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The thermodynamics of hard spheres tethered to a Face-Centered Cubic (FCC) lattice is investigated using event-driven
molecular-dynamics. The particle-particle and the particle-tether collision rates are related to the phase space geometry
and are used to study the FCC and fluid states. In tethered systems, the entropy can be determined by at least two
routes: (i) through integration of the tether collision rates with the tether length r7 or (ii) through integration of the
particle-particle collision rates with the hard-sphere diameter o (or, equivalently, the density). If the entropy were an
entirely analytic function of r7 and o, these two methods for calculating the entropy should lead to the same results;
however, a non-analytic region exists as an extension of the solid-fluid phase transition of the untethered hard-sphere
system, and integration paths that cross this region will lead to values for the entropy that depend on the particular path
chosen. The difference between the calculated entropies appears to be related to the comunal entropy, and the location
of the non-analytic region appears to be related to conditions where the regions of phase space associated with the FCC
configuration become separated from those associated with the disordered fluid. The non-analytic region is finite in
extent, vanishing below r/a ~ 0.55, where a is the lattice spacing, and there are many continuous paths that connect

the fluid and solid phases that can be used to determine the crystal free energy with respect to the fluid.

. INTRODUCTION

The hard-sphere system is a foundational thermodynamic
model; providing the first example of a purely-entropic transi-
tion from the disordered fluid phase to an ordered solid crys-
talline phase'. Determining the location of this transition
is not trivial, as these two phases are separated by a strong
first-order phase transition that cannot be avoided; as a result,
straightforward thermodynamic integration cannot be used to
calculate the free energy difference between the phases, due to
the presence of hysteresis®. As a consequence, different meth-
ods need to be developed. Hoover and Ree? introduced the
single occupancy model to more precisely explore the hard-
sphere fluid-solid transition. In this model, space is parti-
tioned into mutually exclusive regions, such as the Voronoi
polyhedra constructed from an FCC lattice, and the centers
of the particles are constrained to remain in one of these re-
gions. This model was employed by Woodcock*> to finally
establish that FCC lattices are marginally more stable than
hexagonal close packed (HCP), a remarkable achievement at
the time. Meanwhile, Speedy® had proposed in 1993 a closely
related model where each of the particles were “tethered” to
remain within a set distance from a location in the system,
rather than confined to disjoint regions of space. This ap-
proach was explored for non-spherical particles by Donev and
co-workers’ in 2007 although their analysis is restricted to the
close-packed limit. The tethered particle model was recently
reanalyzed in 2021 from the perspective of phase space allow-
ing the development of additional methods to calculate the
free energy without considerable restriction, including even
in the fluid phase®. These approaches are easily generalized
to arbitrary dimensions and have already been used to deter-
mine the free energy of various crystal structures of hard hy-
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perspheres in six dimensions®. It is remarkable that, despite
65 years of simulation, the hard-sphere model continues to
provide insight into phase transitions, and it still remains a
rich testing ground for developing new free-energy sampling
techniques.

The tethered hard-sphere model has frequently only been
used as a means to determine the free energy of the unteth-
ered hard-sphere system; however, this work considers the
thermodynamics of the tethered hard-sphere model on its own
merits to gain insight into the structure of phase space for
hard-sphere systems. This additional insight is possible as the
tether collision rate is directly related to the geometry of the
configurational phase space® and thus to the entropy and the
free energy of the system. As a result of this analysis, we also
aim to provide general guidelines for finding and using contin-
uous paths between the solid and fluid phases for determining
the free energy of solids.

The remainder of this paper is organized as follows. In
the next section, the tethered hard sphere model is briefly de-
scribed and the details of the molecular dynamics simulations
are provided. Afterwards, the data for the particle-particle and
the tether collision rates from the simulations are presented
and reviewed. Then, in Sec. IV, the consistency of these data
is examined and then used to determine the entropy of the sys-
tem. With knowledge of the entropy and the collision rates,
the geometry of the accessible phase of tethered hard sphere
systems examined in Sec. V. In Sec. VI, a diagram of states is
presented for the tethered hard sphere model, which includes
a discussion of the properties of the system in each of these
states. Finally, the main findings of the paper are summarized
in Sec. VII, along directions for future research.



Il. SIMULATION DETAILS

The system studied here is comprised of N = 13500 parti-
cles in a cubic periodic volume V', which is varied in size to
control the number density p = N/V. The particles are iden-
tical and have a diameter o and mass m. Each is restricted to
remain within a distance r7 from a “tether” point. While the
tether point can be located arbitrarily, in this study the tether
point is an FCC (face centered cubic) lattice site to generate
pathways from the most-stable hard-sphere crystal state. To
generate measurements of this system, event-driven molecu-
lar dynamics (EDMD) simulations are performed using Dy-
namO'°. For each state point, three configurations of spheres
are initialized in a perfect FCC lattice. The velocities are ran-
domly assigned from a Maxwell-Boltzmann distribution and
then shifted and rescaled to zero the total momentum of the
systems and to set the kinetic temperature exactly equal to
one. An Andersen thermostat is used to thermalize the system,
as ergodicity is poor at short tether lengths®, and its mean-free
time is adjusted to set it to 5% of the total number of events.
The Andersen thermostat is adjusted every 100 NV events and
is typically stable after the first adjustment.

Each configuration is first equilibrated for 103 N events be-
fore ten production runs of 10® N events are performed to
collect averages. Measurement uncertainties are estimated by
taking the standard deviation of results from the three config-
urations and each of their ten production runs. All results are
reported in reduced units using the particle diameter o as a
length scale, particle mass m as the mass scale, and temper-
ature to provide the time scale \/mo/(kgT). The key di-
mensionless parameters of the system are the reduced density
p03 and the reduced tether length rr/o; however, it is more
convenient to consider the tether length reduced by distance
between nearest FCC tether points, a/o = (p./p)'/?, where
pe 03 = /2 is the close-packed number density for the FCC
lattice.

lll. EVENT RATES

In this section, the rates of particle-particle collisions and
tether events from the EDMD simulations are analyzed. As
shown previously®, the tether event rates are directly related
to the geometry of the accessible configurational phase space
of the hard sphere system. This is briefly summarized here.

Consider the tethered hard sphere system as a single state
point moving through a 3 N-dimensional vector space, which
is the configurational phase space of the system. As overlaps
are not possible in this system, the configurations where pairs
of spheres intersect create impenetrable walls within the con-
figurational phase space which the system state point cannot
enter. The “thickness” of these walls is directly related to the
hard-sphere diameter. The state point bounces off these walls
continuously as each intersection with these walls is a particle-
particle collision. Ergodicity is typically assumed, thus the
state point is assumed to visit phase space evenly. This ulti-
mately implies that the geometry of this phase space, includ-
ing measures such as the surface-to-volume ratio, are directly

related to the rates of particle-particle events, and thus to pres-
sure and other thermodynamic variables. The configurational
phase space is considered to be “unravelled”, so that it ex-
tends infinitely in all dimensions. Thus, the periodic boundary
conditions imposed on the simulations cause these particle-
particle walls associated with the excluded volume interac-
tions to repeat throughout the vector space.

With this background it is interesting to contrast the effect
of the tethers. The tethers confine the system state point to re-
main within a fixed region in phase space. Geometrically, this
region corresponds to a hyperdimensional volume formed by a
union of N three-dimensional spheres each sited on the lattice
site of a particle in its coordinates only and with a radius of
the tether length, thus it is a highly localised volume in phase
space. Again the tether collision rates are directly related to
how much of the confining tether hypersurface is accessible
to the state point particle compared to the hypervolume of the
accessible space. Crucially though, the geometry of the tether
volume is known, thus measurements of the tether event rate
can be used to determine the hypersurface area. As this can
only be reduced by particle-particle walls intruding into the
tethered region, the tether rates can indirectly tell us about
that geometry too. With this established, it is interesting to
examine the rate of tether collisions and how it varies in the
FCC tethered hard-sphere system.

The ideal tether model is a system where the particles only
collide with their tethers; there are no particle-particle colli-
sions. This corresponds to systems with tethers such that
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so that the particles are unable to interact with each other. For
the ideal tether model, the tether collision rate N7 is given by®

. D
NGt = (2mpm) VAN =, 2)
rT
where D = 3 is the dimensionality of the system, § =

1/(kpT), kp is the Boltzmann constant, and T is the abso-
lute temperature of the system. Generally, the observed tether
rate is reduced below this ideal tether model as the particle-
particle walls in phase space reduce the accessible area of the
tether volume; however, values above it have been observed at
high densities where the accessible hypervolume has been re-
duced sufficiently to offset reductions in the hypersurface area
as shown later.

The particle-particle collision rate A/ is directly related!!2

to the pressure p of the system as follows,

3)

As a basis for comparison, the pressure of hard sphere systems
in the fluid phase is well described by the Carnahan-Starling
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FIG. 1. Variation of the tether collision rates with the tether length
for systems of hard spheres tethered to an FCC lattice at different
densities in the fluid phase. The solid black line is the tether collision
rate for the ideal tether model (see Eq. (2)).

equation of state'?.

Pr_ . w1=y/2)
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where y = mpo3 /6 is the volume fraction of space occupied
by the spheres. For the solid phase, the equation of state from
Pieprzyk and coworkers'* is used for comparison,

Bp 3 | 4eBO—) 4 ePOw) _ | (5)
p 1—-w
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where A = 0.01622, B = 6.151, C = 3.8437 x 107°, D =
27.72, E = 0.49541, and w = p/p..

The tether and particle-particle event rates for fethered sys-
tem over a range of densities and tether lengths are shown
in Fig. 1 and Fig. 2. Care must be taken to not label the
tethered system as a fluid at any point as it always contains
some long-range order; however, as it is an extension of the
untethered system it is natural to explore representative den-
sities in the untethered fluid (po® = [0.1, 0.8, 0.92]), solid
(po® = [1.0, 1.2]), and transition (po® = 0.96) densities.
Generally, tether event rates decrease with increasing tether
length, which may be expected as the confining tether hyper-
surface area to accessible volume ratio decreases, which is the
source of the 1/ry scaling in the ideal tether rate (see Eq. (2)).
All densities in the fluid range display a dip below the ideal
tether rate as particle-particle interactions begin to occur, but
approach the ideal rate once the tether radius is large enough
(rr/a 2 1). At this point the tethered system can access
the majority of the configurations contributing to the pressure
and it can be seen in Fig. 2 that the particle-particle collision
rates approach a value very closely predicted by the Carnahan-
Starling equation of state for hard sphere fluids (by combining
Egs. (4) and (3)). It can be imagined that, once particles can
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FIG. 2. Variation of the particle-particle collision rates with the tether
length for systems of hard spheres tethered to an FCC lattice at dif-
ferent densities in the fluid phase. The small symbols denote particle-
particle collision measurements, while the larger corresponding sym-
bol indicates the particle-particle collision rates predicted from the
Carnahan-Starling equation of state for the fluid phase (see Eq. (4)).
The dashed lines represent the particle-particle collision rates pre-
dicted from the equation of state of Pieprzyk and coworkers'* for the
solid phase.

fully interact with their neighbors at 7 /a = 1, the remain-
ing configurations are either translations of already accessible
configurations, or large density fluctuations which are improb-
able in this system, thus phase space begin to takes on a reg-
ular structure, which is analyzed in more depth later (e.g., see
Fig. 7).

For solid densities, the tether event rates in Fig. 1 again
decrease as tether length is increased; however, unlike in the
fluid density range, there is no increase back to the ideal tether
rate line, where the event rates appear to level off at a value
close to zero temporarily before dropping off the figure to
zero. The system appears to be localized in phase space by
the particle-particle “walls” and unable to reach the tether sur-
face, which becomes a redundant confinement for long teth-
ers. Its clear in Fig. 1 that particles rarely travel further than
ry/a /= 0.75. The particle collision event rates in Fig. 2 for
solid densities also show an increase initially with increasing
tether length as in fluid densities, before quickly levelling off
at a value very closely predicted by the Pieprzyk equation of
state for hard sphere fluids (by combining Egs. (5) and (3)),
denoted by the horizontal dashed lines in the figures.

Finally, the density po® = 0.96 is considered as it lies
within the fluid-solid transition density for the untethered sys-
tem, from the onset of freezing po® &~ 0.93890 to the melt-
ing density pso® ~ 1.03715%. This density in particular is
chosen as there is a clear minimum in the tether collision
rate with tether length for densities up to po> =~ 0.96 before
they “melt” at longer tether lengths (r1/a 2> 0.5) to the ideal
tether model suggesting that the tethered “fluid” is recovered.
At higher densities, this minimum continues to deepen; how-



ever, the collision rate no-longer increases back up to the ideal
tether collision line, as for the density po® =~ 1.0 in Fig. 1.
This can be interpreted to mean that the system remains in the
solid phase and does not quite “escape” from the solid phase
to transition to a liquid, although this cannot be precisely de-
fined as the system may yet still melt at longer tether lengths
or simulation times than studied here.

Consider again the particle collision rates in Fig. 2 and the
result for the same transition density po® ~ 0.96 and the ad-
jacent densities. For po® < 0.91, the particle collision rates
clearly trend towards and level off at the values predicted by
the Carnahan-Starling equation of state, indicating that these
systems closely model fluids. For po® > 0.97, the particle
collision rates clearly trend towards and level off at the val-
ues predicted by the Pieprzyk equation of state, indicating
that these systems closely model solid hard sphere systems;
however, at values of 0.91 < ,003 < 0.97, the trend towards
the equation of state predictions is far less clear and the high-
lighted curve at po® = 0.96 shows this clearly, where the ini-
tial trend with increasing tether looks to be towards the solid
equation of state line, before there is a sharp increase in colli-
sion rate up to the fluid equation of state prediction, and then
another “jump” back and forth, presumably between the two
phases. The tether lengths that these jumps happen at match
up with those where the minimum in tether collision rates are
observed (see Fig. 1). This further emphasizes that the system
is seemingly becoming jammed and unjammed as the tether
length is made longer through densities around this transition
region. This suggests there is “jumping” between phases as
the system is forced into different configurations which each
allow more or less freedom of movement. It is clear that a
transition region exists in the tether space as well as the den-
sity space thus a phase diagram might be considered provided
the free energy can be calculated, and this is discussed in the
following section.

IV. CALCULATION OF THE ENTROPY

As discussed earlier and in our previous work®, the event
rates in this system are directly related to ratio of the exposed
surface area associated with the event and the volume of ac-
cessible phase space. The entropy S is directly related to the
tether collision rate and the particle-particle collision rate,

kztdS = dinQr(p,r7,0)
D
= (zpm)"/? (A‘/Taﬁ a (=) - 5N d(po) ) , (6)
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where Qp is the density of states and D is the dimension-
ality. This relation provides at least two routes to calculate
the entropy of the tether system®. The first is to integrate the
particle-particle collision rate with respect to the density and
hard-sphere diameter o, while holding the tether length con-

stant,
(o) . Qr(p,rr,0)
AST /kB =1In 79“(7“7“)
L[ d(P/UD) 2Y1/2 £
= —5 " W (WﬂmJ ) N. (7)

The excess entropy calculated using this expression

AS(TU) /kp corresponds to standard thermodynamic in-
tegration.

The other path is to integrate the tether collision rate with
respect to the tether length, while holding the density and
hard-sphere diameter constant. The entropy difference be-
tween a tethered system and an ideal tethered system at the
same tether length and particle density can be determined
from the tether event rate N7 as:
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The excess entropy calculated using this expression is known
as the tether integration route. The difference between
the entropy of the tethered hard sphere system and that
of an ideal tethered system at the same density and tether
length is deemed the “excess” entropy (i.e. ASt(p, rr,0) =
Sr(p,rr,0) — Si¢(rr)). The excess entropy estimated using
the two different methods presented above is shown in Fig. 3.
If the entropy is an analytic function for all densities and tether
lengths, the two methods of calculating the entropy should
lead to the same results. This is generally true at low densi-
ties and tether lengths; however, the two routes diverge in the
range of densities between the freezing and melting densities
at longer tether lengths.

To better understand this difference, it is illuminating to
compare the calculated excess entropies against theoretical
predictions for the residual entropy of the untethered hard
sphere system®. The residual entropy is defined as the dif-
ference between the entropy of a system and the entropy of an
ideal gas with the same number of particles, volume, and tem-
perature. The excess tethered entropy is expected to approach
the residual untethered entropy in the limit of long tethers,

Sres(p’ 0.) = lim AST([L g, TT)
T —>00
0 QO )
W 200) o, o)
elp)  rrmee Qp(rr)

At densities below the hard sphere freezing density, the ex-
cess entropy of the tethered systems, calculated using both
methods, lies below the residual entropies of the hard sphere
system. This is expected as the tethered system is close to
the maximally-spaced-out state, thus reducing the possibility
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FIG. 3. The entropy of the tethered hard sphere model over a range of
conditions. The crosses are the result of numerical integration of the
particle-particle collision rate data with respect to density (or, equiv-
alently, hard sphere diameter) at fixed tether length (AS(TG) /kB), us-
ing Eq. (7). The circles are the result of integration of the tether event
rates with respect to the tether length using Eq. (8) at constant den-
sity and hard sphere diameter (AS(TTT) /kB). The black dashed line
is the residual free energy of the untethered hard sphere system in the
fluid phase'?, and the black dashed-dotted line is residual free energy
in the solid phase'®. The dotted vertical lines indicate the transition
densities for the untethered hard-sphere system.

of interactions over an unconstrained state. The excess en-
tropies gradually increase with the tether length and closely
approach the residual entropy of the untethered hard-sphere
fluid. Above the freezing density, calculated AS(TU) /kp val-
ues lie below the residual free energy of the hard sphere FCC
solid (black dashed-dotted line); as tether length increases, the
excess entropy approaches the residual entropy, just as before;

however, calculated AS¥ ) /kp values lie above the residual
free energy of the untethered hard-sphere solid.

Above the melting density, the tether collision rate drops
rapidly with tether length (see Fig. 1). This is an indication
that the system becomes trapped in the region of phase space
around the perfect FCC lattice by the excluded volume inter-
actions. In this situation, it could be expected that the excess
entropy will continue to decrease without bound as the tether
length increases. The volume of phase space accessible by the
system remains constant as the tether length increases, while
the phase space volume accessible to the ideal tether system
continues to grow. In fact, if ASS'™) /kp is shifted by the dif-
ference in the entropy between the ideal gas and ideal tether
systems,

; (10)

then the results are once again in close agreement with the
residual entropy of the untethered systems, as shown in Fig. 4.
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FIG. 4. The excess entropy of the tethered hard sphere model over a
range of conditions. The crosses are the results for AS(TO) /kp while
the circles are the results for AS(TT 7) /kB plus the communal entropy
difference constant. The dashed lines are the residual free energy of
the untethered hard sphere system in the fluid phase'? (black) and the
solid phase'* (grey). The dashed vertical lines indicate the transition
densities for the untethered hard-sphere system.

In contrast, when AS(TU) is shifted by In Qi (rr)/QE(p),
the results move further from the residual entropies of the un-
tethered systems for systems with longer tether lengths. This
does not make physical sense, as the longer the tether length,
the closer the system should resemble an untethered system.
For the shorter tether lengths, these values, much like the
shifted values from the tether integrations, also are in close
agreement with the residuals of the untethered system.

Another manner to check the consistency of the data is to
compare the pressure, as determined from the free energy ob-
tained from tether event rates. The particle-particle collision
rate for tethered systems is shown in Fig. 5. The crosses are di-
rectly from the EDMD simulations. The circles are calculated
from derivatives of spline fits to the free energies calculated
from tether integrations.

The collision rates derived from the integration of the tether
event rates are in good agreement with the simulation data,
with the exception of systems with sufficiently long tethers
in and near the fluid-solid coexistence region. The fact that
the pressures agree outside this region implies that the free
energies from tether collision rate integration and the particle-
particle collision rate integration are the same with respect to
density, but are only shifted by a constant.

Figure 6 shows the difference between the excess entropies
calculated via the two different methods. The difference is
only non zero at densities lying in the solid phase for tether
lengths of rr/a > 0.7. There is a critical tether length
rr/a = 0.55 below which the entropies calculated using both
methods are consistent across all densities. One key thing to
note is that the difference between the entropies is dependent
only on the tether length and not on the density. This observa-
tion is consistent with the fact that the pressures from the two
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FIG. 6. The difference between ASgT)/kB (see Eq. (8)) and

AS(TU) /kB (see Eq. (7)) (a) as a function of density for various tether
lengths 77 /a, and (b) as a function of tether radius for various den-
sities po>.

routes are the same outside the transition region.

V. PHASE SPACE GEOMETRY

The event rates allow us to more carefully explore the ge-
ometry of phase space. For a tethered system, the maxi-
mum possible accessible volume is that of an ideal system

(ie. Q4 = (47rd/ 3)N). The inclusion of excluded volume
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FIG. 7. Fraction of the tether surface area accessible by the tethered
hard sphere system. Small empty symbols denote values calculated
from particle collision integration, and small filled symbols (with a
black outline) denote values from tether collision integration. The
larger symbols on the right limit are used to denote the accessible
phase space volume ratio in the untethered system.

between the particles will decrease the accessible volume of
phase space and increase the bounding surface area. As the
hard-sphere diameter increases, the thickness of these bodies
will increase. There are two types of bounding surfaces: One
corresponding to the tethers and the other corresponding to the
particle excluded volumes (the constraint that particles can-
not overlap). The tether collision rates are directly related to
the area ¥ of bounding surface due to the tether constraint to
the volume of phase space accessible by the system® as given
here,

% = (27B8m)"/?N. an
Let us first consider systems with a fixed tether length rr/a
and observe what happens with increasing the value of o/a. In
this case, the maximum available surface area will be constant
and equal to the surface area in the ideal tether model. The
fraction of the surface area in the ideal tether model that is
accessible by the system can be determined by

D Nr Qr(p,rr,0)
yid o Nad Qi (rr)

= (27r5m)1/2rT—Zj\\7/lT) eAST(Pirr,0), (12)

In Fig. 7, the fraction of the tether boundary which is ac-
cessible to the system as a function of tether length and den-
sity is presented. At fluid-like/low densities and large tether
lengths, the fraction of the accessible surface area approaches
a constant equal to the ratio of the volume of accessible phase
space to the system to that of an ideal tether system (i.e.
Qr(p,rr,0)/Q(rr)). This can be rationalized by consider-



ing the phase space of the tethered hard sphere system to be a
porous material, with the allowed regions corresponding to the
pores of the system and the regions of phase space disallowed
by the excluded volume and tether constraint corresponding
to the pore walls. For a sufficiently large sample of a uniform
porous material, the pore area fraction on an exposed surface
is expected to be the same as the pore volume fraction in the
bulk of the material, regardless of dimensionality.

At densities well above the freezing point, the ratio of the
accessible surface area in in Fig. 7 no longer approaches the
ratio of the accessible phase space volume at large tether
lengths but instead it falls to values far below it. At these
solid densities, the system is locked into a small section of
phase space by the particle-particle excluded volume inter-
actions, and there is almost no possibilibity of reaching the
tether bound phase space boundary. Finally, consider the frac-
tion of accessible tether bound surface area for the density in
the transition region. There is a clear minimum observed in
the data, similar to that observed in the tether collision rate
data for lower densities; however, the area does not recover to
the untethered limit and appears to show considerable insta-
bility over the tether lengths considered.

The data for tether collisions and accessible surface area
suggest that as the tether length initially increases, particle-
particle collisions block the system from reaching the tether
surface, which means that the pathways for the system to es-
cape the FCC region of phase space become restricted. As
the tether length is increased beyond a certain value, the frac-
tion of accessible tether bound surface area increases, which
means that pathways out of the FCC configuration widen.
This decrease and subsequent increase of /% with tether
length suggests that there is a “bottleneck” in the pathways
from the region of phase space near the perfect FCC config-
uration and that of the disordered fluid. At these transition
densities, the particle-particle interactions seem to form a dis-
tinct barrier that distinguishes these regions of phase space
from each other.

Figure 8 shows the variation of the accessible ratio of tether
bound phase space area with increasing density. This can be
pictured as a study of how a fixed region of phase space bound
by the tether constraints becomes increasingly inaccessible by
the system as the hard sphere diameter is increased. The ratio
¥/%id = 1 when po?® = 0 and decreases monotonically with
increasing for the ratio of accessible surface area as particle
diameter for all tether volumes used. The rate of decrease with
density increases as the tether length increases. At very short
tether lengths, the presence of excluded volume interactions
do not significantly decrease the accessible surface area until
the density becomes fairly large; this is, in part, due to the
fact that the FCC configuration is the most efficiently packed.
For very long tether lengths, the rate of drop off of /%'
with density eventually coincides with the residual free en-
ergy of the untethered hard sphere fluid (black dashed line in
Fig. 8). This corresponds to the expectation that the fraction
of pores on a surface of a porous material is approximately
equal to the pore volume fraction when the same size is suffi-
ciently large. For intermediate values of the tether length, the
value of X2 /¥ falls below the residual free energy of the fluid

100 4

10714

+ rrf/la=0.323

1075 4 rr/a=0.370 ® “
rr/a=0.466 o
rr/a=0.553

-6 |
10 rrla=0.945 ®
+ rf/fa=1.191
1077 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

pa?
FIG. 8. Variation of the ratio of accessible tether bound phase space
surface area with density at different fixed value of the tether length
rr/a. The pluses denote values calculated using AS(T”), and the
circles denote values calculated using AS(TT 7). The black dashed
line is the residual free energy of the untethered hard sphere fluid'?,
and the black dashed-dotted line is the residual free energy of the
untethered hard sphere FCC solid'*.

at higher densities. These tether lengths correspond to those
where there is a bottleneck in passing from the FCC to the
disordered fluid regions of phase space (e.g., see po® = 0.96
in Fig. 7).

For all tether lengths, /¥4 lie below the residual free en-
ergy of the untethered fluid at densities beyond the freezing
density, eventually falling to zero. This is an indication that
the system becomes trapped in the region of phase space near
the FCC configuration.

VL. DIAGRAM OF STATES

If the entropy were an analytic function of the tether length
rr/a and the density po? for all state points, then the value
of a line integral along any closed path should be zero. This
implies that the entropy calculated by any path should lead to
the same value. However, from the analysis of the entropy de-
rived from the collision rates in Sec. IV, it is observed that this
is not the case for the tethered hard sphere system, as the en-
tropy determined by integrating the tether collision rate with
respect to the tether length, at constant density, (see Eq. (8))
can lead to a different result to that obtained by integrating the
particle-particle collision rate with respect to the density (or
hard sphere diameter), at fixed tether length (see Eq. (7)). This
implies that there must be regions in the states of the tethered
hard sphere system (i.e. particular values of r7/a and po?®)
where the entropy is not analytic.

Itis well established that thermodynamic integration cannot
be performed through a first-order phase transition. In partic-
ular, the integration of the pressure cannot be used directly
through the freezing transition to determine the free energy of



the solid phase. This has led to the development of a variety
of alternate methods to determine the free energy of the solid
phase, such as the Einstein crystal method>'>, self-referential
methods'®'8, as well as the use of the single occupancy cell
model,>" along with other methods. This non-analytic behav-
ior of the untethered hard sphere system in the the fluid-solid
transition region is expected to extend to the tethered systems.
In fact, indications of this are given by the sharp drop in the
pressure with density for sufficiently large tether lengths (see
Fig. 5).

The difference between the entropy calculated from tether
integration and density integration is shown in Fig. 6. In
Fig. 6(a), it is observed that the differences between the two
methods vanish for densities below about the freezing density.
At low tether lengths (where r1/a < 0.55), the two methods
lead to the same result across all densities. The consistency
between the two methods suggests that the entropy is analytic
in these regions. In fact, it might be expected that the entropy
is analytic everywhere the pressures are consistent between
the two methods (see Fig. 5).

As can be seen in Fig. 6, the entropies between the tether
integration and the density integration methods differ at den-
sities above the freezing density and r7/a = 0.55. In this
region, difference between the two methods is independent
of density, but depends on the tether length, becoming larger
with increasing rr/a. This observation is in-line with the fact
that the two methods lead to the same value pressure in this
region (see Fig. 5). This implies that for a set tether length,
the density integration entropies can be shifted by an amount
independent of the density to align the results with the en-
tropy calculated by tether integration. In Fig. 6(b), the dif-

ference between AS(TT ) /kp and ASPEF”) /kp at a fixed den-
sity is shown as a function of tether length. The dashed black
line is the entropy difference between the ideal tether model
and an ideal gas (see Eq. (10)). As the density of the sys-
tem increases, the difference between the two calculated en-
tropies appear to approach a common curve which is inde-
pendent of density; this curve differs from zero at a tether
length 77 /a ~ 0.55 and monotonically increases, asymptoti-
cally growing as 3In(rr/a) for very large tether lengths.

A schematic diagram of states for a hard sphere system
tethered to an FCC lattice is shown in Fig. 9. The shaded,
light blue area on the left side of the diagram denotes the
ideal tether state, where the particles are too far apart to in-
teract with each other. The dark gray shaded area gives an
indication of the region where we presume that the entropy is
not analytic, based on where the entropy and pressure calcula-
tions depend on the method of calculation (see Fig. 3 and 5).
For an untethered hard sphere system, which is related to the
limit rp — oo, there is a fluid-solid coexistence region with
a fluid density of pro® ~ 0.93890 and the melting density
ps0> ~ 1.03715%. The non-analytic behavior of the entropy
might be expected to be related to this transition and to per-
sist as the tether length decreases. The gray region appears to
vanish below a critical tether length of about r7/a ~~ 0.55.
Outside this gray area, the entropy should be analytic. This
implies that if we take a line integral around any simply closed
path in this region (which excludes enclosing any portion of
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FIG. 9. Schematic diagram of states for tethered a hard sphere sys-
tem. The blue shaded region denotes conditions where the system
behaves as an ideal tether model. The dark gray shaded region is a
qualitative depiction of the region where the entropy estimated to be
non-analytic.

the gray shaded area) the results should be zero. For example,
the line integral of the entropy along either of the blue curves
would be zero.

If the line integral of the entropy encloses a portion of the
gray shaded region, then its value would be non-zero. Ex-
amples of this include any of the red curves in Fig. 9 would
be non-zero. Based on the observed differences in the ex-
cess entropies from tether integration and density integration,
the value of the line integral would be positive, if the path is
taken in a counterclockwise manner and negative if it is taken
in a clockwise manner. The more of the gray region that is
enclosed by the path, the larger the magnitude of the line in-
tegral; so the magnitude of the line integral for curve 4 would
be larger than that for curve 3.

To attempt relate the non-analytical region of the entropy
to structural changes of the system, the Steinhardt gg order
parameter'? is calculated using the software package Freud?’,
and the result is given in Fig. 10.

The Steinhardt order parameter characterizes the local or-
ganization of particles in the system. The directions of the
“bond” vectors b formed between a tagged particle and its
nearest neighbors are projected along a set of spherical har-
monic functions Y7, of a particular order [:

where b is a “bond” vector. This quantity is then averaged
over all bonds in the system to give (Q}.,). The Steinhardt ¢
order parameter is defined'® as a rotationally invariant combi-
nation of these coefficients:

A . 1/2
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FIG. 10. A countour plot of the Steinhardt order parameter for the
tethered hard sphere system in the vicinity of the analytic to non-
analytic entropy transition. The value of the contours is indicated
using the colour map on the right side. The small orange circles
denote the state points where MD simulations are performed. The
rapid change of the order parameter is indicative of a phase transition;
however, the tethered system always retains some signature of its
underlying tether lattice.

In this work, the value [ = 6 is used as it is a good discrimi-
nator between FCC and random/fluid ordering.

The non-analytic region appears to correlate to where the
order parameter rapidly changes, indicating the transition
from a slightly less ordered structure held together by the
tether at lower densities to a slightly more order structure at
higher densities. Interestingly, there is an angled shape of the
non-analytical region to below even the fluid transition den-
sity for the untethered system. It appears that staying below a
tether length of r7/a = 0.55 allows the avoidance of the non-
analytic region entirely while performing thermodynamic in-
tegrations with respect to density. Previous uses of the tether
model to calculate the free energy have been largely limited to
integration with respect to the tether length, mainly to avoid
the need to pass through the fluid-solid phase transition”->!>2,
Consequently, they did not consider the possibility of a con-
tinuous path between the fluid and solid phases which avoids
the non-analytical region. Earlier works with the single occu-
pancy model for hard sphere, where the particles are confined
to Voronoi cells of the lattice sites, have used density integra-
tion to determine the free energy*; however, closer examina-
tion of the pressure variation with density indicated that these
simulations did pass through a non-analytical region, although
its effect was thought to be negligible.

VIIl. DISCUSSIONS AND CONCLUSIONS

In this work, the properties of systems of hard spheres that
are tethered to an FCC lattice are examined. The tethered hard
sphere model gives us detailed information of the structure of
phase space, and more specifically the behavior of the entropy,
around the point where the configuration is tethered. The

phase space of the system can be considered to be a porous
material, with the pores corresponding to the regions acces-
sible to the system, and the pore walls corresponding to the
disallowed regions to overlap of spheres or violation of the
tether constraint. The “pore volume” of phase space is di-
rectly related to the entropy of the system, while its “poros-
ity” is directly related to the excess entropy of the system.
The collision rates of the particles with their tethers give an
indication of the pathways away from the perfect FCC con-
figuration, while the collision rates of the particles with each
other.

At low to moderate fluid densities, the porosity of phase
space appears to be fairly uniform moving away from the per-
fect FCC configuration to the regions of phase space corre-
sponding to the more disordered fluid phase. The tether col-
lision rates gradually decrease to eventually reach the value
for the ideal tether mode, while the particle-particle collision
rates gradually increase from zero to the bulk fluid value.

At the higher solid densities, the FCC configuration be-
comes isolated from the rest of the phase space by excluded
volume interactions. The system becomes “trapped” in the
FCC configuration. Moving away from the perfect FCC lat-
tice (by increasing the tether length), the particle-particle col-
lision rate increases from zero to the values for the bulk, un-
tethered system; however, the tether collision rate decreases
exponentially with the tether length and then suddenly drops
to zero.

At intermediate densities, there is a “bottleneck” separating
the phase space corresponding to the FCC configuration and
that of the disordered, fluid phase. The tether collision rate
drops rapidly to low values as the tether length increases, be-
fore jumping up to the ideal tether rate. The particle-particle
collision rate first increases to a value corresponding solid
phase, but then later switches to the fluid phase value, some-
times transitioning back and forth between the two before set-
tling to the fluid value.

This change in the pathways out of the FCC configura-
tion leads to the entropy developing a path dependence. and
this can be represented as a region in 77/a and po® where
the entropy is non-analytic. This region extends at extremely
large tether lengths from the solid-fluid coexistence region of
the untethered hard sphere system and ends at a tether length
ry/a =~ 0.55 and a density sightly lower than the density at
the onset of freezing.

The direct geometric interpretation of the tether and
particle-particle collision rates can be used to determine the
entropy of the system: by integrating the particle-particle col-
lision rate with respect to the system density or by integrating
the tether collision rate with respect to the tether length. As
long as both these paths do not cross this non-analytic region,
they will lead to consistent results. If either path does cross
the non-analytic region, then the discrepancy between the two
methods will depend on what portion of the non-analytic re-
gion is enclosed by the path.

The results of this work can be extended in many ways. An
FCC lattice is explored here; however, the particular shape of
the non-analytic region is expected to depend on the lattice
used for the tethers. For example, if the spheres were tethered



to a BCC (Body-Centered Cubic) lattice, then the location of
the non-analytic region would be expect to change due to the
difference in the fluid-solid coexistence densities as compared
to the FCC crystal structure. A more interesting case is for a
system that is tethered to a “fluid” configuration, rather than
to a regular lattice. This would allow the behavior of parti-
cle systems that are trapped in glassy states to be explored.
In fact, Speedy® used this approach to calculate entropy of
hard sphere systems that were jammed in various disordered
configurations in order to determine the “statistical” entropy
of the glassy system. It would be interesting to determine if
the non-analytic region appears for these systems, if so, then
where is it located, how does this depend on the particular ar-
rangement of the tether sites, and how does this relate to the
presence of a glass transition?

Also of interest is the relationship of the tethered particle
model to the random pinning glass model*>?*, where a frac-
tion of particles are forced to maintain a fixed position. The
“pinning” of these particles imposes a quenched disorder in
the system, which can be analyzed within the framework of
the Random First Order Transition theory>>2’, and a glass
transition is expected to occur, signaled by the vanishing of
the configurational entropy, as the fraction of pinned particles
increases above a critical value?’. Can the quenched disor-
der imposed by the tether constraint be analyzed in a similar
manner?

The solid-fluid phase transition in the three dimensional
hard sphere system is well established and understood. It
would be interesting to examine the analytic structure of the
entropy in the such as the two-dimensional hard disk sys-
tem?®?° and the parallel hard cube model**-32, where the tran-
sition has been more difficult to examine. After 65 years, there
is still a rich variety of phenomena to explore in the phase tran-
sitions of hard systems, and the tether model opens a comple-
mentary line of investigation and interest.
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