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Abstract

Coupled Map Lattice (CML) models are particularly suitable to study spa-
tially extended behaviours, such as wave-like patterns, spatio-temporal chaos,
and synchronisation. Complete synchronisation in CMLs emerges when all
maps have their state variables with equal magnitude, forming a spatially-
uniform pattern that evolves in time. Here, we derive critical values for
the parameters – coupling strength, maximum Lyapunov exponent, and
link density – that control the synchronisation-manifold’s linear stability of
diffusively-coupled, identical, chaotic maps in generic regular graphs (i.e.,
graphs with uniform node degrees) and class-specific cyclic graphs (i.e., pe-
riodic lattices with cyclical node permutation symmetries). Our derivations
are based on the Laplacian matrix eigenvalues, where we give closed-form
expressions for the smallest non-zero eigenvalue and largest eigenvalue of
regular graphs and show that these graphs can be classified into two sets ac-
cording to a topological condition (derived from the stability analysis). We
also make derivations for two classes of cyclic graph: k-cycles (i.e., regular
lattices of even degree k, which can be embedded in T k tori) and k-Möbius
ladders, which we introduce here to generalise the Möbius ladder of degree
k = 3. Our results highlight differences in the synchronisation manifold’s
stability of these graphs – even for identical node degrees – in the finite size
and infinite size limit.
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Introduction1

Coupled Map Lattices (CMLs) were introduced as models to study the2

behaviour of spatially extended dynamical systems [1]. For example, they3

have been used as models to explain convection [2], boiling [3], crystal growth4

[4], growth of plant mono-cultures [5], prey-predator dynamics [6], and the5

evolution of genetic sequences [7], to name a few. CMLs are defined on a6

discrete space-time, but with state variables that can take continuous values7

and behaviours ranging from ordered wave-like patterns to spatio-temporal8

chaos (i.e., turbulence) [8–11]. CMLs have been also generalised to include9

non-local interactions [12] – either by using distance-dependent functions10

[13–15] or by replacing the lattice with complex graphs [16–19] – or delayed11

interactions [20–22]. Overall, CMLs (and their generalisations) have allowed12

to deepen our understanding of complex behaviours, such as intermittence13

[23, 24], chimera states [25–27], and synchronisation [28–31].14

Complete synchronisation (CS) is one of these collective behaviours emerg-15

ing in many natural systems and with broad real-world applications, such as16

the design of stable power-grids [32–34]. For CMLs, CS implies having all17

maps evolving such that their state variables have identical values at any18

time; that is, a spatially-uniform pattern. The evolution and stability of19

this pattern can be analysed, for example, by means of Lyapunov expo-20

nents [35, 36], which are related to the Kaplan-Yorke dimension [37, 38] and21

Kolmogorov-Sinai Entropy [39–41] of the system. Research on synchroni-22

sation generally focuses on understanding which dynamical properties and23

topological characteristics favour – or hinder – the emergence of CS.24

A major breakthrough in synchronisation research was achieved by Pecora25

and Carroll [42], whose seminal work defined the Master Stability Function26

(MSF): a functional analysis of the synchronisation manifold’s stability for27

generic graphs of diffusively-coupled, identical, (time-continuous or discrete)28

dynamical systems. The MSF allows to decouple the dynamical properties29

of the dynamical units composing the coupled system with its topological30

properties (similar to the work by Fujisaka and Yamada [43]). In spite of the31

MSF breakthrough, and because of the broad range of dynamics and graphs32

that can be analysed [44–46], there are still plenty of open-questions that can33

aid in the design of stable synchronous systems and continue increasing our34

understanding of this fascinating collective phenomenon.35

Here, we derive closed-form expressions for the minimum coupling strength36

and link density necessary to have a stable synchronisation – as well as an up-37
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per limit to the chaoticity that can be synchronisable – of diffusively-coupled,38

identical maps, in generic regular graphs and class-specific cyclic graphs.39

Cyclic graphs are lattices having cyclical node-permutation symmetry (im-40

plying periodic boundary conditions and identical node neighbourhoods). In41

particular, we make derivations for k-cycles (also known as Wiley-Strogatz-42

Girvan networks [18]) and k-Möbius ladders (non-planar graphs), which we43

introduce in this work to extend the classic Möbius ladder with degree 344

[54, 55] to higher degrees. Our finite-size results show striking differences45

between these 2 cyclic graphs, only becoming similar when converging to46

the complete (all-to-all) graph. Moreover, we show that our expressions can47

change for different degrees and in the thermodynamic limit (i.e., infinite48

system size). Our derivations are based on the MSF [42] and the graph’s49

Laplacian eigenvalues (focusing on the smallest non-zero and largest eigen-50

value), making our approach general.51

Overall, our work complements the general understanding of synchroni-52

sation phenomena in CMLs and provides detailed mathematical derivations53

leading to exact analytical results in regular graphs. In particular, we extend54

the linear-stability conditions derived in [30], to include closed-form expres-55

sions for critical parameters, and provide a novel graphical insight on how56

these conditions look in parameter space. We also provide a new generalisa-57

tion of the Möbius ladder topology, that not only has the advantage of being58

cyclic (non-regular generalisations have been proposed before [56–58]), but59

also explains the numerical results of k-cycles and k-Möbius ladders in [17].60

Methods and Model61

Coupled Map Lattices and the Master Stability Function62

Let N one-dimensional maps, fi : D ⊂ R→ D, i = 1, . . . , N (correspond-63

ing to possibly different parameters), be diffusively coupled [1] as,64

x
(i)
t+1 = fi

(
x
(i)
t

)
− ε

ki

N∑
j=1

Lij fj

(
x
(j)
t

)
, (1)

where 0 ≤ ε ≤ 1 is the coupling strength and Lij is ij-th element of a65

symmetric graph’s Laplacian matrix. L = K − A, where A is the graph’s66

adjacency matrix (Aij = 1 = Aji if there is a link between nodes i and j,67

and Aij = 0 otherwise) and ki =
∑N

j=1Aij is the i-th degree (number of68
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neighbours). Equation (1) describes an N -dimensional mapping, transform-69

ing the state of the maps at instant t, ~xt = {x(1)t , . . . , x
(N)
t }, to the state,70

~xt+1 = {x(1)t+1, . . . , x
(N)
t+1}. This mapping can be written in matrix form as71

~xt+1 =
[
I− εK−1 L

]
~f(~xt) , (2)

where ~f(~xt) = {f1(x(1)t ), . . . , fN(x
(N)
t )} represents the mapping of each of the72

N maps at time t, I is theN×N identity matrix, and K−1 = diag{1/k1, . . . , 1/kN}.73

When the coupled system is composed of identical mappings, fi = f ∀ i,74

st = x
(1)
t = . . . = x

(N)
t is a solution of Eq. (2) because of the zero-row-75

sum property of L (i.e.,
∑

j Lij = 0 ∀ i). This solution defines the complete76

synchronisation (CS) manifold, whose linear stability is determined by the77

Master Stability Function (MSF) [42]. Specifically, the stability is quanti-78

fied by the Lyapunov exponents transverse to the synchronisation manifold,79

which are known as Conditional Lyapunov Exponents (CLE), χ, because80

their validity is restricted to the diagonal of the N -dimensional state-space.81

In terms of the MSF, the system is able to synchronise if the transverse82

CLEs are negative; meaning that perturbations to the manifold decay expo-83

nentially fast and the manifold is linearly stable. This situation is generally84

possible if α2

α1
= β > λM

λF
, where λF is the Fiedler’s eigenvalue of L (i.e., the85

first non-zero eigenvalue), λM is its largest eigenvalue, and α1 and α2 are the86

limits defining the negative range of CLEs [17], which depend on the system’s87

dynamical characteristics and coupling strength.88

In particular, the MSF is obtained by perturbing the synchronous state
and analysing the perturbation’s evolution up to the leading order. In Eq. (2),

such perturbation, x
(i)
t = st + ξ

(i)
t , up to the first order in ξ

(i)
t , holds

~ξt+1 =
[
I− εK−1 L

]
J~f (st)

~ξt,

where J~f (st) represent the Jacobian matrix of ~f evaluated in the synchronous89

state st. In our case, J is a diagonal matrix – even for non-synchronous so-90

lutions. Specifically, J~f (~xt) = diag{∂1f1(x(1)t ), . . . , ∂NfN(x
(N)
t )}, with ∂ifi =91

d fi/d x
(i) being the derivatives of the flow-vector components with respect92

to each independent variable. Thus, when fi = f ∀ i, the synchronisation93

manifold Jacobian matrix is given by J~f (st) = f ′(st) I, which lead to94

~ξt+1 = f ′(st)
[
I− εK−1 L

]
~ξt. (3)
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This is a linear mapping done by a constant matrix, I − εK−1 L, to the95

perturbations at time t, ~ξt, modulated by the map’s derivative at the syn-96

chronisation manifold, f ′(st).97

Synchronisation Stability in Regular and Cyclic Graphs98

We restrict our analysis of Eq. (3) to coupled-maps in regular graphs,99

such that K−1 = 1
k
I, which commutes with any matrix. We note that for100

symmetric graphs, L is Hermitian, meaning that it can be diagonalised and101

that it holds real eigenvalues. Thus, we write L = PΛP−1, where Λ =102

diag{λ0, . . . , λN−1} is the ordered eigenvalue spectra (with λ0 = 0 < λ1 ≤103

· · · ≤ λN−1) and P = {~ψ0, . . . , ~ψN−1} holds their respective orthonormal104

(column) eigenvectors, such that L ~ψn = λn ~ψn ∀n. Consequently, changing105

variables in Eq. (3) to ~ζt = P−1~ξt, the perturbations to the synchronisation106

state become decoupled in the eigenmodes (n = 0, 1, . . . , N −1) according to107

ζ
(n)
t+1 =

(
1− ε λn

k

)
f ′(st) ζ

(n)
t . (4)

Equation (4) gives the system’s CLEs, {χn}N−1n=0 when iterated; that is108

[13, 24, 30], χn = log
∣∣1− ε λn

k

∣∣ + lim
T→∞

∑T
t=1

log|f ′(xt)|
T

= χtop(ελn/k) + χdyn,109

where χ0 = χdyn (because λ0 = 0 always) is the exponent parallel to the110

synchronisation manifold, i.e., the isolated map’s (constant) Lyapunov ex-111

ponent, and the remaining N − 1 exponents determine the stability of the112

manifold (transversal directions), being stable if χn < 0 ∀n > 0. This means113

that a stable manifold necessary has transversal modes fulfilling114

χtop(ελn/k) = log

∣∣∣∣1− ε λnk
∣∣∣∣ < −χdyn, ∀n > 0. (5)

We note that when χdyn ≤ 0, Eq. (5) is always satisfied, meaning that115

periodic dynamics have linearly-stable synchronisations. On the other hand,116

when the map is sufficiently chaotic, χdyn � 0, the negative well of the MSF117

can be narrowed down to the point of disappearing. Hence, the system’s abil-118

ity to synchronise depends on the competition between the map’s chaoticity119

and the network’s topology, which we explore in detail in this work focusing120

on chaotic maps, i.e., χdyn > 0.121

Cyclic graphs are a particular class of regular graphs: they preserve their122

topology when transformed by a group of symmetries which cyclically takes123
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any one node and maps it into another. Namely, a cyclic permutation is such124

that π[{1, 2, . . . , N − 1, N}] = {2, . . . , N − 1, N, 1} (hence, π ◦ π ◦ · · · ◦ π =125

πN = I), and cyclic graphs are graphs that preserve their local and global126

topological properties under groups of permutations, {π, π2, . . . , πN}. This127

implies that cyclic graphs contain all their connectivity information in any128

given row of L (or A) and have analytical expressions for their eigenvalues129

and eigenvectors based on a Fourier basis [47–49]. Hence, we will focus on130

the first row of L, {L1,j}Nj=1 = {k, −A1,2, . . . ,−A1,N}, and the eigenvalues131

can be expressed in terms of {L1,j} as132

λn =
N∑
j=1

L1,j cos

[
2πn

N
(j − 1)

]
= k −

N∑
j=2

A1,j cos

[
2πn

N
(j − 1)

]
. (6)

We note that from Eq. (6) the eigenvalue-magnitudes are symmetric due133

to the cosine function, implying that λn = λN−n+1 ∀n > 0 and λ0 = 0 for any134

cyclic graph. This implies that almost every eigenvalue is (at least) doubly135

degenerate, except for λ0 = 0. Also, we note that the smallest non-zero136

eigenvalue, λF (known as Fiedler eigenvalue [50] or algebraic connectivity),137

or the maximum eigenvalue, λM , of a given cyclic graph, can be different138

than λ1 or λN/2 from Eq. (6), respectively.139

Results140

We analyse diffusively-coupled, identical, chaotic maps in generic – and141

specific – regular graphs to find the necessary conditions to have a linearly142

stable synchronisation manifold. Our main contributions are the derivation143

of critical parameters, including eigenvalue magnitudes, minimum coupling144

strengths, map’s maximum Lyapunov exponent (i.e., maximum synchronis-145

able chaoticity), and link-density. In particular, we derive closed-form ex-146

pressions for these critical parameters in 2 specific classes of cyclic graphs for147

the finite and infinite size limits: k-cycles – ring-like graphs connecting an148

even number of k neighbours – and k-Möbius ladders – which we introduce149

to generalise the Möbius ladder (of degree k = 3) to 3 ≤ k ≤ N − 1.150

Synchronisation-Manifold’s Stability for Generic Regular Graphs151

The stability condition set by Eq. (5) depends on the map’s Lyapunov152

exponent, χdyn, Laplacian matrix’s eigenvalues, {λn}N−1n=1 , graph’s degree, k,153

and coupling strength, ε. Laplacian eigenvalues are such that {λn}N−1n=0 =154
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{λ0 = 0 < λF ≤ · · · ≤ λM}, where λF is the Fiedler eigenvalue [50], i.e.,155

smallest non-zero eigenvalue (also known as algebraic connectivity), and λM156

is the largest eigenvalue. These 2 are the relevant eigenvalues to analyse the157

synchronisation-manifold’s stability [42]. Hence, we rewrite the condition set158

by Eq. (5) in terms of bounds to λF and λM [30] by159

SF (χdyn, ε) <
λF
k
≤ λM

k
< SM(χdyn, ε), (7)

where SF (χdyn, ε) ≡ [1 − exp(χdyn)]/ε and SM(χdyn, ε) ≡ [1 + exp(χdyn)]/ε160

define 2 non-intersecting surfaces, with SM(χdyn, ε) > 1, ∀χdyn > 0 and161

ε ∈ (0, 1]. The inequalities in Eq. (7) determine a lower and an upper bound162

for λF/k and λM/k as a function of ε and χdyn, such that when fulfilled, all163

transversal directions to the synchronisation manifold are attractive and the164

system has a linearly stable synchronisation.165

We note that, from the Gershgorin’s Circle theorem [51], all Laplacian166

eigenvalues are bounded to the interval [0, 2kM ], where kM = max{ki}Ni=1.167

For regular graphs, this implies that λn/k ∈ (0, 2] ∀n > 0, meaning that168

Eq. (7) restricts the interval [λF , λM ] ⊂ (0, 2] between the surfaces – stability169

is lost whenever this eigenvalue interval intersects a surface. In what follows,170

we use Eq. (7) to determine the critical parameter values where stability171

is lost in one or more transversal directions when changing ε, χdyn, or the172

regular graph’s properties, such as its cyclic symmetry, size N , or degree k.173

The 2 bounding surfaces in Eq. (7) – SF (χdyn, ε) and SM(χdyn, ε) – create174

2 scenarios depending on the regular graph’s λF/k and λM/k possibility to175

intersect the surfaces as ε or χdyn change, which we illustrate in Fig. 1. A176

critical curve is defined in the lower bounding surface at the height where177

λF/k intersects SF (χdyn, ε). Similarly, a critical curve for the upper bounding178

surface is defined at the intersection of λM/k with SM(χdyn, ε).179

The case shown on the left panel in Fig. 1 corresponds to regular graphs180

where the critical curves share a common crossing (ε(c), χmaxdyn ) at ε(c) ∈ (0, 1];181

highlighted by filled symbols in the panel. This crossing happens when [1−182

exp(χmaxdyn )]/(λF/k) = ε(c) = [1 + exp(χmaxdyn )]/(λM/k), where a χdyn > χmaxdyn183

or ε > ε(c) destabilises synchronisation. This crossing allows us to derive the184

maximum chaoticity that can be stably synchronised in these cyclic graphs,185

χmaxdyn ≡ − log

[
1− (λF/λM)

1 + (λF/λM)

]
= 2 tanh−1

(
λF
λM

)
. (8)
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Figure 1: Stability criteria for the synchronisation of identical, chaotic maps,
coupled diffusively in generic regular graphs. Linearly stable synchronisation hap-
pens as long as the graph’s normalised minimum non-zero and maximum Laplacian eigen-
values, λF /k and λM/k (vertical interval at the ε = 1 plane), fit between SF (bottom)
and SM (top) surfaces. The minimum coupling strength needed to synchronise the maps,
ε(c), is defined by the intersection of λF /k with SF and depends on the map’s Lyapunov
exponent, χdyn (continuous curve in both panels). As ε increases, λM/k can intersect SM
(dashed curve in left panel), defining a maximum Lyapunov exponent, χmax

dyn (filled sym-
bols), where the synchronisation manifold then looses stability if χdyn or ε are increased.

It is worth noting that this upper limit for the Lyapunov exponent, χmaxdyn , is186

sometimes missed in synchronisation research.187

The case shown on the right panel in Fig. 1 corresponds to regular graphs188

where the crossing is absent (happens outside the ε ∈ [0, 1] range). In this189

case, as ε is increased from 0 to 1 and χdyn is increased according to the lower190

bounding surface critical curve, [1−exp(χdyn)]/ε = λF/k, the upper bounding191

surface is not crossed by λM/k. Consequently, the maximum chaoticity that192

can be stably synchronised is193

χmaxdyn ≡ − log

[
1− λF

k

]
, (9)

which is highlighted by a filled circle in the right panel at the ε = 1 plane.194

We can now define a set of critical regular graphs dividing these 2 classes of195

regular graphs. We do this by matching Eqs. (8) and (9) to find a relationship196

between λF/k and λM/k; that is, (1−λ(c)F /λ
(c)
M )/(1+λ

(c)
F /λ

(c)
M ) = (1−λ(c)F /k),197

λ
(c)
F

k
+
λ
(c)
M

k
= 2. (10)
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This general distinction shows that the left panel in Fig. 1 corresponds to198

regular graphs that hold λF/k + λM/k > 2 [and stability follows Eq. (8)]199

and the right panel in Fig. 1 corresponds to regular graphs that hold λF/k+200

λF/k < 2 [and stability follows Eq. (9)]. The critical set of regular graphs –201

those fulfilling Eq. (10) – can be analysed by either Eq. (8) or (9).202

We note that for any graph, λF/k ∈ (0, N/(N−1)] and λM/k ∈ [N/(N−203

1), 2] [52, 53]. This means that N/(N−1) < λF/k+λM/k ≤ N/(N−1)+2 =204

(3N − 1)/(N − 1) always. For example, a complete graph, CN(k = N − 1)205

(i.e., a cyclic graph with k = N − 1 defining an all-to-all coupling) has206

λF/k = λM/k = N/(N − 1), hence, λF/k + λM/k = 2N/(N − 1) > 2. This207

means that complete graphs belong to the case from our left panel in Fig. 1,208

and according to Eq. (8), χmaxdyn [CN(k = N − 1)] =∞, which means that they209

can stably synchronise any chaotic map.210

In both classes of regular graphs, the minimum coupling strength needed211

to maintain a linearly stable synchronisation as a function of χdyn, is given by212

the critical curve SF (ε(c), χdyn) = [1− exp(χdyn)]/ε(c) = λF/k, which is valid213

up to χmaxdyn – depending on the regular graph, Eq. (8) or Eq. (9). Namely,214

ε(c) = [1− exp(−χdyn)]

(
λF
k

)−1
∀χdyn ∈ (0, χmaxdyn ]. (11)

This curve is shown in both panels of Fig. 1 by a thick continuous line.215

Synchronisation-Manifold’s Stability for Specific Cyclic Graphs216

In what follows, we derive closed-form expressions for the critical points217

of the synchronisation-manifold’s stability [Eqs. (8)-(11)] in 2 specific cyclic218

graphs, including their critical link densities. We focus on k-cycle graphs,219

CN(k), and k-Möbius ladders, MN(k). CN(k) are cyclic graphs with even220

degrees where connections span k neighbours per node in ring-like structure221

(also known as Wiley-Strogatz-Girvan networks [18]). MN(k) are our gen-222

eralisation of the Möbius ladder [54, 55], which has k = 3. We introduce223

MN(k) graphs to increase the degree to 3 ≤ k ≤ N − 1, but keeping their224

overall ladder-like topology. Our derivations for CN(k) and MN(k) include225

finite size critical points and thermodynamic limits.226
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Results for k-cycles.227

These graphs have degrees k = 2q, with q ∈ N > 0, and can be represented228

by a Laplacian matrix, L[CN(k = 2q)], whose first row is given by229

L1j =


k if j = 1,
−1 if j = 2, . . . , k

2
+ 1,

−1 if j = N, . . . , N − (k
2
− 1),

0 otherwise.

(12)

Figure 2: 10-node k-cycle graphs with normalised Laplacian eigenvalues. From
left to right, top panels show a 2-cycle (k = 2), a 4-cycle (k = 4), and a 6-cycle graph
(k = 6), where a node’s neighbourhood is highlighted by thick lines. Bottom panels show
the respective normalised Laplacian eigenvalues, where the minimum non-zero (Fiedler)
and maximum eigenvalues are highlighted by stars and circles, respectively.

230

Because of the cyclic property and the cosine symmetry in Eq. (6), we231

find that the eigenvalues for CN(k) (see Appendix: k-cycles) are given by232

λn[CN(k)] = k − 2

k/2∑
s=1

cos

(
2πn

N
s

)
= k + 1−

sin
(
nπ(k+1)

N

)
sin
(
nπ
N

)
. (13)
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Equation (13) is valid for n = 0, . . . , N −1, since it can be shown by trigono-233

metric identities that sin [πn(k + 1)/N ] / sin (πn/N) = k + 1 when n = 0.234

For example, Fig. 2 shows three examples of k-cycles and their respective235

eigenvalue spectra – from left to right, C10(2), C10(4), and C10(6) – where we236

highlight (by stars) that the first non-zero eigenvalues is doubly degenerated.237

In order to find the critical points for the local stability of the synchroni-238

sation manifold, we need the smallest and largest eigenvalues from Eq. (13),239

λF and λM , respectively. For any degree k = 2q, we find that (see Eqs. (35)240

and (36) in Appendix: k-cycles) these eigenvalues correspond to241

λF [CN(k)] = min
n>0
{λn} = λ1 = k + 1− sin (π(k + 1)/N)

sin (π/N)
, (14)

λM [CN(k)] = max
n>0
{λn} = max{λb3N/2(k+1)c, λd3N/2(k+1)e} =

= k + 1−min

sin
(
b 3N
2(k+1)

cπ(k+1)
N

)
sin
(
b 3N
2(k+1)

c π
N

) ,
sin
(
d 3N
2(k+1)

eπ(k+1)
N

)
sin
(
d 3N
2(k+1)

e π
N

)
 , (15)

where b·c rounds the argument down to the next smaller integer and d·e242

rounds the argument up to the next larger integer.243

We note that for large k-cycles with non-vanishing link densities, ρ,244

Eq. (14) can be approximated to λF/k ' 1−sinc [π(k + 1)/N ], where sinc(x) =245

sin(x)/x and (k + 1)/k → 1. This implies that in the limit of N → ∞ and246

ρ = k/(N −1) finite, λF/k → 1− sinc(π ρ) < 1. On the other hand, Eq. (15)247

approximates to λM/k ' 1 − sin(3π/2)/(k + 1) sin[3π/2(k + 1)] for large248

k-cycles with non-vanishing ρ, and λM/k → 1 + 2/3π > 1 when N →∞.249

More importantly, according to Eqs. (14) and (15), k-cycles with 2 < k <250

kC are such that λM/k + λF/k < 2, kC being the critical k-cycle degree that251

makes λM/kC +λF/kC = 2 (see Eq. (38) in Appendix k-cycles). This implies252

that most k-cycles belong to the class of cyclic graphs with a χmaxdyn [CN(k)]253

given by Eq. (9) – with the exception of the ring graph, CN(2), and the nearly254

complete k-cycles, CN(k ≥ kC). Hence, the maximum chaoticity that can be255

stably synchronised in a k-cycle with 2 < k < kC is256

χmaxdyn [CN(k)] = − log

[
sin[π(k + 1)/N ]

k sin(π/N)
− 1

k

]
, (16)

which is determined from Eq. (9) by substituting λF from Eq. (14).257
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We note that for a fixed size, N , the maximum Lyapunov exponent in
Eq. (16) grows as a function of the degrees as power law with exponent 2,
i.e., χmaxdyn [CN(k)] ∼ k2. In terms of ρ, Eq. (16) holds

χmaxdyn [CN(ρ)] = − log

[
sin(π ρ(N − 1)/N + π/N)

ρ(N − 1) sin(π/N)
− 1

ρ(N − 1)

]
,

that in the thermodynamic limit (N →∞ while ρ finite) results in258

χmaxdyn [C∞(ρ)] = − log [ sinc(π ρ)] . (17)

The k-cycles falling outside this degree range, i.e., with k = 2 or k > kC,259

have a χmaxdyn [CN(k)] determined by Eq. (8), which requires both λF and λM260

expressions. This set of k-cycles becomes vanishingly small on the infinite261

limit size because kC → N − 1.262

We can now derive an explicit expression for the minimum coupling263

strength, ε(c)[CN(k), χdyn], necessary to sustain a locally-stable complete syn-264

chronisation in k-cycles by substituting Eq. (14) into Eq. (11). That is,265

ε(c)[CN(k), χdyn] =
k [1− exp(−χdyn)]

k + 1− sin(π(k + 1)/N) / sin(π/N)
, (18)

which is valid if χdyn < χmaxdyn [CN(k)]. In the thermodynamic limit,266

ε(c)[C∞(ρ), χdyn] =
1− exp(−χdyn)

1− sinc(π ρ)
, if χdyn < χmaxdyn [C∞(ρ)]. (19)

We note that Eq. (19) would hold ε
(c)
∞ > 1 whenever sinc(π ρ) > exp(−χdyn);267

but this is an unstable state that happens when the map’s Lyapunov ex-268

ponent is such that χdyn > χmaxdyn [C∞(ρ)] for a given infinite-sized k-cycle.269

ε(c)[C∞(ρ), χdyn] can be seen on the left panel of Fig. 3 in logarithmic scale270

and in colour code, where χmaxdyn [C∞(ρ)] is signaled by a thick dashed (diag-271

onal) line. Below this line, the synchronisation becomes linearly unstable,272

which corresponds to k-cycles with sparse connections and maps with Lya-273

punov exponent greater than χmaxdyn [C∞(ρ)].274

Using the thermodynamic limit from Eq. (17), we can derive the minimum275

link density needed to sustain a linearly-stable synchronisation in infinite-276
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Figure 3: Critical stability points of the synchronisation manifold for infinitely
large k-cycles of identical maps. Left panel shows in colour code, the minimum
coupling strength, ε(c) [Eq. (19)], needed to sustain a linearly-stable synchronisation as a
function of the link density, ρ, and map’s Lyapunov exponents, χdyn. The line signals the
maximum chaoticity, χmax

dyn [Eq. (17)], that can be stably synchronised in such a k-cycle.
Right panel shows a numerical example for logistic maps, coupled in k-cycles. Filled (red)
circles are the isolated map’s Lyapunov exponent, χdyn(r), as a function of the map’s
parameter, r, and filled (blue) squares show our thermodynamic-limit prediction for the
critical (minimum) link-density, ρc (non-chaotic solutions, i.e., χdyn ≤ 0, are excluded).

sized k-cycles of chaotic maps, which is given by277

ρc =
1

π
sinc−1(exp(−χdyn)), for 0 < χdyn < χmaxdyn [C∞(ρ)]. (20)

This implies that it is necessary that ρ ≥ ρc in order to sustain a locally-278

stable synchronisation for an infinite number of coupled maps with Lyapunov279

exponent χdyn. For example, if we take χdyn = log(2) (as in a fully chaotic280

logistic, tent, or shift map), Eq. (20) results in ρc = sinc−1(2)/π ' 0.60335,281

which is a dense k-cycle. In practical situations, we can use Eq. (20) to find282

ρc as a function, for example, of the logistic map’s control parameter, r, as283

it is shown on the right panel of Fig. 3. In this way, we can compare the284

changes in χdyn(r) with the changes in ρc(r) as we decrease r. As expected,285

we find that the k-cycle can be less densely connected and still maintain a286

linearly-stable synchronisation manifold, i.e., ρc(r < 4) < ρc(r = 4).287

Results for k-Möbius ladders.288

These cyclic graphs are a generalisation of the Möbius ladder. Möbius289

ladders are cyclic graphs with either k = 3 or 4 neighbours [54, 55], making290
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them equivalent to the Möbius strip – a two-dimensional, non-orientable,291

manifold. A Möbius ladder with k = 3 can be constructed, for example,292

by adding N/2 new links (with N > 3 and even) connecting opposite nodes293

of a 2-cycle known as rungs ; as it can be seen on the left panel in Fig. 5.294

However, Möbius ladders have a vanishing link density, ρ, when N →∞. We295

introduce here a way to construct k-Möbius ladders,MN(k), with arbitrary296

k, keeping ρ finite when N →∞.297

We generalise rungs by adding k− 2 edges to each node of a 2-cycle (i.e.,298

a ring, CN(2)), making these edges connect each node to its k − 2 furthest299

nodes in a 2-cycle. Our construction is restricted to have N odd [even] if k300

is even [odd], which is fulfilled whenever N + 5−k = 2q, with q ∈ N > 2 and301

k ≤ N − 1. The first row of L[MN(k)] is then given by302

L1j =


k if j = 1,
−1 if j = 2, N − 1 (2-cycle edges),
−1 if j = (N + 5− k)/2, . . . , (N − 1 + k)/2 (rungs),
0 otherwise.

(21)

1

2

34
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6
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8 9

10

1
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4
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7

8

9

10

Figure 4: 10-node k-Möbius ladder in two different layouts. On the left panel the
graph is arranged in a ring, with the rungs as diametrical links. On the right panel the
same graph is displayed in a two ring arrangement, where the rungs correspond to the
connection between the inner and outer rings.

Figure 4 shows the classical Möbius ladder (with k = 3 and N(k = 3, q =303

6) = 3 − 5 + 2 × 6 = 10) drawn in 2 possible layouts, with the right panel304

showing how it is related to the Möbius strip. The nodes are then arranged in305

two concentric rings, with the rungs connecting the inner with the outer ring.306
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These two rings represent the edges of the Möbius strip and the crossing links307

to the folding of the Möbius strip. It is worth noticing that this analogy only308

holds for a 3-Möbius ladder and it is not preserved by our generalisation,309

which can be seen in Fig. 5.310

Figure 5: 10-node k-Möbius ladders with normalised Laplacian eigenvalues. From
left to right, the top panels show a Möbius ladder (k = 3), and 2 generalisations, the 5-
Möbius ladder (k = 5) and the 7-Möbius ladder (k = 7). Bottom panels show their
respective normalised Laplacian eigenvalues (stars signal the Fiedler eigenvalue and circles
the maximum eigenvalue) as in Fig. 2.

We find a compact expression for the Laplacian eigenvalues for k-Möbius311

ladders by substituting Eq. (21) in Eq. (6) (see Appendix: k-Möbius ladders),312

λn[MN(k)] = k − 2 cos

(
2πn

N

)
−

(N−1+k)/2∑
j=(N−k+5)/2

cos

(
2πn(j − 1)

N

)
=

= k + 1−
[

sin (3π n/N) + (−1)n sin (π n(k − 2)/N)

sin (nπ/N)

]
. (22)

From Eq. (22), it can be shown that λM [MN(k)] = maxn{λn} = λ1 if 7 ≤ k ≤313

N−1, and that λF [MN(k)] = minn{λn > 0} = λ2 if 3 ≤ k ≤ kc ' (2N+8)/5314
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(see Appendix: k-Möbius ladders). Outside these ranges, λF and λM change315

to other modes. Focusing on these ranges, when λM [MN(k)] = λ1 we have316

λM [MN(k)] = λ1 = k + 1−
[

sin (3π/N)− sin (π (k − 2)/N)

sin (π/N)

]
, (23)

which for N →∞ and ρ non-diluted (i.e., avoiding small ρ such that k ≥ 7)317

λ1[MN(k)]

k
' 1− 3

2ρ(N − 1)
+

sin(πρ)

πρ
→ 1 + sinc(πρ). (24)

On the other hand, when 3 ≤ k ≤ kc ' (2N +8)/5 and λF [MN(k)] = λ2,318

λF [MN(k)] = k + 1−
[

sin (6π/N) + sin (2π (k − 2)/N)

sin (2π/N)

]
, (25)

which for N →∞ and ρ < ρc ' 2/5 (i.e., diluted or avoiding large ρ)319

λ2[MN(k)]

k
' 1− 3

ρ(N − 1)
− sin(2πρ)

2πρ
→ 1− sinc(2πρ). (26)

According to Eqs. (23) and (25), k-Möbius ladders are such that λM/k+
λF/k < 2 (as in the k-cycles) when 7 ≤ k < kM, or λM/k + λF/k > 2 when
kM < k ≤ kc ' (2N + 8)/5; kM being the critical Möbius ladder degree
that makes λM/kM + λF/kM = λ1/kM + λ2/kM = 2. Specifically, kM is
determined from (see Eq. (45) in Appendix: k-Möbius ladders)

αN =
sin (2π (kM − 2)/N)

sin(2π/N)
− sin (π (kM − 2)/N)

sin(π/N)
,

where αN = 2−sin (3π/N) / sin(π/N)−sin (6π/N) / sin(2π/N). For example,320

when N = 505, as in Fig. 6, we obtain (numerically) that kM ' 62. The321

maximum and Fiedler eigenvalues for k-Möbius ladders with λM/k+λF/k >322

2 are contained within the shaded area in the right panel of Fig. 6. The323

remaining cases (in both panels) show the eigenvalues when λM/k+λF/k < 2.324

Consequently, the critical points of the synchronisation manifold’s stabil-325

ity in k-Möbius ladders – maximum Lyapunov exponent that can be synchro-326

nised, χmaxdyn [MN(k)], and minimum coupling strength, ε(c)[MN(k)] – depend327

on the degree being smaller or bigger than kM. For 7 ≤ k < kM, the maxi-328

mum chaoticity that can be synchronised in k-Möbius ladders is determined329
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Figure 6: Maximum and minimum normalised eigenvalues for k-cycles (left)
and k-Möbius ladders (right) with 505 nodes. The blue [green] line corresponds to
the maximum [minimum] normalised eigenvalue λM/k [λF /k]. Grey dashed lines show
2 − λM/k. As long as this distance (dashed lines) is larger than λF /k, λM plays no role
in the synchronisation manifold’s stability. However, this distance becomes smaller than
λF /k in the shaded areas on both panels, where the stability is then determined by λM/k.

by substituting λF [MN(k)] from Eq. (25) in Eq. (9). That is,330

χmaxdyn [MN(k)] = − log

(
sin (6π/N) + sin (2π (k − 2)/N)

k sin (2π/N)
− 1

k

)
. (27)

For large N , λ2[M∞(ρ)]/k ' 1− sinc(2πρ) [Eq. (26)]. Hence, the maximum331

Lyapunov exponent that can be synchronised transforms to332

χmaxdyn [M∞(ρ)] ' − log [ sinc(2π ρ)] , (28)

which is valid if 0 < ρ . kM/(N − 1). However, we note that kM → 0,333

meaning that χmaxdyn is only valid for finite-sized k-Möbius ladders. We also334

note that this expression for χmaxdyn is different from the expression for infinite335

k-cycles [Eq. (17)] solely because of the 2 in the argument of the sinc function.336

For kM < k ≤ kc ' (2N + 8)/5, χmaxdyn [MN(k)] is determined by substi-337

tuting λF [MN(k)] and λM [MN(k)] from Eqs. (23) and (25) in Eq. (8),338

χmaxdyn [MN(k)] = − log

[
λ1[MN(k)]− λ2[MN(k)]

λ1[MN(k)] + λ2[MN(k)]

]
. (29)

Similarly to k-cycles, in the thermodynamic limit (N → ∞) we can de-339

fine a critical link density, ρM, for infinite-sized k-Möbius ladders such that340
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λ1[M∞(ρ)]/k + λ2[M∞(ρ)]/k = 2, finding that ρM = 0 or 1 (see Ap-341

pendix: k-Möbius ladders), meaning that Eq. (29) is valid in the range of342

k ∈ (6, N − 1]. Furthermore, λ1[M∞(ρ)]/k = 1 + sinc(πρ) [Eq. (24)] and343

λ2[M∞(ρ)]/k = 1− sinc(2πρ) [Eq. (26)], meaning that344

χmaxdyn [M∞(ρ)] = − log

[
sinc(πρ) + sinc(2πρ)

2 + sinc(πρ)− sinc(2πρ)

]
. (30)

We can now derive a closed-form expression for the critical coupling345

strength necessary to sustain a locally-stable complete-synchronisation in k-346

Möbius ladders with 7 ≤ k ≤ kc ' (2N + 8)/5 by substituting λ2[MN(k)]347

into Eq. (11). This results in348

ε(c)[MN(k), χdyn] =
k [1− exp(−χdyn)]

(k + 1)−
[
sin(6π/N)+sin(2π (k−2)/N)

sin(2π/N)

] , (31)

which is valid for χdyn ∈ (0, χmaxdyn ], where χmaxdyn [MN(k)] is determined from349

Eq. (27) when 7 ≤ k < kM and is determined from Eq. (29) when kM < k ≤350

kc ' (2N + 8)/5. In the thermodynamic limit, Eq. (31) transforms to351

ε(c)[M∞(ρ), χdyn] =
1− exp(−χdyn)

1− sinc(2π ρ)
, if χdyn < χmaxdyn [M∞(ρ)], (32)

which is similar to the expression for the infinite-sized k-cycles from Eq. (19).352

Conclusions353

In this work, we derive closed-form expressions for the parameters control-354

ling the stability of the synchronisation manifold of identical maps, diffusively355

coupled in regular graphs – graphs were all the nodes have the same degree356

– and cyclic graphs – regular graphs with cyclical permutation symmetries.357

Our detailed derivations are based on the Master Stability Function (MSF)358

[42, 43] and the spectral properties of the graph’s Laplacian matrix [47–49]359

(giving expressions for its eigenvalues), complementing the broad literature of360

synchronisation in coupled map lattices [8–11, 16–18] with specific parameter361

expressions that can be applied straightforwardly.362

From the MSF, we study the conditions needed to sustain a stable syn-363

chronisation manifold, which require having negative transversal exponents364

[Eq. (5)]. We show that these stability conditions classify regular graphs into365
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two sets [Fig. 1]: those that fulfill λM/k + λF/k > 2 or those that fulfill366

λM/k + λF/k < 2, where λM is the maximum Laplacian eigenvalue, λF is367

the minimum non-zero eigenvalue (also known as algebraic connectivity or368

Fiedler eigenvalue), and k is the graph’s degree. The critical set of graphs369

separating these two sets fulfill λM/k + λF/k = 2 [Eq. (10)].370

Because of this classification and the MSF conditions, we define critical371

parameter values. These are the maximum Lyapunov exponent of the maps,372

χmaxdyn [Eqs. (8) and (9)] that can be synchronised holding a linearly stable man-373

ifold, and the minimum coupling strength, ε(c) [Eq. (11)] required in generic374

regular graphs of coupled chaotic maps to synchronise. Specifically, when375

λF/k + λM/k < 2 (as in the non-shaded areas of Fig. 6), the synchronisa-376

tion’s stability and these critical parameters depend solely on λF/k. On the377

other hand, when λF/k + λM/k > 2 (as in the shaded areas of Fig. 6) the378

stability and critical parameters depend on both, λF/k and λM/k.379

We then derive closed-form expressions for the eigenvalues of two specific380

classes of cyclic graphs: k-cycles (i.e., regular lattices with even degree and381

cyclic symmetry) [Eq. (13)] and k-Möbius ladders [Eq. (22)], which we intro-382

duce to extend the classic Möbius ladder (which has k = 3). From the eigen-383

value expressions, we find that λF = λ1 and λM = max
{
λb3N/2(k+1)c, λd3N/2(k+1)e

}
384

for any finite-sized k-cycle [Eqs. (14) and (15), respectively]. However, in k-385

Möbius ladders, we find that λF = λ2 if k ∈ [3, kc] (changing to greater modes386

as k is increased beyond kc ' (2N + 8)/5) and λM = λ1 if k ∈ (6, N − 1)387

[Eqs. (25) and (23), respectively]. From these results, we show that when the388

link density is small, both topologies fall into the class of regular graphs where389

λM/k + λF/k < 2, but as their density increases, they belong to the other390

class of regular graphs, where λM/k + λF/k > 2. The limits between the391

sparse and dense regimes, kC and kM (for k-cycles and k-Möbius ladders, re-392

spectively), are numerically derived from transcendental equations [Eqs. (38)393

and (45)]. We also show that for infinite-sized graphs the dependence on the394

network’s degree to determine the stability class disappears.395

Having λF/k and λM/k in k-cycles and k-Möbius ladders, we derive ex-396

plicit expressions for their critical parameter values in the finite-size and397

infinite-size limit. Specifically, we determine χmaxdyn for k-cycles [Eqs. (16) and398

Eq. (17), respectively] and ε(c), as a function of the k-cycle properties (i.e., k399

and N for finite sizes and ρ for infinite sizes) and Lyapunov exponent, χdyn400

[Eqs. (18) and (19), respectively]. Also, we show that these two parameters401

determine a minimum link density for the synchronisation stability in k-cycle402
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[Fig. 3 and Eq. (46)]. Analogously, we carry derivations for k-Möbius ladders403

[Eqs. (27), (28), (29), and (30) for χmaxdyn and Eqs. (31) and (32) for ε(c)].404

We note that other works have derived different properties of the synchro-405

nisation manifold of coupled maps and analysed networks with heterogeneity406

in the node degrees. For example, it has been derived that piece-wise linear,407

chaotic maps, coupled in a ring lattice, increase their entropy for strong cou-408

pling [41] (having an overall well-like shape for the coupling strength range).409

If random connections are added to the lattice (i.e., a Watts-Strogatz model410

[59–62]), then, the chaoticity of the system decreases with increasing number411

of random connections [36], which corresponds to the emergence of synchro-412

nisation. Instead, if long-range interactions are added, then, the necessary413

critical coupling-strength for a stable synchronous manifold is known [13]414

(even for non-linear maps), as well as its transient times [14]. Similar stabil-415

ity analyses have also been carried out by previous works, describing critical416

conditions that allow synchronization in coupled map networks [17, 30].417

Overall, our work is restricted to regular graphs, which means homoge-418

neous degrees. Because of this restriction, we are able to obtain closed-form419

expressions for the relevant parameters of the synchronisation-manifold’s sta-420

bility. In spite of this limitation, our results can help in deriving closed-form421

expressions for other graphs by means of perturbation theory, which would422

allow to include some degree heterogeneity. For example, our k-cycle deriva-423

tions can help when doing perturbation theory on small-world graphs [59–424

62], which have a narrow degree distribution. However, it is unlikely that425

our results could help in a perturbative apporach to highly heterogeneous426

graphs, such as scale-free graphs (Bárabasi-Albert [63]), since these graphs427

have broad degree distributions.428

Appendix429

430

k-cycles – Derivation of a closed-form expression for eigenvalues431

These graphs, CN(k), only allow connections between k of the closest432

neighbours to each node, where k must be an even number. Thus, we write433

the Laplacian eigenvalues, λn[CN(k)] (n = 0, . . . , N − 1), from Eq. (6) as434

λn[CN(k)] =
N∑
j=1

L1,j cos

(
2πn

N
(j − 1)

)
= k − 2

k/2∑
s=1

cos

(
2πn

N
s

)
. (33)
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Here we derive an closed-form expression for the sum on the right-hand-side
(r.h.s.) of Eq. (33) by expressing the cosine using its complex exponential
form. That is

r.h.s. = 2

k/2∑
s=1

cos

(
2πn

N
s

)
=

k/2∑
s=0

exp

[
i
2πn

N
s

]
+

k/2∑
s=0

exp

[
−i2πn

N
s

]
− 2,

where we replace the 2 geometric sums by their corresponding results. Namely,

r.h.s. =
1− exp [i 2π n(1 + k/2)/N ]

1− exp [i 2π n/N ]
+

1− exp [−i 2π n(1 + k/2)/N ]

1− exp [−i 2π n/N ]
− 2 =

=
1− exp [i π n(k + 2)/N ]

1− exp [i 2π n/N ]
+

1− exp [−i π n(k + 2)/N ]

1− exp [−i 2π n/N ]
− 2,

which we can transform using the fact that 1−exp[± i φ] = ±2i sin(φ/2) exp[± i φ/2]
for an arbitrary phase variable φ. As a result,

r.h.s. =
2i sin (π n(k + 2)/2N) exp [i π n(k + 2)/2N ]

2i sin (π n/N) exp [i π n/N ]
+

+
(−2i) sin (π n(k + 2)/2N) exp [−i π n(k + 2)/2N ]

(−2i) sin (π n/N) exp [−i π n/N ]
− 2 =

=
sin (π n(k + 2)/2N)

sin (π n/N)
exp

[
i
π n

2N
k
]
+

sin (π n(k + 2)/2N)

sin (π n/N)
exp

[
−i π n

2N
k
]
−2 ⇒

⇒ r.h.s. = 2 cos
(π n

2N
k
) sin (π n(k + 2)/2N)

sin (π n/N)
− 2.

Now, using that 2 cos(β) sin(α) = sin(α + β) + sin(α− β) on the r.h.s.,

r.h.s. =
sin (π n(2k + 2)/2N) + sin

(
π n
N

)
sin (π n/N)

− 2 =
sin (π n(k + 1)/N)

sin (π n/N)
− 1.

Finally, our explicit expression for Eq. (33) is435

λn[CN(k)] = k − r.h.s. = k + 1− sin (π n(k + 1)/N)

sin (π n/N)
. (34)

436
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k-cycles – Minimum and Maximum Laplacian Eigenvalues437

We note that λ0[CN(k)] = 0 for any CN(k), which can be verified by438

Eq. (33), and that λn[CN(k = N − 1)] = N, ∀n > 0 for a complete graph.439

Also, we observe that n
N
∈ [0, 1), ∀n, but because of the cosine in Eq. (33),440

only the first (non-zero) modes n
N
∈ (0, 1/2] are relevant; the remaining n441

contribute to the eigenvalue degeneracy. As n increases from 1 up to bN/2c,442

the denominator in Eq. (34) decreases monotonously (without sign changes),443

making the fraction increasingly larger. Consequently, the smallest non-zero444

eigenvalue, λF , of any CN(k) is its first eigenmode; that is,445

λF [CN(k)] ≡ min
n∈[1,N/2]

{λn[CN(k)]} = λ1. (35)

On the other hand, in order to maximise Eq. (34) and find the largest eigen-446

value, λM , we can restrict the modes to those that make sin (nπ(k + 1)/N) =447

−1. The first possible solution is when nπ(k+1)/N = 3π/2, which is fulfilled448

when n = b3N/2(k+ 1)e (rounding the argument 3N/2(k+ 1) to the nearest449

integer). Since k ∈ [2, N − 1] for any k-cycle (implying that (k+1) ∈ [3, N ]),450

this is a valid solution for the largest Laplacian eigenvalue, λM . Specifically,451

λM [CN(k)] = max
{
λb3N/2(k+1)c, λd3N/2(k+1)e

}
. (36)

Adding the normalised eigenvalues from Eqs. (35) and (36), we get452

λF
k

+
λM
k

=
λ1
k

+
max

{
λb3N/2(k+1)c, λd3N/2(k+1)e

}
k

, (37)

where λF/k + λM/k < 2 for 2 < k < kC, and λF/k + λM/k > 2 for k >
kC (or k = 2), being kC the critical degree determined by the case when
λF/kC + λM/kC = 2, which explicitly corresponds to

2

kC
− 1

kC

[
sin (π(kC + 1)/N)

sin (π/N)

]

− 1

kC
min

sin
(
b 3N
2(kC+1)

cπ(kC+1)
N

)
sin
(
b 3N
2(kC+1)

c π
N

) ,
sin
(
d 3N
2(kC+1)

eπ(kC+1)
N

)
sin
(
d 3N
2(kC+1)

e π
N

)
 = 0.

In numerical experiments we observe that this equation is fulfilled in a region453

where min{· · ·} = sin (2π(kC + 1)/N) / sin (2π/N), when N > 11. Thus, for454
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N > 11, the critical degree is given by the equation455

2− sin (π(kC + 1)/N)

sin (π/N)
− sin (2π(kC + 1)/N)

sin (2π/N)
= 0, (38)

which in the thermodynamic limit holds

λF [CN(k)]

k
+
λM [CN(k)]

k
→ 2− sinc(π ρC)− sinc(2π ρC) = 0.

Consequently, a solution for λF/kC +λM/kC = 2 in the thermodynamic limit456

is ρC = 1, making λF/k + λM/k < 2, ∀ ρ ∈ (0, 1), for infinite sized k-cycles.457

458

k-Möbius ladders – Derivation of a closed-form expression for eigenvalues459

These graphs are defined by the Laplacian given in Eq. (21), implying460

that the eigenvalues λn[MN(k)] (with n = 0, . . . , N − 1) from Eq. (6) are461

λn[MN(k)] = k − 2 cos

(
2πn

N

)
−

(N−1+k)/2∑
j=(N+5−k)/2

cos

(
2π n

N
(j − 1)

)
. (39)

Here we derive an explicit expression for the sum on the right-hand-side
(r.h.s.) of Eq. (39) by using complex exponentials and shifting the j − 1
index to j. That is,

r.h.s. =

(N−1+k)/2∑
j=(N+5−k)/2

cos

(
2π n

N
(j − 1)

)
=

(N−3+k)/2∑
j=(N+3−k)/2

cos

(
2π n

N
j

)
=

=
1

2

(N−3+k)/2∑
j=(N+3−k)/2

{
exp

[
i
2π n

N
j

]
+ exp

[
−i2π n

N
j

]}
,

where we shift j again, such that j′ = j − (N + 3− k)/2; namely,

r.h.s. =
1

2
exp

[
i
π n

N
(N − k + 3)

] k−3∑
j′=0

exp

[
i
2π n

N
j′
]
+

+
1

2
exp

[
−iπ n

N
(N − k + 3)

] k−3∑
j′=0

exp

[
−i2πn

N
j′
]
.
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We then substitute the resultant geometric sums of j′ into r.h.s.,

r.h.s. =
1

2
exp

[
i
π n

N
(N − k + 3)

](1− exp
[
i2π n
N

(k − 2)
]

1− exp
[
i2π n
N

] )
+

+
1

2
exp

[
−iπ n

N
(N − k + 3)

](1− exp
[
−i2π n

N
(k − 2)

]
1− exp

[
−i2πn

N

] )
,

which we can transform using the fact that 1−exp[± i φ] = ±2i sin(φ/2) exp[± i φ/2]
for an arbitrary phase variable φ. Starting by transforming the denominator
and then the numerator of the geometric sums, we have

r.h.s. =
1

4i
exp

[
i
π n

N
(N − (k − 3))

]
exp

[
−iπ n

N

](1− exp
[
i2πn
N

(k − 2)
]

sin(nπ/N)

)

− 1

4i
exp

[
−iπ n

N
(N − (k − 3))

]
exp

[
i
π n

N

](1− exp
[
−i2π n

N
(k − 2)

]
sin(nπ/N)

)
=

=
2i

4i
exp

[
i
π n

N
(N − (k − 2))

]
exp

[
i
π n

N
(k − 2)

]sin (nπ (k − 2)/N)

sin(nπ/N)
+

+
2i

4i
exp

[
−iπ n

N
(N − (k − 2))

]
exp

[
−iπ n

N
(k − 2)

]sin (nπ (k − 2)/N)

sin(nπ/N)
=

=
1

2
exp

[
i
π n

N
N
]sin (nπ (k − 2)/N)

sin(nπ/N)
+

1

2
exp

[
−iπ n

N
N
]sin (nπ (k − 2)/N)

sin(nπ/N)
⇒

⇒ r.h.s. = cos (nπ)
sin (nπ (k − 2)/N)

sin(nπ/N)
= (−1)n

sin (nπ (k − 2)/N)

sin(nπ/N)
.

Consequently, our explicit expression for Eq. (39) is462

λn[MN(k)] = k − 2 cos

(
2π n

N

)
− (−1)n

sin (nπ (k − 2)/N)

sin(nπ/N)
, (40)

which shows the ring contribution (first two terms) and the rungs (last term).463

In particular, using that 2 cos(β) sin(α) = sin(α + β) + sin(α− β), we get464

λn[MN(k)] = k + 1−
[

sin (3π n/N) + (−1)n sin (nπ (k − 2)/N)

sin(nπ/N)

]
, (41)
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where we note similarities (the term k+ 1, the facts that λn[MN(k)] = 0 for465

n = 0 and λn[MN(N−1)] = N−1 for n > 0, and the symmetry in n around466

N/2) and differences (terms withing brackets) to Eq. (34) for k-cycles.467

468

k-Möbius ladders – Minimum and Maximum Laplacian Eigenvalues469

Here, λ1[MN(k)] is no longer the Fiedler eigenvalue – as in Eq. (35) for k-470

cycles – but the maximum eigenvalue, for almost any k. In order to show this,471

we note that the denominator in the bracketed expression is a monotonically472

increasing function of n ∈ (0, N/2], meaning that the bracketed term becomes473

more significant the smaller the n. A negative numerator always tends to474

maximise the eigenvalue, which happens when n is odd as long as both sines475

in the numerator do not change sign. In particular, the numerator is negative476

for n = 1, sin (3π/N) − sin (π (k − 2)/N) < 0, as long as k ∈ (5, N − 1).477

However, as n is increased, the denominator increases as well, decreasing the478

contribution from the bracketed term. As a result,479

λM [MN(k)] ≡ max
n∈[1,N/2]

{λn[MN(k)]} = λ1 if k ∈ (6, N − 1). (42)

For k ≤ 6, numerical experiments can be performed to find the eigenmode480

that maximises the Laplacian eigenvalue in Eq. (41). For example, when k =481

6, we find that k-Möbius ladders with N even have a maximum eigenvalue482

that is approximately the mode n/N ' 0.412; and when k = 3, the maximum483

eigenvalue is given by n/N = 0.5, which means that λM [MN(3)] = λN/2.484

This shows that the mode of the maximum eigenvalue for k-Möbius ladders485

changes according to the network size and degree when k ≤ 6.486

Now, we argue that the Fiedler eigenvalue λF [MN(k)] corresponds to the487

next lower eigenmodes. In particular, we find that488

λF [MN(k)] ≡ min
n∈[1,N/2]

{λn[MN(k)]} = λ2 if k ∈ [3, kc], (43)

where kc < N/2 is derived from the transcendental identity λ2 = λ3, which
is when the Fiedler becomes the third eigenmode instead of the second. Ex-
plicitly,[

sin (6π/N) + sin (2π (kc − 2)/N)

sin(2π/N)

]
=

[
sin (9π/N)− sin (3π (kc − 2)/N)

sin(3π/N)

]
,
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which approximately holds kc ' (2N + 8)/5. Similarly, we find that489

λF [MN(k)] ≡ min
n∈[1,N/2]

{λn[MN(k)]} = λ3 if k ∈ (kc, k
′
c], (44)

where k′c is derived from the transcendental identity λ3 = λ4, which reads[
sin (9π/N)− sin (3π (kc − 2)/N)

sin(3π/N)

]
=

[
sin (12π/N) + sin (4π (kc − 2)/N)

sin(4π/N)

]
.

Other critical degrees follow, progressively increasing the eigenmode that490

corresponds to the Fidler eigenvalue until converging to the complete graph,491

where k = N − 1 and all eigenvalues are the same and hold λn[MN(k =492

N − 1)] = N, ∀n > 0.493

Considering Eqs. (42) and (43), we have that, for k ∈ (6, kc],

λM
k

+
λF
k

=
λ1[MN(k)]

k
+
λ2[MN(k)]

k
= 2

(k + 1)

k
,

−1

k

[
sin (3π/N)− sin (π (k − 2)/N)

sin(π/N)

]
−1

k

[
sin (6π/N) + sin (2π (k − 2)/N)

sin(2π/N)

]
.

This equation has two solutions: λ2/k + λ1/k < 2 when 7 ≤ k < kM and
λ2/k + λ1/k > 2 when kM < k ≤ kc ' (2N + 8)/5, kM being the critical
degree determined by the case when λF/kM + λM/kM = 2. That is,

(kM + 1)

kM
−1 =

sin (3π/N)− sin (π (kM − 2)/N)

2kM sin(π/N)
+

sin (6π/N) + sin (2π (kM − 2)/N)

2kM sin(2π/N)
,

1 =

[
sin (2π (kM − 2)/N)

2 sin(2π/N)
− sin (π (kM − 2)/N)

2 sin(π/N)

]
+

sin (3π/N)

2 sin(π/N)
+

sin (6π/N)

2 sin(2π/N)
,

494

αN =
sin (2π (kM − 2)/N)

sin(2π/N)
− sin (π (kM − 2)/N)

sin(π/N)
, (45)

where we define a constant, αN ≡ 2−sin (3π/N) / sin(π/N)−sin (6π/N) / sin(2π/N),495

which solely depends on N . Thus, Eq. (45) is a transcendental equation that496

allows to determines the critical degree that differentiates between 2 classes497

of k-Möbius ladders: those such that λF/kM + λM/kM < 2 and those that498

λF/kM + λM/kM > 2.499

We note that when N → ∞, we can use Eqs. (24) and (26) in the ther-500
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modynamic limit of λ1[MN(k)] and λ2[MN(k)]. As a result, we get501

λ1[MN(k)]

k
+
λ2[MN(k)]

k
→ 2 + sinc(π ρ)− sinc(2π ρ). (46)

Consequently, there is a critical link density for infinite-sized k-Möbius lad-502

ders, ρM, when sinc(π ρM) − sinc(2π ρM) = 0, with the solutions ρM =503

0 and ρM = 1. This means that infinite-sized k-Möbius ladders fulfill504

λ2[M∞(ρ)]/k + λ1[M∞(ρ)]/k > 2, valid for ρ ∈ (0, 1), and coincide with505

the k-cycles on the complete graphs for ρ = 1.506
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