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Abstract  
Currently, there is no cure for traumatic spinal cord injury but one therapeutic approach showing 
promise is gene therapy. In this systematic review and meta-analysis, we aim to assess the efficacy 
of gene therapies in pre-clinical models of spinal cord injury and the risk of bias. In this meta-
analysis, registered at PROSPERO (Registration ID: CRD42020185008), we identified relevant 
controlled in vivo studies published in English by searching the PubMed, Web of Science, and Embase 
databases. No restrictions of the year of publication were applied and the last literature search 
was conducted on August 3, 2020. We then conducted a random-effects meta-analysis using the 
restricted maximum likelihood estimator. A total of 71 studies met our inclusion criteria and were 
included in the systematic review. Our results showed that overall, gene therapies were associated 
with improvements in locomotor score (standardized mean difference [SMD]: 2.07, 95% confidence 
interval [CI]: 1.68–2.47, Tau2 = 2.13, I2 = 83.6%) and axonal regrowth (SMD: 2.78, 95% CI: 1.92–3.65, 
Tau2 = 4.13, I2 = 85.5%). There was significant asymmetry in the funnel plots of both outcome 
measures indicating the presence of publication bias. We used a modified CAMARADES (Collaborative 
Approach to Meta-Analysis and Review of Animal Data in Experimental Studies) checklist to assess 
the risk of bias, finding that the median score was 4 (IQR: 3–5). In particular, reports of allocation 
concealment and sample size calculations were lacking. In conclusion, gene therapies are showing 
promise as therapies for spinal cord injury repair, but there is no consensus on which gene or genes 
should be targeted. 
Key Words: animal models; gene delivery; meta-analysis; regenerative medicine; spinal cord injury; 
systematic review; viral vectors

Introduction 
Traumatic spinal cord injury (SCI) is a devastating life event leaving around 
90% of patients with significant long-term disability including sensorimotor 
impairment, loss of independence, and decreased quality of life (Ahuja et al., 
2017). There are an estimated 27 million people worldwide living with the 
consequences of SCI (GBD 2016 Traumatic Brain Injury and Spinal Cord Injury 
Collaborators, 2019). Central nervous system (CNS) regeneration is often 
referred to as the holy grail of neuroscience. The obstacles to overcome are 
vast including the physical barrier of cystic cavities, the presence of numerous 
inhibitory molecules such as chondroitin sulphate proteoglycans which create 
a non-permissive environment and the limited intrinsic regenerative capacity 
of adult CNS neurons (Fawcett, 2019).

Gene therapy is the application of genetic material to correct disease-
causing mutations, downregulate genes contributing to disease or deliver 
genes encoding molecules with therapeutic potential. The most widely used 
vectors for gene therapy delivery are viral vectors including adenoviruses, 
adeno-associated viruses (AAV), and lentiviruses (LV), the latter of which is a 
genus of retroviruses (Cring and Sheffield, 2022). Non-viral vectors including 
liposomes and nanoparticles might be used in favor of viral vectors due to 
their capacity to carry longer genetic sequences (Uchida et al., 2014). Another 
approach is genome editing, revolutionized by the development of CRISPR-
Cas9 technology in 2012 (Dunbar et al., 2018). Gene therapy approaches 
being investigated in preclinical models of SCI include in vivo delivery of genes 
to the spinal cord to increase the expression of promoters of axonal regrowth 
or silence inhibitors with short hairpin RNA (shRNA) or small interfering 
RNA (siRNA) (Bo et al., 2011; Zavvarian et al., 2020). This has the potential 
to overcome some of the limitations of direct administration of drugs and 
recombinant proteins. For example, it has long since been established that 

Chondroitinase ABC (ChABC) can degrade chondroitin sulphate proteoglycan 
chains and promote functional recovery after SCI in animal models (Bradbury 
et al., 2002) but due to the short half-life of the enzyme, repeated invasive 
dosing would be required. In more recent years, gene therapy approaches 
have therefore been explored to deliver ChABC (Burnside et al., 2018).

Several narrative reviews have discussed the potential of gene therapy for 
spinal cord repair (Bo et al., 2011; Uchida et al., 2014; Zavvarian et al., 2020), 
but to the best of our knowledge, there is no existing systematic review and 
meta-analysis. Our review, therefore, aims to assess the efficacy of gene 
therapies in preclinical models of SCI and the risk of bias.

Methods 
This systematic review followed the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses statement (PRISMA) guidelines (Moher et al., 
2009) and the protocol of this meta-analysis has been published in the 
PROSPERO database under registration No. CRD42020185008.

Search strategy
We conducted searches in PubMed, Web of Science, and Embase (OVID) for 
articles published in English using the following keywords search strategy:
(gene therapies OR gene therapy OR gene delivery OR CRISPR OR CRISPR/
cas9 OR CRISPR cas9 OR CRISPR-cas9 OR viral vector$ OR viral construct$ OR 
lentivir* OR lentiviral construct$ OR lentiviral vector$ OR adeno-associated 
viral vector$ OR adeno-associated viral construct$ OR adenoassociated 
viral vector$ OR adenoassociated viral construct$ OR adeno associated viral 
vector$ OR adeno associated viral construct$ OR adenoviral OR adenoviral 
vector$ OR adenoviral viral construct$ OR AAV$ OR AAV-induced) AND (spinal 
cord injury OR spinal cord injuries OR SCI OR injured spinal cord OR spinal 
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cord injured OR damaged spinal cord OR spinal cord damage OR spinal cord 
contusion OR contused spinal cord OR lacerated spinal cord OR spinal cord 
laceration OR spinal cord compression OR compressed spinal cord OR spinal 
cord trauma OR transected spinal cord OR spinal cord transection OR spinal 
cord hemisection OR axon regeneration OR axon growth OR axon regrowth).

To limit the searches to animal studies, we used previously published filters 
(Hooijmans et al., 2010; de Vries et al., 2014). We also screened relevant 
review articles for additional studies. We applied no limits to the year of 
publication and the last search was performed on August 3, 2020.

Study screening
Study screening was conducted by two independent reviewers (MH, AH) and 
disagreements were resolved through discussion with a third reviewer (CC). 
After removing duplicates, we first screened titles and abstracts to exclude 
clearly irrelevant studies (e.g. reviews, irrelevant disease models). In the 
second phase, we then assessed the full texts of identified studies against the 
complete inclusion and exclusion criteria. Controlled studies which delivered 
a gene therapy (in vivo vector delivery, administration of ex vivo transduced 
cells, CRISPR/cas9) to a preclinical model of traumatic SCI and assessed 
functional recovery using a locomotor score were included. The criteria for 
the comparator group were SCI + one of the following: vector expressing a 
reporter protein only; cells transduced with a vector expressing a reporter 
protein only or a CRISPR non-targeting control. Studies with naïve, sham 
surgery, and SCI only controls were excluded.

Data extraction
Qualitative data for the systematic review were extracted by two independent 
reviewers (MV,KJ) and any disagreements were resolved through discussion 
with a third reviewer (CC). The study design information extracted included 
were: (1) SCI model; (2) species; (3) age; (4) sex; (5) total animal number; 
(6) number of groups; (7) gene therapy; (8) timing of administration; (9) 
route of administration; (10) dose and (11) combination therapy. We 
defined the primary outcome measure as locomotor score (any scale) and 
the secondary outcome measures as axon regrowth and evoked hind paw 
mechanical hypersensitivity. We extracted means and SEM or SD values from 
the main text where possible. When data was only presented graphically, 
we used the online graphical tool WebPlotDigitizer (https://automeris.io/
WebPlotDigitizer/) to extract values from the graphs. In instances when 
outcome measures were assessed at multiple time points, only data from the 
last time point was extracted. When one control group was shared by more 
than one treatment group, we corrected for this by dividing the number of 
animals in the control group by the number of treatment groups served. 
Locomotor data were extracted by two independent reviewers (MV, KJ) and 
then the secondary outcome data were extracted by a second team (CC, YS). 
We cross-checked the estimates and where these varied by < 10%, means 
were taken. Any differences > 10% were resolved through discussion. Where 
exact n numbers were not reported, it was unclear if SD or SEM was used and 
if not possible to extract data using WebPlotDigitizer, we emailed the authors 
for clarification. If after two attempts the data were not made available, we 
excluded those studies from the meta-analysis.

Risk of bias assessment
We assessed the risk of bias using an adapted 7-point CAMARADES 
(Collaborative Approach to Meta-Analysis and Review of Animal Data in 
Experimental Studies) Risk of Bias Checklist (Macleod et al., 2004) including 
the following: 1) peer-reviewed publication; 2) random allocation to group; 
3) allocation concealment; 4) blinded assessment of outcome; 5) sample size 
calculation/power calculation; 6) compliance with animal welfare regulations; 
7) statement of potential conflict of interest.

Statistical analysis
We conducted all statistical analysis and graphing using the metafor package 
(Viechtbauer, 2010) in RStudio V1.3.959 (RStudio, Boston, MA, USA), R 
version 4.0.1. Effect sizes were calculated using Hedge’s g with a positive 
standardized mean difference (SMD) favoring treatment for all outcome 
measures. We then conducted random effects meta-analyses using the 
restricted maximum likelihood estimator. We assessed heterogeneity using 
I2 (percentage of between-study variance due to heterogeneity rather than 
sampling error) and Tau2 (between-study variance) (Vesterinen et al., 2014). 
To visualize publication bias, we used funnel plots and confirmed asymmetry 
with Egger’s regression test. We used trim-and-fill analysis to estimate the 
number of “missing” unpublished studies and calculate an adjusted effect size 
accounting for publication bias (Duval & Tweedie, 2000). Lastly, we conducted 
subgroup analyses to explore the following study characteristics as sources of 
heterogeneity: gene therapy platform; SCI model; timepoint of administration; 
route of administration; randomization and blinding. Independent random 
effects models were fitted to subgroups and then estimates were compared 
using a Wald-type test. We only conducted analysis when there were at least 
four comparisons in a subgroup. Significance was defined as P < 0.05.

Results
Study characteristics
We identified 2487 records from our literature search and following 
screening, 71 studies were included in the systematic review (Figure 1). 
Study characteristics including genes delivered, SCI models and total animal 
numbers are presented in Additional Table 1. As expected, the majority of 
studies were conducted in rats (n = 55) and mice (n = 12) with the remaining 
studies using dogs (n = 3) and rabbits (n = 1) models. The models used were 
as follows: contusion (n = 35); compression (n = 17); complete transection (n 
= 14); hemisection (n = 4) and electrolytic lesion (n = 1). The vast majority of 
studies induced a thoracic SCI (n = 66) with almost half (n = 35) using T10 as 
the injury level. The remaining studies induced injury in the lumbar (n = 3) 
and cervical (n = 1) spinal cord and one final study did not specify the level.

Figure 1 ｜ PRISMA flow diagram. 
Summary of the number of studies identified, screened, and ultimately included in the 
systematic review and meta-analysis. PRISMA: Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses statement.

All but one study used viral vectors as the gene therapy platform, employing 
either in vivo delivery (n = 44) or ex vivo transduction of cells (n = 26). Ito et 
al. (2009) instead administered liposomes containing E. coli plasmid vectors 
expressing interferon β. The most commonly used viral vector was lentiviruses 
(n = 32) followed by AAV (n = 20), retroviruses (n = 7), adenoviruses (n = 
6) and herpes simplex viruses (n = 5). A wide range of cell types were used 
including the following: stem cells, namely mesenchymal stem cells (n = 15) 
and neural stem cells (n = 5); adult somatic cells such as Schwann cells (n = 
2) and microglia (n = 1); and a T-REx-293 cell line (n = 1). A substantial range 
of genes encoding for potentially therapeutic molecules were delivered 
including growth factors glial cell-derived neutrotrophic factor (n = 7), brain-
derived neurotrophic factor (BDNF; n = 4), and neutrophin-3 (NT-3; n = 3). A 
smaller number of studies (n = 11) administered siRNAs or shRNAs to silence 
genes including tumour necrosis factor-α (Zhang et al., 2015) and Nogo (Liu et 
al., 2016). 

The vast majority of studies administered gene therapies locally by 
intralesional (n = 41), intraspinal (n = 20), intrathecal (n = 5), or a combination 
of intralesional and intraspinal injections (n = 1). There was great variability 
in the timing of administration ranging from 1 week before (n = 1) to 3 weeks 
(n = 1) after injury with the most common timepoint being 0 hours (n = 34). 
Of note, there were five studies that did not clearly specify the time point of 
administration. 

A total of seven studies administered gene therapies in combination with 
biomaterials (n = 4) such as fibrin gels (Tsai et al., 2017; Shi et al., 2019), 
stem cells (n = 1) and ChABC (n = 2). Blits et al. (2003) implanted a Schwann 
cell bridge into the lesion at the same time as AAV vectors containing brain-
derived neurotrophic factor and NT-3. Only three studies co-administered 
cyclosporin as an immunosuppressant (Hwang et al., 2009; Lee et al., 2009, 
2011).
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Table 1 ｜ The risk of bias assessed using a 7 item modified CAMARADES checklist

Checklist Item Percentage

1. Peer reviewed 100
2. Random allocation to group 45.1
3. Allocation concealment 1.4
4. Blinded assessment outcome 71.8
5. Sample size calculation 4.2
6. Animal welfare regulations 93.0
7. Conflict of interest 63.4
Median study quality (IQR) 4 (3–5)

CAMARADES: Collaborative Approach to Meta-Analysis and Review of Animal Data in 
Experimental Studies; IQR: interquartile range.

Meta-analysis results
A total of 56 studies (68 comparisons) were assessed in the meta-analysis 
of our primary outcome measure, locomotor score. Two studies could not 
be included as the data were expressed as median ± interquartile range 
(IQR) and 13 studies were excluded after the authors did not respond to our 
requests for clarification of their data. As summarized in Figure 2, our results 
suggested that gene therapies improved locomotor scores compared with 
control (SMD: 2.07, 95% confidence interval [CI]: 1.68–2.47, P < 0.0001, Tau2 
= 2.13, I2 = 83.6%). 

We then proceeded to analyze our secondary outcome measures. We 
included 24 studies (28 comparisons) in the meta-analysis of the axonal 
regrowth data (Figure 3). Overall, gene therapies led to an improvement in 
axonal regrowth compared with control (SMD: 2.78, 95% CI: 1.92–3.65, P < 
0.0001, Tau2 = 4.13, I2 = 85.5%). Only 3 studies included data on evoked hind 
paw mechanical hypersensitivity and as we defined 10 as the minimum in our 
protocol, we were not able to analyze this secondary outcome measure.

Subgroup analysis
Lastly, we conducted a subgroup analysis to explore sources of heterogeneity. 
As shown in Additional Tables 3 and 4, we did not observe any significant 
effects of randomization, blinding, SCI model, or gene therapy platform in 
either the locomotor score or axonal regrowth datasets.

Study quality and risk of bias
As shown in Table 1, the median score was 4 (IQR: 3–5). Although most 
studies reported blinding (71.8%), less than half (45.1%) reported using 
randomization. Only two studies (Li et al., 2017; Chen et al., 2020) specified 
that sample size calculations (Additional Table 2) were conducted and it was 
only possible to determine that one study used allocation concealment (Cen 
et al., 2013).

Furthermore, our results suggested there was a publication bias in both 
outcome measures. There was asymmetry in the funnel plot of the locomotor 
score data (Figure 4A) with most studies reporting positive effect sizes 
favoring gene therapies. This asymmetry was confirmed by Egger’s regression 
(P < 0.0001). Trim-and-fill analysis estimated that there were 2 “missing” 
unpublished studies with negative effect sizes (Figure 4B). When included in 
the meta-analysis, this led to a small reduction in SMD from 2.07 to 1.99. In 
similarity, there was also significant (P < 0.0001, Egger’s regression) funnel 
plot asymmetry in the axonal regrowth dataset (Figure 4C). Trim-and-fill 
analysis again estimated that there were 2 “missing” studies (Figure 4D) and 
when included, reduced the SMD from 2.78 to 2.59.

Discussion
We identified 71 studies which met the inclusion criteria for our systematic 
review and meta-analysis of gene therapies in preclinical models of SCI. 
Overall, our meta-analysis favored treatment with gene therapies leading 
to significant improvements in the locomotor score and enhanced axonal 
regrowth compared to controls. We observed significant asymmetry in 
the funnel plots of both outcome measures suggesting the presence of 
publication bias. However, the trim-and-fill analysis only estimated a modest 
number of “missing” studies with negative or neutral effect sizes in both 
datasets. We next reported that the median risk of bias score was 4 (IQR: 
3–5) as assessed using a modified CAMARADES checklist. Although the vast 
majority of studies used blinding, reporting of allocation concealment and 
power calculations was lacking.

While gene therapies were associated with improvements in both outcome 
measures, there was great heterogeneity in the therapies administered. A 
total of 58 different genes were targeted including the delivery of promoters 
of axonal regrowth brain-derived neurotrophic factor, NT-3, and NGF. As an 
alternative approach, some studies silenced inhibitors of axonal regeneration 

such as Nogo (Liu et al., 2016) and its receptor-negative growth regulatory 
protein 1 (Lv et al., 2012; Zhao et al., 2018) using siRNAs or shRNAs. Given the 
complex pathophysiology of SCI, it seems unlikely that gene therapy alone will 
be able to induce substantial recovery in patients (Griffin and Bradke, 2020). 
However, only 7 out of 71 included studies that administered gene therapies 
as part of the combinatorial approach.

A potential limitation of our meta-analysis was the focus on motor recovery. 
By requiring studies to have assessed locomotor scores to meet our inclusion 
criteria, we may have excluded studies focussing on the potential of gene 
therapies for sensory nerve regeneration and treatment of neuropathic 
pain. This could explain why just three studies assessed evoked hind paw 
mechanical hypersensitivity and it was therefore not feasible to conduct a 
meta-analysis on this outcome. We chose locomotor scores (including Basso, 
Beattie and Bresnahan locomotor rating scale and Basso mouse scale) as our 
primary outcome measure as these are the most widely used behavioral tests 
for assessing functional recovery in preclinical models of SCI (Watzlawick et 
al., 2019). While simple to conduct and inexpensive, we do acknowledge 
that a disadvantage of locomotor scores is subjectivity (Silva et al., 2014). 
Another possible limitation in our meta-analysis was that all the comparisons 
in our subgroup analysis were insignificant. This could be explained by a lack 
of power. In our analysis, we reported high heterogeneity and unbalanced 
subgroups which can increase the number of studies required to reach 
sufficient power in the subgroup analysis (Cuijpers et al., 2021).

An important finding of the studies included in our meta-analysis was that 
only one study used a cervical SCI model. This is in stark contrast to the 
clinical population in which ~60% of traumatic injuries are at the cervical 
level (Ahuja et al., 2017). Around 32% of patients have a thoracic SCI but 93% 
of our included studies used a thoracic model. We, therefore, recommend 
that future studies focus more on assessing the efficacy of gene therapies 
in cervical models to increase the translational potential. However, we 
do acknowledge the challenges this can introduce including respiratory 
dysfunction, higher mortality rates, and increased post-operative care needs 
(Sharif-Alhoseini et al., 2017). Another limitation that may impact clinical 
translation was the lack of studies which explored subacute and chronic 
timepoints of administration for gene therapies. While this will increase 
research costs, these timepoints also need to be explored because the 
pathophysiology is substantially different from acute SCI.

An ongoing issue in preclinical research is inadequate study reporting and 
in particular, measures to reduce bias such as blinding and randomization. 
To address this, the National Centre for the Replacement, Refinement and 
Reduction of Animals (NC3Rs) worked with a group of experts to develop 
the Animal Research: Reporting of in vivo Experiments (ARRIVE) Guidelines 
(Percie du Sert et al., 2020). While many journals endorse these guidelines 
and began requiring authors to submit a completed ARRIVE checklist, a 
randomized controlled trial of manuscripts submitted to PLoS One showed 
that compliance with the guidelines was still lacking (Hair et al., 2019). The 
Nature Publishing Group implemented its checklist to reduce the risk of bias 
in preclinical studies. While this did lead to some improvements compared 
with manuscript submissions in journals without this policy, there were still 
improvements needed including reporting of power calculations (NPQIP 
Collaborative Group, 2019). In similarity with this, we found that very few 
studies included power calculations and reported allocation concealment.

After decades of clinical trials, several gene therapies have been approved 
in recent years including AAV9-based Zolgensma for the treatment of spinal 
muscular atrophy (European Medicines Agency: EMA/173982/2020, 2020). 
The safety of several types of viral vectors, particularly AAV (Nathwani et 
al., 2014; Colella et al., 2018), has been widely reported. While clinical trials 
of cell therapies for SCI have been ongoing for several years, gene therapy 
for SCI is yet to reach clinical trial. A consortium called CHASE-IT, supported 
by International Spinal Research Trust, plans to conduct a clinical trial on 
lentiviruses mediated expression of mammalinized ChABC (International 
Spinal Research Trust, 2021). However, the degradation of the inhibitory 
chondroitin sulphate proteoglycans at the injury site alone may not be 
enough to lead to successful axonal regeneration and functional recovery. 
As previously mentioned, combinatorial approaches likely hold the key to 
successful SCI repair. Gene therapies may need to be combined with cell 
therapies, biomaterials, and other strategies such as rehabilitation and 
epidural stimulation (Bo et al., 2011).

In conclusion, our systematic review and meta-analysis demonstrate that 
gene therapies are showing promise in preclinical models of SCI. Although a 
wide range of genes have been studied, there is no consensus on which gene 
or genes are most effective in promoting axonal regrowth. It is highly likely 
that multiple genes in different cell types such as injured neurons in the CNS 
or primary sensory neurons and glial cells at the injury site may need to be 
targeted to achieve successful axonal regrowth.
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Figure 2 ｜ Forest plot of locomotor score data. 
Summary of the effect sizes of each comparison 
included in the meta-analysis expressed as 
standardized mean difference (SMD) and 95% 
confidence intervals (CIs). A positive SMD favors 
treatment and represents an improvement in 
locomotor score. The overall estimated effect size, 
as represented by the blue diamond, was 2.07 
(95% CI: 1.68–2.47).

Figure 3 ｜ Forest plot of axonal regrowth data. 
Effect sizes are expressed as standardized mean 
difference (SMD) and 95% confidence intervals 
(CIs). A positive SMD represents increased axonal 
regrowth. The overall estimated effect size was 
2.78 (95% CI: 1.92–3.65).
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Figure 4 ｜ Funnel plots for assessing the risk of publication bias.  
(A, B) The asymmetric funnel plot in the locomotor score dataset is suggestive of 
publication bias (A) and the trim-and-fill analysis (B) estimated there were 2 “missing” 
unpublished studies (unfilled circles) on the left-hand side of the plot with negative 
effect sizes favoring control. (C, D) Similarly, there was also pronounced asymmetry 
in the funnel plot of the axonal regrowth outcome (C) with trim-and-fill analysis again 
estimating 2 “missing” studies (D). The dotted lines represent 95% confidence intervals.
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