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A B S T R A C T

This paper presents development of a novel control scheme for suppressing stick–slip oscillations of drill-
strings. This scheme utilises a Modified Integral Resonant Control (MIRC) with tracking in order to meet a
desired drilling velocity. A low-dimensional two degrees-of-freedom drill-string model incorporating bit-rock
interactions adopted for an open-loop control, clearly demonstrate presence of unwanted stick–slip responses.
Next a detailed design of the MIRC-based damping scheme (without tracking) capable of eliminating this
undesired behaviour is presented. Then in order to enhance efficacy, the MIRC-based scheme is combined
with an integral tracking controller to show that this combined damping and integral tracking control scheme
is not only capable of eliminating stick–slip oscillations but also maintaining the desired drill-bit angular
velocity. To highlight the benefits of the proposed combined scheme, it is compared with the recently proposed
Sliding-Mode Controller (SMC). Its inherent simplicity, robustness to parameter uncertainty and excellent
performance of the proposed combined scheme propels it to be a leading candidate for stick–slip mitigation
in drill-strings. To further showcase the efficacy of the proposed control scheme, its closed-loop performance
when implemented on an 8-DOF system, has also been discussed.
1. Introduction

Over the years there has been a significant interest in understanding
dynamics of drill-strings due to their pivotal role in mineral explo-
ration. These include real-time data gathering via MWD [1] and the
development of various FE based models [2–6]. Due to the complex
dynamics inherent within drill-strings and their frictional interactions
with the borehole, they are highly susceptible to unwanted oscillatory
effects and come in three primary forms of torsional [7–10], lateral [9–
12] and axial [9,10,13–15] vibration. These problems occur in all
types of well configurations (vertical [16,17], directional [17,18] and
horizontal [17,19]) and their accompanying drilling methods [20].

These unwanted oscillations present challenges with the drilling
procedure and can and will continue to produce downtime on rigs due
to the damage they cause entire drill assemblies [21,22]. This paper
focuses on a class of torsional vibration known as stick–slip oscilla-
tions. Stick–slip is one of the most commonly encountered vibration
phenomenon in any type of well and is the most common reason for
down-hole tool and tool joint failure [16,23–25]. Stick–slip research has
began with the majority of its studies focusing on isolating the stick–
slip phenomenon and simplifying to low degrees-of-freedom (DOF)
drill-string models [26,27], mainly based on torsional pendulums. The
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friction model developed for lumped-mass modelling, is a discontinuous
switch case by Navarro-López [28,29]. This friction model elegantly
captures the stick–slip dynamics while preserving essential bifurcation
behaviour caused by changes in an axial force and driving torque.
Actual realistic cutting action in drill-strings involve complex delay be-
haviours that markedly increase system complexity [30]. In this work,
the bit-rock interaction model used in this work, as seen in [28,29],
does not utilise these delay complexities and rather focuses just on the
stick–slip itself in the form of a low DOF model with this switch case
bit-rock interaction.

A drill-string can be modelled by a series of rotational spring–mass–
dampers connecting the top drive to the drill-bit and such an approach
leads to lumped-mass models [26,27], which isolate specific dynamics
and allow for controllers to be designed for these problems. In recent
years, 2-DOF models are still used for producing and benchmarking
novel control methods for stick–slip [31,32] as well being used for
researching dynamics involving complex blade patterns on rock cut-
ting [33]. In this paper, a 2-DOF vertical drill-string model is adopted
and derived from first principles as the system of choice. The choice
to use a 2-DOF model allows for a sufficiently complex system that
can exhibit rich dynamics to benchmark novel control schemes. It
vailable online 14 June 2022
020-7403/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.ijmecsci.2022.107425
Received 29 November 2021; Received in revised form 18 May 2022; Accepted 30
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

May 2022

http://www.elsevier.com/locate/ijmecsci
http://www.elsevier.com/locate/ijmecsci
mailto:r02jm18@abdn.ac.uk
mailto:vahid.vaziri@abdn.ac.uk
mailto:s.aphale@abdn.ac.uk
mailto:m.wiercigroch@abdn.ac.uk
https://doi.org/10.1016/j.ijmecsci.2022.107425
https://doi.org/10.1016/j.ijmecsci.2022.107425
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2022.107425&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Mechanical Sciences 228 (2022) 107425J.D.J. MacLean et al.
should be noted that the model chosen is derived from the in-house
experimental setup at the University of Aberdeen belonging to the
authors of this paper. This experiment on which the model is derived
is focused on reproducing torsional dynamics, namely stick–slip in this
instance, and as such this work is focused on the stick–slip behaviours
pertaining to the experimental model and its accompanying model.

A number of strategies aimed at mitigating stick–slip oscillations
have been developed by academia and industry and reported in litera-
ture. For example the company Tomax, patented their unique Anti-Stall
Tool (AST) described in [34–36], which tackles the stick–slip problem
from that of a mechanical design perspective. Should the drill-string
undergo any stick while drilling, the Tomax AST by reducing its length
decreases the effective Weight On Bit (WOB). A control input whether
it is a driving torque, WOB or angular velocity can act as other control
parameter to prevent stick–slip. In recent times, the 𝜇-synthesis control
method [37–39] has been proposed as a way to overcome stick–slip os-
cillations, however it is based on linearisation methods, which delivers
the expected performance in a very narrow range around the equilibria
of interest. Using only the WOB as a control parameter [40] requires
knowing the exact WOB being applied at any given instant, which is
technically challenging and consequently, this method lacks robustness
in face of uncertain values of WOB. Other potential controllers include
axial and torsional feedback [41], time-delayed feedback control [42],
linear quadratic regulator [43], Kalman filter based full-state feed-
back [44], adaptive [45] and pole placement technique based on the
numerical optimisation method [46]. However, more significant devel-
opments are based on PID and PD control techniques and have been
widely reported, e.g. by [47–52]. However, all these methodologies
can help to increase the operating ranges but they cannot eliminate
the stick–slip problem completely. More importantly, none of these
control methods is particularly robust to system parameters or bit-rock
changes. In order to mitigate the problem of system parameter changes
while ensuring steady drilling, Sliding-mode Control (SMC) has been
investigated and applied [28,53,54]. Due to its robustness to parameter
uncertainties, the SMC has emerged as a benchmark against which all
other stick–slip mitigating control schemes are compared. That being
said, SMC has one sizeable downside, its inherent complexity in its de-
sign procedure. When it comes to porting a control solution to a real life
drill-rig, simplicity in tuning and design is of the utmost importance and
thus, the SMC has not garnered yet a significant practical application
or an industrial interest.

In this paper, a novel approach to tackle the stick–slip is considered
by utilising the ‘Modified Integral Resonant Control’ (MIRC) [55]. The
MIRC is a modified version of the IRC damping scheme first developed
to mitigate linear system resonances [56], and is capable of imparting
a significant damping to nonlinear resonances as well [57]. The MIRC
is a simple, first-order controller that works by adding an extra state
equation to the system in question and requires no complicated design
as required by the SMC. Incidently, the MIRC only requires a selection
of the control gain, which is easily achievable via a simple numerical
search. Moreover, as the MIRC is of a similar complexity to PID control,
this allows for easy implementation. It should also be noted that this
controller does not rely on the linearisation of the drill-string model
unlike the 𝜇-synthesis control, thus allowing for a more realistic global
performance. The rest of the paper is structured as follows; Section 2
presents the experimental setup with results as well as the open-loop
model for the drill-string and classifies all the different parameters
while demonstrating its well known open-loop behaviour, Section 3
introduces the MIRC structure and demonstrates how it is added to
the drill-string model presented in Section 2. Section 4 introduces
the addition of tracking control to the MIRC’s structure. Then the
robust nature of the combined control scheme of MIRC and tracking
control are discussed in Section 5. Section 6 is devoted to the direct
comparison between the SMC and MIRC-based damping with integral
tracking control in order to draw comparisons in performance and also
demonstrates the MIRC-based damping with integral tracking control
on a much more complex 8-DOF system. Section 7 concludes the paper.
However, the stability analysis and system parameters are presented in
the Appendices.
2

Fig. 1. University of Aberdeen Drill-string Rig and its components. The photograph of
the vertical drill-string assembly shows the main parts including actuator (top motor),
BHA, drill-bit, rock sample and sensors. The schematic on the left depicts a 2-DOF
model of a drill-string represented as a connected series of rotating pendula featuring
a highly nonlinear opposing bit-rock interaction torque 𝑇𝑏 and weight-on-bit 𝑊𝑂𝐵.

2. Experimental results and open-loop analysis

The University of Aberdeen’s vertical drill-string rig is shown in
Fig. 1 along with the accompanying 2-DOF model [2,54]. This rig can
be used in several configurations such as (i) rigid-shaft setup for bit-
rock interactions investigation, (ii) flexible shaft setup with no lateral
motion for the torsional vibration mode only analysis, (iii) full mode,
which mimics all types of drill-string vibration. We have utilised here
the first and second configurations for the bit-rock model and stick–
slip model calibration in the current work. The main components of the
rig are as follows, actuators (top motor), Bottom-Hole-Assembly (BHA),
drill-bit and rock sample. The sensors used in this study to record
include a four component load-cell, the top and bottom encoders, eddy
current probes and a Linear Variable Displacement Transducer (LVDT).

Fig. 2 shows an example of stick–slip oscillations experimentally
recorded and occurring for WOB = 1.76 kN and top-torque of 40 N
m. Fig. 2(a) and (b) present the time histories of the angular velocities
at the bottom, 𝜙̇𝑏, and the top, 𝜙̇𝑡, phase portraits from experimental
studies. While panels (e) and (f) depict the simulation results from
a calibrated low-dimensional model. Their 5 s zoomed-in views are
in (c) and (g) together with TOB recorded in the experiment (b) and
modelled (d) by Eq. (3) which will described later in the next section.
All the model parameter identified from the experimental setup are in
the Table 1.

If one is to fully understand the importance of the problems inherent
with stick–slip, it is imperative to examine and explore the rich dynam-
ics of the leading to the stick–slip issue. The behaviour of stick–slip and
other notable dynamics of constant drilling and stick are explored in
this section in detail. The set of differential equations which describe
the model are:

𝐽𝑡𝜙̈𝑡 +
(

𝑐𝑠 + 𝑐𝑟
)

𝜙̇𝑡 + 𝑘𝑠𝜙𝑡 − 𝑐𝑠𝜙̇𝑏 − 𝑘𝑠𝜙𝑏 = 𝑢, (1)

𝐽𝑏𝜙̈𝑏 + 𝑐𝑠𝜙̇𝑏 + 𝑘𝑠𝜙𝑏 − 𝑐𝑠𝜙̇𝑡 − 𝑘𝑠𝜙𝑡 = −𝑇𝑏. (2)
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Table 1
Parameters used for numerical simulation of low dimensional model.

Symbol Name Value(s) and Units

𝜇𝑐𝑏 Coulomb friction coefficient 0.0597
𝜇𝑠𝑏 Static friction coefficient 0.0843
𝑅𝑏 Bit radius 0.0492m
𝑊𝑂𝐵 Weight-on-bit 1760N
𝛾𝑏 Velocity decrease rate 0.3
𝜈𝑓 Velocity constant 0.1935
𝜁 Small positive constant 10−6

𝑢 Top-torque 𝑢 ∈ [0, 60]Nm
𝐽𝑡 Top-drive inertia 13.93 kg m2

𝐽𝑏 Bit inertia 1.1378 kg m2

𝑐𝑟 Top-drive damping coefficient 11.38Nm s rad−1

𝑐𝑠 Torsional damping coefficient 0.005Nm s rad−1

𝑘𝑠 Torsional stiffness coefficient 10Nm rad−1

Table 2
Model parameters and their definitions.

Symbol Name Expression/Range of values

𝜏𝑟 Reaction torque 𝜏𝑟 ∶= 𝑐𝑏
(

𝜙̇𝑡 − 𝜙̇𝑏
)

+ 𝑘𝑏
(

𝜙𝑡 − 𝜙𝑏
)

𝜏𝑠 Static friction torque 𝜏𝑠 ∶= 𝜇𝑠𝑏𝑅𝑏𝑊𝑂𝐵
𝜇𝑏 Dry friction coefficient 𝜇𝑏 ∶= 𝜇𝑐𝑏 +

(

𝜇𝑠𝑏 − 𝜇𝑐𝑏
)

e−𝛾𝑏‖𝜙̇𝑏‖∕𝜈𝑓

sgn(𝑥) Signum function sgn(𝑥) =
⎧

⎪

⎨

⎪

⎩

−1 if 𝑥 < 0
0 if 𝑥 = 0
1 if 𝑥 > 0

‖𝑥‖ Absolute value function ‖𝑥‖ =

{

−𝑥 if 𝑥 < 0
𝑥 if 𝑥 ≥ 0

The friction model for 𝑇𝑏 used is defined as follows [26]:

𝑇𝑏 =

⎧

⎪

⎨

⎪

⎩

𝜏𝑟, if ‖𝜙̇𝑏‖ < 𝜁 and ‖𝜏𝑟‖ ≤ 𝜏𝑠
𝜏𝑠 sgn

(

𝜏𝑟
)

, if ‖𝜙̇𝑏‖ < 𝜁 and ‖𝜏𝑟‖ > 𝜏𝑠
𝜇𝑏𝑅𝑏𝑊𝑂𝐵 sgn

(

𝜙̇𝑏
)

, if ‖𝜙̇𝑏‖ ≥ 𝜁.

(3)

The adopted friction model operates the drill-string in one of the
three distinct phases. Phase 1 is the stick in which the bit is not rotating
(𝜙̇𝑏 < 𝜁) as the static friction torque 𝜏𝑠 exceeds or is equal to the
reaction torque 𝜏𝑟: ‖𝜏𝑟‖ ≤ 𝜏𝑠. Phase 2 is the transition from the stick to
he slip in which the bit just about to rotate again (𝜙̇𝑏 < 𝜁) as the static

friction torque 𝜏𝑠 is less than the reaction torque 𝜏𝑟: ‖𝜏𝑟‖ > 𝜏𝑠. Phase 3 is
the slip in which the bit begins to move (𝜙̇𝑏 ≥ 𝜁) and cuts into the rock.
Table 2 presents the relevant mathematical expressions/ranges for all
the system parameters: For simulation purposes, Eqs (1), (2) and the
friction model (3), can be seen as generating three separate state-space
models in which the system can discontinuously switch between, based
on initial conditions, WOB and 𝑢. In order to numerically simulate
Eqs (1) and (2), the following state-variables are defined:

𝑋 =
[

𝜙̇𝑡, 𝜙𝑡 − 𝜙𝑏, 𝜙̇𝑏
]𝑇 =

[

𝑥1, 𝑥2, 𝑥3
]𝑇 . (4)

Eqs (1) and (2) can be re-described as a state-space system which
separates the linear portions and the nonlinear bit-rock interactions
model 𝑇𝑏 in terms of appropriate matrices as follows:

𝑋̇ =
⎡

⎢

⎢

⎣

(

𝑐𝑠 + 𝑐𝑟
)

∕𝐽𝑡 −𝑘𝑠∕𝐽𝑡 𝑐𝑠∕𝐽𝑡
1 0 −1

𝑐𝑠∕𝐽𝑏 𝑘𝑠∕𝐽𝑏 −𝑐𝑠∕𝐽𝑏

⎤

⎥

⎥

⎦

𝑋 + 𝑢
𝐽𝑡

⎡

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎦

−
𝑇𝑏
𝐽𝑏

⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

(5)

To infer some important information about the drill-string model,
the equilibria of the system should be considered. There exist two
distinct equilibria, namely the constant drilling and the stick equilibria
respectively. Consider the case of stick in which the top-drive and bit-
head velocities are zero respectively (𝑥1 = 𝑥3 = 0) and the state variable
derivative is also zero (𝑋̇ = 0 and) in Eq. (4). Then the equilibrium for
𝑥2,𝑒 is;

𝑥2,𝑒 =
𝑢 . (6)
3

𝑘𝑠
This translates to an overall equilibrium vector 𝑋𝑒,𝑠 as follows:

𝑋𝑒,𝑠 =
[

0, 𝑢
𝑘𝑠
, 0
]𝑇
. (7)

Now consider the case of constant drilling in which the top-drive and
bit-head velocities are some positive constant 𝛺𝑐 respectively (𝑥1 =
𝑥3 = 𝛺𝑐) and the state variable derivative is also zero (𝑋̇ = 0 and
𝑥1 = 𝑥3 = 𝛺𝑐) in Eq. (4). Then the equilibrium 𝑥2,𝑒 can be shown to be:

𝑥2,𝑒 =
𝑢 − 𝑐𝑟𝛺𝑐

𝑘𝑠
. (8)

This translates to an overall equilibrium vector 𝑋𝑒,𝑐 as follows:

𝑋𝑒,𝑐 =
[

𝛺𝑐 ,
𝑢 − 𝑐𝑟
𝑘𝑠

, 𝛺𝑐

]𝑇
. (9)

With these system equilibria demonstrated, the behaviour of Eq. (4)
and the aforementioned bit-rock model (3) is shown in Fig. 3. As can
be seen in Fig. 3(d), stick–slip and constant drilling attractors co-exist
within the region bound of 𝑢 ∈ [9, 56] Nm while 𝑢 ∈ [57, 60] Nm denotes
region where the drill-string only operates in the constant drilling
mode. Another important point to note is that as shown in the basins
of attraction plotted in Fig. 3(e), the parameter-space defined by the
range of initial conditions analysed herewith is dominated by stick–slip
attractors. With the adopted drill-string and bit-rock models validated
via the simulation results shown in Fig. 3, this work proceeds to
design and implementation of the Modified Integral Resonant Control
(MIRC) damping scheme aimed at eliminating the unwanted stick–slip
oscillations.

3. Modified integral resonant control

To mitigate and suppress stick–slip on the aforementioned sys-
tem seen in Fig. 1, a Modified Integral Resonant Control scheme is
introduced. The scheme is added to the drill-string model and its
impact on the equilibria of the new closed-loop system is discussed
in detail. Lyapunov stability is also derived and discussed along with
simulations to verify its stick–slip suppressing characteristics. A new
controller state 𝜓 is defined and then embedded into Eqs (1) and
(2) by generating an extra state differential equation. A full derivation
for combining the scheme with the drill-string can be found in the
Appendix. Consequently, the new scheme modified system dynamics
work by adding the control input of MIRC to the original top-torque
input 𝑢, while additionally adding an extra state equation to the overall
system dynamics. The new equations can be described by:

𝐽𝑡𝜙̈𝑡 +
(

𝑐𝑠 + 𝑐𝑟
)

𝜙̇𝑡 + 𝑘𝑠𝜙𝑡 − 𝑐𝑠𝜙̇𝑏 − 𝑘𝑠𝜙𝑏 = 𝑢 + 𝜂𝜓, (10)

𝐽𝑏𝜙̈𝑏 + 𝑐𝑠𝜙̇𝑏 + 𝑘𝑠𝜙𝑏 − 𝑐𝑠𝜙̇𝑡 − 𝑘𝑠𝜙𝑡 = −𝑇𝑏, (11)

̇ + 𝜂𝜅𝜓 + 𝜆
[

𝜙̇𝑏 − 𝜙̇𝑡
]

= 0. (12)

To aid in simulation, a state-vector 𝑋̄ includes the controller variable:

𝑋̄ =
[

𝜙̇𝑡, 𝜙𝑡 − 𝜙1, 𝜙̇1, 𝜓
]𝑇 =

[

𝑥1, 𝑥2, 𝑥3, 𝑥4
]𝑇 . (13)

This redefinition allows the aforementioned Eqs (10), (11) and (12)
to be re-written as a closed-loop state-space system as follows:

̇̄𝑋 =

⎡

⎢

⎢

⎢

⎢

⎣

(

𝑐𝑠 + 𝑐𝑟
)

∕𝐽𝑡 −𝑘𝑠∕𝐽𝑡 𝑐𝑠∕𝐽𝑡 𝜂∕𝐽𝑡
1 0 −1 0

𝑐𝑠∕𝐽𝑏 𝑘𝑠∕𝐽𝑏 −𝑐𝑠∕𝐽𝑏 0
𝜆 0 −𝜆 −𝜅𝜂

⎤

⎥

⎥

⎥

⎥

⎦

𝑋̄ + 𝑢
𝐽𝑡

⎡

⎢

⎢

⎢

⎢

⎣

1
0
0
0

⎤

⎥

⎥

⎥

⎥

⎦

−
𝑇𝑏
𝐽𝑏

⎡

⎢

⎢

⎢

⎢

⎣

0
0
1
0

⎤

⎥

⎥

⎥

⎥

⎦

(14)

By incorporating the scheme in question, there exists a new state which
will possess its own behaviour when the system reaches a new equilib-
rium in addition to the previously derived equilibria. To analyse the
behaviour of the modified drill-string, the equilibria of the controlled
system needs to be explored. To this end, consider the case in which
the top-drive and bit-head velocities are zero (𝑥 = 𝑥 = 0) and the
1 3
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Fig. 2. An example of stick–slip oscillations occurring for WOB = 1.76 kN and top-torque of 40 N m. The time histories of the angular velocities at the bottom, 𝜙̇𝑏, and the
op, 𝜙̇𝑡, phase portraits and TOB obtained from experimental studies are shown in panels (a), (b), (c) and (d). Their modelled equivalents simulated for a low dimensional model
re depicted in panels (e) to (h).
T

tate variable derivative ̇̄𝑋 = 0 in Eq (14). Looking specifically at the
ncorporated differential equation:

̇ 4 = −𝜅𝜂𝑥4 − 𝜆
[

𝑥3 − 𝑥1
]

. (15)

iven that ̇̄𝑋 = 0, it can be shown that the modified equilibria 𝑥4,𝑒 is:

4,𝑒 =
𝜆
𝜅𝜂

[

𝑥1 − 𝑥3
]

. (16)

Then the modified equilibria 𝑋̄𝑒,𝑠 for stick, by substituting in 𝑥1 = 𝑥3 =
0 into Eq. (16), is:

𝑋̄𝑒,𝑠 =
[

0, 𝑢
𝑘𝑠
, 0, 0

]𝑇
. (17)

he modified equilibria 𝑋̄𝑒,𝑐 for constant drilling can be found similarly
y substituting 𝑥1 = 𝑥3 = 𝛺𝑐 into Eq. (16):

̄ 𝑒,𝑐 =
[

𝛺𝑐 ,
𝑢
𝑘𝑠
, 𝛺𝑐 , 0

]𝑇
. (18)

ince the scheme works by adding an extra state to the open-loop
4

ynamics of the drill-string, it follows that the same system attractors d
Table 3
MIRC gain values.

Symbol Name Value

𝜆 Output feedback gain −22
𝜂 Integrator gain 10
𝜅 Feed-through gain 1

exist and are not altered in their unique behaviours. This is evidenced
by the equilibria of 𝑥1, 𝑥2 and 𝑥3 not changing even under the influence
of the scheme. When the system reaches either of the constant drilling
or stick attractors, the control input 𝑢+ 𝜂𝑥4 → 𝑢, once it has settled. In
the Appendix, there a Lyapunov stability analysis is carried out should
the reader wish to view it. The figure overleaf demonstrates the effects
that scheme on the natural system response of stick–slip. The following
table details the gains used for the simulations seen overleaf.

Fig. 4(a) shows the stick–slip limit cycle in open-loop for 𝑢 = 40 Nm.
he scheme is turned on at 𝑡 = 75 s and as shown, the system is
riven to its corresponding (inherent) constant drilling attractor at
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Fig. 3. Bit velocity vs. time traces for (a) stick (𝑢 = 3 Nm), (b) stick–slip (𝑢 = 15 Nm) and (c) constant drilling (𝑢 = 60 Nm). (d) The complete open-loop bifurcation diagram
howing the three attractors as stick (𝑢 ∈ [0, 7] Nm → black squares), stick–slip (𝑢 ∈ [9, 57] Nm → red triangles), unstable constant drilling (𝑢 ∈ [9, 20] Nm → purple diamonds) and

stable constant drilling (𝑢 ∈ [21, 60] Nm → blue circles). (e) 3D Basins of Attraction plot indicates state values where stable drilling and stick–slip occur. (f) and (g) Time histories
and portraits where the co-existing constant drilling with stick–slip attractors computed for 𝑢 = 45 Nm exist. (h) A 3-D phase-plane portrait of the same dynamics is shown. The
region of 𝑢 ∈ [9, 20] Nm possesses an unstable constant drilling branch not accessible practically (or via traditional numerical integration) except with the method of numerical
continuation or closed-loop control.
𝜓

𝛺𝑐 = 2.993 rad s−1. Fig. 4(b) plots the 2-D phase-plane portrait that
corresponds to the dynamics presented in Fig. 4(a) and explains how
the controlled system is being driven to constant drilling. Fig. 4(c)
shows the corresponding 3D perspective with respect to time, for more
clarity. Fig. 4(e) plots the control input required before and after the
activation. When the scheme is turned on at 𝑡 = 75 s the control input
undergoes a brief period of transients and soon settles to the same
open-loop torque value. This demonstrates that the scheme acts by
supplementing the drill-string system with its own dynamics without
changing the inherent constant response. Fig. 4(f) details the con-
trol block diagram of the implemented scheme (damping only) whilst
Fig. 4(g) shows how all the basins of attraction within the same range
of initial conditions as that analysed for in Fig. 3(e) change to constant
drilling under the influence of the implemented scheme. This clearly
demonstrates the effectiveness of the scheme in suppressing unwanted
stick–slip oscillations.

A key result that requires an in-depth probing is the ability of
this scheme to stabilise and reach any the unstable constant drilling
solution. Unstable constant drilling branches have been shown to exist
in drill-string structures and are usually presented as solutions only
accessible via numerical continuation methods. By using the scheme in
question, these instances of unstable constant drilling attractors, occur-
ring in open-loop, are successfully stabilised by the scheme and made
reachable. To further clarify the dynamics in this region, see Fig. 5.
When the scheme is engaged, the stick–slip attractor is suppressed and
a new constant-drilling attractor becomes reachable by the controlled
5

drill-string. There are small oscillations of the control input seen in
the zoomed insert in Fig. 5(b) that confirms the stabilisation of this
solution. When the scheme is turned off, this newly stabilised solution
loses its stability as the system effectively becomes that of an open-
loop drill-string once more. This is also verified by the control input
settling back to 𝑢 = 15 Nm. In conclusion, to stabilise this region where
unstable constant drilling attractors exist in open-loop, the scheme is
required to be engaged at all times. In this particular system type,
the existence of a Hopf bifurcation is shown by Navarro-López [30]
which is critical to following heuristic argument presented with respect
to the MIRC detailed. To understand why this stabilisation occurs, a
discussion into super-critical Hopf bifurcations is required. Consider the
following normal form for the Hopf bifurcation when in closed-loop
with the scheme:

𝑟̇ = 𝜇𝑟 − ‖𝑟‖2𝑟 + 𝜂𝜓 + h.o.t, (19)

̇ = 𝜆𝑟 − 𝜅𝜂𝜓, (20)

where 𝜇 > 0. If the higher-order-terms (h.o.t) are ignored and Eqs (19)
and (20) are examined at equilibrium, consider the following equilibria
variables of 𝑟𝑒 and 𝜓𝑒 respectively;

0 = 𝜇𝑟𝑒 − ‖𝑟𝑒‖
2𝑟𝑒 + 𝜂𝜓𝑒, (21)

0 = 𝜆𝑟𝑒 − 𝜅𝜂𝜓𝑒. (22)

This allows for the new equilibria of (19) to be solved for as follows
by rearranging (22) for 𝜓𝑒 and substituting it into (21). For simplicity

by assuming that 𝑟𝑒 > 0, the absolute value square term can be simply
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Fig. 4. An overview of the MIRC method and its effect on the system dynamics. The open loop responses is in red and the closed-loop one is in blue. (a – c) Shows the time–history,
-D and 3D phase-portraits for 𝑢 = 40 N m, respectively. (d) The complete bifurcation diagram showing all three types of behaviour. (e) An example of the control input versus

time. Please note the initial and final control input (top) is 40 N m. (f) The scheme’s block diagram construction. (g) 3D Basins of attraction of closed-loop system.
thought of as 𝑟2𝑒 resulting in:

𝜓𝑒 =
𝜆
𝜅𝜂
𝑟𝑒, (23)

0 =
(

𝜇 + 𝜆
𝜅

)

𝑟𝑒 − 𝑟3𝑒 . (24)

Solving for the equilibria 𝑟𝑒,

𝑟𝑒
(

𝜇 + 𝜆
𝜅
− 𝑟2𝑒

)

= 0 → 𝑟𝑒1 = 0, 𝑟𝑒2,3 = ±
√

𝜇 + 𝜆
𝜅
. (25)

y analysing (25), if 𝜇 > 0 and 𝜆 = 𝜅 = 0 simultaneously, there exist
he two stable equilibria exist at 𝑟𝑒2,3 = ±

√

𝜇 which corresponds to a
stable limit cycle. Around this stable limit cycle, there is the unstable
equilibrium of 𝑟𝑒1 = 0 which the limit cycle oscillates around. If in
the closed-loop case 𝜆 and 𝜅 are chosen such that 𝜇 + 𝜆∕𝜅 > 0, then
his serves to keep the equilibria stability the same, but has the effect
f increasing the amplitude of the limit cycle. If on the other hand, 𝜆
nd 𝜅 are chosen such that 𝜇 + 𝜆∕𝜅 < 0, then this collapses 𝑟𝑒2,3 to be

complex solutions which results in the remaining real equilibria 𝑟𝑒1 = 0
to become a stable solution. If knowledge of 𝜇 exists, then it is easy to
choose 𝜆 and 𝜅 that allow for this second condition to exist and thereby
re-stabilise the 𝑟𝑒1 = 0 equilibrium. The following simulations show the
bifurcation diagrams for Eqs (19) and (20) as well as a time–history
example showing the effects of the scheme:

In the open-loop case, for 𝜇 ≤ 0, all equilibria are stable and for
𝜇 > 0 unstable solutions arise with pairs of stable solutions representing
the Hopf limit cycle. Fig. 6(c) shows the evolution of the Hopf normal
form to the positive solution 𝑟2𝑒 and then highlights the stabilisation
effects of the scheme when activated at 𝑡𝑜𝑛 = 2 s. In conclusion,
the scheme is capable of directly affecting the stability of equilibria
for Hopf bifurcations. In the following subsection, the basic linear
6

frequency characteristics of the open-loop and closed-loop system is
discussed. Though the stick–slip damping capabilities of the scheme
are noteworthy, where it really excels is its ability to accommodate an
additional tracking loop, thereby ensuring that a desired (reference)
drill-bit velocity can be met and maintained at all times. Consequently,
the scheme’s damping capabilities will be combined with an integral
tracking in the following section.

4. Implementation of integral tracking with the MIRC

Normal operations require that certain desired bit and top-drive
velocities are consistently maintained in order to ensure safe and
efficient operation [58,59]. In this section, the MIRC scheme, as shown
in Fig. 4(f), is combined with an integral tracking loop in order to
maintain a desired reference speed 𝛺𝑑 (See Fig. 7). In order to do this,
a new state vector 𝑋̂ is defined as follows:

𝑋̂ =
[

𝜙̇𝑡, 𝜙𝑡 − 𝜙1, 𝜙̇1, 𝜓, 𝛾
]𝑇 =

[

𝑥1, 𝑥2, 𝑥3, 𝑥4 𝑥5
]𝑇 ,

(26)

where the new state 𝛾 represent the integral tracking variable. Modify-
ing Eq. (14) with this integral tracker is as simple as adding a new state,
expanding the matrices accordingly and by adding a desired reference
velocity 𝛺𝑑 with which to track:

̇̂𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

(

𝑐𝑠 + 𝑐𝑟
)

∕𝐽𝑡 −𝑘𝑠∕𝐽𝑡 𝑐𝑠∕𝐽𝑡 𝜂∕𝐽𝑡 𝑘𝑖∕𝐽𝑡
1 0 −1 0 0

𝑐𝑠∕𝐽𝑏 𝑘𝑠∕𝐽𝑏 −𝑐𝑠∕𝐽𝑏 0 0
𝜆 0 −𝜆 −𝜅𝜂 0

⎤

⎥

⎥

⎥

⎥

⎥

𝑋̂ + 𝑢
𝐽𝑡

⎡

⎢

⎢

⎢

⎢

⎢

1
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎣
−1 0 0 0 0

⎦ ⎣
0
⎦
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Fig. 5. The effects of turning on (𝑡 = 80 s) the MIRC acts to stabilise the unstable solution and then turning off (𝑡 = 130 s) the MIRC results in going back to the stick–slip
oscillations. (a) shows the bit angular velocity and (b) presents the control input. Please not the initial and final control signal (top torque) is 15 Nm in which the system has one
stable and one unstable solution (see Fig. 4).
Fig. 6. Nonlinear dynamics stability analysis of the system with MIRC control. (a) and (b) Classical Hopf bifurcation and its disappearance by an introduction of the MIRC in the
region of 𝜇 ∈ [−1, 4]. (c) The effect of the MIRC being turned on at 𝑡 = 2 s. Simulation was conducted for 𝜇 = 4, 𝜆 = −50, 𝜅 = 1 and 𝜂 = 25.
F

Fig. 7. Structure of the combined MIRC with integral tracking controller. The tracking
controller is added to the MIRC presented in Fig. 4(f) where the input parameter of
this controller is the drill-bit desired velocity 𝛺𝑑 .

−
𝑇𝑏
𝐽𝑏

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
1
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+𝛺𝑑

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (27)

The equilibria remain the same as before and the details of the Lya-
punov stability analysis for this combined scheme can be seen in the
Appendix. An example of a detailed closed-loop dynamic performance
of the MIRC-based damping and tracking control scheme is presented
in Fig. 8. To test the new combined scheme, the previous gains for the
MIRC portion is kept the same as in Table 3, and the integral tracking
gain is set as follows, 𝑘𝑖 = 10.

(a) Time trace of the bit velocity for the open-loop drill-string
perating in the stick phase, when commanded to achieve the desired
it velocity of 𝛺𝑑 = 3.5 rad s−1. (b) Time traces of the bit velocity
or the open-loop drill-string operating in the stick phase with an
nstable constant drilling attractor. The combined scheme demon-
trates the ability to stabilise unstable constant drilling attractors as
7

ell as provide damping for stick–slip phenomenon. (c) and (g) Time c
traces of the bit velocity for the open-loop drill-string operating at
a point in the coexisting attractors (stick–slip and constant drilling)
region, when commanded to achieve the desired bit velocity of 𝛺𝑑 =
[2.993, 2.111] rad s−1, respectively. (d) Bifurcation diagram of the closed-
loop drill-string. It is clear from the traces plotted in Fig. 8, that
the MIRC-based damping and tracking scheme performs excellently
in ensuring the total elimination of stick–slip oscillations and addi-
tionally, guarantees that the drill-bit achieves the desired bit velocity.
As the drill-string (due to its interaction with the bore-wall) and the
nature of the rock strata being drilled, the overall drill-bit with bit-
rock interaction is a system with significant parameter uncertainty. As
such, no control scheme is of any consequence unless it demonstrates
significant robustness to parameter uncertainty. The linear IRC scheme
has significant inherent robustness [60] and therefore, it is expected
that a similar level of robustness is demonstrated by the proposed
combined scheme utilised herewith. To explore and validate the control
scheme’s robustness, a detailed analysis of the closed-loop system’s
performance to significant parameter variation is carried out. These
results are presented in the following section.

5. Robustness analysis

In order to demonstrate the robustness of the combined scheme, it
is essential to determine how changing key system parameters affects
the closed-loop response while keeping the scheme’s gains the same.
Changing significant system parameters will cause the system dynamics
to change accordingly. As a result, this can change the location of:
constant drilling solutions, stick and stick–slip solutions found within
the system. If the combined scheme can still maintain constant drilling
under changing system parameters, then it possesses robustness within
this context of drilling.

The following parameters, namely: the top-drive inertia 𝐽𝑡, top-drive
damper 𝑐𝑟, torsional spring stiffness 𝑘𝑠, and torsional damper 𝑐𝑠 are
varied in their values by set percentages of: ±10%,±20% and ±30%.
ig. 9 presents simulation results for cases where the parameters were
hanged by −10%, −20% and −30% (parameter values are individually
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Fig. 8. An overview of the MIRC method with tracking and its effect on the system dynamics. The open loop responses is in red and the closed-loop one is in blue and magenta.
a) and (b) Show the time history for moving from stick to constant drilling for the cases with and without stable constant trajectories, respectively. (c) and (c) Show the time
istories of two cases of tracking low and low desired velocities.
Fig. 9. Black solid lines represent target desired velocities and torques for respective plots. Time traces for bit velocity and corresponding control input for system with: (a and
) 70% of the nominal values. (b and e) 80% of the nominal values. (c and f) 90% of the nominal values.
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educed to 70%, 80% and 90% of the nominal values as listed in
able 1).

The combined scheme is able to guide the system to the desired bit
elocity 𝛺𝑑 in each case. It must be noted that for each of the cases, the
ontrol input required to ensure that the desired bit velocity is achieved
aries. As a result, though in all three cases, the desired bit velocity is
et to 𝛺𝑑 = 3.5 rad s−1, the control torque needed to achieve this desired
it velocity is 33.82 Nm, 37.80 Nm and 41.78 Nm for changed parameter

values of 70%, 80% and 90% of the nominal value set. Note that as
system parameters decrease from their nominal values, the location and
consequently, the natural velocities of constant drilling attractors found
within the system will also change. A similar set of simulations were
run to look at how the closed-loop system performs when the system
parameters are increased by 10%, 20% and 30% (parameter values are
individually reduced to 110%, 120% and 130% of the nominal values
as listed in Table 1). These results are presented in Fig. 10.
8

s

Similar to the cases where the system parameters were decreased
(presented in Fig. 9), for the cases where system parameters are in-
creased, the combined scheme still manages to maintain desired bit
velocity. The trend in changes to the control input is also similar,
albeit more pronounced. The desired bit velocity is still set to 𝛺𝑑 =
.5 rad s−1 and requires control inputs of 49.75 Nm, 53.73 Nm and
7.72 Nm for system simulated with 110%, 120% and 130% of the
ominal parameter values. What is also interesting to note is that when
he system parameter values are less than nominal (Fig. 9), the control
orque has a significant overshoot when compared to the cases where
he system parameter values are greater. However, the transients settle
own quicker compared to those manifesting when controlling a system
ith parameter values greater than the nominal (Fig. 10). To perform
comparative analysis of the proposed combined scheme, the recently
roposed Sliding-Mode Controller (SMC) [54], that has emerged as
benchmark for control of drill-strings, is employed as a candidate.

he next section introduces the SMC and tests the proposed combined
cheme on a more complex drill-string.
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Fig. 10. Black solid lines represent target desired velocities and torques for respective plots. Time traces for bit velocity and corresponding control input for system with: (a and
) 110% of the nominal values. (b and e) 120% of the nominal values. (c and f) 130% of the nominal values.
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. Performance analysis of the proposed control scheme

In order to determine the performance of the proposed combined
cheme, two subsections are introduced. Section 6.1. compares the
roposed combined scheme directly to the previous state-of-the-art
liding-Mode control and Section 6.2. evaluates the proposed combined
cheme on an 8-DOF drill-string with much higher complexity and
pscaled parameters.

.1. Comparison with sliding-mode control

In this subsection, the SMC is defined and benchmarked against
he proposed combined scheme. The SMC adopted as a candidate for
omparison starts by defining a sliding surface given by [54]:

=
(

𝑥1 −𝛺𝑑
)

+ 𝛤 ∫

𝑡

0

(

𝑥1 −𝛺𝑑
)

𝑑𝜏 + 𝛤 ∫

𝑡

0

(

𝑥1 − 𝑥3
)

𝑑𝜏, (28)

here 𝛤 is a user chosen variable and 𝛺𝑑 is the desired velocity.
he key benefit of SMC is the capability of utilising estimated system
arameters. The estimated parameters are denoted as; 𝑐𝑟, 𝑐𝑠, 𝑘̂𝑠 and
𝑡̂. The ideal controller equation can be derived by differentiating (28)
nd substituting it into Eq. (14) and rearranging for 𝑢. By replacing
ll original variables with their estimated ones, the estimated controlx
nput is shown to be:

𝑒𝑠𝑡 =
(

𝑐𝑟 + 𝑐𝑠
)

𝑥1 − 𝑐𝑠𝑥3 + 𝑘̂𝑠𝑥2 − 𝐽𝑡𝛤
(

𝑥1 −𝛺𝑑
)

− 𝐽𝑡𝛤
(

𝑥1 − 𝑥3
)

. (29)

dditionally, the upper bounds of the estimated model are given as:

𝑐𝑟 − 𝑐𝑟‖ ≤𝑀𝑐𝑟, ‖𝑐𝑠 − 𝑐𝑠‖ ≤𝑀𝑐𝑠, ‖𝑘̂𝑠 − 𝑘𝑠‖ ≤𝑀𝑘𝑠, ‖𝐽𝑡 − 𝐽𝑡‖ ≤𝑀𝑗𝑡.

(30)

rom this, the asymptotically convergent switching law is defined as:

𝑠𝑤 = −
𝑀𝑐𝑟‖𝑥1 − 𝑥3‖𝑠

‖𝑠‖ + 𝛿1 exp
(

−𝛿2 ∫ ‖𝑥1 − 𝑥3‖𝑑𝜏
)

−
𝑀𝑐𝑠‖𝑥1‖𝑠

‖𝑠‖ + 𝛿1 exp
(

−𝛿2 ∫ ‖𝑥1‖𝑑𝜏
) +⋯

−
𝑀𝑘𝑠‖𝑥2‖𝑠

‖𝑠‖ + 𝛿1 exp
(

−𝛿2 ∫ ‖𝑥2‖𝑑𝜏
)

−
𝑀𝑗𝑡𝛤‖𝑥1 −𝛺𝑑‖𝑠

( ) +⋯
9

‖𝑠‖ + 𝛿1 exp −𝛿2 ∫ 𝛤‖𝑥1 −𝛺𝑑‖𝑑𝜏
−
𝑀𝑗𝑡𝛤‖𝑥1 − 𝑥3‖𝑠

‖𝑠‖ + 𝛿1 exp
(

−𝛿2 ∫ 𝛤‖𝑥1 − 𝑥3‖𝑑𝜏
) − 𝜌𝑠, (31)

where 𝛿1 ≪ 1 and 𝛿2 ≪ 1 are small controller parameters and 𝜌 is
nother user chosen control parameter. The final SMC control input is
efined as:

= 𝑢𝑒𝑠𝑡 + 𝑢𝑠𝑤. (32)

A table (Table 4) for the SMC and proposed scheme parameters can be
found in the Appendix. To compare the SMC to the proposed combined
scheme, the cases shown in Fig. 8(c), (e) and (g) are simulated for both
the SMC and combined scheme.

Three cases have been analysed in Fig. 11 as (i) Case 1 (a and
e): System starts from an unstable stick–slip attractor at 𝑢 = 40 Nm
and is driven to a stable constant drilling attractor occurring at a
lower input level 𝑢 = 30 Nm. (ii) Case 2 (b and f): System starts
from an unstable stick–slip attractor at 𝑢 = 40 Nm and is driven to a
stable constant drilling attractor occurring at the same input level. (iii)
Case 3 (c and g): System starts from an unstable stick–slip attractor
at 𝑢 = 40 Nm and is driven to a stable constant drilling attractor
occurring at a higher input value 𝑢 = 50 Nm. Both the SMC and
combined scheme simulations begin with the same initial conditions
for each simulation. The combined scheme and SMC are both switched
on at 𝑡 = 75 s. A cursory overview of the results shows that both
controllers deliver almost equal performance. However, careful probing
shows that for higher values of bit velocity, the transients in the bit
velocity profiles (b and c) as well as the corresponding control input
profiles (f and g) have a higher magnitude and manifest for longer
time in case of the SMC. In this sense, the combined scheme is visibly
superior. The combined scheme get more attractive when its simplicity
of design is contrasted with that of the SMC. This simplicity arises from
the fact that the combined scheme works independently of the system
model and has a very simple structure comprising of four tunable gains
and two first-order integral equations. On the other hand, SMC relies
on complete knowledge of the system dynamics in order to produce
acceptable results. Furthermore, the SMC is robust to system parameter
uncertainties, but these uncertainties have to be directly embedded into
the sliding surface and control input equations for this form of SMC;
consequently increasing its complexity. In the following section, the
combined scheme on an 8-DOF system is considered in order to prove
its flexibility.
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Fig. 11. Black solid lines represent target desired velocities and torques for respective plots. (a – c) Time traces of bit-velocity for the open-loop system as well as the closed-loop
MC controlled and combined scheme control systems when controllers are engaged at 𝑡 = 75 s. (d) Bifurcation diagram of the overall open- and closed-loop system showing the
tick, stick–slip and constant drilling phases. (e - g) Time traces for control inputs corresponding to the bit-velocity profiles presented in (a – c).
.2. Efficacy of the proposed control scheme applied to an 8-DOF drill-string
odel

In this subsection an 8-DOF model, with large-scale parameters
ased on the model seen in [28], is used to verify the proposed scheme
or suppression of stick–slip and tracking of a desired velocity in a more
omplicated system. This system used is an upscaled system compared
o the previous one and utilises the same bit-rock model interaction
s before. Its main inclusion is as a general proof of concept that the
forementioned control scheme works even on upscaled systems with
uch larger system parameters. It should be noted that the main 2-DOF

ystem analysed in this work is not a subset of the following 8-DOF
ne. A table (Table 5) can be found with the upscaled parameters along
ith proposed scheme gains. The state-space that describe the 8-DOF

losed-loop system dynamics are:

̇ = 𝐴𝑍 + 𝑢
𝐽𝑡
𝐵 −

𝑇𝑏
𝐽𝑏
𝑉 +𝛺𝑑𝑇 , (33)

where 𝑍,𝐵, 𝑉 , 𝑇 ∈ R15×1 and 𝐴 ∈ R15×15. The expanded differential
quations, Eqs (33), can be found in the Appendix.

As can be seen in Fig. 12, the combined scheme is capable of
andling the higher complexity similar in the simpler 2-DOF case. This
omes at the price of settling time due to the increase in system param-
ters as well as greatly increasing DOF order. This directly indicates its
obustness to complexity thanks to its design topology not requiring
recise system knowledge in order to function. The following section
oncludes the paper.
10
7. Closing remarks

In this work, a modified integral resonant controller with integral
tracking is investigated on a 2-DOF drill-string. Firstly, the 2-DOF
model with nonlinear bit-rock interaction is verified numerically in the
form of a torque bifurcation diagrams. Time histories, combined with
2D and 3D phase portraits are shown in order to demonstrate the three
main drilling responses available to the aforementioned model, namely:
stick (no drilling), stick–slip (a limit cycle response) and constant
drilling. Further to this, the bifurcation diagrams also reveal the co-
existence of system solutions for a given torque and weight-on-bit,
i.e. the co-existence of constant drilling and stick–slip. The ideal case of
constant drilling is the desired response and is the main control focus
in this work.

The scheme in question is subsequently introduced and it is able to
successfully track to constant drilling when the drill-string is started in
stick–slip. This is shown via a single test case demonstrating its positive
damping effects with the time–history and 2-D/3-D phase-portraits
results. The control input graph is also shown. A detailed investigation
into the MIRC’s ability to stabilise unstable constant drilling solutions is
discussed in detail via the use of fundamental Hopf-Bifurcation theory.
Then it is shown that the MIRC can be combined with integral tracking
in order to track any desired drill-string velocity chosen. Subsequent
to this, numerous cases from different starting points on the torque
bifurcation diagram in to determine if the scheme runs into stick–slip
on the way to any of the solutions. It is found that tracking is possible
from almost any starting torque or initial condition even when tracking
an unstable constant drilling solution. After this, a robustness analysis
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Fig. 12. Black solid lines represent target desired velocities and torques for respective plots. (d) Bifurcation diagram that shows the open-loop characteristics of the system and the
egions of co-existing attractors. (a – c) and (e – g) Show time traces of bit-velocity for the closed-loop system, control input and 3-D phase-plane when the controller is engaged
t 𝑡 = 200 s for different desired velocities of 𝛺𝑑 = 2.129 rad s−1 and 𝛺𝑑 = 2.452 rad s−1 respectively. It is observed that the combined scheme is able to guide the 8-DOF system to
ts natural constant-drilling attractor or a higher target desired velocity.
S

t



s carried out on the combined scheme in order to see if it fails its task
nder the effects of increasing and decreasing system parameters. It is
ound to be successful in dealing with changing conditions.

The Sliding-Mode Controller is subsequently introduced as the pre-
ious state-of-the-art for comparing the scheme to. It is found that
he SMC, when put under the same situations as proposed combined
cheme, performs almost identically with the advantage that the pro-
osed combined scheme is much simpler in its construction. This
implicity for the same performance is the greatest advantage over the
MC and its simplicity also allows for easy implementation of extra
ontrol schemes on the based MIRC scheme discussed. Furthermore,
ue to the complexity of real life drill-strings, an 8-DOF drill-string
ith upscaled parameters is simulated and put into closed-loop with the
roposed combined scheme and successfully tracks two chosen desired
elocities. The success found with a more complex and upscaled system
s testament to the combined scheme’s general design that does not
equire or rely on precise system models unlike the SMC.

Conclusively, the scheme has promising robustness to varying sys-
em parameters, itself to be superior to that of the previous state-of-the-
rt SMC due to delivering the same performance for less complexity
hile also not needing a detailed system model. Further work would

nclude an experimental verification of the controller with extensive
ain testing to confirm the simulations in this work.
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Appendix A. Lagrangian MIRC Lyapunov stability

Consider the following closed-loop Lagrangian  ∶ R3×1 → R which
consists of the total kinetic energy  such that  ∶ R3×1 → R and the
total potential energy  such that  ∶ R3×1 → R connected by the
relation  =  −  . In addition, there is also Rayleigh’s Dissipation
to consider  ∶ R3×1 → R. Consider the set of generalised coordinates
𝑞𝑘 = [𝜙𝑡, 𝜙𝑏, 𝜓] ∈ R3×1 accompanied by a generalised forcing vector
𝑘. Consider the total kinetic energy  :

 = 1
2
𝐽𝑡𝜙̇

2
𝑡 +

1
2
𝐽𝑏𝜙̇

2
𝑏 +

1
2 ∫ 𝜓̇2𝑑𝑡, (34)

he total potential energy  :

=
𝜅𝜂
2
𝜓2 + 1

2
𝑘𝑠

(

𝜙𝑡 − 𝜙𝑏
)2 , (35)

Rayleigh’s Dissipation Function :

 = 1
2
𝑐𝑟𝜙̇

2
𝑡 +

1
2
𝑐𝑠
(

𝜙̇𝑡 − 𝜙̇𝑏
)2 , (36)

and the generalised force vector 𝑘 is then defined as:
[ ( ̇ ̇ )]𝑇 . (37)
𝑘 = 𝑢 + 𝜂𝜓, −𝑇𝑏, −𝜆 𝜙𝑏 − 𝜙𝑡
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The Euler Lagrange Equation for this case of combining the scheme
with the drill-string can be defined as follows:

𝜕
𝜕𝑡

(

𝜕
𝜕𝑞̇𝑘

)

− 𝜕
𝜕𝑞𝑘

+ 𝜕
𝜕𝑞̇𝑘

= 𝑘. (38)

For each 𝑘 ∈ [1, 2, 3] and applying the Euler–Lagrange Equation for each
ase, the Eqs (10), (11) and (12) shown earlier.

ppendix B. MIRC Lyapunov analysis

To infer the scheme’s stability, consider the following Lyapunov
nergy analysis. A Lyapunov candidate which enforces 𝑉 ∶ R4×1 → R is
ubject to the following stability constraints, namely; 𝑉 (𝑋̄) = 0 ∶ 𝑋̄ ∈
R4×1 = 0, 𝑉 (𝑋̄) > 0 ∶ ∀𝑋̄ ∈ R4×1 ≠ 0 and 𝑉̇ (𝑋̄) ≤ 0 ∶ ∀𝑋̄ ∈ R4×1.
A candidate which satisfies the first two constraints immediately is as
follows:

𝑉 (𝑋̄) = 1
2
[

𝐽𝑡𝑥
2
1 + 𝑘𝑠𝑥

2
2 + 𝐽𝑏𝑥

2
3 + 𝑥

2
4
]

. (39)

To determine whether this candidate satisfies the third mentioned
restriction, both equilibria of stick and constant drilling, are examined.
By differentiating Eq. (39):

𝑉̇ (𝑋̄) = 𝐽𝑡𝑥1𝑥̇1 + 𝑘𝑠𝑥2𝑥̇2 + 𝐽𝑏𝑥3𝑥̇3 + 𝑥4𝑥̇4. (40)

Substituting in the individual differential equations taken from the
state-space Eq. (14) into (40):

𝑉̇ (𝑋̄) = −
[

𝑐𝑠 + 𝑐𝑟
]

𝑥21 − 𝑐𝑠𝑥
2
3 + 2𝑐𝑠𝑥3𝑥1 − 𝜅𝜂𝑥24 − 𝜆

[

𝑥3 − 𝑥1
]

𝑥4. (41)

Now consider equilibria (17) and (18) substituted into Eq. (41) which
results in the following:

𝑉̇ (𝑋̄𝑒,𝑠) = 0 and 𝑉̇ (𝑋̄𝑒,𝑐 ) = −𝑐𝑟𝛺2
𝑐 (42)

Given that 𝑐𝑟 > 0 and 𝛺𝑐 > 0 this implies that in the case of both equi-
libria that 𝑉̇ (𝑋̄) ≤ 0, hence proving the third constraint mentioned and
thereby proving stability. Moreover the system is locally asymptotically
stable. It is locally asymptotically stable due to the fact that Eq. (41) is
not radially unbounded. As ‖𝑋̄‖ → ∞, the term 𝑥3−𝑥1 → 0 which comes
from the controller contribution. This implies radial boundedness and
thereby local asymptotically stability in this case [61].

Appendix C. MIRC with integral tracking Lyapunov analysis

To infer the combined scheme’s stability, consider the following
Lyapunov energy analysis. A Lyapunov candidate which enforces 𝑉 ∶
R5×1 → R is subject to the following stability constraints, namely;
𝑉 (𝑋̄) = 0 ∶ 𝑋̄ ∈ R5×1 = 0, 𝑉 (𝑋̄) > 0 ∶ ∀𝑋̄ ∈ R5×1 ≠ 0 and
̇ (𝑋̄) ≤ 0 ∶ ∀𝑋̄ ∈ R5×1. A candidate which satisfies the first two
onstraints immediately is as follows:

(𝑋̄) = 1
2
[

𝐽𝑡𝑥
2
1 + 𝑘𝑠𝑥

2
2 + 𝐽𝑏𝑥

2
3 + 𝑥

2
4 + 𝑥

2
5
]

. (43)

To determine whether this candidate satisfies the third mentioned
restriction, both equilibrium of constant drilling, is examined. By dif-
ferentiating Eq. (43):

𝑉̇ (𝑋̄) = 𝐽𝑡𝑥1𝑥̇1 + 𝑘𝑠𝑥2𝑥̇2 + 𝐽𝑏𝑥3𝑥̇3 + 𝑥4𝑥̇4. (44)

Substituting in the individual differential equations taken from the
state-space Eq. (27) into (43):

𝑉̇ (𝑋̄) = −
[

𝑐𝑠 + 𝑐𝑟
]

𝑥21−𝑐𝑠𝑥
2
3+2𝑐𝑠𝑥3𝑥1−𝜅𝜂𝑥

2
4−𝜆

[

𝑥3 − 𝑥1
]

𝑥4−
[

𝑥1 −𝛺𝑑
]

𝑥5.

(45)

In order to determine whether the integral tracking loop affects the
closed-loop stability, consider a desired constant-drilling velocity of 𝛺𝑑 .
To ensure tracking: 𝑥1 → 𝛺𝑑 and 𝑥3 → 𝛺𝑑 . This modifies the constant
drilling equilibria to:

𝑋̂𝑐,𝑡𝑟𝑘 =
[

𝛺𝑑 ,
𝑢 − 𝑐𝑟𝛺𝑑 , 𝛺𝑑 , 0, 𝛬

]𝑇
, (46)
12

𝑘𝑠
Table 4
Values of SMC parameters.

Symbol Name Value

𝑐𝑟 Estimated top-drive damping coefficient 10.242
𝑐𝑠 Estimated torsional damping coefficient 0.0045
𝑘̂𝑠 Estimated torsional Stiffness coefficient 9
𝐽𝑡 Estimated top-drive inertia 12.573

𝑀𝑐𝑟 Upper bound of top-drive damping coefficient 1.393
𝑀𝑐𝑠 Upper bound of torsional damping coefficient 5 × 10−4

𝑀𝑘𝑠 Upper bound of torsional stiffness coefficient 1
𝑀𝑗𝑡 Upper bound of top-drive inertia 1.138

𝛺𝑑 Desired angular velocity 3.5
𝛤 Integral gain 0.8
𝛿1 Switching law constant one 1 × 10−2

𝛿2 Switching law constant two 1 × 10−5

𝜌 Switching law surface gain 1

𝜆 Output feedback gain −10
𝜂 Integrator gain 10
𝜅 Feed-through gain 1

where 𝛬 ∈ R. Now consider equilibria (46) and substitute it into
Eq. (45):

𝑉̇ (𝑥̄𝑐,𝑡𝑟𝑘) = −𝑐𝑟𝛺2
𝑐 . (47)

Given that 𝑐𝑟 > 0 and 𝛺𝑐 > 0, this follows that 𝑉̇ (𝑥̄𝑐,𝑡𝑟𝑘) < 0. Thus, the
equilibrium for constant drilling is asymptotically stable. Hence, the
inclusion of an integral tracking loop does not affect the closed-loop
stability of the system. Moreover the system is locally asymptotically
stable. It is locally asymptotically stable due to the fact that Eq. (45) is
not radially unbounded. As ‖𝑋̄‖ → ∞, the term 𝑥3−𝑥1 → 0 which comes
from the MIRC controller contribution of the combined scheme. This
implies radial boundedness and thereby local asymptotically stability
in this case [61].

Appendix D. SMC and proposed scheme parameters

See Table 4.

Appendix E

8-DOF system parameters

See Table 5.

Closed-loop 8-DOF equations

𝑥̇1 =
1
𝐽𝑡

[

𝑢 + 𝜂𝑥14 + 𝑘𝑖𝑥15 − (𝑐𝑝 + 𝑐𝑟𝑡)𝑥1 + 𝑐𝑝𝑥3 − 𝑘𝑝𝑥2
]

, (48)

𝑥̇2 = 𝑥1 − 𝑥3, (49)

𝑥̇3 =
1
𝐽𝑛

[

𝑐𝑝𝑥1 − 2𝑐𝑝𝑥3 + 𝑐𝑝𝑥5 + 𝑘𝑝𝑥2 − 𝑘𝑝𝑥4
]

, (50)

𝑥̇4 = 𝑥3 − 𝑥5, (51)

𝑥̇5 =
1
𝐽𝑛

[

𝑐𝑝𝑥3 − 2𝑐𝑝𝑥5 + 𝑐𝑝𝑥7 + 𝑘𝑝𝑥4 − 𝑘𝑝𝑥6
]

, (52)

𝑥̇6 = 𝑥5 − 𝑥7, (53)

𝑥̇7 =
1
𝐽𝑛

[

𝑐𝑝𝑥5 − 2𝑐𝑝𝑥7 + 𝑐𝑝𝑥9 + 𝑘𝑝𝑥6 − 𝑘𝑝𝑥8
]

, (54)

𝑥̇8 = 𝑥7 − 𝑥9 (55)

𝑥̇9 =
1
𝐽𝑛

[

𝑐𝑝𝑥7 − (𝑐𝑝 + 𝑐𝑟)𝑥9 + 𝑐𝑟𝑥11 + 𝑘𝑝𝑥8 − 𝑘𝑟𝑥10
]

, (56)

̇ 10 = 𝑥9 − 𝑥11, (57)

̇ 11 =
1
𝐽𝑟

[

𝑐𝑝𝑥9 − (𝑐𝑟 + 𝑐𝑏)𝑥11 + 𝑐𝑏𝑥13 + 𝑘𝑟𝑥10 − 𝑘𝑏𝑥12
]

, (58)

𝑥̇ = 𝑥 − 𝑥 , (59)
12 11 13
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Table 5
8-DOF model parameters, values and units.

Symbol Name Value(s) and Units

𝜇𝑐𝑏 Coulomb friction coefficient 0.45
𝜇𝑠𝑏 Static friction coefficient 0.8
𝑅𝑏 Bit radius 0.15m
𝑊𝑂𝐵 Weight-on-bit 30 000N
𝛾𝑏 Velocity decrease rate 0.9
𝜈𝑓 Velocity constant 1
𝜁 Small positive constant 10−6

𝑢 Top-torque 𝑢 = [3000, 3800]Nm
𝐽𝑡 Top-drive inertia 910 kg m2

𝐽𝑛 Pipe inertia 2800 kg m2

𝐽𝑟 Collar inertia 750 kg m2

𝐽𝑏 Bit inertia 450 kg m2

𝑐𝑟𝑡 Top-drive damping coefficient 410Nm s rad−1

𝑐𝑛 Pipe damping coefficient 150Nm s rad−1

𝑐𝑟 Collar damping coefficient 190Nm s rad−1

𝑐𝑏 Bit damping coefficient 180Nm s rad−1

𝑐𝑟𝑏 Bit-wall damping coefficient 80Nm s rad−1

𝑘𝑛 Pipe stiffness coefficient 700Nm rad−1

𝑘𝑟 Collar stiffness coefficient 1080Nm rad−1

𝑘𝑏 Bit stiffness coefficient 910Nm rad−1

𝜆 Output feedback gain 50
𝜂 Integrator gain 10
𝜅 Feed-through gain 1.5
𝑘𝑖 Tracking gain 50

̇ 13 =
1
𝐽𝑏

[

𝑐𝑏𝑥11 − (𝑐𝑏 + 𝑐𝑟𝑏)𝑥13 + 𝑘𝑏𝑥12 − 𝑇𝑏
]

, (60)

̇ 14 = −𝜅𝜂𝑥14 − 𝜆
[

𝑥13 − 𝑥1
]

, (61)

̇ 15 = 𝛺𝑑 − 𝑥13. (62)
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