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Definition: Transportation is a spatial activity. The geographic Information System (GIS) is the
process of capturing, managing, analyzing, and presenting spatial data. GIS techniques are essential to
the study of various aspects of transportation. In this entry, the state of knowledge regarding atomized
transportation modes is presented. Atomized transportation modes are defined as transportation
modes which deal with low passenger numbers.
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1. Introduction

The spatial aspect of transportation is crucial, as mobility is governed by space. Trans-
portation modes encompass a spectrum that ranges from atomization—transportation
modes that deal with the smallest load unit (e.g., single or a few passengers)—to
massification—transportation modes that deal with the largest load unit (e.g., carry large
number of passengers) [1].

Recently, the ubiquity of GPS-enabled devices (e.g, GPS tracking systems, smart
phones, and wearables) have advanced and diversified their applications by allowing
high-resolution data to be acquired. This has introduced the Big Data era, where datasets
are created in higher velocity, volume, and variety (3 Vs) [2]. Spatial data is no exception.
The process of capturing, managing, analyzing, and presenting spatial data, known as a
Geographic Information System (GIS), offers a powerful tool for the advancement of the
transportation field.

This entry aims to introduce the established knowledge about essential concepts
related to GIS (Section 2) and atomized transportation modes, namely active transportation
in Section 3, micromobility in Section 4, and cars in Section 5. Finally, this work ends with
concluding remarks in Section 6

2. GIS

Spatial data existed long before the proliferation of computers. For example, the
notorious case of Dr John Snow, where he visually depicted the outbreak of cholera in
London in 1859 and identified the source (water pump) of the outbreak, thus refuting
the miasma theory by mapping the deaths [3]. His approach involved correlating death
intensity with the proximity of the water pump. As presented in Figure 1, most cholera
deaths clustered in proximity to the water pump. Another finding is that the brewery
has no deaths, as it had its own water supply, and its workers were allowed to consume
the beers.
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Figure 1. John Snow’s map of the cholera outbreak [4]. Black bars represent deaths. Black dot rep-

resents water pump. 
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[6], among other disciplines. Through GIS, researchers can carry out various analyses, and 

some of the common analyses related to transportation are as follows: 

1. Heatmap: heatmaps map the concentration of a spatial phenomenon. For instance, a 
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2. Proximity analysis: this analysis determines the impact of a spatial feature. For 

instance, assessing the impact of green spaces on promoting cycling [8]; 

3. Spatial regression: this regression method refers to any regression technique that 

accounts for spatial dependency in the data. For instance, modeling cycling 

ridership at an intersection level by correcting for cycling ridership at a neighboring 

intersection [9]; 

4. Suitability analysis: this analysis assigns a numeric value for factors relative to their 

importance in order to find the optimal location for certain spatial features. For 

instance, finding optimal school locations to promote student walking and cycling 

[10]; 

Figure 1. John Snow’s map of the cholera outbreak [4]. Black bars represent deaths. Black dot
represents water pump.

Currently, using GIS environment software—both proprietary (e.g., ArcMap (https://
www.esri.com/en-us/arcgis/products/arcgis-desktop/resources, accessed on 22 March
2022)) and open-sourced (e.g., QGIS) (https://www.qgis.org/en/site/, accessed on
22 March 2022), the users can include different layers of spatial datasets, which can be
in either raster or vector format. Raster data are represented by cells; a common form of
raster data includes digital elevation models, where each cell has a value that represents
the terrain of the area. Vector data can take the shape one of the three geometries: (a) points
(e.g., intersection, or accident location), (b) lines (e.g., streets), and (c) polygons (e.g., area).
A GIS project can include one or many types of data. GIS has a presence in many disciplines,
such as epidemiology, to establish an understanding between pathogenic factors and the
environment [5], and criminology, to delineate criminal behavior spatial patterns [6], among
other disciplines. Through GIS, researchers can carry out various analyses, and some of the
common analyses related to transportation are as follows:

1. Heatmap: heatmaps map the concentration of a spatial phenomenon. For instance, a
heatmap of car accidents [7];

2. Proximity analysis: this analysis determines the impact of a spatial feature. For
instance, assessing the impact of green spaces on promoting cycling [8];

3. Spatial regression: this regression method refers to any regression technique that
accounts for spatial dependency in the data. For instance, modeling cycling rid-
ership at an intersection level by correcting for cycling ridership at a neighboring
intersection [9];

4. Suitability analysis: this analysis assigns a numeric value for factors relative to their
importance in order to find the optimal location for certain spatial features. For
instance, finding optimal school locations to promote student walking and cycling [10];

https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources
https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources
https://www.qgis.org/en/site/


Encyclopedia 2022, 2 1071

5. Agent-based model: a type of model that evaluates the effect of certain environments
on agents by simulating their actions. For instance, comparing between driving,
cycling, and walking distance for simulated journeys in certain cities. Therefore, the
agents are corresponding to the simulated trips, whereas the cities are the environ-
ments constrained by the street networks [11];

6. Spatial autocorrelation analysis: this analysis statistically assesses the spatial patterns
of a certain variable. The returned value of this analysis ranges from 1 (postive
spatial autocorrealtion) to −1 (negative spatial autocorrelation), where the value
of 0 represents spatial randomness. As shown in Figure 2, spatial autocorrelation
occurs when a given feature is neighbouring features with similar value; for example,
a feature with high (or low) values are situted near other features with high (or
low) values. As opposed to negative spatial autocorrealation, a given feature is
neighbouring features with dissimilar values. For example, there is a tendency for
cyclists to cycle in (or close by) areas where cycling is common due to many reasons,
among which is the ‘safety-in-numbers’ theory. This theory states that, when the
number of cyclists increases, drivers will pay more attention, and thus provide a safer
environment [12];

7. Map matching: in order to reveal the path of vehicles/travelers, map matching
techniques (e.g., Douglas and Peucker algorithms) are used to match the collected GPS
points from vehicles/travelers to the corresponding street segments. For example, this
technique is presented in Google Maps Platform (https://developers.google.com/
maps/documentation/roads/snap, accessed on 22 March 2022) and is constantly
being used in tracking apps;

8. Participatory mapping: involving the general public in spatial data collection through
online platforms is known as participatory mapping. For example, the public can
report bike safety issues using BikeMaps.org (http://BikeMaps.org, accessed on
22 March 2022) and walking or rolling safety issues using WalkRollMap.org (https://
walkrollmap.org, accessed on 22 March 2022).
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Trip data is the backbone of most GIS projects. Coupling trip data with other attributes
such as trip duration, trip time, and demographic data allows for a better understanding of
trends. The granularity of the data can take the form of the following data:

1. GPS trajectories: consecutive GPS points retrieved at a predefined time interval from
the users, revealing their location. Map matching techniques are then preformed
to convert these points to nearest streets. Certain smartphones apps (elaborated in

https://developers.google.com/maps/documentation/roads/snap
https://developers.google.com/maps/documentation/roads/snap
http://BikeMaps.org
https://walkrollmap.org
https://walkrollmap.org
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Section 3) provide such data. This data are useful to estimate ridership at a street level,
which is considered the finest available data;

2. Origin–destination: data of the start (origin) and the end (destination) of each journey
are used. The data can be represented as points (e.g., representing a bike- sharing
system station or kiosk) or aggregated to represent a city zone;

3. Self-reported journeys: research can solicit a journey’s data using participatory map-
ping by recruiting participants. Yet, the accuracy of the obtained data depends to a
large extent on the participants’ skills of mapping [14].

For privacy reasons, origin–destination data is the most popular open-data. Exposing
sensitive information, such as military outposts and private data, is more likely to occur
using GPS trajectories. It has been reported that trip GPS trajectories accidently disclosed
sensitive locations such as military outposts and the users’ houses [15]. To safeguard users’
privacy, GPS trajectories are usually bucketed at a street level, and are not available at an
individual journey level, meaning one cannot trace a single journey, where it started and
ended, and what streets have been taken.

3. Active Transportation

Active transportation (also known as active travel)—human-powered transportation—is
known to offer numerous benefits. It has been reported that this travel mode reduces
air pollution, improves cardiovascular health, and enhances social cohesion [16]. Active
transportation is witnessing growing academic scrutiny, which is further supported by
the popularity of social fitness networks as a mechanism for data collection. Social fitness
networks are online communities that trace users’ indoor and outdoor physical activities’
(walking, cycling, kayaking, and skiing) GPS locations, allowing them to track, share, and
analyze their activities [17]. Strava is the most populous social fitness network, as it has
more than 80 million users. Similar to conventional social media networks, where posts are
“liked”, in social fitness networks, shared activities can receive “kudos” [18]. Afterwards,
augmented data are provided for further analysis. An illustration of active transportation
activities in New York City is provided in Figure 3. These networks motivate users to be
active through the integration of gamified experience, where users are challenged and
rewarded points for their activities [19]. There is a caveat with this approach, however:
some users jeopardize their safety to earn more points by cycling recklessly [18].

Using data obtained from social fitness networks, researchers are able to study various
aspects of active transportation modes. Until now, the most predominant mode is cycling
(e.g., to model cyclists’ route choices [9], cycling exposure to automobiles [20], and cyclists’
air pollution exposure [21]). Little attention has been paid to other modes such as walking
(e.g., to investigate the change in people’s urban greenspace usage after the COVID-19
outbreak [22]) and skiing (e.g., to assess the conflict between recreational activities and
wildlife [23]). However, social fitness network data are subject to bias towards young,
fitness-oriented, and tech-savvy users [14]. Datasets from social fitness network are prone to
erroneous data entry, where a user mistakenly logs a vehicle trip as an active transportation
trip [24]. More recently, cycling has played a major role in food justice during COVID-19.
Food justice refers to ensuring access to healthy, nutritious, and affordable food [25].

Nonetheless, some agencies opt to develop their own app to collect data, such as
the CycleTracks app, developed at the San Francisco County Transportation Author-
ity (SFCTA) [26], and the Cycle Atlanta app, developed by Georgia Institute of 109
Technology and the City of Atlanta’s planning office [27]. Additionally, SafeLanes.org
(https://safelanes.org, accessed on 22 March 2022) and BikeLaneUpRising (https://www.
bikelaneuprising.com, accessed on 22 March 2022) are being used to report improper park-
ing that impedes active transportation access [28]. Aerial and satellite imageries are also
being applied to retrieve data from stationary objects related to active transportation and
where the temporal aspect is less relevant. For example, Moran [28] used Google Earth to
manually inspect intersections in San Francisco for the type of marked crosswalks.

https://safelanes.org
https://www.bikelaneuprising.com
https://www.bikelaneuprising.com


Encyclopedia 2022, 2 1073

Bike-sharing systems, in which bicycles are distributed across a certain area—either
in station or floating—to provide individuals with on-demand bikes, are also a source
of spatial data on active travel. Since vehicles from bike-sharing systems are prone to
vandalism and theft, in several locations, many service operators have ceased opera-
tions. Statistically, bike-sharing is safer than conventional bikes as a consequences of
the bike-sharing vehicles’ design, including the noticeable weight and the presence of
reflectors and lights [29]. Data from service providers such as Los Angeles’s Metro Bike
(https://bikeshare.metro.net/about/data/, accessed on 23 March 2022), Chicago’s Divvy
(https://ride.divvybikes.com/system-data, accessed on 23 March 2022), Philadelphia’s
Indego (https://www.rideindego.com/about/data/, accessed on 23 March 2022), and
many other locations are made available for researchers to explore bike-sharing patterns.
Open-data policies have further accelerated burgeoning research in this area. Scholars
have addressed many issues such as the impact of the COVID-19 pandemic [30], effects
of the weather on bike-sharing ridership [31,32], analyzing the spatial demand of bike-
sharing [33], forecasting bike-sharing demand [34,35], and the impact of subway closure on
bike-sharing [36,37]. Yet, these data are generally available at an origin–destination level,
rather than the GPS trajectory for each journey. Some bike-sharing systems, such as Los
Angeles’s Metro Bike and New York City’s Citi Bike, leverage participatory mapping to ask
stakeholders to suggest new locations to expand their systems.
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4. Micromobility

Micromobility—partially or fully electrified, low-speed, lightweight vehicles (e.g., elec-
tric scooters (e-scooters), e-bikes, e-mopeds)—has been recognized as being less physically
taxing (compared to conventional cycles), allowing for longer distance to be covered [38]
and hilly terrain to be traversed with less effort. Micromobility is ideal for commute trips,
as these modes prevent the user from the need of shower facilities and of being physically
taxed [39]. Most importantly, micromobility can accommodate a large portion of local
journeys commonly undertaken by cars, and can thereby ameliorate internal combustion
engine vehicles’ corresponding externalities [40]. However, micromobility is sometimes
condemned for discouraging physical activity [41,42], though this mode of transportation
might suit less physically competent users.

Currently, many service operators, such as Lime (https://www.li.me/en-us/home,
accessed on 23 March 2022) and Spin (https://www.spin.app/, accessed on 23 March 2022),
provide on-demand micromobility vehicles using apps, through which users can locate
and rent micromobility vehicles. Using built-in GPS tracking devices, spatial data about the
trips are collected; Figure 4 shows a logged trip using a Spin e-scooter in San Francisco, CA.
For many cities, micromobility GPS trajectories are available through the Uber movement
(https://movement.uber.com/, accessed on 23 March 2022), a platform developed by the
ridesharing service Uber inc. For privacy purposes, the data is binned into hexagonal
polygons. Similarly, Austin’s (Texas) open-data portal (https://data.austintexas.gov/,
accessed on 23 March 2022) and the City of Norfolk (Virginia) (https://data.norfolk.gov/,
accessed on 23 March 2022) are offering micromobility data at a census tract polygon level.

Many micromobility issues have been addressed using GIS, such as micromobility
equity [43], potentiality for micromobility to replace cars [44], spatiotemporal characteris-
tics [45], the role of micromobility in first/last mile problem [46], whether micromobility
complements or competes with public transit [47], and changes in micromobility usage be-
fore and after COVID-19 lockdowns [48]. Improper micromobility parking causing blocked
access is one of the most common concerns of micromobility and has been addressed by
many authors [49,50]. Additionally, the safety of micromobility has been compared to
conventional cycling [42,51].

https://www.li.me/en-us/home
https://www.spin.app/
https://movement.uber.com/
https://data.austintexas.gov/
https://data.norfolk.gov/
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5. Cars

Many apps and platforms have been developed to collect spatial data related to cars.
However, unlike active transportation and micromobility, cars’ spatial data are usually not
GPS trajectories. Many apps have been developed to improve cars’ infrastructure. Street
Bump is an app to collect streets’ bumps to help cities to prioritized their interventions [52].
In a similar fashion, Gap Trap is a prototype for an app to detect streets’ potholes [53].
Using the Waze app, the public can report real-time events such as floods, accidents, traffic
jams, and roadworks [54]. Imagery is also a good source for spatial data, as it has been used
to analyze cars’ parking angles [55] and to analyze unofficial parking [56]. Nonetheless,
GPS traces from mobile service providers, known as mobile phone positioning, are often
used as a proxy for vehicular journey trajectories [57,58].

In some cities, the hourly average speed in each street segment (presented in Figure 5)
and the travel time between given city zones (presented in Figure 6) are provided by
the ridesharing service Uber Inc in the Uber Movement (https://movement.uber.com/,

https://movement.uber.com/
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accessed on 24 March 2022) platform. New York City Taxi and Limousine Commission
(TLC) is openly providing the trip records of ridesharing services (e.g., Uber, Lyft, Via and
Juno) as well as taxis. An increasing number of works has been published using these free
datasets. In terms of Uber Movement data, in [59], Sun, Ren, and Sun used this data as a
commuting time proxy; whereas, in [60], Ch, Krumm, and Kun analyzed traffic patterns to
detect speed anomalies. Data from TLC have been used to investigate the impact of Uber on
the taxi markets [61,62], the impact of the weather on taxi and ridesharing services [63], and
the impact of ridesharing services on public transportation [64]. Ridesharing services have
also been studied elsewhere, where the data were not openly available. For example, in [65],
a drop in alcohol-related accidents were attributed to the usage of ridesharing services
in Chile. An in-depth analysis of ridesharing in Chicago has been studied in [66], which
covers traveling time, traveling origin and destination, trip length, and travel differences in
travelling patterns between weekend and weekdays.
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As GIS is commonly used in Uber, and the company developed a web-based, open-
sourced geospatial toolbox called kepler.gl (https://kepler.gl, accessed on 24 March 2022).
Kepler.gl can handle visualizing Big Data, as shown in Figure 7. The platform has been used
in many applications, such as origin–destination using mobile data for an entire city [67],
global population movement during the COVID-19 pandemic [68], and even visualizing
micromobility data [69].
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6. Concluding Remarks

GIS is an essential tool to be integrated in analyzing atomized transportation data on
the grounds that transportation is a spatial phenomenon. The ongoing smartphone and
GPS-enabled devices’ penetration has made using GIS inevitable, as it is projected to reach
60% in 2022 [70]. Table 1 summarizes the results of this entry in respect to the adopted
GIS definition.

Table 1. Summary of the entry results.

Active Transportation Micromobility Cars

Data producer

Social fitness networks (e.g., Strava)
Transportation agencies (e.g., SFCTA)
Advocate groups (e.g., SafeLanes.org)
Imagery (e.g., Google Earth)
Bike-sharing systems (e.g., Los Angeles’
Metro Bike)

Service providers (e.g.,
Uber Movement)
Transportation agencies (e.g.,
City of Austin open data portal)

Apps (e.g., Street Bump)
Ride sharing services (e.g., Uber)
Imagery (e.g., Google Earth)

Types of data
Trip volume data
Trip histories data
Infrastructure data

Trip volume data Infrastructure data
Average speed and travel time

Methods

Spatial statistics (e.g., heatmap and
proximity analysis) Spatial statistics (e.g., heatmap

and proximity analysis)

Spatial statistics (e.g., heatmap
and proximity analysis)

Manual digitization Manual digitization
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methods

Object-oriented programing languages (e.g., R and Python)
GIS software (e.g., ArcMap)
Cloud-based analytic tool (e.g., Kepler.gl)
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Researchers and planners are seeking to catalyze the shift from internal combus-
tion engine vehicles to active transportation and micromobility, consequently making
cities more livable. To do so, data-driven decision-making is needed. In this work, we
reviewed basic GIS concepts and how they are integrated by studying atomized trans-
portation modes, although GIS is also being used for mass transportation modes such as
subways [71], airlines [72], and cruise ships [73]. Evidently, the availability of open data is
the reason behind the wealth of literature in some areas (e.g., bike-sharing systems) and
some areas being in their infancy (e.g., pedestrian GPS trajectories). This work calls for the
following recommendations:

1. There is a pressing need for researchers and planners to be equipped with GIS skills
to deal with atomized transportation data;

2. Making the data openly available to facilitate a better understanding of trends and
allowing more collaboration between researchers. A geographic gap can be witnessed
in the case studies’ location, given the availability of data. For instance, limited
knowledge is available about locations where active transportation is less prevalent;

3. There is a lack of studies about food delivery services making cycling more safe
and providing jobs that include cyclist couriers in active transportation advocacy
plans [74];

4. There is a scarcity in the literature about bike-sharing systems and micromobility van-
dalism and theft incidents. Collecting such data might be cumbersome for researchers.
Yet, if service operators provide such data, insightful patterns that help to curb such
behavior might be revealed;

5. There is a need for further investigation into the reliability of big data in terms of its
representativeness and precision;

6. Replicating previous work with finer resolution data. For example, most bike-sharing
system studies rely on origin–destination, whereas GPS trajectories are less used,
creating a gap in the literature regarding bike-sharing system users’ route choice.
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