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A B S T R A C T   

Simulating cropland soil carbon changes following a reduction in tillage intensity is necessary to determine the 
utility of this management practice in climate change mitigation. In instances where reduced or no tillage in-
creases soil carbon stocks, this is typically due to reduced decomposition rates of plant residues. Although some 
soil carbon models contain a priori decomposition rate modifiers to account for tillage regime, these are typically 
not calibrated to specific climatic regions, and none are currently available for the Rothamsted Carbon Model 
(RothC). Here, we present a modelling framework to estimate a tillage rate modifier (TRM) for the decomposition 
rate constants in RothC-26.3 which determine decay between soil carbon pools. We demonstrate this for north- 
west Europe, using published data assembled through a recent systematic review with propagation of error from 
input parameters throughout the framework. The small magnitude of soil carbon change following a reduction in 
tillage intensity in this region is reflected in our TRM estimates for no-till of 0.95, with 95% Credible Intervals 
[0.91, 1.00], and reduced tillage of 0.93 [0.90, 0.97], relative to conventional high-intensity tillage with a 
default TRM of 1. These TRMs facilitate realistic simulation of soil carbon dynamics following a reduction of 
tillage intensity using RothC, and our simple, transparent, and repeatable modelling framework is suitable for 
application in other climatic regions using input data generalisable to the context of interest.   

1. Introduction 

Reducing tillage intensity in arable cropping systems can increase 
soil organic carbon (SOC) (Sanden et al., 2018, Haddaway et al., 2017, 
West and Post, 2002). Increased adoption could contribute to land-based 
climate change mitigation efforts (Bossio et al., 2020, Kämpf et al., 2016, 
Smith et al., 1998) although the SOC change identified is often small 
(Jordon et al., under review), with redistribution of SOC within the soil 
profile and a concurrent increase in bulk density resulting in little 
change in soil carbon stocks (Powlson et al., 2014, Xiao et al., 2020, 
Angers and Eriksen-Hamel, 2008, Meurer et al., 2018). Determining the 
potential contribution, or otherwise, of reducing tillage intensity to 
greenhouse gas mitigation at a regional or territorial level requires 
modelling approaches that adequately reflect the mechanisms driving 
soil carbon dynamics. 

The principal mechanisms for increases in SOC are higher plant 

residue inputs (PRI) to soil and reduced rates of decomposition of 
organic carbon within the soil. Reduced tillage intensity favours the 
latter (Senapati et al., 2014, Van Groenigen et al., 2011), protecting SOC 
from degradation through enhanced soil aggregation and reduced soil 
temperatures (Huang et al., 2018), although simultaneous crop residue 
retention as part of a conservation agricultural also increases PRI (Lal, 
2015). Widely-used and validated soil carbon models tend to simulate 
equilibrium soil carbon stocks following a change in management 
through adjusting PRI, with movement of carbon between conceptual 
pools determined by first-order kinetics (Smith et al., 1997). Decom-
position rate constants are routinely adjusted or modified to account for 
the effect of soil moisture and temperature on decay, and can be 
amended to account for tillage regime (Jenkinson, 1990, Parton et al., 
1988, Bolinder et al., 2012, Gerik et al., 2015, Li et al., 1994). 

The Rothamsted Carbon Model (RothC) version 26.3 is a process- 
based five-compartment model with monthly timesteps (Fig. 1), 
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developed under temperate agricultural conditions and demonstrated to 
perform well across climates and biomes (Smith et al., 1997, Fao, 2019, 
Jenkinson, 1990, Jenkinson et al., 1999). Advantages of RothC-26.3 
include its requirement for few, readily-available, parameters and its 
ability to run both in ‘forward’ (estimate change in SOC for known in-
puts) and ‘inverse’ (estimate inputs for known change in SOC) modes 
(Coleman and Jenkinson, 2014). An inverse modelling approach has 
previously been applied directly to the decomposition rate constants in 
RothC-26.3 to capture the effects of different tillage intensities (Ram-
pazzo Todorovic et al., 2014), although this approach risks overfitting 
model parameters to the data. Alternatively, the decomposition rate 
constants could be multiplied by a single tillage rate modifier (TRM) 
based on tillage intensity. Soja et al. (2010) calibrated such TRMs in 
RothC to account for different tillage practices in Austrian vineyards, 
and rate modifier terms have also been developed to better capture SOC 
dynamics in saline soils (Setia et al., 2011), and aluminium-rich and 
paddy soils (Yokozawa et al., 2010). Further, generalisable estimates for 
RothC input parameters have previously been calculated using data 
from multiple study sites (Falloon et al., 1998). 

Here, we present a modelling framework to estimate tillage rate 
modifiers for ‘reduced tillage’ and ‘no tillage’ practices on arable 
farmland, to be used as multipliers for the decomposition rate constants 
in RothC-26.3. We demonstrate this approach for north-west Europe, 
using SOC data from studies of tillage intensity in temperate oceanic 
regions identified by a recent systematic review (Jordon et al., under 
review). The TRM estimates presented here are appropriate for use in 
north-west Europe and have been applied elsewhere to simulate adop-
tion of no and reduced tillage practice across arable land in Great Britain 
(Jordon et al., 2022). Further, our framework is intended to be appli-
cable in other regions using data appropriately generalisable to the 
context of interest. 

2. Methods 

Jordon et al., under review identified 19 studies that measured soil 
organic carbon (and crop yield) under differing arable tillage intensity 
regimes in regions of north-west Europe with a temperate oceanic 
climate (Köppen-Geiger classification Cfb (Peel et al., 2007)). Studies 
identified were conducted in the UK, France, Belgium, Germany, the 
Netherlands, Denmark and Spain. From this, we extracted 23 paired 
observations of soil carbon under conventional tillage (CT) vs no-till 
(NT) treatments (12 studies), and 20 observations under CT vs 
reduced tillage (RT) treatments (14 studies), available in the Zenodo 
online repository (Jordon, 2022). We selected paired observations 
where the only difference between study treatments was tillage regime, 
such that where studies applied tillage treatments factorially with other 
treatments, paired observations were extracted for each level of the 
factor(s) not of interest. Where studies presented observations for CT, RT 
and NT treatments, they were included both in the CT-NT and CT-RT 

analyses. 
RothC-26.3 was implemented in R version 4.0.3 using the Roth-

CModel function in the package SoilR (Sierra et al., 2012, R Core Team, 
2020), which allows plant residue input (PRI), soil carbon pool sizes, 
and decomposition rates to be explicitly specified. We ran our model 
framework for each study site, using site-specific input parameters from 
global databases extracted using site coordinates where required pa-
rameters were not provided in article texts or available on request from 
the corresponding author (Table 1). 

We propagated error through our model framework using standard 
deviations associated with inputs to generate normally distributed 
random samples of parameters for 100 model iterations per observation. 
Where clay and bulk density estimates were given in study articles, their 
respective standard deviations were assumed to be zero, such that error 
is only propagated for WISE30sec values to capture this estimation un-
certainty. To derive standard deviations for the required climatology 
data, we downloaded monthly averages for each year in the period 
1981–2010 and calculated the mean and standard deviation across these 
30 years. Some studies included in the systematic review database 
assembled by Jordon et al., under review do not present error terms for 
SOC estimates. Since discarding incomplete data can bias model esti-
mates (Weir et al., 2018), we used multiple imputation methods to 
generate estimates for missing values, which explicitly represents the 
uncertainty associated with imputation in the model output (Lajeunesse, 
2013). We used the mice package in R to generate ten imputed datasets 
(Van Buuren and Groothuis-Oudshoorn, 2011) and drew ten random 
samples of imputed values from each dataset to generate the 100 sam-
ples required. 

Our modelling framework and assumptions are presented in Table 2 
and the full R code we used is provided online (Jordon, 2022). Inverse 
modelling was conducting via a linear optimisation process using the 
optim function with Brent method in base R (R Core Team, 2020). We 
used CT ‘endline’ SOC (i.e. most recent measurement in study) to inverse 
model PRI. We assumed PRI to be the same within each CT-NT/RT 
paired observation due to the only difference in management between 
study treatments being tillage regime. Although crop residue retention 
alongside reduced tillage intensity in conservation agriculture may in-
crease PRI, our pairing of study treatments ensured similar crop residue 
fate between treatments, i.e. both removed/burnt, or incorporated in 
CT/RT and left on surface in NT. Further, if reduced tillage intensity (RT 
or NT) resulted in higher crop Net Primary Productivity (NPP) compared 
to CT, this would likely increase PRI (Bolinder et al., 2007). However, 
meta-analysis of the yield data from the study treatments used here 
found no difference in crop yield (Jordon et al., under review) (found to 
relate to NPP (Bolinder et al., 2007)) between tillage treatments, in 

Fig. 1. Conceptual soil carbon pools in RothC-26.3, after Coleman and Jen-
kinson (2014). DPM: decomposable plant material, RPM: resistant plant ma-
terial, BIO: microbial biomass, HUM: humified organic matter, IOM: inert 
organic matter. Decay of pools determined by first-order kinetics with decom-
position rate constant, apart from small inert pool resistant to decomposition. 

Table 1 
Input parameters for RothC-26.3 in our model framework. Global spatial data 
are at 1 km resolution, and were extracted for each study site using degree 
decimal coordinates.  

Model parameter Source Citation 

Soil organic carbon (g 
0.100 g-1) 

Studies in systematic 
review database 

(Jordon et al., under 
review) 

Soil clay content (%) WISE30sec* (Batjes, 2016) 
Soil bulk density (g.cm-3)a 

Mean monthly air 
temperature (oC)b 

TerraClimate (Abatzoglou et al., 
2018) 

Mean monthly precipitation 
(mm) 

Potential evapotranspiration 
(mm) 

*where not presented in study 
a Soil bulk density was required to convert soil carbon data from concentra-

tion (g 0.100 g-1) to stocks (t.ha-1) in order to input to RothC 
b TerraClimate only provides monthly minimum and maximum temperatures, 

so we approximated monthly mean temperature by averaging the minimum and 
maximum 
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agreement with the findings for this region from another recent 
meta-analysis (Sun et al., 2020). This allowed us to inverse model TRMs 
for the RothC decomposition rate constants for NT and RT endline SOC 
values by keeping the PRI constant. Our approach assumes a TRM of 1 
for conventional tillage, as the decomposition rate constants in RothC 
were originally calibrated in arable systems with cultivation. 

We used the brms package to fit a Bayesian intercept-only model to 
estimate the average tillage rate modifier across all paired observations 
(Bürkner, 2018). Due to the large amount of data with missing errors 
imputed for use in our model framework we generated three estimates to 
test the sensitivity of the results to different data availability and quality:  

1. Errors present (EP)  
2. Errors imputed where missing (EI)  
3. Critical appraisal (EIHV): as in (2), but only observations that have 

high validity based on level of spatial replication and experimental 
design (see Jordon et al., under review for details) 

3. Results and discussion 

We present a simple, transparent, and repeatable framework for 
estimating TRMs to uniformly adjust the decomposition rate constants in 
RothC-26.3. We demonstrate our approach using data from north-west 
Europe, identifying a TRM for no-tillage in the range 0.95 [0.91, 1.00] 
to 1.02 [0.97, 1.07] and for reduced tillage between 0.93 [0.90, 0.97] 
and 0.99 [0.95, 1.03] (Table 3). Of these, only the reduced tillage TRM 
from the EI analysis has 95% Credible Intervals not overlapping with 1 
so is significantly different from the rate of decomposition under con-
ventional tillage. This is unsurprising given meta-analysis of the data 
used here identified only a very small increase in SOC concentration 
following adoption of reduced or no tillage in temperate oceanic regions 
(Jordon et al., under review), without accounting for any concurrent 
increase in bulk density which can result in little or no change in soil 
carbon stocks on an equivalent soil mass basis (Powlson et al., 2014, 
Meurer et al., 2018). Nevertheless, our TRM estimates give realistic soil 
carbon dynamics (i.e. modest increase with plateauing dynamic (Smith, 
2014)) when used in RothC to simulate equilibrium soil carbon stocks 
following adoption of no- or reduced-tillage (Fig. 2). Further, our 
framework is applicable to data from other regions where reduction of 
tillage has a greater influence on SOC (Sun et al., 2020, West and Post, 
2002), which we would expect to result in larger TRMs. 

Other models generally assume a larger effect of tillage on the rate of 
decomposition of soil carbon pools.1 For example, the Century model 
multiplies decomposition rates by up to 1.6 (Metherell et al., 1993), the 

Environmental Policy Integrated Climate (EPIC) model applies an 
exponential coefficient in the range 5–15 (Gerik et al., 2015), the 
DeNitrification-DeComposition (DNDC) model increases rates by 1.5 
times for disk cultivation and by 3 times for ploughing (Li et al., 1994), 
and an optimised rate modifier of 1.2 has been used in the Integrated 
Carbon Balance Model (ICBM) for rotations with more frequent tillage 
(Bolinder et al., 2012). Other approaches include increasing the pro-
portion of net primary productivity retained as crop residues, from 35% 
for conventional tillage to 55% for conservation tillage as in SOCRATES 
(Grace et al., 2006). Although these higher adjustments have been found 
to perform well, this could be due in part to their development using 
datasets from different climates or cropping systems to our demonstra-
tion region, and underlying differences between models in their core 
decomposition rate constants. Where future research uses data from 
warmer or drier climates to parametrise our framework, this may result 
in a greater magnitude of TRM than we identify here (Sun et al., 2020). 
Although some syntheses have found little influence of temperature or 
rainfall (Luo et al., 2010), or climate zone (Haddaway et al., 2017), on 
SOC changes under different tillage regimes, this could be due to their 
focus on predominantly temperate regions. 

Key advantages of our approach include the use of a systematic re-
view database to parametrise our modelling and ability to propagate 
error from the underlying studies. However, our results are sensitive to 
which, and how many, observations are used to estimate TRMs, with a 
trend towards a greater magnitude of TRM when more observations are 
included (Table 3). This highlights the issue of data completeness when 
attempting to derive model parameters from published studies; six NT 
studies and eight RT studies in our dataset did not present error terms for 
SOC measurements, necessitating multiple imputation methods for in-
clusion. Further, it would be more mechanistically accurate to initialise 
baseline (i.e. pre-intervention) soil carbon pools for the CT and NT/RT 
treatments using baseline SOC measurements, to enable PRI to be esti-
mated for the study duration rather than over a 1000-year spin-up. This 
was not possible as 13 CT-NT observations and 12 CT-RT observations 
did not present baseline data. We were unable to use imputed baseline 
values as this led to a modelling artefact where it appeared that SOC 
greatly increased in the CT treatments, resulting in unrealistically high 
estimates of study PRI which led to incorrect dynamics of increased 
decomposition in NT and RT treatments in order to match study SOC 
measurements. Where sufficient baseline SOC data is available in future 
work, this should be incorporated when implementing our framework. 
Although we feel that assuming PRI is constant within each CT-NT/RT 
paired observation is reasonable here due to the reasons outlined in 
the Methods, in instances where PRI is anticipated to differ due to dif-
ferences in crop residue management or known changes in crop yield, a 
modified approach would be required to implement our framework. 
Identifying the effect of reduced tillage intensity vs crop residue reten-
tion via an inverse modelling approach would require a dataset with 

Table 2 
Modelling framework used to estimate tillage rate modifiers (TRM), parametrised with paired observations of conventional tillage (CT) with no-till (NT) or reduced 
tillage (RT). PRI: plant residue input.  

Stage SOC 
inputa 

Output Model 
run time 

Initial soil carbon pools Plant 
residue 
input 

Decomposition rate 
constants 

Assumptions 

1. Inverse model PRI for 
CT endline 

CT 
endline 

CT endline 
PRI 

1000 
years  

0b Inverse 
modelled 

Model defaults CT SOC is at equilibrium 
at study endline 

2. Spin up NT/RT baseline 
SOC pool sizes 

na NT/RT 
baseline SOC 
pool sizes 

1000 
years  

0b CT endline 
PRI (1) 

Model defaults NT/RT baseline SOC is at 
equilibrium; PRI is same 
as CT treatment 

3. Inverse model 
decomposition rate 
modifier for NT/RT 
treatment 

NT/RT 
endline 

NT/RT rate 
modifier 

Study 
years  

NT/RT baseline SOC pool sizes (2) CT endline 
PRI (1) 

Model defaults 
multiplied by single 
rate modifier 

PRI is same as CT 
treatment  

a Inert organic matter (IOM) pool estimated as IOM = 0.049
(
SOC1.139) following Falloon et al. (1998), where SOC is the soil organic carbon stock (t.ha-1) 

b used in inverse modelling stage 

1 Most models increase tillage rate modifiers to account for higher tillage 
intensity rather than decrease to account for reduced tillage intensity as in our 
approach. 
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factorial treatments of tillage intensity and straw retention to establish 
the PRI increase from straw retention, tillage rate modifier from reduced 
tillage intensity, and any interaction between these. Further, where 
differences in crop yield between tillage regimes are known to exist, a 
method similar to that described by Bolinder et al. (2007) could be 
implemented to estimate a proportional tillage factor for PRI using crop 
yield data, thus accounting for this effect in an additional step between 
stages 2 and 3 in our framework (Table 2). 
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500 years using conventional tillage (CT) plant residue 
input (PRI) from dataset, followed by simulated reduction 
of tillage intensity using tillage rate modifier (TRM) from 
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ha-1, SOC1000 64.4 t.ha-1. DPM: decomposable plant mate-
rial, RPM: resistant plant material, BIO: microbial biomass, 
HUM: humified organic matter, IOM: inert organic matter. 
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