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A B S T R A C T   

Species Distribution Models (SDMs) are used regularly to develop management strategies, but many modelling 
methods ignore the spatial nature of data. To address this, we compared fine-scale spatial distribution predictions 
of harbour porpoise (Phocoena phocoena) using empirical aerial-video-survey data collected along the east coast 
of Scotland in August and September 2010 and 2014. Incorporating environmental covariates that cover habitat 
preferences and prey proxies, we used a traditional (and commonly implemented) Generalized Additive Model 
(GAM), and two Hierarchical Bayesian Modelling (HBM) approaches using Integrated Nested Laplace Approxi-
mation (INLA) model-fitting methodology. One HBM-INLA modelled gridded space (similar to the GAM), and the 
other dealt more explicitly in continuous space using a Log-Gaussian Cox Process (LGCP). 

Overall, predicted distributions in the three models were similar; however, HBMs had twice the level of 
certainty, showed much finer-scale patterns in porpoise distribution, and identified some areas of high relative 
density that were not apparent in the GAM. Spatial differences were due to how the two methods accounted for 
autocorrelation, spatial clustering of animals, and differences between modelling in discrete vs. continuous 
space; consequently, methods for spatial analyses likely depend on scale at which results, and certainty, are 
needed. 

For large-scale analysis (>5–10 km resolution, e.g. initial impact assessment), there was little difference be-
tween results; however, insights into fine-scale (<1 km) distribution of porpoise from the HBM model using 
LGCP, while more computationally costly, offered potential benefits for refining conservation management or 
mitigation measures within offshore developments or protected areas.   

1. Introduction 

Understanding environmental and anthropogenic drivers of species 
distributions is critical for identification of potential areas for protec-
tion, development of appropriate conservation management strategies, 
and mitigation of negative anthropogenic impacts. Collection of 
empirical environmental data, however, can be risky, costly, and time 

consuming; consequently, desk-based species distribution modelling 
provides a cost-effective, yet successful alternative method to address 
these factors (e.g. Bailey and Thompson, 2010; Norberg et al., 2019). 

Many statistical techniques are used to model species distributions, 
but due to inherent complexity of analysing space, most do not fully 
address the spatial nature of data. Generalised Additive Models (GAMs; 
Hastie and Tibshirani, 1990) are one of the most commonly used and 

Abbreviations: GAM, Generalized Additive Model; INLA, Integrated Nested Laplace Approximation; LGCP, Log-Gaussian Cox Process; HBM, Hierarchical Bayesian 
Model. 
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well-established methods of performing species distribution modelling 
(Becker et al., 2020; Redfern et al., 2006; Wood, 2006). Over the past 
decade, there has been rapid development of specific statistical meth-
odologies aiming to address the spatial nature of empirical data (e.g. 
Cameletti et al., 2012; Diggle et al., 2013; Illian et al., 2008; Law et al., 
2009; Sadykova et al., 2017); however, such methods are complex and 
require a high level of statistical expertise and computational power. 
Practitioners are, therefore, often faced with a choice of which model to 
apply to their data, which can have considerable impacts on outputs 
(Norberg et al., 2019). 

The development of point process models in ecological contexts 
(Soriano-Redondo et al., 2019; Yuan et al., 2017a), by using exact lo-
cations of points in space within a GAM function are being explored by 
some studies (Fithian and Hastie, 2013; Miller et al., 2019; Renner et al., 
2015). These use an inhomogeneous Poisson process, maximum en-
tropy, or infinitely weighted logistic regression to model data in a point 
process framework thereby taking advantage of the spatial information; 
however, at the time of the production of this study, these techniques 
were still under development for generalist use, and were therefore not 
explored further here. 

The aim of this study was to assess differences between use of 
traditional frequentist GAMs and explicit spatial-modelling approaches 
using Hierarchical Bayesian Models (HBM) fitted with Integrated Nested 
Laplace Approximation (INLA, Rue et al., 2009). To achieve this, we 
introduce the two methods (GAM and HBM-INLA) and identify three 
areas in which Bayesian developments offer potential benefits over 
traditional GAMs: (1) they account for spatial autocorrelation, (2) 
clustering of animals, and (3) model in continuous space. We then 
implement both methods using an example of real-world aerial-video 
survey data for harbour porpoise (Phocoena phocoena). Finally, we 
explore differences in resulting spatial predictions of porpoise distribu-
tion and conservation management implications. 

1.1. Two approaches to species distribution modelling 

1.1.1. Generalized additive models 
Generalized Additive Models are popular for species distribution 

modelling because of their ability to encapsulate non-linear interactions 
between sightings and environmental covariates through use of 
smoothing functions (e.g. Booth et al., 2013; Embling et al., 2010; 
Williamson et al., 2016); however, their ability to capture spatial trends 
is limited without use of alternative, more complex additions (Fithian 
and Hastie, 2013; Miller et al., 2019; Renner et al., 2015; Scott-Hayward 
et al., 2014). Nonetheless, GAMs are relatively easy to implement by the 
user through various R libraries, such as mgcv (Wood, 2011), or similar. 
Counts y in a grid cell Si, i=1,…N are modelled (response variable), and 
the model usually assumes that counts in each grid cell follow a Poisson 
distribution. The expected value in a grid cell si is modelled as a linear 
model of covariates x, i.e., 

g(y(si)) = x(si)
T β + β0. (1)  

where, g is a log link function, x(si )T is a matrix of N observations on 
each of the k explanatory variables, and β is a vector of regression 
coefficients. 

The GAM formulation in Eq. (1) does not address the problem of 
spatial autocorrelation, instead accounting for trends in data across 
larger geographical distances (Dormann et al., 2007). One common 
method for circumventing this problem is to include a bivariate 
smoothing term of latitude and longitude or a soap-film smoother 
(Wood et al., 2008) in the GAM itself. Soap-film x,y smoothers also 
include boundary information to prevent the model from predicting 
animals’ presence in areas they are not capable of occupying (Wood 
et al., 2008), e.g. porpoises present on land. An x,y smoother accounts 
for similarity of the response variable in adjacent cells, reducing the 
effect (but not the amount) of spatial autocorrelation. The spatial 

autocorrelation problem is solved by using more complex methods, such 
as including autocorrelation structures in a generalized additive mixed 
effects model (Carvalho et al., 2020). 

1.1.2. Hierarchical Bayesian modelling using INLA 
Recent developments in spatial statistical methodology have focused 

on producing a flexible, computationally efficient approach that is 
increasingly accessible to end users. Here, we used a continuously 
indexed Gauss-Markov random field based on the Stochastic Partial 
Differential Equation, SPDE (Lindgren et al., 2011). This provides an 
approximation to a continuous spatial field that allows users to work 
efficiently with complex spatially explicit models (Blangiardo et al., 
2013). In addition, models were fitted based on INLA (Rue et al., 2009), 
a recently developed computationally efficient method for hierarchical 
Bayesian inference that is particularly suitable for complex spatial 
models, such as those based on the SPDE approach. Combining the two 
methods (SPDE and INLA) provides a suite of flexible models that allow 
for realistic spatial modelling within feasible computation timescales. 

As in the GAM model, counts y in a grid cell si, i=1,…,N are 
modelled, but a Bayesian approach is used and spatial autocorrelation is 
modelled by a random field ξ, i.e., 

g(y(si)) = x(si)
T β + β0 + ξ(si) (2)  

where, g is a log link function, and β is a vector of regression coefficients. 
In this HBM formula, the residual spatial autocorrelation is modelled 
explicitly by including the ξ term, which specifies a spatial or spatio- 
temporal random field (Rue and Held, 2005). This framework allows 
for smooth and nonlinear effects of covariates, time trends, seasonal 
effects, random intercepts and slopes, and spatio-temporal random ef-
fects; therefore, this class of model is highly flexible and can accom-
modate a wide range of paradigms. 

1.2. Discrete vs. continuous space 

Spatial data are usually gridded or segmented when using GAMs, 
which causes spatial information to be lost; however, spatially explicit 
approaches such as SPDE/INLA can model in continuous space. Since 
this implies much less information loss, SPDE/INLA approaches were 
expected to be more appropriate and capable of reflecting small-scale 
spatial behaviour that cannot be captured by gridding or segmenting 
sightings. Consequently, in this paper we made two comparisons. We 
initially used both approaches, GAM and HBM, to model data on the 
same spatial grid to establish how the approaches differed when the 
actual models were similar, with the expectation of similar results. We 
then moved towards modelling in continuous space using the SPDE/ 
INLA approach that also allowed us to incorporate information on the 
exact location of transects, as well as the spatial structure formed by the 
locations of individual animals, i.e. their clustering (Yuan et al., 2017b). 

1.3. Spatial clustering of animals 

Animals do not always move independently. At times, some species 
can form large groups in small areas for several reasons, such as social 
cohesion or specific attraction to the location as a result of physical and/ 
or environmental covariates. Plants and animals are often clustered 
spatially according to a Poisson process, which inappropriately assumes 
complete spatial randomness between clusters. To account for this, a 
Cox process (Møller and Waagepetersen, 2007; Waagepetersen and 
Schweder, 2006) is a flexible type of spatial point procedure which 
improves accuracy by modelling spatial patterns relative to observed or 
unobserved spatial trends (Illian et al., 2012). In this way, the spatial 
pattern can be modelled along with traits of individual observations 
such as markings, scars, size, or colour and environmental covariates 
(Illian et al., 2012). Since clustering violates Poisson process assump-
tions, this obliges the SPDE to capture low-range peaks in detection, 
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rather than a large-scale distribution trend. An alternative (and often 
implemented) approach is to use the negative binomial distribution to 
account for overdispersion which means that the SPDE does not have to 
accommodate spikes to capture the large-scale trend; however, while 
often used to avoid violation of model assumptions, it does not explicitly 
model overdispersion. Moreover, there is no obvious way of extending 
this to continuous space, so analysis is restricted to using gridded bins. 

When using hierarchical Bayesian models, localised clustering can be 
differentiated from large-scale patterns using the Log-Gaussian Cox 
Process (LGCP) method which models exact locations of points (Diggle 
et al., 2013). The model assumes point locations are scattered inde-
pendently in space as a Poisson process (top level of the hierarchy), 
given a model of the point density (formally the “intensity” of the pro-
cess – the middle level of the hierarchy) and a set of priors for all model 
parameters (bottom level of the hierarchy). The log of intensity Λ in a 
location s ∈ R is modelled as a linear model of covariates x and a random 
field ξ that is again approximated by an SPDE: 

log(Λ(s; t)) = x(s)T β + β0 + ξ(s) (3)  

1.4. Case study 

Harbour porpoise is the most numerous cetacean species in European 
Atlantic Shelf waters (Hammond et al., 2021) which is also where most 
anthropogenic activities occur. Consequently, they are threatened by, 
inter alia, unsustainable incidental catches in fishing gear and prey 
removal, various forms of chemical and underwater noise pollution, and 
other anthropogenic pressures (e.g. Culik, 2004; Hammond et al., 2021; 
MacLeod et al., 2007). Knowledge of porpoise distribution in relation to 
environmental drivers is therefore critical for effective implementation 
of management and mitigation measures. 

Depth, slope, bottom temperature, and sediment have been signifi-
cant in previous models of porpoise distribution (e.g. Booth et al., 2013; 
Brookes et al., 2013; Sadykova et al., 2017; Williamson et al., 2016). 
Other variables included chlorophyll-a, net primary productivity, and 
fronts and tidal mixing (e.g. current speed, vertical shear, and potential 
energy anomaly to quantify stratification strength), which cause prey 
aggregation, and have been correlated previously with the distribution 
of fish and marine predators (e.g. Embling et al., 2012; Hofmann and 
Powell, 1998; Olson and Backus, 1985; Scott et al., 2010). 

Previous distribution modelling in the Moray Firth, north-east 
Scotland (part of the current study area; Fig. 1) found a relatively high 
density of animals in the Smith Bank, a shallow (30–40 m) sand bank in 
the middle of the Firth (Brookes et al., 2013; Williamson et al., 2016). 
This is likely because the Smith Bank provides suitable habitat for san-
deels (Ammodytidae) and whiting, Merlangius merlangus (Hopkins, 
2011), two of the most common prey species for porpoise in this area 
(Santos and Pierce, 2003). Knowledge of porpoise distribution along the 
East coast of Scotland, however, is lacking. Consequently, the present 
analysis combines previously collected aerial-video-survey data with a 
newer dataset, which allowed us to investigate distribution along the 
entire east coast of Scotland. 

Aerial video surveys use video cameras to record strip transects 
below the survey aircraft and are thus different to visual surveys by 
human observers (Buckland et al., 2012). Moreover, video surveys 
provide a permanent record of sightings, which can be beneficial for 
clarifying mis- or ambiguous identifications, anomalous results, 
improving data transparency, and audit; indeed, some regulatory au-
thorities now require such a permanent record (BSH, 2013). Estimates of 
relative density of porpoise modelled from video-survey data have been 
found previously to correlate strongly with relative density estimated 
from visual surveys (Williamson et al., 2016). 

1.5. Aims 

The purpose of this study was to compare two modelling frameworks 

to investigate differences between results obtained from a spatial- 
modelling technique (HBM using INLA) and a GAM which is used 
commonly by ecologists. We illustrated differences between these 
methods in how they model spatial autocorrelation, groups of in-
dividuals, and discrete vs. continuous space. We performed this using a 
case study of aerial-video transect-survey data to analyse harbour por-
poise distribution along the East Coast of Scotland and discussed the 
potential management implications of results. 

2. Methods 

2.1. Case study data collection 

Aerial digital video surveys covering a total of 5762 km were per-
formed by HiDef Aerial Surveying Ltd. in August and September 2010 
and 2014 along the east coast of Scotland (Fig. 1 and Table 1). Video 
data were processed by qualified, trained, and experienced observers, 
who extracted all non-avian objects for identification by specialists at 
WWT Consulting Ltd., resulting in a total of 303 individual porpoises 
observed. 

Fig. 1. Map of the study area showing locations of survey transects (lines) and 
sightings (dots) of harbour porpoise along the east coast of Scotland in 2010 
and 2014. Inset shows the study area in relation to the British Isles. 

Table 1 
Details of digital video surveys performed in August and September 2010 and 
2014.   

2010 2014 All 

Survey effort (km) 2155 3607 5762 
Number of porpoise 97 206 303 
Survey height (m) 244–457 560 – 
Strip width (m) 80–150 500 –  
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2.2. Data preparation for gridded analysis 

Once porpoise observations were extracted, a 5 × 5 km grid, 
matching previous marine mammal work (Jones et al., 2015), was 
created which covered the entire survey area. Transect lines were 
intersected to the grid and the total length of transects and number of 
porpoises sighted within each grid cell was calculated. 

Depth on a raster grid of approximately 180 × 180 m and polygons of 
sediment type at a 1:250,000 scale were provided by SeaZone Solutions 
Ltd. (2005a; 2005b). Sediment types were classified using a Folk triangle 
(Folk, 1954), and expressed as the proportion of sediment that was sand 
or gravelly sand within each grid cell, based on previous studies of 
porpoise habitat association in this area (Brookes et al., 2013; Wil-
liamson et al., 2016). Seabed slope was calculated in degrees using the 
Slope tool in ESRI ArcGIS 10.2.1 (ESRI, Redlands, California, USA). 

Modelled environmental data were provided from runs of the NEMO- 
ERSEM 3D coupled hydrodynamic-ecosystem model (Nucleus for Eu-
ropean Modelling of the Ocean; Edwards et al., 2012; Madec, 2008; 
O’Dea et al., 2012). Parameters available included: bottom temperature 
(⁰C), potential energy anomaly (J/m3; which is the energy required to 
mix the water column completely), depth-averaged current speed (m/s), 
vertical velocity shear (m/s), depth-averaged vertical velocity (m/day), 
depth-integrated net primary production (tons/day), and maximum 
chlorophyll-a (mgC/m3). These data were available for the “summer 
season” (July, August, September, and October), as climatological 
means across 25 years (1989–2014) at a 7 × 7 km spatial scale. An es-
timate of stratification was calculated using the log10 of depth (H) 
divided by current speed (u) cubed (log10(H/u3); Simpson et al. (1981)). 
In addition, satellite data on a 1 × 1 km spatial scale were obtained from 
NEODAAS (NERC Earth Observation Data Acquisition and Analysis 
Service) and processed to derive ocean-front metrics (Miller et al., 
2015): distance to the closest major ocean front (km), and front side - 
whether a location is on the cold (negative values) or warm (positive 
values) side of the closest major front, or directly on that front (zero). 
These satellite data were provided as weekly means during the survey 
period; however, due to cloud cover obscuring parts of the study area 
each week, the mean in August and September of 2010 and 2014 were 
calculated and joined to the survey data from the corresponding year. 
Where surveys overlapped between the two years, the mean of August 
and September in both years was used. 

All environmental variables were up or down sampled (depending on 
spatial resolution) and joined to the 5 × 5 km grid for inclusion in the 
models. Variables were also standardised by subtracting the mean value. 
The above variables were selected not necessarily because they were 
thought to influence porpoise distribution directly, but often because 
they are thought to be drivers of the distribution of porpoise prey (e.g. 
Scott et al., 2010). After inspection of histograms of the data, cells with a 
vertical shear greater than 0.15 m/s and a front side of < − 2 were 
removed, as data outside these ranges were sparse. 

2.3. Data preparation for LGCP analysis 

The same 5 × 5 km grid of environmental data was used for this 
analysis; however, number of sightings in each grid cell, and length of 
survey effort in each cell were not joined to this grid. Instead, the exact 
location of sightings, as well as transect start and end points were used 
directly. 

2.4. GAM analysis 

The first model was created using GAM. Only cells in which surveys 
were performed (e.g. survey effort >0 km) were included during model 
development. A 10 × 10 grid of points spaced evenly throughout the 
study region in which points that did not overlap with land were used for 
creation of the soap-film smoother (resulting in 27 internal knots; 
Fig. S1). Smoothers with more (up to 30 × 30), and fewer (5 × 5) knots 

were also tested, but not found to influence results. Models were tested 
with the maximum likelihood method using families such as negative 
binomial, Poisson, and zero-inflated Poisson. The negative binomial 
likelihood was selected for analysis after inspection of summary plots of 
models. In every model, an offset of the log of the area surveyed was 
included. The area surveyed was calculated by multiplying the effort 
(length surveyed in each cell in km) by the strip width (width of sea 
surface in view of the camera in km). 

All environmental variables were tested for collinearity with each 
other, and those with a correlation of 0.5 or greater were not included in 
the same models. After initial investigation, relationships between most 
covariates and sightings were found to be linear; therefore, for simplicity 
all covariates were treated as linear in the model except for the soap-film 
smoother. Backwards selection was used to select the best model, in 
which a full model was fitted which included all environmental cova-
riates except the soap-film smoother (e.g. without the influence of 
space), and then each environmental covariate was removed sequen-
tially and the model re-run. This process was repeated consecutively 
using the model which had the lowest Akaike Information Criterion 
(AIC; Akaike, 1973) until there was no-longer a decrease in AIC when 
further covariates were removed. An Auto Correlation Function (ACF) 
plot was used to check for temporal autocorrelation, which was not 
found to exist; therefore, use of mixed models was not investigated. The 
selected model was run with the soap-film smoother and then used to 
predict relative density of porpoise in all cells within 10 km of the survey 
transects (Fig. 2). A variogram was created to investigate if spatial 
autocorrelation was evident in the model (Diggle and Ribeiro, 2007), 
which was not found to be an issue (Fig. S5). All analysis was performed 
in R version 3.2.4 and GAMs were modelled using the mgcv package 
(Wood, 2011, 2017). R code can be seen in Appendix 1 and is available 
on GitHub. 

2.5. Hierarchical Bayesian analysis using INLA 

Two models were created using hierarchical Bayesian methods fitted 
using INLA. Both models were fitted using the inlabru version 
2.2.4.9000 and INLA 20.03.17 packages in R version 3.4.1 (Bachl et al., 
2019; R Core Team, 2017; Rue et al., 2009). The first model used the 
same gridded data that were used in the GAM analysis with the addition 
of the SPDE to account for spatial autocorrelation (Lindgren et al., 
2011). The SPDE approach uses a Matérn covariance function to 
approximate the Gaussian field using a flexible stochastic model which 
provides a continuous relationship between the response and explana-
tory variables throughout the study area. Similar to the knots in the 
soap-film smoother in GAM, the SPDE approach requires a triangulation 
mesh of the modelled area. The mesh provides a lower bound on the 
spatial resolution for analysis; therefore, a mesh should be developed 
which is fine enough so that no further changes in the results can be 
observed when a finer mesh is used (Lindgren et al., 2011). The trian-
gulation mesh for the SPDE was created bounded by the coastline and 
the boundary of the study region and allowed to place vertices randomly 
as needed (Fig. S2). Default uninformative prior specification (Gaussian 
with mean of 0 and variance of 100) was used for all variables. The same 
effort offset that was used in the GAM was included here (log of transect 
length * strip width) and again, environmental covariates were treated 
as linear. A negative binomial likelihood was selected to address clus-
tering of the animals and to be able to compare more closely with the 
GAM results. Model selection (excluding the SPDE) was performed in the 
same way as described for the GAM; however, a Widely Applicable In-
formation Criterion (WAIC) – also known as Watanabe AIC (Watanabe, 
2010) – was used instead of AIC. This selected model was run once more 
with the SPDE included and was then used to predict relative density 
throughout the study area (Fig. 2). 

The second, continuous space model created using HBM used the 
point process likelihood (Simpson et al., 2016) which has been adapted 
to line transect surveys (Yuan et al., 2017b). This approach represents 
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the locations of animal sightings as realisations of LGCP observed at the 
area covered by the transects. As opposed to the gridded approach, 
where data are aggregated, the LGCP allows the locations of observa-
tions and transects to be used directly. Taking the actual transect loca-
tions into account allows us to distinguish between areas where we did 
not find any animals because no survey was performed in that location, 
compared to those areas where we did not find anything, but they were 
also surveyed. This is especially useful when transects are not placed 
randomly throughout a study area. Information about the relative and 
absolute animal location is thereby retained, which allows for a higher 
precision in estimating the relationship between covariates and density, 
as well as the residual spatial correlation structure. The LGCP model was 
created using the same set of covariates and the SPDE described above. 
Similarly, backwards selection using WAIC was used based on the 
environmental covariates without the influence of space and once the 
best environmental variables were identified the SPDE was included, 
and relative density was predicted throughout the study area. R code 
used to create the HBM using INLA and the LGCP can be seen in 
Appendices 2 and 3. 

Both HBMs were also predicted onto the same grid used in the GAM 
models to facilitate comparison between methods. Spearman’s correla-
tion coefficients were calculated between GAM and HBM results. 
Moreover, for visual comparison, results of each model were divided by 
their maximum value (to standardise) and HBM results were then sub-
tracted from GAM results to investigate if GAM or HBMs predicted 
higher relative densities (Fig. 4). 

3. Results 

The negative binomial likelihood was selected for GAM analysis after 
inspection of summary plots of the models (Fig. S3). A negative binomial 
likelihood was also selected for the HBMs using INLA on gridded data for 
comparison to the GAM. The best models selected using each of the three 
methods included many of the same covariates (Table 2); however, 
potential energy anomaly, net primary productivity, vertical shear, and 
front distance were not retained in any of the best models. This best 
GAM model had a soap-film smooth term that included latitude, longi-
tude, and the boundaries of the study region to account for spatial 
autocorrelation. Spatial correlation was not included as a random effect 
in this model because a variogram of model results did not show any 

relationship with distance (Fig. S5). This model predicted the highest 
relative density of porpoise on the Smith Bank, and an area of high 
density along the southern coast of the Moray Firth. This model 
explained 33.2% of deviance (Fig. 2 and S4). 

HBM models used the SPDE approach to account for spatial auto-
correlation. When comparing the HBM of gridded data with the GAM, 
the same areas of highest density were apparent with an additional third 
area of high density along the east coast of Scotland (Fig. 2). In addition, 
much finer-scale clustering was apparent in the HBM results. The pre-
dicted distribution of porpoise from the GAM showed broad areas of 
high density. This contrasted with the HBM on a grid, particularly in the 
southern half of the study area where the area of high density was much 
more restricted than in the GAM. Comparing the HBM using LGCP 
(Fig. 2) with the GAM, we again saw much finer localised clustering, 

Fig. 2. Predicted relative porpoise density for the best GAM model (top left), HBM of gridded data (top right), and HBM using the LGCP (bottom left).  

Table 2 
Comparison of GAM and HBM results from models with the lowest AIC. A * 
indicates the variable was significant – for the GAM this means p < 0.05, and for 
HBM that the 95% CI did not cross 0.   

GAM HBM - 
gridded 

HBM - 
LGCP 

Environmental variables Estimate ±
SD 

Mean ± SD Mean ±
SD 

Intercept − 8.49 ±
253.06 

− 2.68 ±
0.36 * 

− 1.48 ±
22.36 

Depth (m) 0.02 ± 0.20 
* 

0.01 ±
0.01 

NA 

Mixing (H/u3) 0.55 ± 8.27 0.69 ±
0.39 

0.16 ±
0.32 

Chlorophyll-a (mgC/m3) − 0.06 ±
1.05 

− 0.07 ±
0.08 

− 0.01 ±
0.07 

Bottom temperature (⁰C) 0.53 ±
19.44 

NA NA 

Current speed (m/s) 27.04 ±
404.38 

NA NA 

Vertical shear (m/s) − 6.29 ±
297.20 

NA − 5.87 ±
8.01 

Thermal front side (unitless) 0.92 ± 8.21 
* 

NA NA 

Slope (⁰) 0.63 ± 6.84 NA 0.48 ±
0.41 

Proportion of sediment that was sand 
or gravelly sand (%) 

NA NA − 1.48 ±
22.36  
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with only the Smith Bank highlighted as a high-density area. This sug-
gested that the model was identifying areas where animals were either 
found in groups, or they used very fine-scale areas (1–2 km), which were 
not apparent in the gridded GAM analysis. 

Maximum coefficients of variation for the models fitted using HBMs 
were much lower than those created using GAM (GAM CV = 33, HBM - 
gridded CV = 8, HBM - LGCP CV = 11, Fig. 3), which showed higher 
confidence in the models. The influence of environmental covariates on 
models can be seen in Figs S4, S7, and S8. Effects of environmental 
covariates were similar between the three models, with the sign of each 
variable being the same even though the exact numbers varied (Table 2). 

The GAM also had quite large areas with high Coefficient of Varia-
tion (CV), whereas both HBMs had a maximum CV less than half that of 
the GAM, but also the highest areas of CV in the HBMs were very 
localised and only at the edges of the study area in areas with very few 
data (Fig. 3). Correlation with GAM results was higher for the HBM of 
gridded data (Spearman’s ρ = 0.76) than for the HBM using LGCP 
(Spearman’s ρ = 0.68). The GAM consistently predicted higher relative 
porpoise density just south of the Smith Bank and both HBMs predicted 
higher density on the Smith Bank and along the east coast (Fig. 4). 

Scatterplots were created to investigate how well predicted relative 
densities matched observed data (number of sightings divided by the 
survey effort; Fig. S6). Correlation between these ranged between 0.09 
and 0.51. 

3.1. Discussion 

All three models had similar predicted distributions of porpoise 
(Fig. 2), with important differences. Firstly, compared to GAMS, HBMs 
(particularly when using LGCP), revealed more fine-scale areas of por-
poise higher relative density, with an additional fine-scale (<5 km) area, 
that was not identified in GAMs. Secondly, compared to GAMS, HBM 
LGCP predicted a more realistic patchier porpoise distribution. This 
trend was not apparent in the other two models, which used the negative 
binomial distribution and gridded data, which smoothed out the 
highest-density areas. Finally, the best models from each of these three 
techniques included tidal mixing and chlorophyll-a, while two models 
also included depth, slope, and vertical shear (Table 2), suggesting that 

these may be key drivers of porpoise distribution (Brookes et al., 2013; 
Embling et al., 2012; Sadykova et al., 2017; Scott et al., 2010; Wil-
liamson et al., 2016). 

In terms of relating these model outputs to real porpoise ecology, 
animals in the field tended to be observed singly or in small groups of 
2–3 animals. Clustering observed in models can likely be explained in 
terms of animal use of fine-scale environmental features that influenced 
prey availability (Table 2; e.g. Scott et al., 2010; Williamson et al., 
2017), wider social factors – such as cooperative hunting behaviour 
(Ortiz et al., 2021) – or simply porpoise group spacing on survey sam-
pling days. In terms of oceanography, thermal fronts are fine-scale, 
transient features which aggregate fish (Hofmann and Powell, 1998; 
Olson and Backus, 1985), and consequently have been related signifi-
cantly to porpoise and other cetacean detections (e.g. Mendes et al., 
2002; Philpott, 2013). Finally, the scale at which modelling was per-
formed may have Influenced the impact/importance of variables be-
tween models (Mod et al., 2020). 

3.1.1. Variability 
Compared to GAM, variability for both HBMs was less than half, 

showing twice the level of certainty in the results. Some values of high 
CV in the GAM were in areas where there were survey data, whereas in 
the HBMs, areas of highest CV were restricted to the perimeter of the 
study area, where there was no survey effort. The GAM predicted much 
larger areas (25+ km) of high density than HBMs because the GAM 
smoothed out some spatial trends by gridding the data and using the 
negative binomial distribution, whereas the HBMs took the spatiality 
explicit autocorrelation into account. 

3.1.2. Discrete vs. continuous space 
The continuous modelled data using the SPDE/INLA, offered clear 

advantages because it eliminated information loss associated with data 
gridding, as performed in traditional GAMs. This is expected to be 
similar when segmenting data and can result in more accurate pre-
dictions of distribution. Both the HBM of gridded data (analysed in 
continuous space), and the HBM using LGCP (which used exact locations 
of sightings and transects) have smaller areas of high density (5 km) with 
a patchier distribution. 

Fig. 3. Coefficient of variation (CV) for the best GAM model (top left), HBM of gridded data (top right) and HBM using the LGCP (bottom left).  
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In general, the continuous representation and triangulation using the 
mesh provided a more flexible way of approximating a spatial area. This 
becomes relevant both when the observation area is complex (with a 
lack of data, etc.), and if the study area represents a large area of the 
earth’s surface and a fixed grid distorts special relationships. In this case, 
models can be defined on the sphere without the need to project into 
two-dimensional space and the resulting distortion, which is inevitable 
when working with a grid. 

3.1.3. Spatial clustering 
Results of the HBM using LGCP showed a slightly different pattern to 

either of the other models fitted to the gridded data. This LGCP model 
showed more localised areas of high density, with overall low density 
everywhere else. Again, this was because animals were observed in 
clusters. Using the negative binomial likelihood (as in both the GAM and 
HBM using gridded data) is an arbitrary fix for this grouping problem, 
which smooths data within the grid, but there is not a straightforward 
interpretation of how the negative binomial likelihood reflects over-
dispersion. Consequently, if appropriate for the data and species being 
studied, using Bayesian modelling with the LGCP provides the best 
advantage because it does not smooth out patchy areas; however, por-
poise is a highly mobile species, and performing the same survey on a 
different day would likely give different results, especially because the 
animals’ distribution is related strongly to environmental covariates, 
which can change on timescales of minutes. With repeated surveys, the 
LGCP approach offers potential to differentiate between fine-scale 
clustering caused by grouping of animals, and large-scale clustering 
caused by the underlying distribution pattern, but it was not possible to 
investigate this here due to a lack of data from repeat surveys. None-
theless, the exercise based on survey data available, produced a much 
clearer and more flexible approach than using the negative binomial 
likelihood, but was not as straightforward to implement when using 
GAMs. Without several repeated surveys, it is unclear if these very fine- 
scale trends reflect the true distribution of porpoise. A single survey of 
this type might be appropriate for sessile organisms, but this appears to 
be modelling at a finer resolution than is realistic for data from a single 
survey of mobile organisms. 

Relatively low correlation was observed between predicted relative 
densities and observed data (Fig. S6). A potential reason for this arises 
from a spatial mismatch between where surveys or sightings fell within 
the 5 × 5 km grid cell and the centre of the cell where predictions were 
calculated. Also, models considered information from neighbouring 
cells when calculating predictions, which could be increasing/ 
decreasing predictions and would not be reflected by survey data within 

a particular cell. In terms of relating this to empirical observations of 
porpoise spatial clustering of animals in the field, the situation is more 
complex. For example, in energetically active tidal flows, there are 
linkages between porpoise presence and small-scale heterogeneity 
amongst different environmental covariates (e.g., tidal phase, time of 
day) and significant spatiotemporal variability in site use at scales of 
hundreds of metres and hours (Benjamins et al., 2017). 

3.1.4. Future developments 
Inlabru (inlabru.org; Bachl et al., 2019), the R package used here 

to implement HBM using INLA (Yuan et al., 2017b), is still in develop-
ment, but aims to make these techniques more accessible to users and 
expand versatility. Inlabru makes it easier to use data from transects, 
as well as actual locations of sightings using the LGCP method. More-
over, because inlabru was motivated originally by the need to incor-
porate distance sampling with HBM, it is possible to implement 
information relevant to sighting conditions and a detection function into 
modelling. This was not used here, as data analysed were strip transects 
in which the detection function was assumed to be uniform throughout 
the strip width; however, this could be a benefit for line-transect surveys 
(e.g. boat-based surveys for marine mammals or birds), where sighting 
conditions (e.g. seastate, visibility, glare, etc.) influence observations 
strongly. 

Given that models fitted with inlabru are Bayesian, the user can 
include prior information about parameters. Choosing appropriate 
priors is still an area of ongoing research and the Penalised Complexity 
(PC) prior approach discussed in Simpson et al. (2017) and Sørbye et al. 
(2019) aims at making prior choice transparent and user-driven based 
on the distance and strength of spatial correlation. Default uninforma-
tive priors available in inlabru (and R-INLA) were used here, but 
different approaches to prior choice should be assessed in the future. 

3.1.5. Practicalities of use 
The increased computing time, power, statistical complexity, and 

high end-user capability of fitting models using HBM with INLA, com-
bined with the fact that they are still under development by statisticians, 
has meant that their uptake within the ecological community has been 
slow. Moreover, these newer methods have limited user-friendly docu-
mentation available (especially regarding use of the inlabru package), 
which may further hinder implementation (Norberg et al., 2019). 
Nonetheless, compared to GAMS, models incorporating INLA method-
ology are more flexible and can assess additional complex relationships. 
Moreover, HBMs are capable of modelling complex spatio-temporal data 
and patterns, as well as modelling interspecific interactions and species 

Fig. 4. Comparison of GAM and HBM results. Positive (red) indicates GAM predicted higher relative density, negative (blue) indicates GAM predicted lower density 
and zero is the same density. GAM vs. HBM of gridded data is on the left and GAM vs. HBM using LGCP is on the right. 
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characteristics (e.g. joint species distribution modelling: Illian et al., 
2012; Sadykova et al., 2017) which is not straight-forward in GAMs. 

3.2. Management implications 

In terms of translating differences between GAM vs. HBM-INLA into 
applied, real-world scenarios and case studies, this work has demon-
strated that the loss of spatial detail in a traditional GAM, could have 
important implications for development of protected areas, or mitiga-
tion during fine-scale offshore operations such as pile driving, drilling, 
dredging, etc. For example, any elevated fine-scale clustering of porpoise 
at scales <1 km due to, inter alia localised bathymetric features (e.g. 
Smith Bank), adjacent to low-use areas, could be overlooked with a 
GAM, which might misinform any fine-scale designation of protected 
areas. Moreover, relevant to this study, for two offshore windfarms in 
the Moray Firth, GAMs were used to assess porpoise distribution at a 
minimum 4 × 4 km spatial resolution (Brookes et al., 2013; Williamson 
et al., 2016), which provided a quick overview of distribution or coarse 
estimates of relative density (e.g. for initial impact assessment or anal-
ysis at the scale of national jurisdictions); however, if fine-scale trends in 
animal distribution at the sub-km resolution was required to develop a 
plan of where to place the individual Moray Firth turbines, then LGCP 
analysis could have disentangled relationships between chance and 
feature-related clustering. 

This study has demonstrated that modelling gridded data using a 
GAM and the negative binomial distribution highlighted two areas of 
high density within the Moray Firth, Scotland. Modelling the same 
gridded data using HBM-INLA (also with a negative binomial distribu-
tion) highlighted the same two areas, with an additional third area along 
the east coast that was not apparent when using GAMs. Using HBM- 
INLA, this time with the LGCP, (which takes spatial clustering of ani-
mals into account), showed that the Smith Bank had the area of highest 
relative density. Consequently, we conclude that there are three parts of 
the study area which host higher relative densities of harbour porpoise 
(one of which is missed by GAMs). 
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