma}\right)\right] \cap C_{F(z, w)}^{E}\left(\theta_{\alpha, \beta}\right) \cap C_{F(z, w)}^{E}\left(\theta_{\alpha, \gamma}\right)\right] \\
& \stackrel{(2.4)}{=}(5.3)\left(\Phi_{\alpha, \beta+\gamma}\right)_{*}\left(\operatorname{id}_{\alpha} \boxtimes \Phi_{\beta, \gamma}\right)_{*}\left(\mathcal{D}_{\alpha}(w) \mathcal{D}_{\alpha}(z) \boxtimes \mathcal{D}_{\beta}(w) \boxtimes \mathrm{id}_{\gamma}\right) \\
& \quad\left[(a \boxtimes b \boxtimes c) \cap C_{w}^{E}\left(\theta_{\beta, \gamma}\right) \cap C_{z}^{E}\left(\theta_{\alpha, \beta}\right) \cap i_{z, w} C_{F(z, w)}^{E}\left(\theta_{\alpha, \gamma}\right)\right] .
\end{aligned}
$$

As $Y(Y(a, z) b, w) c$ and $Y(a, F(z, w)) Y(b, w) c$ are both expansions in negative powers of $F(z, w)$ of the same series in different variables, there exist some $N \gg 0$ with $F(z, w)^{N} Y(Y(a, z) b, w) c=$ $F(z, w)^{N} Y(a, F(z, w)) Y(b, w) c$, see (2.3).

The same calculations show that (1.15) is a nonlocal vertex F-algebra and that the state-to-field correspondence $\bar{Y}(a, z) b$ preserves the degree shifted by $2 \chi(\alpha, \alpha)$. It remains to prove $(-1)^{a b} \bar{Y}(a, z) b=$ $\mathcal{D}_{\alpha+\beta}(z) \bar{Y}(b, \iota(z)) a$. Notice $\sigma^{*}\left(\bar{C}_{z}^{E}\left(\theta_{\alpha, \beta}\right)\right)=\bar{C}_{\iota(z)}^{E}\left(\theta_{\beta, \alpha}\right)$ for the swap $\sigma: X_{\beta} \times X_{\alpha} \rightarrow X_{\alpha} \times X_{\beta}$. Using $\Phi_{\beta, \alpha} \simeq \Phi_{\alpha, \beta} \circ \sigma$ we find

$$
\begin{aligned}
& \mathcal{D}_{\alpha+\beta}(z) \bar{Y}(b, \iota(z)) a=\mathcal{D}_{\alpha+\beta}(z)\left(\Phi_{\beta, \alpha}\right)_{*}\left(\mathcal{D}_{\beta}(\iota(z)) \boxtimes \operatorname{id}_{\alpha}\right)\left[(b \boxtimes a) \cap \bar{C}_{\iota(z)}^{E}\left(\theta_{\beta, \alpha}\right)\right] \\
& =\mathcal{D}_{\alpha+\beta}(z)\left(\Phi_{\alpha, \beta}\right)_{*}\left(\operatorname{id}_{\alpha} \boxtimes \mathcal{D}_{\beta}(\iota(z))\right) \sigma_{*}\left[(b \boxtimes a) \cap \sigma^{*} \bar{C}_{z}^{E}\left(\theta_{\alpha, \beta}\right)\right] \\
& \stackrel{(5.5)}{=}\left(\Phi_{\alpha, \beta}\right)_{*}\left(\mathcal{D}_{\alpha}(z) \boxtimes \operatorname{id}_{\beta}\right)\left[\sigma_{*}(b \boxtimes a) \cap \bar{C}_{z}^{E}\left(\theta_{\alpha, \beta}\right)\right] \\
& =\left(\Phi_{\alpha, \beta}\right)_{*}\left(\mathcal{D}_{\alpha}(z) \boxtimes \operatorname{id}_{\beta}\right)\left[(-1)^{a b}(a \boxtimes b) \cap \bar{C}_{z}^{E}\left(\theta_{\alpha, \beta}\right)\right]=(-1)^{a b} \bar{Y}(a, z) b .
\end{aligned}
$$

Remark 5.2. For the additive formal group law \mathbb{G}_{a} and ordinary homology, this was shown by Joyce $[8$, Thm. 3.14]. When X is the derived category of a finite quiver or of certain smooth projective complex varieties, then taking $F(X, Y)=X+Y$ in (1.15) gives a (super) lattice vertex algebra [7, Thm. 5.7] [8, Thm. 5.19].

Remark 5.3. A similar construction applies to H -spaces X with $B \mathrm{O}(1)$-actions, the classifying space for real line bundles, and homology with \mathbb{Z}_{2}-coefficients. Since $H^{*}(B O(1))=\mathbb{Z}_{2} \llbracket \xi \rrbracket$ there is a shift operator $\mathcal{D}(u): H_{*}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H_{*}\left(X ; \mathbb{Z}_{2}\right) \llbracket u \rrbracket$ for u a variable of degree -1 . One can then build, just as in Theorem 1.1, an operator $(-) \cap W_{u}(\theta)$ of degree $-\operatorname{rk} \theta_{\alpha, \beta}$, where $\theta_{\alpha, \beta} \in K O\left(X_{\alpha} \times X_{\beta}\right)$, with normalization $a \cap W_{u}(L)=a \cap$ $\left(u+w_{1}(L)\right)$ for the first Stiefel-Whitney class of a real line bundle $L \rightarrow X$. Then $Y(a, z) b=\left(\Phi_{\alpha, \beta}\right)_{*}\left(\mathcal{D}_{\alpha}(u) \boxtimes\right.$ $\left.\operatorname{id}_{\beta}\right)\left[(a \otimes b) \cap W_{u}\left(\theta_{\alpha, \beta}\right)\right]$ makes $V=H_{*}\left(X ; \mathbb{Z}_{2}\right)$ into a vertex algebra over \mathbb{Z}_{2}.

Acknowledgements

The authors thank Dominic Joyce for many discussions and suggestions. They also thank Mikhail Kapranov, Kobi Kremnitzer, Sven Meinhardt, and Konrad Voelkel for helpful conversations.

References

[1] J.F. Adams, Stable Homotopy and Generalised Homology, Chicago Lectures in Math., University of Chicago Press, Chicago, Ill.-London, 1974.
[2] P.E. Conner, E.E. Floyd, The Relation of Cobordism to K-Theories, Lecture Notes in Math., vol. 28, Springer-Verlag, Berlin-New York, 1966.
[3] E. Frenkel, D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Math. Surveys and Monographs, vol. 88, A.M.S., Providence, RI, 2004.
[4] I. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988.
[5] L. Göttsche, H. Nakajima, K. Yoshioka, K-theoretic Donaldson invariants via instanton counting, Pure Appl. Math. Q. 5 (2009) 1029-1111, special issue in honor of F. Hirzebruch.
[6] L. Göttsche, M. Kool, R.A. Williams, Verlinde formulae on complex surfaces I: K-theoretic invariants, arXiv:1903.03869, 2019.
[7] J. Gross, The homology of moduli stacks of complexes, arXiv:1907.03269, 2019.
[8] D. Joyce, Ringel-Hall style vertex algebra and Lie algebra structures on the homology of moduli spaces, http://people. maths.ox.ac.uk/~joyce/hall.pdf.
[9] D. Joyce, Y. Tanaka, M. Upmeier, On orientations for gauge-theoretic moduli spaces, Adv. Math. 362 (2020), arXiv: 1811.01096.
[10] D. Joyce, M. Upmeier, Canonical orientations for moduli spaces of G_{2}-instantons with gauge group $\mathrm{SU}(m)$ or $\mathrm{U}(m)$, J. Differ. Geom. (2022), in press.
[11] D. Joyce, M. Upmeier, On spin structures and orientations for gauge-theoretic moduli spaces, Adv. Math. 381 (2021).
[12] V.G. Kac, Vertex Algebras for Beginners, Univ. Lect. Series, vol. 10, A.M.S., Providence, RI, 1998.
[13] Y.-H. Kiem, M. Savvas, K-theoretic generalized Donaldson-Thomas invariants, Int. Math. Res. Not. (2020), https:// doi.org/10.1093/imrn/rnaa097.
[14] H.-S. Li, Vertex F-algebras and their ϕ-coordinated modules, J. Pure Appl. Algebra 215 (2011) 1645-1662.
[15] D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Adv. Math. 7 (1971) 29-56.
[16] Y.B. Rudyak, On Thom Spectra, Orientability, and Cobordism, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
[17] R.M. Switzer, Algebraic Topology-Homotopy and Homology, Die Grundlehren der Math. Wiss., vol. 212, Springer-Verlag, New York-Heidelberg, 1975.
[18] R.P. Thomas, Equivariant K-theory and refined Vafa-Witten invariants, Commun. Math. Phys. 378 (2020) 1451-1500.
[19] B. Toën, M. Vaquié, Moduli of objects in dg-categories, Ann. Sci. Éc. Norm. Supér. 40 (2007) 387-444.

[^0]: * Corresponding author.

 E-mail addresses: jacob.gross@maths.ox.ac.uk (J. Gross), markus.upmeier@abdn.ac.uk (M. Upmeier).

