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Abstract 

Accurate early diagnosis and monitoring of neurodegenerative conditions is essential for 

effective disease management and delivery of medication and treatment. This research 

develops automatic methods for detecting brain imaging preclinical biomarkers for Parkinson’s 

disease (PD) by considering the novel application of evolutionary algorithms. A fundamental 

novel element of this work is the use of evolutionary algorithms to both map and predict the 

functional connectivity in patients using rs-fMRI data taken from the Parkinson’s Progression 

Markers Initiative database (PPMI, a large-scale comprehensive PD dataset with age-matched 

healthy participants) to identify PD progression biomarkers. Specifically, Cartesian Genetic 

Programming was used to classify Dynamic Causal Modeling data as well as timeseries data. 

The findings were validated using two other commonly used classification methods (Artificial 

Neural Networks and Support Vector Machines) and by employing k-fold cross-validation. 

Across Dynamic Causal Modeling and timeseries analyses, findings revealed maximum 

accuracies of 75.21% for early stage (prodromal - occurring 5-20 years prior to motor 

symptoms) PD patients versus healthy controls, 85.87% for PD patients versus prodromal PD 

patients, and 92.09% for PD patients versus healthy controls. Prodromal PD patients were 

classified from healthy controls with high accuracy – this is notable and represents the key 

finding of this research since current methods of diagnosing prodromal PD have both low 

reliability and low accuracy. Furthermore, Cartesian Genetic Programming provided 

comparable performance accuracy relative to Artificial Neural Networks and Support Vector 

Machines. Evolutionary algorithms enable us to decode the classifier in terms of understanding 

the data inputs that are used, more easily than in Artificial Neural Networks and Support Vector 

Machines. Hence, these findings underscore the relevance of both Dynamic Causal Modeling 

analyses for classification and Cartesian Genetic Programming as a novel classification tool 

for brain imaging data with medical implications for disease diagnosis, particularly in early 

and asymptomatic stages. 

Keywords: 

Evolutionary Algorithms; Cartesian Genetic Programming; Classification; Parkinson’s 

Disease; Prodromal Parkinson’s Disease; Resting-state fMRI; Dynamic Causal Modeling. 
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1. Introduction 

In the UK, one in 500 people have Parkinson’s disease (PD) and this is the 2nd most prevalent 

neurodegenerative disease globally, trailing only Alzheimer’s disease [1]. There is poor 

differential diagnosis of neurodegenerative diseases with high rates of misdiagnosis and low 

test-retest reliability [2], [3]; indeed, PD has rates of misdiagnosis of 15-26% [4], [5], which is 

further exacerbated in the early stages of PD. Therefore, quick and non-invasive methods for 

diagnosis and monitoring with good accessibility are necessary. PD motor symptoms are 

apparent in the early phases of the disease, typically occurring following a loss of 60% of 

dopaminergic neurons [6], [7]. The premotor or prodromal PD phase is the period of time from 

the start of neurodegeneration and detection of clinical motor symptoms, between 5 and 20 

years [8]. In the prodromal phase, individuals typically have non-motor symptoms (e.g., rapid 

eye movement, sleep behaviour disorder and olfactory dysfunction) [9]. Prodromal PD is 

typically misdiagnosed as another Parkinsonian disorder. Hence, a key step in ensuring 

accurate diagnosis involves early identification of prodromal PD patients, with key 

consequences for prompt patient treatment and disease management, which is examined in this 

research. 

The UK spend £600 million yearly on economic costs associated with 100,000 PD patients 

(corresponding to £5993 per patient) [10]. Current expenditure is likely to be exacerbated by 

an ageing UK population with now almost 130,000 PD patients. Costs are increased with 

certain PD symptomology, ageing, and PD severity [11]–[13]. Indirect financial costs 

associated with PD include loss of earnings via early retirement of the PD patient or a family 

member who cares for them. Until a cure for PD is developed, early diagnosis and treatment 

are essential in improving quality of life for PD patients and their family, which will help to 

reduce any financial burdens linked to PD on both the patients’ family and the NHS. 

This research examines a PD biomarker to facilitate prompt diagnosis by developing automatic 

methods of diagnosing early stage PD via examining the classification of resting state fMRI 

using evolutionary algorithms (EAs). 
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1.1. Diagnosis 

Currently, the Movement Disorder Society Task Force for Rating Scales for Parkinson’s 

Disease (MDS-UPDRS2) [14] is widely used to diagnose PD and includes measures of motor 

and cognitive deterioration. Nevertheless, these diagnostic tests have limited objectivity due in 

part to insufficient medical training regarding delivering the MDS-UPDRS [15]. Indeed, rates 

of accurate diagnoses are particularly low in both primary care by GPs [2] and secondary care 

by specialists [3], resulting in patients obtaining inadequate treatment. A challenge involves 

differentiating PD from alternative diseases that present similar symptomologies; a difficulty 

that is compounded in the early phases of PD. PD has rates of misdiagnosis of 25% as it is 

often mistakenly labelled as another neurodegenerative disease, for example, progressive 

supranuclear palsy [3], [16]. Research reveals that 10% of PD cases are misdiagnosed as 

atypical Parkinsonism or a Parkinson’s plus syndrome [17]. Further, post mortem research has 

revealed that up to 15-26% of PD cases were misdiagnosed by general neurologists [4], [5], 

with only 8-15% of misdiagnosis when diagnosed by expert movement disorder clinics [3], 

[18], [19]. Yet, due to limited financial and time-related resources, it is not feasible for 

movement disorder experts to diagnose each case of potential neurodegenerative diseases. This 

research identifies an imaging biomarker for PD using functional brain imaging (fMRI), an 

ideal tool that can increase diagnostic accuracy dramatically given that it is both non-invasive 

and not reliant on diagnostic tests that may involve subjective evaluations. Objective 

evaluations can be challenging, specifically given the complexity of certain symptoms, such as 

bradykinesia. Specialised equipment, for instance, learning algorithms may be better equipped 

to detect early stages of cognitive and motor decline, relative to medics. 

1.2. Learning Algorithms 

A component of assessing motor decline involves a finger-tapping task in which patients tap 

their thumb and forefinger numerous times (as widely and as fast as possible) whilst a medic 

evaluates performance. In this task, inter- and intra-rater reliability is typically low, attributed 

 
2 The Movement Disorder Society Task Force for Rating Scales for Parkinson’s Disease prepared a critique of 

the Unified Parkinson’s Disease Rating Scale. Advantages of this scale are that it is frequently used in western 

countries, and that is can be used across the clinical spectrum of PD since it addresses motor symptoms. In 

addition, this scale has good clinometric properties, including reliability and validity. Disadvantages include 

ambiguities in the instructions, several metric limitations, and zero screening questions on various significant non-

motor elements of PD. 
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to the limited capacity of medics to evaluate performance solely via observation [20]. A new 

approach involves capturing patient movements via computational techniques and using 

evolutionary algorithms (EAs) to assess performance. Research has revealed that EAs applied 

to performance data from a finger tapping task alone differentiated PD patients from age-

matched controls with an accuracy of ~95% [21]. As such, data from traditional motor exams 

combined with new computational techniques are a valid and relatively novel approach in 

diagnosing PD. 

Hence, this research examines a key question: Can early stage PD be diagnosed using EAs on 

rs-fMRI (resting state fMRI) data? Early diagnosis of PD is fundamental in providing patients 

with palliative care during the early phases before motor symptoms are present, enabling 

effective disease management and maintaining patient quality of life. Moreover, once a 

neuroprotective drug to treat PD is developed, the early diagnosis of PD would have even 

greater clinical implications [22]. 

Research has explored the classification of PD patients using learning algorithms, including 

EAs. EAs offer a novel approach to disease classification. EAs are optimising algorithms based 

on Darwinian evolutionary theory. Cartesian Genetic Programming (CGP) is a subtype of EAs 

that as a norm evolves directed acyclic computational structures of nodes. Recurrent CGP 

(RCGP) is an extension of CGP, which enables cyclic or feedback connections. CGP and 

RCGP have never been applied to neuroimaging data, including rs-fMRI, hence, their 

applicability to this data is examined in this research. 

A key benefit of using EAs alongside an expressive dynamical representation is the ability to 

explore a wide area of classifiers. In addition, since these classifiers do not rely on expert 

knowledge, they can identify trends that might not be detected by experts and contribute to 

furthering expert knowledge. For instance, evolved classifiers and their distributions have 

provided the following scientific contributions: the differential effect of dominance on 

diagnostic accuracy, the over-representation of certain trends of acceleration in the movements 

of PD patients, and amplitude and frequency blends with diagnostic power. Regardless of how 

efficient these classifiers are, a limitation of this method is the lack of knowledge underpinning 

how these algorithms function, rendering them often unfathomable to experts. Hence, these 

classifiers are a valuable tool in guiding and/or supporting a medical diagnosis, yet, an 
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automated diagnosis cannot be approved unless the clinician is confident regarding the 

biological underpinnings of the diagnosis. 

This research explores an automatic and non-invasive method of confirming the diagnosis of 

PD, specifically, examining the classification of participants diagnosed with PD, prodromal 

PD participants, and healthy age-matched controls using rs-fMRI data. This research involves 

an analysis of rs-fMRI data taken from the Parkinson’s Progression Markers Initiative database 

(PPMI; http://www.ppmi-info.org/data). Much research has been conducted to identify 

prodromal, motor stage and other biomarkers, with limited success. Possible reasons for this 

limited success involve the participant sample characteristics (PD research typically focuses 

on patients with a confirmed diagnosis and in the late stages of the disease), diagnostic criteria, 

and poor storage and collection of data [23], [24]. PPMI focuses on eliminating many of these 

key limitations by aiming to recruit equal numbers of early stage (pre-medication) PD patients 

and healthy age-matched controls [25]. The PPMI [25] is a landmark, large-scale, 

comprehensive, observational, international, and multi-centre study that recruits de novo 

(early-untreated) PD patients, prodromal PD patients, and age-matched healthy participants 

(among other participant groups) to identify PD progression biomarkers. PPMI contains 20 

centres across the EU and the USA and these follow standardised procedures for repeated bio-

sampling (blood, CSF, urine), clinical assessments, and imaging as well as rigorous standards 

for data storage and analysis.  

1.3. rs-fMRI Clinical Data 

The current research applies EAs, specifically CGP and RCGP, for the classification of rs-

fMRI in PD using Dynamic Causal Modeling (DCM) [26]–[29] and timeseries analyses. DCM 

is a powerful tool that explores effective connectivity (the causal effect of one neuronal system 

on another) using nonlinear designs to identify a reasonable generative model of measured 

neural activity (electromagnetic measurements or hemodynamic fMRI measurements). DCM 

contains information regarding how neuronal activity results in the measured responses, which 

allows estimation of the effective connectivity. The current research examines DCM for rs-

fMRI, in which deterministic inputs are activating/causing changes in the stimulation of 

different brain regions. This occurs via a dynamic input–state–output model of several inputs 

and outputs. The inputs relate to standard stimulus functions linked to the experimental 
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manipulations. In this research, the timeseries values and DCM values from the rs-fMRI data 

are subjected to supervised classification and the findings are validated with two other 

commonly used classification methods (Artificial Neural Networks, ANN, and Support Vector 

Machines, SVM) as well as employing k-fold cross-validation (CV). 

A key aim of this research is to identify the applicability of CGP and RCGP classification for 

both timeseries and DCM analyses regarding the analysis of PD data. CGP and RCGP have 

not previously been used in the classification of brain imaging data. This study examines an 

additional novel question: is DCM analysis useful for classification for PD data? Previous 

research has not explored the applicability of DCM values in classification and, to date, little 

research has applied DCM to PD data [30]–[35]. Hence, by doing both, this research develops 

automatic procedures for identifying PD brain imaging preclinical biomarkers, which can be 

used for aiding/confirming early PD diagnosis. 

1.4. Class-Imbalanced Samples 

Furthermore, a typical difficulty when conducting medical research involves recruiting equal 

sample sizes of patients and healthy controls, often resulting in class-imbalanced data (e.g., 

unequal groups of controls versus patients). The PPMI database is heavily class-imbalanced, 

with many more PD patients relative to prodromal PD and control participants. Learning 

algorithms typically assume approximately equal class distributions. Hence, these algorithms 

may function with low accuracy when faced with significantly imbalanced datasets, labelled 

between-class imbalance. As such, highly accurate classifiers that function with between-class 

imbalanced data to identify a minority class (e.g., PD patients) are necessary. In these cases, 

the overall accuracy or error rate may not be sufficient and other metrics (e.g., receiver 

operating characteristics curves, precision-recall curves, and cost curves) may better represent 

the performance of algorithms with imbalanced data. Small sample sizes with significantly 

imbalanced class distributions are particularly common in clinical research due to challenges 

in recruiting patient samples and constrict learning due to two limitations. Firstly, reduced 

sample sizes result in problems linked to absolute rarity and within-class imbalances. Secondly, 

algorithms frequently do not generalise inductive rules across the sample. Algorithm 

performance is restricted by the limitations implicit in generating conjunctions across many 
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features with reduced samples, which can result in overfitting (which occurs when the rules 

produced are overly precise). 

Indeed, the class-imbalance problem is a relative problem that depends on (1) the degree of 

class-imbalance; (2) the complexity of the concept represented by the data; (3) the overall size 

of the training set; and (4) the classifier involved. More specifically, the higher the degree of 

class-imbalance, the higher the complexity of the concept. The smaller the total size of the 

training set, the greater the effect of class imbalances in classifiers sensitive to the problem 

[36]. 

Research has revealed that the performance of certain classifiers trained on specific imbalanced 

data can be similar to the performance of these same classifiers trained on the same data that 

has been modified to have approximately equal class distributions [36], [37]. Yet, for most 

imbalanced data, solutions for learning predominantly focus on modifying the data sample to 

achieve a sample that has balanced class distributions, which enhances the overall classification 

accuracy relative to the original imbalanced sample [38]–[40]. This research applies ADASYN 

[41] to generate class balanced data for classification. ADASYN systematically and adaptively 

generates varying numbers of synthetic data based on minority and majority class distributions 

to create class balanced data [41], focusing on generating synthetic data close to the inter-class 

boundary. 

Hence, this research explored the applicability of classification methods to class-imbalanced 

data, with key implications for the transferability of medical research based on limited and 

imbalanced sample sizes. 

1.5. Research Overview 

The work presented develops automatic methods for identifying PD brain imaging preclinical 

biomarkers, which can aid clinical diagnosis, monitoring and investigation of PD. Currently 

prodromal PD diagnosis (before motor symptoms are apparent) is in its infancy with typically 

low accuracy rates and high levels of misdiagnosis with other Parkinsonian conditions. Hence, 

prodromal PD diagnosis is highly relevant, ensuring access to early treatment for patients 

before motor symptoms appear and providing overall better disease management, thus, 
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increasing patient quality of life. Specifically, this research examines the following question: 

Can early stage PD be diagnosed using EAs on rs-fMRI data? 

This research uses an exploratory and data-driven approach to develop novel clinical 

monitoring tools and applies these to the diagnosis of participants with PD, early stage PD, and 

healthy age-matched controls. Developing a tool that can differentiate between the various 

stages of disease severity has therapeutic consequences in terms of tailoring medication dosage 

and monitoring medication in accordance with symptoms exhibited and overall PD stage. The 

research presented analyses open data taken from the PPMI, a longitudinal study where 

participants underwent a comprehensive longitudinal follow-up schedule of clinical, imaging 

and bio-specimen assessments. 

This research develops automatic procedures for identifying PD brain imaging preclinical 

biomarkers, which enhances the confidence of methods involved in early PD diagnosis. A core 

research aim is to identify the applicability of CGP and RCGP classification for both timeseries 

and DCM analyses. The timeseries values and DCM values from the rs-fMRI data are subjected 

to supervised classification and the findings are validated with two other commonly used 

classification methods (ANN and SVM). EAs, such as CGP and RCGP, have not previously 

been applied to brain imaging data. A crucial advantage of EAs, specifically CGP, is that they 

offer a white box solution providing more information on the inputs used and better 

understanding of the final solution obtained in classification, relative to ANN and SVM. 

Moreover, research on the classification of rs-fMRI data has typically used statistical-based 

classifiers (e.g., independent components analysis and multivariate pattern analysis [42]–[46]; 

for an example of independent components analysis in rs-fMRI for PD data, see [47]). This 

research examines an additional novel question: is DCM analysis useful for classification? 

Previous research has not examined the applicability of DCM values in classification and little 

research has applied DCM to PD data [30]–[35]. 

A common limitation with medical data involves recruiting low numbers of patients, which 

can result in class-imbalanced data (e.g., high numbers of controls versus patients). This 

research examines the applicability of classification methods to two datasets with heavily class-

imbalanced data, which mimics the conditions prolific in medical research, enabling the 

research findings to be more easily generalised to clinical settings. 
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2. Method 

2.1. Participants 

PPMI is a longitudinal study where participants underwent a comprehensive longitudinal 

follow-up schedule of clinical, imaging and biospecimen assessments. There were eight 

healthy controls (all male, mean age = 68, SD = 3.16), 18 prodromal PD patients (13 male, 

mean age = 68, SD = 4.03), and 102 early PD patients (71 male, mean age = 63, SD = 7.83). 

The overall age range was 50-75 years. 3 Tesla rs-fMRI, dopamine transporter (DAT) imaging, 

and MRI scans were acquired for all participants. 

PD participants were recruited at disease threshold (diagnosis within two years and untreated 

for PD) and were required to have an asymmetric resting tremor or asymmetric bradykinesia 

or two of bradykinesia (resting tremor and rigidity). DAT deficit was acquired for PD 

participants. Healthy participants had no significant neurologic dysfunction, no first degree 

family member with PD, and they obtained a MoCA > 26. The study was approved by the 

institutional review board of all participating sites. Written informed consent was obtained 

from all participants. 

2.2. rs-fMRI Acquisition  

A standardised MRI protocol included acquisition of whole-brain structural and functional 

scans on 3 Tesla Siemens Trio Tim MR system (for more information see http://www.ppmi-

info.org/). 3D T1 structural images were acquired in a sagittal orientation using a MPRAGE 

GRAPPA protocol with Repetition Time (TR) 2300 ms, Echo Time (TE) 2.98 ms, Field of 

View (FoV) 256 mm, Flip Angle (FA) 9° and 1 𝑚𝑚3 isotropic voxel. For each participant, 212 

BOLD echo-planar rs-fMRI images (40 slices each, ascending direction) were acquired during 

an 8 min, 29 s scanning session (acquisition parameters: TR = 2400 ms, TE = 25 ms, FoV = 

222 mm, FA = 80° and 3.3 𝑚𝑚3 isotropic voxels). Participants were instructed to rest quietly, 

keeping their eyes open, and were asked not to fall asleep. 
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2.3. Imaging Data Analysis  

2.3.1. Preprocessing 

The imaging data analyses were done using the CONN (version 17.c) [48] and SPM12 (version 

6906 - Wellcome Department of Imaging Neuroscience, London, UK) [49] software packages 

in MATLAB. Preprocessing included DICOM to 3D NIFTI conversion and reduction of the 

spatial distortion using Field Map toolbox in SPM12 [49]. Anatomical data was segmented; 

both anatomical and functional data were normalised. All the functional images were motion 

corrected and coregistered to participants’ own high-resolution anatomical image. The 

participants’ anatomical images were normalised to the standard T1 template in the Montreal 

Neurological Institute (MNI) space as provided by SPM12. Then the normalisation parameters 

of each participant were applied to the functional images to normalise all the functional images 

into the MNI space. The EPI data were unwarped (using field-map images) to compensate for 

the magnetic field inhomogeneities, realigned to correct for motion, and slice-time corrected 

to the middle slice. The normalisation parameters from the T1 stream were then applied to 

warp functional images into MNI space. All the functional images were spatially smoothed 

using a Gaussian kernel with 8 mm [50] FWHM to account for inter-participant variability 

while maintaining a relatively high spatial resolution. Linear and quadratic detrending of the 

fMRI signal was applied, which involved covarying out white matter (WM) and Cerebrospinal 

fluid (CSF) signal. WM and CSF signals were predicted for each volume from the mean value 

of WM and CSF masks derived by thresholding SPM’s tissue probability maps at 0.5. The 

resting data were bandpass filtered (0.008–0.1 Hz). The main analysis used spectral DCM as 

per SPM12. 

2.3.2. Processing 

2.3.2.1. Timeseries 

Functional connectivity in the Default Mode Network (DMN) is well studied. Hence, this 

research took as regions of interest (nodes) the most commonly reported four major parts of 

DMN, as shown in Figure 1: medial prefrontal cortex (mPFC, centred at 3, 54, −2), posterior 

cingulate cortex (PCC, centred at 0, −52, 26), left inferior parietal cortex (LIPC, centred at − 

50, − 63, 32), and right inferior parietal cortex (RIPC, centred at 48, − 69, 35). For each 
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participant, the volumes of interest were defined as spheres centred at those coordinates 

mentioned above with an 8 mm [50] radius and with a mask threshold of 0.5. The first 

eigenvectors were extracted after removing the effect of head motion and low frequency drift. 

This vector is stored for each region as timeseries. 

 

Figure 1 - The four DMN regions of interest used in this research 

2.3.2.2. Dynamic Causal Modeling (DCM) 

The spectral DCM analyses [51] were conducted using the DCM12 implemented in SPM12. 

The regions of interest of DCM analyses were defined according to the peak of the DMN 

independent component maps, as presented in Figure 1. The main purpose of the current DCM 

analysis was to investigate the endogenous/intrinsic effective connectivity and to examine the 

causal interactions across these regions. The modelled low frequency fluctuations were set as 

driving inputs to all four nodes, and different models were defined by considering a full 

connection for all nodes. Expected posterior model probabilities and exceedance probabilities 

were computed. The intrinsic connectivity parameters (16 values that were stored in 

DCM.Ep.A matrix, all parameters of intrinsic/effective connectivity [28]) from each 

participant were subjected to classification using CGP. 
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2.4. Cartesian Genetic Programming (CGP) 

2.4.1. Classification 

There was one output for the classifier (class 1 for one group, class 0 for the other one, e.g., 

class 1 for PD patients versus class 0 for healthy controls). To have equal class representation, 

data from each class was divided randomly into subsets of 70% (training), 15% (validation), 

and 15% (test). The geometry of the programs in the population (chromosomes) has fifty nodes 

with a function set of four mathematical operations (+, -, ×, ÷), multiple inputs (according to 

the datasets), and one output (either class 1 or class 0 for each binary combination of participant 

groups). At each generation, the fittest chromosome is selected and the next generation is 

formed with its mutated versions (mutation rate = 0.1). Evolution stops when 15000 iterations 

are reached. To obtain statistical significance, the classification was done in 10 runs for each 

combination of inputs and the accuracy was averaged over the runs. The results (the winning 

chromosome, the networks, and the accuracy values) were stored for each run individually. 

2.4.1.1. Classification of Timeseries and DCM 

rs-fMRI is a widespread tool for exploring the functionality of the brain, using volume 

timeseries data. These scans contain abundant data; hence, obtaining relevant and useful data 

from raw scans (i.e., high dimensional datasets) can be difficult. Machine learning algorithms 

provide various tools that create datasets with less dimensions and more useful data, although 

challenges persist regarding how to select relevant data and how to maintain the interpretability 

of this data. This can result in losing important properties of the raw data, although dealing 

with such a large number of features can be computationally expensive and very time 

consuming. 

In the current experiment, the RCGP algorithm is used to classify the features that appeared 

across time in participant scans. The number of timeseries values is 210, i.e., for each of the 

four regions in the DMN, there is a vector of 210 values. Analysing/classifying the timeseries 

values was conducted in three different ways in terms of inputs to the classifier: 
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1. The timeseries values for each region separately were used as inputs to the classifier, to 

classify with 210 features per region (relating to DMN regions: LIPC, RIPC, PCC, and 

mPFC) and per participant. 

2. The timeseries values together in four columns (one per region) were used as inputs to the 

classifier to classify the data with four columns (corresponding to the four DMN regions) 

of 210 features per participant. 

3. The timeseries values inserted together in one column were used as inputs to the classifier 

to classify the data with 840 features in one vector for each participant. The order of 

inputting the timeseries values for each DMN region to form the final vector was consistent 

between participants. 

Classification was completed in 10 runs for each combination of inputs and the accuracy was 

averaged over the runs. The same inputs were used to classify the data using ANN and SVM 

in MATLAB for comparison/validation. RCGP was used with 10% probability for the 

recurrent connections. A complete pipeline of the preprocessing and processing of the data is 

presented in Figure 2. 

For this research, a new open source cross platform CGP library (version 2.4) [52] was used 

since it is able to evolve symbolic expressions, Boolean logic circuits, and ANN, and it can be 

extended to different areas. The CGP library enables the control of evolutionary parameters 

and the application of custom evolutionary stages. 
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Figure 2 - Data analysis pipeline used in this research 

2.4.1.2. Classification of DCM 

The classification was run in the CGP Library with 16 inputs (all the DCM values sorted by 

region and presented as only one vector per participant). To facilitate comparison, the 

classification with data from the same participants was run using ANN and SVM, both run in 

MATLAB. 

2.5. Adaptive Synthetic Sampling (ADASYN) 

As previously mentioned, the control group contained eight participants, the prodromal PD 

group contained 18 patients, and the PD group contained 102 patients. Therefore, the data was 

highly imbalanced. Adaptive synthetic sampling was used to make the data balanced for 

training the classifier. After the process, the minor group for each combination (in the training 

set) had a higher number of participants, which made the data balanced for CV. The participant 

numbers in the validation and test sets were kept the same. 

2.6. k-Fold Cross-Validation 

10-fold CV was used to evaluate the classification accuracy using an unbiased estimate of the 

generalisation accuracy [53] excepting that for both PD participants and prodromal PD 

participants relative to control participants, CV was completed using 9 folds (due to the small 

number of samples in the control group). CV is beneficial as it allows the generation of 

independent test sets with enhanced reliability. With 10-fold CV, typically one (of 10) subset 
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is the test set and remaining nine subsets are training sets. These sets are then rotated so that 

each set is used to test the data once. One repetition of the 10-fold CV does not produce 

sufficient classification accuracies for comparison, therefore, 10-fold CV is repeated 10 

independent times and the mean accuracy over all 10 trials is calculated. 

Since the main classification methodology in this research involved dividing the data into three 

different subsets (training, validation, and test), the data was divided into 10 subsets and, each 

time, one of the 10 subsets were used as the test set, another one for validation, and the 

remaining eight as a training set. The data was divided using stratified random sampling 

enabling the sample proportion in each data subset to be the same as that in the original data 

(i.e., equal class distribution in the subsets as per the original data). Hence, the data was split 

for each class initially and then the classes were mixed to form the completed set. This was 

done for each combination of inputs to both CGP (for DCM values) and RCGP (for timeseries 

values). In this study, the data for each combination of inputs was divided into three parts of 

80% (training), 10% (validation), and 10% (test). 

3. Results 

This study examined classification of 102 PD participants, 18 prodromal PD participants, and 

eight healthy age-matched controls. The analysis (classification) focused on organising 

features to be used as inputs to the classifier in CGP and also in RCGP and was implemented 

using the CGP Library. To validate these findings, the analysis/classification was additionally 

completed using ANN and SVM in MATLAB. 

3.1. Classification of Timeseries 

Initially, the timeseries values for each region were used as inputs to the classifier individually. 

Therefore, the data was classified with 210 features from each region per participant. The same 

procedure was repeated separately for each DMN region (PCC, mPFC, RIPC, and LIPC). Then, 

the timeseries values were used as inputs to the classifier to classify the data with four columns 

(relating to the four DMN regions) of 210 features per participant. Finally, the timeseries values 

together in one column, were used as inputs to the classifier to classify the data with 840 

features in one vector for each participant. The results after 10 runs for each combination were 
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averaged and are presented for each category in Table 1, Table 2, and Table 3. The 

classification was also completed using ANN and SVM. For SVM, only the training and test 

sets were considered for classification. 

Table 1 - Classification results for the timeseries values (PD vs. controls) 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 92.06 (2.67) 91.60 (2.91) 91.95 (2.66) 

ANN 92.73 (0.07) 92.72 (0.32) 92.74 (0.31) 

SVM 92.73 (0.00) NA 92.73 (0.00) 

mPFC RCGP 92.03 (2.68) 91.73 (3.02) 92.01 (2.88) 

ANN 92.69 (0.06) 92.85 (0.41) 92.76 (0.40) 

SVM 92.73 (0.00) NA 92.73 (0.00) 

RIPC RCGP 91.13 (3.97) 92.41 (3.64) 91.46 (5.15) 

ANN 92.68 (0.11) 92.85 (0.50) 92.90 (0.39) 

SVM 92.73 (0.00) NA 92.73 (0.00) 

LIPC RCGP 91.66 (2.55) 91.75 (2.76) 91.68 (3.46) 

ANN 92.69 (0.10) 92.89 (0.39) 92.61 (0.38) 

SVM 92.73 (0.00) NA 92.73 (0.00) 

Classification results for all the DMN regions (4 inputs) 

 

RCGP 91.89 (2.77) 92.03 (3.34) 91.79 (3.45) 

ANN 92.66 (0.13) 92.96 (0.45) 92.74 (0.46) 

SVM 92.78 (0.01) NA 92.73 (0.00) 

Classification results for all the DMN regions (1 input) 

 

RCGP 89.95 (8.53) 91.84 (2.77) 92.09 (2.68) 

ANN 92.75 (0.08) 92.74 (0.25) 92.59 (0.07) 

SVM 92.73 (0.00) NA 92.73 (0.00) 
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Table 2 - Classification results for the timeseries values (PD vs. prodromal PD) 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 85.64 (2.03) 85.94 (2.23) 85.87 (2.24) 

ANN 85.02 (0.18) 84.80 (0.82) 85.02 (0.48) 

SVM 85.00 (0.00) NA 85.00 (0.00) 

mPFC RCGP 85.10 (1.67) 85.97 (2.19) 85.49 (2.35) 

ANN 85.00 (0.13) 84.66 (0.33) 85.25 (0.69) 

SVM 85.00 (0.00) NA 85.00 (0.00) 

RIPC RCGP 84.93 (1.22) 87.54 (1.12) 80.64 (11.25) 

ANN 84.97 (0.07) 85.10 (0.28) 84.93 (0.21) 

SVM 85.00 (0.00) NA 85.00 (0.00) 

LIPC RCGP 75.00 (22.97) 85.85 (2.36) 85.56 (3.15) 

ANN 84.99 (0.15) 84.91 (0.62) 85.05 (0.47) 

SVM 85.00 (0.00) NA 85.00 (0.00) 

Classification results for all the DMN regions (4 inputs) 

 

RCGP 84.69 (2.87) 87.54 (4.01) 85.02 (3.51) 

ANN 85.06 (0.15) 84.74 (0.64) 84.95 (0.46) 

SVM 85.06 (0.02) NA 85.00 (0.01) 

Classification results for all the DMN regions (1 input) 

 

RCGP 85.47 (1.86) 86.27 (2.78) 85.71 (2.43) 

ANN 84.99 (0.03) 85.12 (0.34) 84.90 (0.26) 

SVM 85.00 (0.00) NA 85.00 (0.00) 
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Table 3 - Classification results for the timeseries values (prodromal PD vs. controls) 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 69.46 (14.76) 78.74 (7.12) 62.41 (18.16) 

ANN 69.05 (0.42) 69.16 (2.09) 68.53 (1.44) 

SVM 69.23 (0.01) NA 69.22 (0.02) 

mPFC RCGP 66.82 (15.66) 76.32 (8.82) 66.49 (17.38) 

ANN 69.72 (0.79) 69.53 (1.78) 69.32 (1.75) 

SVM 69.87 (0.13) NA 69.73 (0.26) 

RIPC RCGP 55.93 (25.99) 83.26 (10.26) 55.15 (21.75) 

ANN 69.42 (0.32) 69.53 (1.62) 70.11 (2.02) 

SVM 69.70 (0.14) NA 69.23 (0.25) 

LIPC RCGP 67.02 (14.68) 78.66 (16.73) 70.62 (13.40) 

ANN 69.18 (0.50) 69.17 (1.70) 68.92 (1.56) 

SVM 69.23 (0.00) NA 69.23 (0.00) 

Classification results for all the DMN regions (4 inputs) 

 

RCGP 62.45 (12.09) 72.86 (10.24) 62.46 (22.83) 

ANN 69.35 (0.74) 68.96 (1.83) 69.75 (1.16) 

SVM 74.32 (0.27) NA 70.76 (0.52) 

Classification results for all the DMN regions (1 input) 

 

RCGP 64.15 (15.10) 70.04 (12.18) 54.64 (30.34) 

ANN 69.27 (0.15) 68.77 (0.74) 69.35 (0.66) 

SVM 69.25 (0.01) NA 69.21 (0.06) 

As depicted in Table 1, findings revealed that PD patients were successfully classified from 

healthy controls with a maximum of 92.09% accuracy using RCGP (minimum accuracy: 

91.46%). The results from the other two classification techniques (ANN and SVM) validated 

this finding as they were very similar: between 92.59% and 92.90% for ANN and SVM in all 

the different combinations of inputs. 
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Table 2 illustrates that PD patients were successfully classified from prodromal PD patients 

with a maximum accuracy of 85.87% using RCGP (minimum accuracy: 80.64%). The results 

from the other two classification techniques (ANN and SVM) validated this finding as they 

were very similar: between 84.90% and 85.25% for ANN and SVM in all the different 

combinations of inputs. 

The results revealed, as represented in Table 3, that prodromal PD patients were successfully 

classified from healthy controls with a maximum accuracy of 70.62% using RCGP (minimum 

accuracy: 54.64%). The results from the other two classification techniques (ANN and SVM) 

validated this finding as they were very similar: between 68.53% and 70.76% for ANN and 

SVM in all the different combinations of inputs. 

Unlike for the DCM analyses, mixed ANOVAs were not conducted to evaluate the 

correspondence between participant group and timeseries features given that there were 840 

features per participant, which would not be interpretable. 

3.2. Classification of Dynamic Causal Modeling (DCM) 

Classification using CGP implemented in CGP Library was executed with 16 inputs (all the 

DCM values sorted by region and presented as only one vector per participant) and 1 output 

(class 1 for one group, class 0 for another one). The results were then averaged over 10 runs 

and are presented for each category in Table 4. The classification was also done using ANN 

and SVM. For SVM, only the training and test sets were considered for classification. 

Table 4 - Classification results for DCM values 

 Training % (SD) Validation % (SD) Test % (SD) 

PD vs. controls 

CGP 91.00 (5.56) 93.23 (3.83) 90.87 (4.41) 

ANN 93.42 (1.97) 93.52 (7.57) 91.18 (8.86) 

SVM 92.86 (0.68) NA 92.86 (0.68) 

PD vs. prodromal PD 

CGP 80.01 (7.79) 90.82 (3.85) 79.12 (12.36) 

ANN 86.06 (2.47) 83.32 (8.29) 83.32 (7.39) 

SVM 85.36 (0.58) NA 85.36 (0.58) 

Prodromal PD vs. controls 

CGP 74.11 (27.42) 90.11 (12.31) 75.21 (23.01) 
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ANN 78.34 (16.44) 70.00 (22.97) 65.00 (26.87) 

SVM 68.42 (0.00) NA 68.42 (0.00) 

As illustrated in Table 4, findings revealed that PD patients were successfully classified from 

healthy controls with 90.87% accuracy using CGP. The results from the other two classification 

techniques (ANN and SVM) validated this finding as they were very similar: 91.18% for ANN 

and 92.86% for SVM. The results also revealed that PD patients were classified from 

prodromal PD patients with 79.12% accuracy using CGP. The results from ANN and SVM 

again validate these findings with 83.32% and 85.36% accuracy rates, respectively. Finally, 

the results indicated that prodromal PD patients were classified from healthy controls with 

75.21% accuracy using CGP. The results from ANN and SVM also validate these findings with 

65.00% and 68.42% accuracy rates, respectively. 

Examples of the CGP classification trees/graphs can be seen in Figure 3 and Figure 4 for PD 

versus controls, Figure 5 and Figure 6 for PD versus prodromal PD, and Figure 7 and Figure 8 

for prodromal PD versus controls. This represents a fundamental benefit of CGP, generating a 

white box solution that enhances interpretability of the classification network (not always 

possible with ANN and SVM classification methods). Despite the complexity inherent in these 

networks, they can provide crucial relevant information. For instance, in Figure 3 and Figure 

4, approximately half of the inputs have been used to arrive at the final classification. These 

two networks are rather simpler than those represented in Figure 5, Figure 6, Figure 7, and 

Figure 8. 
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Figure 3 - CGP classification tree for the classification of PD vs. controls; example 1 
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Figure 4 - CGP classification tree for the classification of PD vs. controls; example 2 
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Figure 5 - CGP classification tree for the classification of PD vs. prodromal PD; example 1 
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Figure 6 - CGP classification tree for the classification of PD vs. prodromal PD; example 2
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Figure 7 - CGP classification tree for the classification of prodromal PD vs. controls; 

example 1 
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Figure 8 - CGP classification tree for the classification of prodromal PD vs. controls; 

example 2 
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To evaluate the correspondence between participant group and DCM features, three mixed 

ANOVAs were conducted. In each ANOVA only two groups (e.g., PD patients and control) 

were considered rather than all three groups (PD patients, prodromal PD patients, and healthy 

control) at once, to mimic the classification method used in which, again, only two groups were 

considered at any point. For all three ANOVAs, a Greenhouse-Geisser correction was used as 

the models violated sphericity. 

Firstly, to examine the correspondence between PD and control participants and DCM features, 

these were subjected to a mixed 2 × 16 ANOVA between the participant group (PD patients 

and healthy control) and DCM features (16 inputs per participant). The ANOVA revealed a 

significant main effect of DCM features (𝐹(5.47, 590.68) = 64.25, 𝑀𝑆𝐸 = 2.17, 𝑝 <

.001, 𝜂𝑝
2 = .37). There was no significant interaction effect between participant group and 

DCM features (𝐹(5.47, 590.68) = 2.08, 𝑀𝑆𝐸 = 0.07, 𝑝 = .060, 𝜂𝑝
2 = .02) and no significant 

main effect of group (𝐹(1, 108) = 0.02, 𝑀𝑆𝐸 = 0.00, 𝑝 = .879, 𝜂𝑝
2 = .00). 

Secondly, to explore the correspondence between PD patients and prodromal PD participants 

and DCM features, these were subjected to a mixed 2 × 16 ANOVA between the participant 

group (PD patients and prodromal PD) and DCM features (16 inputs per participant). The 

ANOVA revealed a significant main effect of DCM features (𝐹(5.66, 667.89) =

112.36, 𝑀𝑆𝐸 = 3.68, 𝑝 < .001, 𝜂𝑝
2 = .49). There was no significant interaction effect 

between participant group and DCM features (𝐹(5.66, 667.89) = 1.22, 𝑀𝑆𝐸 = 0.04, 𝑝 =

.296, 𝜂𝑝
2 = .01) and no significant main effect of group (𝐹(1, 118) = 0.17, 𝑀𝑆𝐸 = 0.00, 𝑝 =

.680, 𝜂𝑝
2 = .00). 

Finally, to investigate the correspondence between prodromal PD and control participants and 

DCM features, these were subjected to a mixed 2 × 16 ANOVA between the participant group 

(prodromal PD and control) and DCM features (16 inputs per participant). The ANOVA 

revealed a significant main effect of DCM features (𝐹(5.15, 123.58) = 44.51, 𝑀𝑆𝐸 =

1.71, 𝑝 < .001, 𝜂𝑝
2 = .65). There was no significant interaction effect between participant 

group and DCM features (𝐹(5.15, 123.58) = 1.16, 𝑀𝑆𝐸 = 0.05, 𝑝 = .331, 𝜂𝑝
2 = .05) and no 

significant main effect of group (𝐹(1, 24) = 0.01, 𝑀𝑆𝐸 = 0.00, 𝑝 = .913, 𝜂𝑝
2 = .00). 
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Over the three ANOVAs, findings consistently revealed a main effect of DCM features with 

no significant main effect of participant group and no significant interaction effect. This 

represents the key finding as it indicates that the features in general are essential, whereas 

information on participant group per se is not. 

3.3. k-Fold Cross-Validation 

To evaluate the performance of the classifier, k-fold CV was conducted on all the different 

combinations of inputs for both DCM and timeseries values. 

3.3.1. Cross-Validation for RCGP for Timeseries 

The inputs were divided into folds with 80% of the data used for training, 10% for validation, 

and 10% for test. After the artificial data samples were synthesised for the minor class in the 

training set (using ADASYN), CV was repeated for 10 runs and the results were averaged, as 

depicted in Table 5, Table 6, and Table 7. Findings revealed that PD patients were successfully 

classified from healthy controls with a maximum accuracy of 91.22% using RCGP in CV 

(minimum accuracy: 87.55%, see Table 5). PD patients were successfully classified from 

prodromal PD patients with a maximum accuracy of 82.99% using RCGP in CV (minimum 

accuracy: 79.54%, see Table 6). Prodromal PD patients were successfully classified from 

healthy controls with a maximum accuracy of 68.28% using RCGP in CV (minimum accuracy: 

62.58%, see Table 7). 
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Table 5 - Cross-validation results for the timeseries values (PD vs. controls) 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 88.95 (8.14) 92.09 (0.45) 88.42 (8.03) 

mPFC RCGP 85.76 (8.49) 92.60 (1.13) 87.55 (6.40) 

RIPC RCGP 91.45 (1.40) 92.76 (1.48) 90.99 (1.50) 

LIPC RCGP 90.92 (1.70) 92.02 (0.48) 91.22 (0.51) 

Classification results for all the DMN regions (4 inputs) 

 RCGP 91.54 (0.86) 92.49 (1.16) 90.48 (2.16) 

Classification results for all the DMN regions (1 input) 

 RCGP 90.58 (2.61) 92.37 (0.99) 90.45 (1.62) 

 

Table 6 - Cross-validation results for the timeseries values (PD vs. prodromal PD) 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 82.91 (2.46) 85.20 (1.06) 81.74 (3.18) 

mPFC RCGP 82.44 (2.50) 84.53 (0.28) 82.56 (2.19) 

RIPC RCGP 81.96 (4.15) 84.97 (1.23) 79.54 (7.56) 

LIPC RCGP 82.81 (2.17) 85.19 (0.89) 82.59 (1.65) 

Classification results for all the DMN regions (4 inputs) 

 RCGP 81.82 (6.60) 84.94 (0.85) 80.96 (8.07) 

Classification results for all the DMN regions (1 input) 

 RCGP 82.68 (2.55) 85.18 (1.11) 82.99 (1.88) 
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Table 7 - Cross-validation results for the timeseries values (prodromal PD vs. controls) 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 66.90 (4.33) 75.93 (5.80) 64.20 (7.01) 

mPFC RCGP 70.91 (7.12) 81.62 (6.70) 67.15 (10.77) 

RIPC RCGP 68.53 (7.74) 77.25 (4.18) 62.58 (11.13) 

LIPC RCGP 65.87 (10.02) 79.52 (5.36) 68.28 (10.15) 

Classification results for all the DMN regions (4 inputs) 

 RCGP 66.71 (5.64) 79.78 (5.75) 63.53 (9.79) 

Classification results for all the DMN regions (1 input) 

 RCGP 63.49 (4.82) 79.94 (6.26) 64.64 (12.77) 

 

3.3.2. Cross-Validation for CGP for DCM 

The inputs were divided into folds with 80% of the data used for training, 10% for validation, 

and 10% for test. After the artificial data samples were synthesised for the minor class in the 

training set (using ADASYN), CV was repeated for 10 runs and the results were averaged, as 

shown in Table 8. 

Table 8 - Cross-validation results for DCM values 

 Training % (SD) Validation % (SD) Test % (SD) 

PD vs. controls 

CGP 77.37 (10.28) 85.63 (3.97) 76.45 (8.43) 

PD vs. prodromal PD 

CGP 64.17 (9.56) 75.38 (6.36) 63.28 (6.01) 

Prodromal PD vs. controls 

CGP 59.91 (6.42) 88.45 (9.58) 53.81 (13.85) 

The results revealed that PD patients were successfully classified from the healthy controls 

with an accuracy of 76.45% using CGP in CV. PD patients were classified from the prodromal 

PD participants with 63.28% accuracy using CGP in CV. Finally, the findings indicated that 

prodromal participants were classified from healthy controls with 53.81% accuracy using CGP 

in CV. 
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4. Discussion 

This research examined the classification of participants diagnosed with PD, prodromal PD 

participants, and healthy age-matched controls using rs-fMRI data. A key research question 

was: Can early stage PD (prodromal PD) be diagnosed using EAs on rs-fMRI data? Another 

distinctive element of this research involved (1) the application of EAs (CGP) as a 

classification method and (2) DCM analysis for classification. CGP classification was used for 

DCM analyses as well as timeseries analyses and the findings were validated with two other 

commonly used classification methods (ANN and SVM). A crucial benefit of EAs, specifically 

CGP, is that they provide a white box solution giving more information on the inputs used and 

enhanced knowledge concerning the final solution obtained in classification, compared to ANN 

and SVM. Findings were additionally validated using k-fold CV technique on the data. 

The data was highly imbalanced, hence, ADASYN was used to balance the data before 

performing CV, resulting in an equal class distribution within the training set (i.e., balanced 

numbers of PD, prodromal PD, and control participants). Across timeseries and DCM analyses, 

findings revealed that PD versus control participants were classified with a maximum accuracy 

of 92%, PD versus prodromal PD participants with a maximum accuracy of 86%, and 

prodromal PD versus control participants with a maximum accuracy of 75%. These findings 

are notable as early diagnosis of PD (before motor symptoms) is in its infancy with high rates 

of misdiagnosis, impacting on patient treatment and quality of life. This finding embodies the 

most important research output from this research. 

Findings further revealed almost no difference in the classification accuracies between 

timeseries and DCM data. In addition, findings revealed that CGP almost always provided 

equivalent performance accuracy when compared with ANN and SVM classification methods. 

Hence, these findings underscore the relevance of DCM analyses for classification and CGP 

as a novel classification tool for brain imaging data. 

A novel question addressed by this research was: is DCM analysis useful for classification? 

Although DCM has recently become a widespread tool to model effective connectivity in 

neuroimaging data [34], [54]–[57], no research has examined classification using DCM 

analysis for any type of fMRI data, including rs-fMRI. Moreover, few studies have conducted 
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DCM analysis on PD data [30]–[35]. Hence, this research aimed to further existing knowledge 

on DCM as applied to PD. An interesting finding was little difference in the classification 

accuracies between timeseries and DCM analyses (1-6% difference in the maximum 

accuracies). The findings, firstly, speak to the relevance of DCM data for classification and, 

secondly, broaden the small literature on DCM as applied to PD data. DCM analysis was 

conducted on the DMN, yet, new research [58] has examined DCM across multiple brain 

networks and currently whole-brain DCM of fMRI data is an ongoing project by the SPM 

developers lab. As such, exploring DCM across specific regions influenced by PD (e.g., basal 

nigra) is an exciting avenue for future research. 

Classification of rs-fMRI data is a key theme examined by this research, specifically, this 

research explored the applicability of CGP and RCGP to classify rs-fMRI data. Previous 

research on the classification of fMRI data has largely focused on statistical modelling 

techniques (e.g., independent components analysis, multivariate pattern analysis; [59]–[61]). 

These latter approaches are mostly predictive (hypothesis driven), yet, machine learning 

methods (as per this research) are explanatory modelling techniques (mostly data driven). 

Machine learning approaches are advantageous given that (1) they can be validated, providing 

an unbiased estimate of accuracy [62]; (2) they are typically based on fewer assumptions 

(relative to statistical-based techniques); and (3) they can predict and learn concurrently from 

large datasets, whereas statistical modelling are typically used for small datasets to avoid 

overfitting [59], [60]. 

The approach used in this research was distinctive as EAs, specifically CGP, have not been 

used for classification of brain imaging data. CGP provided approximately equivalent 

performance accuracy when compared with ANN and SVM classification methods across all 

participant groups (PD, prodromal PD, and control). Further research can examine CGP as 

applied to task-based fMRI, which would enable researchers to explore a number of 

sophisticated questions including finger-tapping tasks (unlike rs-fMRI), which is used in 

behavioural measures and is currently a leading method for confirming PD diagnosis. 

Following k-fold CV, classification accuracy for timeseries values decreased by only a few 

percentage. Yet, for DCM values, accuracy was reduced to 76% for the PD versus control 

participant group, although these findings held across all participant groups. The reduced 
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accuracy is due to having used class-imbalanced data as, whilst there was a large sample of PD 

patients, sample sizes of the prodromal PD and control groups were comparably smaller. 

Moreover, the number of features included in the classification was significantly smaller in 

DCM values in comparison with the timeseries values. 

Imbalanced data limits classification accuracy [36], [63], [64] as most classification methods 

assume balanced class distributions, creating two problems. Firstly, high class-imbalanced data 

results in limited training set sample size as classifiers often treat imbalanced data as though 

they have small sample sizes (since some classes may have small numbers). Secondly, learning 

focuses on classes with larger sample sizes, rather than focusing on discriminating between the 

sizes of the classes in the data and the characteristics of the actual data (rather than the 

synthesised data). Solutions to imbalanced data typically include changing/generating data to 

obtain equal class-distributions, which tends to improve classification accuracy [38]–[40]. 

Nonetheless, given that the synthetic balanced data is applied only to the training sets, 

classification accuracy is limited for the validation and test sets as before the classifier that was 

trained for the CV was a different classifier with a different accuracy level than that used in the 

classification part. This is an inevitable problem associated with imbalanced data, regardless 

of the number of folds involved in CV. 

In this research, ADASYN was used, which is a method of generating synthetic data to create 

balanced class-distributions for the training set (i.e., generating balanced numbers of PD, 

prodromal PD, and control participants). ADASYN was applied to the three classification 

groups: PD versus control, PD versus prodromal PD, and prodromal PD versus control. 

Findings revealed maximum classification accuracies of 71-92% across all groups when using 

timeseries and DCM data. Despite the reduced accuracy following CV, results revealed that 

classification was reliable for both timeseries and DCM values. Hence, classification on DCM 

and timeseries values can be used as brain-imaging biomarkers for PD and the current findings 

underscore the relevance of CGP as a classification method, even for highly imbalanced data. 

This study involved an analysis of a large open dataset (PPMI) [25]. Contributing to open 

science (e.g., making data publically available) shares resources from one project to other 

research, such as the re-analysis of biomedical raw data to examine new predictions [65], as 

per the current research. Advantages of open science include data sharing, saving resources 
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(e.g., money and time), exchanging expert viewpoints, reducing fraud and p-hacking, training 

purposes, amongst others. Here, in addition to the reproducibility and resource-sharing 

advantages provided by open data, this research was able to access a sample of 128 participants 

(excluding participants who did not fulfil the eligibility requirements). Most previous research 

using fMRI data acquire limited samples, typically 20 participants ([45], [66]–[68]; although 

77 participants were tested in [46]). Having such a large sample size lends confidence to the 

generalisability of these findings. 

5. Conclusion 

To conclude, this research explored the classification of rs-fMRI data in participants diagnosed 

with PD, prodromal PD participants, and healthy age-matched controls using novel data (DCM 

analyses) and a novel classification method (CGP). Classification accuracy for DCM analyses 

was compared to that of timeseries analyses, and two other classification methods (ANN and 

SVM) were used to validate the findings, as well as employing k-fold CV. Across DCM and 

timeseries analyses, findings revealed maximum accuracies of 86% for classification of 

prodromal PD patients versus PD patients, and 92% for PD patients versus healthy controls 

using CGP. Early diagnosis of PD (before motor symptoms appear) is rife with challenges and 

current methods have high rates of misdiagnosis. This research further revealed a maximum 

accuracy of 75% in differentiating prodromal PD patients from healthy controls, with medical 

implications for disease management, patient treatment, and patient quality of life. Hence, this 

finding is the most important research output from this research. Furthermore, classification 

accuracy was approximately equivalent for (1) DCM analyses and timeseries analyses and (2) 

different classification methods (CGP, ANN, or SVM). CGP has distinct advantages regarding 

the information linked to the solutions they generate. Therefore, these findings speak to the 

relevance of CGP as a novel classification tool for two types of brain imaging data (DCM and 

timeseries rs-fMRI analyses). This research developed automatic procedures for identifying 

PD brain imaging preclinical biomarkers, which are fundamental in improving accuracy of PD 

diagnosis methods. Furthermore, these findings highlight the applicability of DCM analyses 

for classification. 
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