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1. Introduction and results

The algebraic topology of moduli stacks, arising for example in algebraic geometry and gauge theory, is 
of fundamental importance for the study of invariants. Let A be an additive C-linear dg-category, whose 
τ -stable objects we wish to classify, for τ a stability condition. The category A has an associated moduli 
stack MA by [19]. In [8], Joyce constructs a graded vertex algebra on the ordinary homology H∗(MA). 
Vertex algebras are algebraic structures with origins in conformal field theory which can be regarded as 
singular commutative rings whose operation Y : V ⊗ V → V ((z)), the state-to-field correspondence, takes 
values in Laurent series. This profound algebraic structure is used to describe wall-crossing formulas relating 
the virtual fundamental classes [MA]virt

τ , [MA]virt
τ ′ ∈ H∗(MA) for different stability conditions. These are 

powerful tools for computing invariants.
Motivated by physics, many authors currently investigate refined invariants such as K-theoretic 

Donaldson–Thomas invariants [5,6,13,18]. Here the virtual classes should be viewed in K-homology K∗(MA). 
As a first step towards extending wall-crossing formulas to refined invariants, we here extend Joyce’s con-
struction to any generalized (complex oriented) homology theory E∗ with associated formal group law 
F (z, w). Our main result constructs a vertex F -algebra structure on E∗(MA) in the sense of Li [14].

In addition, our construction of vertex F -algebra works in greater generality, namely for any topological 
H-space (i.e. abelian group up to homotopy) with an action of BU(1).

Let E∗ be a complex oriented generalized cohomology theory with associated formal group law F (z, w)
over its coefficient ring R∗, see §3. As a preliminary result, we present a Laurent-polynomial version of the 
Conner-Floyd Chern classes (see Definition 3.4) with values in E∗.

Theorem 1.1. For every class θ ∈ K0(X) in the topological K-theory of topological space X there is an 
R∗-linear transformation

(−) ∩ CE
z (θ) : E∗(X) −→ E∗(X)�z�[z−1] a �−→ a ∩ CE

z (θ), (1.1)

of degree −2r if θ has constant rank r ∈ Z, with the following properties:

(a) (Naturality.) For continuous f : X ′ → X, θ ∈ K0(X), and a′ ∈ E∗(X ′)

f∗
(
a′ ∩ CE

z (f∗(θ))
)

= f∗(a′) ∩ CE
z (θ). (1.2)

(b) (Direct sums.) For ζ, θ ∈ K0(X) and a ∈ E∗(X) we have

a ∩ CE
z (ζ + θ) =

[
a ∩ CE

z (ζ)
]
∩ CE

z (θ). (1.3)

(c) (Normalization.) For a complex line bundle L → X and a ∈ E∗(X) we have

a ∩ CE
z (L) = a ∩ F (z, cE1 (L)). (1.4)

More generally, for any θ ∈ K0(X) we have

a ∩ CE
z (L⊗ θ) = iz,cE1 (L)

(
a ∩ CE

F (z,cE1 (L))(θ)
)
. (1.5)

Here, as usual, the variable z has degree −2. We prove Theorem 1.1 in §4. The notations used in (1.4)
and (1.5) will be explained in Notations 3.9 & 4.1 below.

For our main result, let X be an H-space with an operation Φ: X ×X → X that is associative, commuta-
tive, and has a unit e ∈ X up to homotopy. Recall that the classifying space BU(1) for complex line bundles 
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is an H-space with the tensor product μBU(1) and trivial bundle eBU(1). Assume there is an action Ψ of BU(1)
on X up to homotopy, meaning Ψ ◦ (idBU(1) ×Ψ) � Ψ ◦ (μBU(1) × idX) and Ψ(eBU(1), −) � idX . Suppose 
Ψ(e, −) � e is an h-fixed point and Φ ◦ (Ψ × Ψ) ◦ δ � Ψ ◦ (Φ × idBU(1)), where δ(x1, x2, g) = (x1, g, x2, g). 
The set of connected components π0(X) is a monoid with unit Ω = [e] and operation α + β = Φ∗(α � β)
and we partition X =

∐
α∈π0(X) Xα. Write Φα,β : Xα ×Xβ → Xα+β , Ψα : BU(1) ×Xα → Xα for the re-

strictions. Let θα,β ∈ K0(Xα ×Xβ) for all α, β.

Theorem 1.2. Given (X, Φ, e, Ψ) as above, suppose the following identities hold for all α, β, γ ∈ π0(X):

(Φα,β × idXγ
)∗(θα+β,γ) = π∗

α,γ(θα,γ) + π∗
β,γ(θβ,γ), (1.6)

(idXα
×Φβ,γ)∗(θα,β+γ) = π∗

α,β(θα,β) + π∗
α,γ(θα,γ), (1.7)

(Ψα × idXβ
)∗(θα,β) = π∗

BU(1)(L) ⊗ π∗
α,β(θα,β), (1.8)

(idXα
×Ψβ)∗(θα,β) = π∗

BU(1)(L)∨⊗ π∗
α,β(θα,β), (1.9)

θ|Xα×{Ω} = 0, θ|{Ω}×Xβ
= 0, (1.10)

σ∗(θβ,α) = (θα,β)∨. (1.11)

Here σ swaps the factors of Xα ×Xβ and L → BU(1) is the universal line bundle with dual L∨. With the 
F -shift operator D(z) of (3.3) below, the graded R∗-module

V∗ =
⊕

α∈π0(X)
E∗−rk θα,α

(Xα) (1.12)

is a graded nonlocal vertex F -algebra (V∗, D, Ω, Y ) with state-to-field correspondence

Y (a, z)b = (Φα,β)∗
(
Dα(z) � idE∗(Xβ)

)[
(a� b) ∩ CE

z (θα,β)
]
. (1.13)

Similarly, the graded R∗-module

V ∗ =
⊕

α∈π0(X)
E∗−2 rk θα,α

(Xα) (1.14)

becomes a graded vertex F -algebra (V ∗, D, Ω, Y ), where

Y (a, z)b = (Φα,β)∗
(
Dα(z) � idE∗(Xβ)

)[
(a� b) ∩ C

E

z (θα,β)
]

(1.15)

uses the operation of degree −4 rk θα,β defined by

c ∩ C
E

z (θα,β) =
[
c ∩ CE

z (θα,β)
]
∩ CE

ι(z)(σ∗(θβ,α)), c ∈ E∗(Xα ×Xβ).

Here ι(z) is the inverse for F (see §2). The proof of Theorem 1.2 is given in §5.
As a special case, our result applies to the topological realization X = Mtop

A of a moduli stack. Taking 
direct sums in the additive category defines Φ making MA into an H-space. Moreover, scaling morphism 
by U(1) defines an operation Ψ of the quotient stack [∗ � U(1)], endowing Mtop

A with the required action of 
BU(1) = [∗ � U(1)]top. As shown in Proposition 3.3 below, this action yields an F -shift operator D(z). The 
K-theory classes θα,β are given by the Ext-complexes in the dg-category A, which satisfy (1.6)–(1.11). In 
geometric examples, one may wish to incorporate signs εα,β into (1.15). These are related to orientations, see 
[8, §8.3]. The orientation problems were solved in the series [9–11]. For simplicity, we ignore this additional 
data here and set up a symmetrized construction without signs.
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2. Formal groups laws and vertex F-algebras

In the section, we will keep everything general and assume the following setup. Later, the data R∗ and 
F (z, w) will arise naturally from a complex oriented cohomology theory, see §3, and V∗ will be constructed 
from an H-space as in (1.12).

Notation 2.1.

• R∗ a graded commutative ring with unit. Write R∗ for the same ring with the reverse grading, Rn = R−n, 
n ∈ Z, and R for the ring with the grading removed

• V∗ a graded module over R∗
• z, w variables of degree −2
• F (z, w) a graded formal group law over R∗
• V �z� the formal power series 

∑∞
i=0 aiz

i; a ring when V = R

• V ( (z) ) the R∗-module of Laurent series 
∑+∞

i=−∞ aiz
i with its partially defined product. The fact that 

V ( (z) ) is not a ring frequently causes confusion.
• The meromorphic series V �z�[z−1]; a ring when V = R.
• iz,w : V �z, w�[z−1, w−1, F (z, w)−1] → V ( (z, w) ) expands F (z, w)−N , see Notation 2.4. We have 

iz,w(V �z, w�[F (z, w)−1]) ⊂ V ( (z) )�w�.
• (−1)a means (−1)degree(a)

Definition 2.2. A graded formal group law over R∗ is a formal power series F (z, w) =
∑

i,j�0 Fijz
iwj ∈

R�z, w� with Fij ∈ R2i+2j−2 satisfying

F (z, w) = F (w, z), F (z, 0) = z, F (F (z, w), v) = F (z, F (w, v)). (2.1)

There exists a unique power series ι ∈ R�z� with F (z, ι(z)) = 0, the inverse. Note that ι(ι(z)) = z and 
ι(F (ι(z), w)) = F (z, ι(w)).

Example 2.3.

(i) The additive formal group law Ga over Z (in degree zero) is defined by F (z, w) = z + w, and the 
inverse is ι(z) = −z.

(ii) The multiplicative formal group law Gm over Z is defined by F (z, w) = z + w + zw and has ι(z) =
(1 + z)−1 − 1 = −z + z2 − z3 + · · · .

(iii) There is a universal formal group law Gu over the Lazard ring RL generated by variables Fij subject 
to the relations contained in (2.1).

Notation 2.4. It follows from (2.1) that for a general formal group law

F (z, w) = z + w + O(zw), ι(z) = −z + O(z2).

Write F (z, w) = z(1 + w/z + wG(z, w)) and expand using the binomial theorem

iz,wF (z, w)n =
∞∑
k=0

(
n

k

)
zn−kwk(1 + zG(z, w))k ∈ R�w�((z)), n ∈ Z. (2.2)

As the k-th summand has w-degree � k, this converges as a formal power series. Define iw,zF (z, w)n ∈
R�z�( (w) ) by expanding F (z, w) = w(1 + z/w + zG(z, w)) similarly. We extend iz,w and iw,z to 
V �z, w�[z−1, w−1][F (z, w)−1] by linearity.
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Note that iz,wF (z, w)−n · F (z, w)n = 1 and iw,zF (w, z)−n · F (z, w)n = 1 for all n � 0. For every 
P (z, w) =

∑
n�−N an(z, w)F (z, w)n ∈ V �z, w�[z−1, w−1][F (z, w)−1] we thus have

F (z, w)N
(
iz,wP (z, w) − iw,zP (z, w)

)
= 0. (2.3)

Definition 2.5. Let V∗ be a graded R∗-module and F a graded formal group law over R∗. An F -shift operator
is a graded R∗-linear map D(z) : V → V �z� with

D(0) = idV , D(z) ◦ D(w) = D(F (z, w)). (2.4)

Example 2.6. Let R∗ = Q, V = Q[w]. Then D(z)(f(w)) = ez
d

dw f(w) defines a Ga-shift operator. The 
relation D(z)(f(w)) = f(z + w) motivates the terminology.

We now define vertex F -algebras. For F = Ga we recover ordinary vertex algebras, see Frenkel–Ben-Zvi 
[3], Frenkel–Lepowsky–Meurman [4], and Kac [12].

Definition 2.7. Let F (z, w) be a graded formal group law over R∗. A graded nonlocal vertex F -algebra is a 
graded R∗-module V∗, a vacuum vector Ω ∈ V0, an F -shift operator D(z), and a graded R∗-linear state-to-
field correspondence

V ⊗R V −→ V �z�[z−1], a⊗ b �−→ Y (a, z)b, (2.5)

satisfying the following axioms:

(a) Vacuum and creation: Y (a, z)Ω is holomorphic for all a ∈ V and

Y (a, z)Ω|z=0 = a, (2.6)

Y (Ω, z) = idV . (2.7)

(b) F -translation covariance: for all a ∈ V we have

Y (D(w)(a), z) = iz,wY (a, F (z, w)), (2.8)

D(z)Ω = Ω. (2.9)

(c) Weak F -associativity: for all a, b, c ∈ V there exists N � 0 with

F (z, w)NY (Y (a, z)b, w)c = F (z, w)N iz,wY (a, F (z, w))Y (b, w)c. (2.10)

A graded nonlocal vertex F -algebra is a graded vertex F -algebra if, in addition,

Y (a, z)b = (−1)abD(z) ◦ Y (b, ι(z))a, for all a, b ∈ V .(2.11)

Remark 2.8. It is a consequence of (2.6)–(2.11) that for all a, b, c ∈ V there exists N � 0 with

(z − w)NY (a, z)Y (b, w)c = (−1)ab(z − w)NY (b, w)Y (a, z)c. (2.12)

So our definitions agree with those given by Li [14] in the ungraded case.
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3. Complex oriented cohomology and Chern classes

Let E∗ be a generalized cohomology theory, see for example Rudyak [16, Ch. II, §3]. Thus, for every pair 
A ⊂ X of topological spaces there is defined a graded abelian group E∗(X, A). Continuous maps f : (X, A) →
(X ′, A′) induce homomorphisms f∗ : E∗(X ′, A′) → E∗(X, A) that depend only on the homotopy class of 
f . For a pointed space x0 ∈ X write Ẽ∗(X) = E∗(X, {x0}) for reduced cohomology. The smash product of 
(X, x0) and (Y, y0) is the quotient X ∧ Y = (X × Y )/(X ∨ Y ) with one-point union X ∨ Y = (X × {y0}) ∪
({x0} × Y ) collapsed to become the new base-point. As part of the structure, E∗ comes equipped with 
natural suspension isomorphisms σX : Ẽ∗(X) → Ẽ∗+1(X ∧ S1).

Suppose E∗ is a multiplicative generalized cohomology theory. Then there is a bilinear cross product
� : E∗(X, A) ⊗ E∗(Y, B) → E∗(X × Y, X × B ∪ A × Y ) and units 1X ∈ E0(X), both natural. If we let 
R∗ = E∗(pt) be the coefficient ring, then R∗ = E∗(pt) for the reverse grading, which is the reason for 
this convention in Notation 2.1. Pulling the cross product back along the diagonal makes E∗(X) a graded 
commutative unital R∗-algebra for the cup product ‘∪’ over R∗. Dually, there is a homological cross product 
that in particular makes E∗(X) a graded module over R∗. There is a cap product

Ea(X) ⊗R Eb(X) −→ Ea−b(X), a⊗ ϕ �→ a ∩ ϕ

which is R∗-linear, unital a ∩ 1 = a, and natural f∗(a ∩ f∗(ϕ′)) = f∗(a) ∩ ϕ′, where f : X → X ′ and 
ϕ′ ∈ Eb(X ′). See Rudyak [16] for further properties.

Definition 3.1. The suspension isomorphism shows that Ẽ∗(CP1) ∼= Ẽ∗(S2) ∼= R∗−2 is a free R∗-module on a 
single generator. A multiplicative cohomology theory E∗ is complex orientable if i∗ : Ẽ∗(CP∞) → Ẽ∗(CP1)
is surjective, where CP∞ ∼= colimm CPm and i : CP1 ↪→ CP∞. A complex orientation is a choice of 
ξE ∈ Ẽ2(CP∞) such that i∗(ξE) generates the R∗-module Ẽ∗(CP1).

The presence of the permanent cycle ξE |CPm implies that the Atiyah–Hirzebruch spectral sequence 
Hp(CPm; Eq(pt)) =⇒ Ep+q(CPm) collapses, see Adams [1, p. 42]. Hence we have canonical isomorphisms

E∗(CPm) ∼= R[ξE ]/(ξm+1
E ), E∗(CP∞) ∼= limE∗(CPm) ∼= R�ξE�.

More generally, let P → X be a bundle of projective spaces CPm and suppose that w ∈ E∗(P ) restricts on 
every fiber Px to generators 1Px

, w|Px
, . . . , wm|Px

of the R∗-module E∗(Px). Then Dold’s theorem implies 
that E∗(P ) is a free E∗(X)-module on 1P , w, . . . , wm, see [2, (7.4)]. In particular,

E∗(X ×CP∞) ∼= E∗(X)�ξE�, E∗(CP∞ ×CP∞) ∼= R�π∗
1(ξE), π∗

2(ξE)�. (3.1)

Definition 3.2. Let ξE be a complex orientation of E∗. Write L → CP∞ for the universal complex 
line bundle with L|L = L. Recall that CP∞ = BU(1) is an H-space with operation a classifying map 
μCP∞ : CP∞ ×CP∞ → CP∞ of the tensor product π∗

1(L) ⊗ π∗
2(L) and unit t0 the trivial line bundle. The 

associated formal group law F =
∑

i,j�0 Fijz
iwj is defined by the expansion

μ∗
CP∞(ξE) =

∑
i,j�0

Fij ξ
i
E � ξjE , Fij ∈ R2−2i−2j = R2i+2j−2. (3.2)

As in [1, p. 42] the homology E∗(CP∞) is the free R∗-module on the dual generators tn, n � 0, of degree 
2n characterized by 〈tn, ξmE 〉 = δmn .

Proposition 3.3. Let (E∗, ξE) be a complex oriented cohomology theory with associated formal group law 
F (z, w). Suppose Ψ: BU(1) ×X → X satisfies the axioms for a group action of the H-space BU(1) on X
up to homotopy. Then



J. Gross, M. Upmeier / Journal of Pure and Applied Algebra 226 (2022) 107019 7
D(z)(a) =
∑

k�0
Ψ∗(tk � a) zk, a ∈ E∗(X), (3.3)

defines an F -shift operator on E∗(X).

Proof. Since Ψ(t0, x) = x is neutral, D(0) = idE∗(X). Define coefficients Fn
ij by F (z, w)n =

∑
i,j�0 F

n
ij z

iwj . 
Then (μCP∞)∗(ti � tj) =

∑
n�0 F

n
ij tn, and so

D(z) ◦ D(w)(a) =
∑

i,j�0
Ψ∗

(
ti � Ψ∗(tj � a)

)
ziwj

=
∑

i,j�0
Ψ∗

(
(μCP∞)∗(ti � tj) � a

)
ziwj

=
∑

i,j,n�0
Ψ∗(tn � a)Fn

ij z
iwj = D(F (z, w)). �

Definition 3.4. Let V → X be a complex vector bundle of rank n with zero section 0X . The bundle of 
projective spaces P (V ) = (V \ 0X)/C∗ carries a tautological line bundle LV → P (V ) with LV |L = L. Its 
classifying map fLV

: P (V ) → CP∞ is unique up to homotopy. Define w = f∗
LV

(ξE) using the complex 
orientation. By the above, E∗(P (V )) is a free E∗(X)-module with basis 1P(V ), w, . . . , wn−1. The Conner–
Floyd Chern classes are defined by expanding wn in this basis:

cE0 (V ) = 1, 0 =
∑n

i=0
(−1)icEi (V ) · wn−i, cEi (V ) = 0 (∀i > n) (3.4)

Naturality under pullback is obvious. There is a Whitney sum formula [2, p. 47]

cEk (V ⊕W ) =
∑k

i=0
cEi (V )cEk−i(W ). (3.5)

For complex line bundles LL → P (L) is isomorphic to L → X so cE1 (L) = f∗
L(ξE) for the classifying map 

fL of L. In particular,

cE1 (L1 ⊗ L2) = F (cE1 (L1), cE1 (L2)). (3.6)

Moreover, cE1 (C) = 0 as ξE is reduced. Hence cEi (CN ) = 0 for every trivial bundle.

Example 3.5. Ordinary cohomology E∗ = H∗ has a complex orientation ξH in H2(CP∞) = limH2(CPm)
that is Poincaré dual to the fundamental class [CPm−1] ∈ Hm−2(CPm) with orientation of CPm−1 fixed 
by the complex structure. We obtain the ordinary Chern classes, and c1(L1 ⊗L2) = c1(L1) + c1(L2) implies 
FH = Ga.

Example 3.6. Topological K-theory E∗ = K∗ on compact spaces is the group completion of isomorphism 
classes of complex vector bundles. Write Lm = L|CPm for the tautological complex line bundle over 
CPm, C for the trivial bundle, and [Lm], 1 ∈ K0(CPm) for their classes in K-theory. The classes 
[Lm] − 1 ∈ K̃0(CPm) are compatible under restriction and define a complex orientation ξK ∈ K̃2(CP∞) =
lim K̃0(CPm). Here FK = Gm is the multiplicative formal group law, as

μ∗([L] − 1) = [μ∗(L)] − 1 = [π∗
1(L) ⊗ π∗

2(L)] − 1 = Gm
(
[L] − 1, [L] − 1

)
.

For a complex vector bundle V → X of rank n one has π∗(V ) = LV ⊕ L⊥
V over the projectivization 

π : P (V ) → X and L⊥
V . The formal power series Λt([V ]) = 1 + [V ]t + [Λ2V ]t2 + . . . ∈ K0(X)�t� has inverse 

Λ−t([V ]), so Λt([V ] − [W ]) = Λt([V ])Λ−t([W ]). As [L⊥
V ] = π∗[V ] − [L] has rank n − 1, the n-th coefficient 

of Λt([L⊥
V ]) = Λt([π∗(V )])Λ−t(L) is 0 = [Λn(L⊥

V )] =
∑n

p=0(−1)n−p[Λp(V )] · [L]n−p. Putting [L] = w+1 and 

comparing to (3.4), cKi (V ) =
∑i (−1)i+p

(
n−p

)
[Λp(V )].
p=0 n−i
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Example 3.7. As in Quillen [15], complex cobordism Ωn
U(X) for X a smooth manifold is the set of smooth 

maps f : Z → X of codimension dimX − dimZ = n with a complex structure the stable normal bundle, 
modulo cobordism. The complex orientation ξΩ ∈ Ω2

U(CP∞) = lim Ω2
U(CPm) is given by CPm−1 ↪→ CPm, 

and CPm−1 is the zero set of a section of L∗
m. So for complex line bundles cΩU

1 (L) is represented by the 
zero set s−1(0) of a generic section s : X → L. The formal group law is the universal law Gu, see Adams [1, 
Part I, §8].

Lemma 3.8. Let V → X be a complex vector bundle over a finite CW complex. Then each of the Conner–
Floyd Chern classes cEi (V ) is nilpotent.

Proof. There is a finite open cover X =
⋃N

λ=1 Uλ with Uλ contractible and V |Uλ
trivial. From the long 

exact sequence of the pair (X, Uλ) we see that we may lift cEi (V ) along j∗λ : E2i(X, Uλ) → E2i(X) to a class 
xλ ∈ E2i(X, Uλ). The diagram

∏N
λ=1 E

2i(X,Uλ) E2iN(
X,

⋃N
λ=1 Uλ

)
= E2iN (X,X) = {0}

∏N
λ=1 E

2i(X) E2iN (X)

∏N
λ=1 j∗λ

∪

j∗

∪

commutes by naturality of ‘∪’, so cEi (V )N =
∏N

λ=1 j
∗
λ(xλ) = j∗

(∏N
λ=1 xλ

)
= 0. �

Notation 3.9. When X is a finite CW complex, it follows that we may substitute w by cE1 (L) in the formal 
group law F (z, w). To define the right hand side of (1.4) also for infinite CW complexes X, let {Xi | i ∈ I}
be the direct system of finite subcomplexes Xi ⊂ X ordered by inclusion. The pro-group E-cohomology is 
the inverse limit Ê∗(X) = limE∗(Xi). The family of all restrictions F (z, cE1 (L|Xi

)) determines an element 
we write F (z, cE1 (L)) ∈ Ê∗(X)�z�. As homology and direct limits commute, see [17, Prop. 7.53], we have 
E∗(X) = colimE∗(Xi) and therefore a well-defined cap product E∗(X) ⊗ Ê∗(X) → E∗(X). This defines 
(1.4) in general.

4. Proof of Theorem 1.1

Step 1: Vector bundles over finite CW complexes. For a complex line bundle L → X over a finite CW 
complex X define CE

z (L) = F (z, cE1 (L)). For V → X a rank n complex vector bundle we proceed by 
the splitting principle. As in Definition 3.4 over the projectivization p : P (V ) → X we can split off a line 
bundle from p∗(V ) and p∗ : E∗(Y ) → E∗(X) is injective. Iterating, we find q : Y → X and line bundles 
L1, . . . , Ln → Y with L1 ⊕ · · · ⊕ Ln = q∗(V ) and q∗ : E∗(Y ) → E∗(X) is injective. By (3.5), the class 
q∗(cEk (V )) is the k-th elementary symmetric polynomial in the Chern roots cE1 (L1), . . . , cE1 (L1). As the 
expression

F (z, cE1 (L1)) ∪ · · · ∪ F (z, cE1 (Ln)) = q∗(CE
z (V )) (4.1)

is a symmetric polynomial in the Chern roots, the fundamental theorem of symmetric polynomials implies 
it has a (unique) preimage CE

z (V ) in E∗(X)�z�. The map (1.1) is obtained by combining the class CE
z (V )

with the cap product

∩ : E∗(X) ⊗ E∗(X)�z� → E∗(X)�z�.

(a) For naturality, let f : X ′ → X and use the pullback Q : Y ′ = X ′ ×X Y → X ′ with its canonical 
map F : Y ′ → Y to split V ′ = f∗(V ) as Q∗(V ′) ∼= F ∗q∗(V ) ∼= F ∗(L1) ⊕ · · · ⊕ F ∗(Ln). Naturality of the 
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Conner–Floyd Chern classes implies that the pullback F ∗q∗(CE
z (V )) = Q∗f∗(CE

z (V )) of (4.1) along F is 
Q∗CE

z (V ′). Thus,

CE
z (f∗(V )) = f∗(CE

z (V )). (4.2)

(b) Let V, W → X be vector bundles. Pick q : Y → X such that both q∗(V ) = L1 ⊕ · · · ⊕ Ln and 
q∗(W ) = S1 ⊕ · · · ⊕ Sm split into line bundles with q∗ injective. Then q∗CE

z (V ) equals (4.1), q∗CE
z (W ) =

F (z, cE1 (S1)) ∪ · · · ∪ F (z, cE1 (Sm)), and

q∗CE
z (V ⊕W ) = F (z, cE1 (L1)) ∪ · · · ∪ F (z, cE1 (Sm)) = q∗CE

z (V ) ∪ q∗CE
z (W ).

Hence

CE
z (V ⊕W ) = CE

z (V ) ∪ CE
z (W ). (4.3)

This proves that cap product with CE
z (V ) satisfies Theorem 1.1(a)&(b). Part (c) holds by construction. For 

(d), in the case of line bundles the operation (−) ∩ F (z, cE1 (L)) =
∑

i,j�0 Fijz
i[(−) ∩ cE1 (L)j ] has degree −2, 

as Fij ∈ R2i+2j−2. It then follows from (4.1) that in general (−) ∩ CE
z (V ) has degree −2 rk(V ).

(e) Let V → X be a vector bundle, L → X a complex line bundle, and suppose q∗(V ) splits as above. 
Then q∗(L ⊗ V ) = (q∗(L) ⊗ L1) ⊕ · · · ⊕ (q∗(L) ⊗ Ln) and so

q∗CE
z (L⊗ V ) = F

(
z, cE1 (q∗(L) ⊗ L1)

)
∪ · · · ∪ F

(
z, cE1 (q∗(L) ⊗ Ln)

)
(3.6)= F

(
z, F (q∗cE1 (L), cE1 (L1))

)
∪ · · · ∪ F

(
z, F (q∗cE1 (L), cE1 (Ln))

)
(2.1)= F

(
F (z, q∗cE1 (L)), cE1 (L1)

)
∪ · · · ∪ F

(
F (z, q∗cE1 (L)), cE1 (Ln)

)
= q∗CE

F (z,cE1 (L))(V ).

Hence

CE
z (L⊗ V ) = CE

F (z,cE1 (L))(V ). (4.4)

Step 2: Extension to K-theory of finite CW complexes. So far, we have constructed a homomorphism 
CE

z : (Vect(X),⊕) → (E∗(X)�z�,∪) on the monoid of complex vector bundles V → X up to isomorphism 
over a finite CW complex. We claim that every class CE

z (V ) is invertible in the larger ring E∗(X)�z�[z−1]. 
Indeed, there exists a vector bundle W → X with V ⊕W ∼= CN trivial and therefore CE

z (V ) ∪ CE
z (W ) =

CE
z (CN ) = F (z, cE1 (C))N = zN . As X is a finite CW complex, its topological K-theory is the group 

completion of (Vect(X),⊕) whose universal property allows us to uniquely extend the homomorphism to 
CE

z : K0(X) → (E∗(X)�z�[z−1],∪). It is easy to check that properties (a)–(d) continue to hold.

Notation 4.1. As X is a finite CW complex, we may write θ = [V ] − [C
]. Expand CE
z (V ) =

∑∞
n�0 Cn(V )zn. 

Then

CE
z (θ) =

∑
n�0

Cn(V )zn−
. (4.5)

In Notation 2.1 we have defined iz,w
(
F (z, w)−


∑∞
n�−
 Cn(V )F (z, w)n

)
as a holomorphic series in w

which we can substitute by the nilpotent cE1 (L), see Lemma 3.8. This defines iz,cE1 (L)C
E
F (z,cE1 (L))(θ) ∈

E∗(X)�z�[z−1] for finite X. When X is infinite, the classes for the restrictions of θ to all finite subcomplexes 
Xi ⊂ X define iz,cE(L)C

E
E (θ) ∈ Ê(X)( (z) ) in pro-group E-cohomology, see Notation 3.9.
1 F (z,c1 (L))
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We prove (e). As just seen, CE
z (L) = F (z, cE1 (L)) is invertible in E∗(X)�z�[z−1]. Therefore

iz,wF (z, cE1 (L))n = F (z, cE1 (L))n for all n ∈ Z. Using Notation 4.1, we have

CE
z (L⊗ θ) (4.3)= Cz(L⊗ V )Cz(L)−


(4.4)= CF (z,cE1 (L))(V )F (z, cE1 (L))−


=
∑

n�0
Cn(V )F (z, cE1 (L))n−
 = iz,cE1 (L)C

E
F (z,cE1 (L))(θ).

Step 3: Infinite complexes. Let {Xi | i ∈ I} be the direct system of finite subcomplexes of a CW complex 
X ordered by inclusion. Write ι(i) : Xi ⊂ X and ι(i, j) : Xi ⊂ Xj for the inclusions. For θ ∈ K0(X), Step 2 
yields for each i ∈ I a map

E∗(Xi) E∗(Xi)�z�[z−1] E∗(X)�z�[z−1].∩Cz(ι(i)∗θ) ι(i)∗ (4.6)

By naturality, ι(i, j)∗(a) ∩CE
z (ι(j)∗θ) = ι(i, j)∗(a ∩CE

z (ι(i)∗θ)) so the maps (4.6) determine a homomorphism 
E∗(X) ∼= colimE∗(Xi) → E∗(X)�z�[z−1] on the colimit, using that homology and direct limits commute, 
see [17, Prop. 7.53]. Equivalently, the restrictions CE

z (θ|Xi
) define a class CE

z (θ) ∈ Ê∗(X)( (z) ) in pro-group E-
cohomology. Using the cap product E∗(X) ⊗ Ê∗(X)( (z) ) → E∗(X)( (z) ) we can define (−) ∩CE

z (θ) : E∗(X) →
E∗(X)( (z) ) which, a priori, has a larger codomain.

Finally, properties (a)–(e) pass to the limit.
Step 5: General topological spaces. By the CW approximation theorem, there is a CW complex X ′ with a 
weak homotopy equivalence f : X ′ → X. Then

a ∩ Cz(θ) = f∗(f−1
∗ (a) ∩ Cz(f∗θ))

is well-defined, since this equation holds for a homotopy equivalence f : X ′ → X ′ by (1.2). With this 
definition, the properties (a)–(e) carry over to X. �
5. Proof of Theorem 1.2

We verify Definition 2.7(a)–(c) for the graded module V∗ =
⊕

E∗−rk θα,α
(Xα), vacuum vector Ω = e∗(1), 

F -shift operator (3.3), and state-to-field correspondence (1.13). Here, e : pt → X0 is the H-space unit and 
1 ∈ E0(pt) = R0.

Writing |a|V = |a| + rk θα,α for the shifted degree, we have

|Y (a, z)b|V = |Y (a, z)b)| + rk θα+β,α+β = (|a| − rk θα,α)(|b| − rk θβ,β) = |a|V · |b|V ,

for a ∈ E∗−rk θα,α
(Xα), b ∈ E∗−rk θβ,β

(Xβ), so that Y preserves the grading of V∗.
(a) Let a ∈ E∗(Xα), b ∈ E∗(Xβ). As e is a fixed point, Ψ∗(tk � Ω) = 0 for k > 0 and Ψ∗(t0 � Ω) = Ω. 

Hence D(z)Ω = Ω. Let ϕ = (e, idXβ
) : Xβ → XΩ ×Xβ . Then

(Ω � b) ∩ CE
z (θΩ,β) = ϕ∗(b) ∩ CE

z (θΩ,β)

= ϕ∗
(
b ∩ ϕ∗CE

z (θΩ,β)
) (1.10)= ϕ∗(b ∩ 1) = Ω � b,

and so Y (Ω, z)b = (ΦΩ,β)∗(D(z)Ω � b) = b, proving (2.7). Similarly,

Y (a, z)Ω = (Φα,Ω)∗(D(z) � idXΩ)(a� Ω) = D(z)(a)
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is holomorphic with D(0)(a) = a for z = 0, proving (2.6).
(b) We have already shown D(z)Ω = Ω. To prove (2.8), we first need a lemma.

Lemma 5.1. For the universal complex line bundle L → CP∞ and n ∈ Z

∑
k�0

tk ∩ iz,cE1 (L)F (z, cE1 (L))nwk =
∑


�0
t
 iz,wF (z, w)nw
. (5.1)

Moreover, for all a ∈ E∗(Xα), b ∈ E∗(Xβ) we have

(Dα(w)a� b) ∩ CE
z (θα,β) = (Dα(w) × idXβ

)
[
(a� b) ∩ iz,wC

E
F (z,w)(θα,β)

]
, (5.2)

(a�Dβ(w)b) ∩ CE
z (θα,β) = (idXα

×Dβ(w))
[
(a� b) ∩ iz,wC

E
F (z,ι(w))(θα,β)

]
. (5.3)

Proof. Introduce the expansion iz,wF (z, w)n =
∑

i∈Z,j�0 F
n
ij z

iwj . Then

tk ∩ iz,cE1 (L)F (z, cE1 (L))n = tk ∩
∑

i∈Z
j�0

Fn
ij z

icE1 (L)j =
∑

i∈Z
j�0

Fn
ij z

itk−j , (5.4)

where tk = 0 for k < 0. Summing (5.4) over all k, the summands with k < j vanish, so we may restrict the 
sum to k � j and reindexing by � = k − j gives (5.1):

∑
i∈Z
j�0

∑

�0

Fn
ij z

iwjt
w

 =

∑

�0

t
 iz,wF (z, w)nw


For (5.2) we compute

(Dα(w)a� b) ∩ CE
z (θα,β) (3.3)=

∑
k�0

(Ψα × idXβ
)∗(tk � a� b) ∩ CE

z (θα,β)wk

= (Ψα × idXβ
)∗

∑
k�0

(tk � a� b) ∩ (Ψα × idXβ
)∗CE

z (θα,β)wk

(1.8)= (Ψα × idXβ
)∗

∑
k�0

(tk � a� b) ∩ CE
z (L� θα,β)wk

(1.5)= (Ψα × idXβ
)∗

∑
k�0

(tk � a� b) ∩ iz,cE1 (L)C
E
F (z,cE1 (L))(θα,β)wk

(5.1)= (Ψα × idXβ
)∗

∑

�0

(t
 � a� b) ∩ iz,wC
E
F (z,w)(θα,β)w


= (Dα(w) × idXβ
)
[
(a� b) ∩ iz,wC

E
F (z,w)(θα,β)

]
.

For (5.3) we similarly use (1.9) which replaces cE1 (L) by its formal inverse ι(cE1 (L)) above, so the same 
argument with F (z, ι(w)) in place of F (z, w) gives (5.3). �

It is now easy to verify (2.8): Let a ∈ E∗(Xα), b ∈ E∗(Xβ). Then

Y (Dα(w)a, z)b(1.13)= (Φα,β)∗(Dα(z) � idβ)[(Dα(w)a� b) ∩ CE
z (θα,β)]

(5.2)= (Φα,β)∗(Dα(z)Dα(w) � idβ)
[
(a� b) ∩ iz,wC

E
F (z,w)(θα,β)

]
(2.4)= iz,wY (a, F (z, w))b.

(c) Firstly, Φ ◦ (Ψ × Ψ) ◦ δ � Ψ ◦ (Φ × idBU(1)) and Δ∗(tk) =
∑

i+j=k ti � tj imply

Dα+β(z)(Φα,β)∗ = (Φα,β)∗(Dα(z) �Dβ(z)). (5.5)
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Let a ∈ E∗(Xα), b ∈ E∗(Xβ), c ∈ E∗(Xγ). On the one hand

Y (Y (a, z)b, w)c = (Φα+β,γ)∗(Dα+β(w) � idγ)[
(Φα,β)∗(Dα(z) � idβ)[(a� b) ∩ CE

z (θα,β)] � c ∩ CE
w (θα+β,γ)

]
(5.5)= (Φα+β,γ)∗(Φα,β)∗(Dα(w) �Dβ(w) � idγ)[

(Dα(z) � idβ � idγ)
(
(a� b� c) ∩ CE

z (θα,β) ∩ (Φα,β × idγ)∗CE
w (θα+β,γ)

)]
(2.4),(5.2)= (Φα+β,γ)∗(Φα,β)∗(Dα(w)Dα(z) �Dβ(w) � idγ)[

(a� b� c) ∩ CE
z (θα,β) ∩ iw,zC

E
F (w,z)(θα,γ) ∩ CE

w (θβ,γ)
]
,

and on the other hand

iz,wY (a, F (z, w))Y (b, w)c = iz,w(Φα,β+γ)∗(Dα(F (z, w)) � idβ+γ)[(
a� (Φβ,γ)∗(Dβ(w) � idγ)

[
(b� c) ∩ CE

w (θβ,γ)
])

∩ CE
F (z,w)(θα,β+γ)

]
(5.5), (1.7)= iz,w(Φα,β+γ)∗(idα �Φβ,γ)∗(Dα(F (z, w)) � idβ � idγ)[

(idα �Dβ(w) � idγ)
[
(a� b� c) ∩ CE

w (θβ,γ)
]
∩ CE

F (z,w)(θα,β) ∩ CE
F (z,w)(θα,γ)

]
(2.4), (5.3)= (Φα,β+γ)∗(idα �Φβ,γ)∗(Dα(w)Dα(z) �Dβ(w) � idγ)[

(a� b� c) ∩ CE
w (θβ,γ) ∩ CE

z (θα,β) ∩ iz,wC
E
F (z,w)(θα,γ)

]
.

As Y (Y (a, z)b, w)c and Y (a, F (z, w))Y (b, w)c are both expansions in negative powers of F (z, w) of 
the same series in different variables, there exist some N � 0 with F (z, w)NY (Y (a, z)b, w)c =
F (z, w)NY (a, F (z, w))Y (b, w)c, see (2.3).

The same calculations show that (1.15) is a nonlocal vertex F -algebra and that the state-to-field cor-
respondence Y (a, z)b preserves the degree shifted by 2χ(α, α). It remains to prove (−1)abY (a, z)b =
Dα+β(z)Y (b, ι(z))a. Notice σ∗(CE

z (θα,β)) = C
E

ι(z)(θβ,α) for the swap σ : Xβ × Xα → Xα × Xβ . Using 
Φβ,α � Φα,β ◦ σ we find

Dα+β(z)Y (b, ι(z))a = Dα+β(z)(Φβ,α)∗(Dβ(ι(z)) � idα)
[
(b� a) ∩ C

E

ι(z)(θβ,α)
]

= Dα+β(z)(Φα,β)∗(idα �Dβ(ι(z)))σ∗
[
(b� a) ∩ σ∗C

E

z (θα,β)
]

(5.5)= (Φα,β)∗(Dα(z) � idβ)
[
σ∗(b� a) ∩ C

E

z (θα,β)
]

= (Φα,β)∗(Dα(z) � idβ)
[
(−1)ab(a� b) ∩ C

E

z (θα,β)
]

= (−1)abY (a, z)b. �
Remark 5.2. For the additive formal group law Ga and ordinary homology, this was shown by Joyce [8, 
Thm. 3.14]. When X is the derived category of a finite quiver or of certain smooth projective complex 
varieties, then taking F (X, Y ) = X + Y in (1.15) gives a (super) lattice vertex algebra [7, Thm. 5.7] [8, 
Thm. 5.19].

Remark 5.3. A similar construction applies to H-spaces X with BO(1)-actions, the classifying space for 
real line bundles, and homology with Z2-coefficients. Since H∗(BO(1)) = Z2�ξ� there is a shift operator 
D(u) : H∗(X; Z2) → H∗(X; Z2)�u� for u a variable of degree −1. One can then build, just as in Theorem 1.1, 
an operator (−) ∩Wu(θ) of degree − rk θα,β , where θα,β ∈ KO(Xα×Xβ), with normalization a ∩Wu(L) = a ∩
(u +w1(L)) for the first Stiefel–Whitney class of a real line bundle L → X. Then Y (a, z)b = (Φα,β)∗(Dα(u) �
idβ)

[
(a ⊗ b) ∩Wu(θα,β)

]
makes V = H∗(X; Z2) into a vertex algebra over Z2.
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