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ABSTRACT

Gradual semantics within abstract argumentation associate a numeric score with every argument in a
system, which represents the level of acceptability of this argument, and from which a preference
ordering over arguments can be derived. While some semantics operate over standard argumentation
frameworks, many utilise a weighted framework, where a numeric initial weight is associated with
each argument. Recent work has examined the inverse problem within gradual semantics. Rather
than determining a preference ordering given an argumentation framework and a semantics, the
inverse problem takes an argumentation framework, a gradual semantics, and a preference ordering
as inputs, and identifies what weights are needed to over arguments in the framework to obtain the
desired preference ordering. Existing work has attacked the inverse problem numerically, using a
root finding algorithm (the bisection method) to identify appropriate initial weights. In this paper we
demonstrate that for a class of gradual semantics, an analytical approach can be used to solve the
inverse problem. Unlike the current state-of-the-art, such an analytic approach can rapidly find a
solution, and is guaranteed to do so. In obtaining this result, we are able to prove several important
properties which previous work had posed as conjectures.

1 Introduction

Standard approaches to abstract argumentation consider a set of atomic arguments and the interactions between them,
encoding these as a graph. They then identify which sets of arguments are justified together by considering the
inter-argument interactions [1]. Within the argumentation community, there has been increasing interest in so-called
ranking-based semantics. These latter semantics aim to identify a ranking over the arguments, with higher ranked
arguments considered more justified (i.e. “less attacked”) than arguments ranked lower (i.e. “more attacked”). Many
ranking-based semantics associate numerical acceptability degrees to all arguments within the system, with the final
ranking depending on the associated numerical ordering. Furthermore, some ranking semantics compute the final
acceptability degree of an argument based not only on the topology of the argumentation graph, but also based on some
initial weight assigned to the argument.

Our focus in this paper is on the inverse problem found in ranking-based semantics. That is, rather than describing how
an ordering over arguments can be obtained from some set of arguments and their associated properties, we ask what
properties must be associated with arguments so as to derive some desired final acceptability ordering. This problem
was previously tackled by [2], who employed a numerical approach to solve it. In their work, the authors focused
on three specific semantics, which also serve as the focus of this paper. Our core contribution involves describing an
analytic approach to solving the inverse problem for these three semantics. The advantages of pursuing such an analytic
approach are twofold. First, it guarantees our ability to find a (unique) solution; and second, it is efficient in finding this
solution.

Apart from describing an analytic approach to the inverse problem, we make advance the state-of-the-art in several ways.
First, building on ideas from [3, 4, 5] we describe a very general class of functions, which can be used to underpin
gradual argumentation semantics, and demonstrate the existence of a unique fixed-point for such functions. We also
demonstrate continuity for this class of functions. Focusing on the h-categorizer gradual semantics [6], we prove that
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a0 a1 a2 a3 Argument ranking
σFMB 0.43 0.30 0.58 0.30 a1 ' a3 / a0 / a2

σFHC 0.43 0.30 0.38 0.30 a1 ' a3 / a2 / a0

σFCB 0.43 0.18 0.17 0.30 a2 / a1 / a3 / a0

Table 1: Acceptability degrees of the arguments from Figure 1

this semantics obeys monotonicity, a conjecture made in [2] which is required for their numerical approach to operate.
With these results, we are able to prove several other important properties hitherto not discussed in the literature.

The remainder of this paper is structured as follows. In the Section 2 we introduce the semantics for which we address
the inverse problem. In Section 3, we consider a generalisation of several gradual semantics, demonstrating that all
semantics in this generalisation have a unique fixed point and are continuous. In Section 4 we expand on the approach
advanced in [2], demonstrating how it can applied to the more generalised semantics. Following this, Section 5 details
our analytic approach and proves some important properties. Section 6 concludes and discusses potential future work.

2 Background

We begin by providing an overview of the three gradual semantics around which our work revolves. These semantics all
operate over weighted argumentation frameworks [6, 7].

Definition 2.1 (WAF). A weighted argumentation framework (WAF) is a triple F = 〈A,D, w〉, where A is a finite set
of arguments, D ⊆ A×A is a binary attack relation, and w : A → [0, 1] is a weighting function assigning an initial
weight to each argument.

We denote the set of attackers of an argument a ∈ A as Att(a) = {b ∈ A | (b, a) ∈ D}. While myriad ranking
based-semantics have been described (see e.g., [8]), we concentrate on three of the semantics described in [4] which
allow for an initial weight to be assigned to an argument. This is because the inverse problem we focus on considers
what initial weight needs to be assigned to obtain some preference ordering.

Definition 2.2 (Gradual Semantics). A gradual semantics σ is a function that associates to each weighted argumentation
graph F = 〈A,D, w〉, a scoring function σF : A → [0, 1] that provides an acceptability degree to each argument. We
consider the three semantics σx, for x ∈ {MB,CB,HC}, defined as follows.

• The weighted max-based semantics σMB [4] is defined such that the acceptability degree of an argument
a ∈ A is σFMB(a) = MB∞(a), where MBi(a) = w(a)

1+ max
b∈Att(a)

MBi−1(b) and for all b ∈ A,MB0(b) = w(b) .

• The weighted card-based semantics σCB [4] is defined such that the acceptability degree of an argument
a ∈ A is σFCB(a) = CB∞(a) where CBi(a) = w(a)

1+|Att∗(a)|+

∑
b∈Att∗(a)

CBi−1(b)

|Att∗(a)|

, for all b ∈ A, CB0(b) = w(b),

and Att∗(a) = {b ∈ Att(a) | w(b) > 0} if Att∗(a) 6= ∅ and w(a) otherwise.

• The weighted h-categorizer semantics σHC[4] is defined such that the acceptability degree of an argument
a ∈ A is σFHC(a) = HC∞(a) where HCi(a) = w(a)

1+
∑

b∈Att(a)

HCi−1(b) and for all b ∈ A, HC0(b) = w(b).

Example 2.3. (taken from [2]). Let F = 〈A,D, w〉 be a WAF, where A = {a0, a1, a2, a3},D =
{(a0, a2), (a1, a1), (a1, a2), (a2, a2), (a3, a2)}, w(a0) = 0.43, w(a1) = 0.39, w(a2) = 0.92, and w(a3) = 0.3.
The WAF is represented in Figure 1 whereas the acceptability degrees and the associated rankings on arguments for the
semantics of Definition 2.2 are shown in Table 1.

Note that we use the following notation for the ordering on arguments, where a D b denotes that a is at least as preferred
as b, a ' b iff a D b ∧ b D a, a . b iff a D b ∧ a 6E b, and a E b iff a 6 . b.

3 Kernel-based Gradual Semantics

Pu [3] demonstrated that a unique fixed-point exists for the h-categorizer semantics, i.e. in the case where all arguments
have an initial weight of 1. This result was generalised to the three semantics described in Definition 2.2 by Amgoud et
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a0

a1

a2 a3

Figure 1: Graphical representation of a WAF

al. [4]. In this section, we describe a more general class of semantics for which such a unique fixed-point is guaranteed
to exist. Our core result is as follows.
Theorem 3.1. We say that ϕi(x) : [0, 1]n → [0,∞), where i = 1, . . . , n, is an argumentation kernel function if ϕi:

• is continuous

• is monotonic, i.e., for all x, y ∈ [0, 1]n where x � y1, ϕi(x) ≤ ϕi(y)

• is homogeneous, i.e., ϕi(tx) = tϕ(x) for any x ∈ p0, 1]n and every 0 ≤ t ≤ 1

If Φw(x)i = wi

1+ϕi(x) , then Φw : [0, 1]n → [0, 1]n has a unique fixed point.

We can consider the class of all gradual semantics σ that takes as input a WAF F = 〈{a1, a2, . . . , an},D, w〉 and
return a scoring function σF such that for all x ∈ [0, 1]n, for all ai ∈ A, there exists Φw (as defined in Theorem 3.1)
such that Φw(x)i = σF (ai). The previous theorem states that all the gradual semantics in the aforementioned class are
guaranteed to “converge”, including the previous three semantics of Definition 2.2. Indeed, they are all in this class with
ϕi(x) = maxaj∈Att(ai) xj , ϕi(x) = 1 + |Att∗(ai)| + (

∑
aj∈Att∗(ai) xj)/|Att

∗(ai)|, and ϕi(x) =
∑
aj∈Att(ai) xj

respectively for σMB , σCB , and σHC . Of course, our result is more general and one could consider many other
semantics in this class based on other argumentation kernel functions. Other examples of argumentation kernels include
the geometric mean, i.e. ϕi(x) = n

√
bix1 · · ·xn for some bi > 0, or the Lp-norm2, i.e. ϕi(x) = p

√∑
j |xj |p for some

1 ≤ p < ∞, among others. More generally, we can combine argumentation kernels together as the collection of
argumentation kernel functions is:

1. closed under linear combination with non-negative coefficients, i.e. if ϕ1, . . . , ϕk are argumentation kernels
and λ1, . . . , λk ≥ 0 then λ1ϕ1 + . . . λkϕk is an argumentation kernel.

2. closed under geometric, i.e. if ϕ1, . . . , ϕk are argumentation kernels then k
√
ϕi(x) · · ·ϕk(x) is an argumenta-

tion kernel.
3. closed under limits, i.e. if ϕk is a sequence of argumentation kernels such that the limit ϕ := limk ϕk exists

and continuous (e.g the convergence is uniform), then ϕ is an argumentation kernel.

The following theorem builds on the following result, adapted from [3].
Theorem 3.2. Let X = [0, 1]n, and let f : X → X be a function which

• is order reversing, i.e., x � y implies f(y) � f(x)

• there is some 0 < α ≤ 1 such that for any x ∈ [0, 1]n and any 0 ≤ t ≤ 1

f(tx) � 1

t+ α(1− t)
f(x)

then f has a unique fixed point y ∈ [0, 1]n. Furthermore, y = limk→∞ x(k) where x(k) is any sequence defined
recursively by choosing x(0) ∈ X arbitrarily and x(k+1) = f(x(k)).

Proof. Define a sequence u(n) in X by recursion, u(0) = 0 and u(n+1) = f(u(n)) for every n ≥ 0. Then u(0) � u(1)

since 0 ∈ X is the minimum of X , and since f satisfies the second item of Theorem 3.2, we get u(0) � u(2) � u(1).

1We equip Rn with the partial order x � y if xi ≤ yi for all i = 1, . . . , n. We will also write x � 0 to denote xi ≤ 0 for all i.
2We will also use the notation ‖x‖p to denote the Lp norm of x. For p =∞ we obtain the max-norm, i.e. ‖x‖∞ = maxi |xi|.
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By induction one easily shows

(i) u(2k) � u(2k−1) for all k ≥ 1,

(ii) u2k) � u(2k+2) for all k ≥ 0,

(iii) u2k+1) � u(2k−1) for all k ≥ 1.

Thus, the sequence u(2k) is increasing (in the sense that u(2k)
i is an increasing sequence in R for every i = 1, . . . , n)

and bounded above by 1 ∈ X , and u(2k−1) is decreasing and bounded below by 0 ∈ X , so we define

u(ev) = sup
k
u(2k) = lim

k
u(2k)

u(odd) = inf
k
u(2k−1) = lim

k
u(2k−1).

It follows from (i) that u(ev) � u(odd). Our next goal is to show that u(ev) = u(odd).

For every k ≥ 1 set
πk = sup {t : t · u(2k−1) � u(2k), 0 ≤ t ≤ 1}.

The set on the right is not empty since 0 · u(2k−1) = 0 � u(2k), so

0 ≤ πk ≤ 1

and by construction
πk · u(2k−1) � u(2k).

Since f is order reversing,(ii) implies that for every k ≥ 1

u(2k+1) = f(u(2k)) � 1
πk+α(1−πk) · f(u(2k−1))

= 1
πk+α(1−πk) · u

(2k) � 1
πk+α(1−πk) · u

(2k+2).

Hence (πk + α(1− πk)) · u(2k+1) � u(2k+2), so by the definition of πk+1

πk + α(1− πk) ≤ πk+1.

It follows that 1− πk+1 ≤ (1− α)(1− πk) for all k ≥ 1 and therefore

1− πk+1 ≤ (1− π1)(1− α)k
k→∞−−−−→ 0.

But πk ≤ 1 for all k, so limk πk = 1.

Consider some ε > 0. Then πk > 1− ε for all k � 0. Equation (i) implies

(1− ε) · u(2k−1) � πk · u(2k−1) � u(2k) � u(2k−1).

Letting k →∞ this implies (1− ε)u(odd) � u(ev) � u(odd). Since ε > 0 was arbitrary,

u(ev) = u(odd)

as needed. We will denote u∗ := u(ev) = u(odd).

Write fn : X → X for the n-fold composition of f with itself: fn = f ◦ · · · ◦ f . Since 0 ∈ X is minimal, u(0) � x for
any x ∈ X . Since f is order reversing, u(0) � f(x) � u(1). It then follows by induction that for all k ≥ 1

f2k−1(X) ⊆ [u(2k−2), u(2k−1)]X

f2k(X) ⊆ [u(2k), u(2k−1)]X .

We deduce that ⋂
n≥1

fn(X) =
⋂
k≥1

f2k−1(X) ∩ f2k(X)

⊆
⋂
k≥1

[u(2k−2), u(2k−1)]X ∩ [u(2k), u(2k−1)]X

= [u(ev), u(odd)]X = {u∗}.
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Notice that u∗ ∈ [u(2k), u(2k−1)]X (resp. u∗ ∈ [u(2k−2), u(2k−1)]X ) for all k ≥ 1, so since f is order reversing
f(u∗) ∈ [u(2k), u(2k+1)]X (resp. u∗ ∈ [u(2k), u(2k−1)]X ) for all k. Therefore f(u∗) ∈ {u∗}, so u∗ is a fixed point of
f .

If y ∈ X is a fixed point of f then by induction y ∈ fn(X) for all n, so y ∈ ∩nfn(X) = {u∗} and it follows that
y = u∗. Therefore u∗ is the unique fixed point of f .

Finally, choose some x ∈ X and define a sequence by recursion x(0) = x and x(n+1) = f(x(n)). Then u(0) = 0 � x
and since f is order reversing, u(0) � x(1) � u(1). Then one proves by induction that u(2k−2) � x(2k−1) � u(2k−1)

and u(2k) � x(2k) � u(2k−1) for all k ≥ 1. By the sandwich rule limn x
(n) = u∗.

We can now prove the following.
Theorem 3.3. A function Φw : X → X , based on some argumentation kernel functions, satisfies the conditions of
Theorem 3.2. That is, Φw is order reversing and there exists 0 < α ≤ 1 such that Φw(tx) � 1

t+α(1−t)Φw(x), for any
x ∈ X and any 0 ≤ t ≤ 1.

Proof. Since ϕi are monotonic, we get that if x � y then for any i

Φw(x)i =
wi

1 + ϕi(x)
≥ wi

1 + ϕi(y)
= Φw(y).

So Φw : X → X is order reversing. For the second condition, observe that the functions ψi : X → R defined by
ψi(x) = 1

1+ϕi(x) are well defined, continuous and take value in the interval (0, 1]. Since X is compact, set

α = min
i

min
x∈X

1
1+ϕi(x) .

Then 0 < α ≤ 1. By construction, for any x ∈ X and any 0 ≤ t ≤ 1 and any i = 1, . . . , n

Φw(tx)i =
wi

1 + ϕi(x)

=
wi

(1− t) + t(1 + ϕi(x))

=

wi

1+ϕi(x)

t+ (1− t) 1
1+ϕi(x)

≤ 1

t+ α(1− t)
Φw(x)i.

Notice that the denominator is always positive. It follows that Φw(tx) � 1
t+α(1−t)Φw(x).

This theorem, combined with Theorem 3.2 directly proves Theorem 3.1.
Definition 3.4. Let ϕi be some argumentation kernel functions, for i = 1, . . . , n andW = [0, 1]n. We define a function
hϕ : W → X such that hϕ((w1, . . . , wn)) is the unique fixed point of Φw. The image of hϕ will be denoted by Hϕ

and will also be referred to as the acceptability degree space in later sections. We also define a function kϕ : X → Rn
such that kϕ(x)i = xi(1 + ϕi(x)).

We can demonstrate that any semantics which builds on an argumentation kernel is continuous through the following
theorem.
Theorem 3.5. The restriction of kϕ to Hϕ gives a homeomorphism kϕ : Hϕ →W whose inverse is hϕ. In particular
hϕ : W → X restricts to a homeomorphism onto Hϕ.

Proof. Consider some x ∈ Hϕ. Then x = h(w) for some w = (w1, . . . , wn) ∈ W . By definition x is a fixed point
of Φw : X → X so xi = wi

1+ϕi(x) for all i = 1, . . . , n, which is equivalent to wi = xi(1 + ϕi(x)). In other words,
kϕ(x) = w. We see that kϕ restricts to a function kϕ : Hϕ → W and moreover kϕ(hϕ(w)) = w for all w ∈ W .
Observe thus that kϕ : Hϕ →W is surjective.
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Suppose that x, x′ ∈ Hϕ are such that kϕ(x) = kϕ(x′). That is, kϕ(x) = kϕ(x′) = w ∈ W . But kϕ(x) = w means
that wi = xi(1 + ϕi(x)) so x is a fixed point of Φw : X → X . Similarly, kϕ(x′) = w means that x′ is a fixed point of
Φw. But Φw has a unique fixed point in X , so x = x′. It follows that kϕ : Hϕ →W is injective. Thus, kϕ is bijective,
and kϕ ◦ hϕ yielding w implies that k−1

ϕ = hϕ.

Next, we claim that Hϕ is a closed subset of X , hence it is compact. To see this, let x(i) ∈ Hϕ be a convergent sequence
in X with limit y. Set w(i) = kϕ(x(i)). Then w(i) in W and since kϕ is continuous limi w

(i) = limi kϕ(x(i)) = kϕ(y).
Since W is closed in Rn we deduce that kϕ(y) ∈ W . But since hϕ is the inverse of kϕ : Hϕ → W this implies that
y = hϕ(kϕ(y) ∈ Hϕ. This shows that Hϕ is closed, as needed.

Thus, Hϕ is a compact subset of Rn and kϕ is a bijective continuous function between compact metric spaces. It is
therefore a homeomorphism, and consequently so is hϕ : Wϕ → H .

The previous theorem is crucial as it shows that for any gradual semantics based on argumentation kernel functions and
any arbitrary WAF, one cannot obtain the same scoring function with two different weighting functions on arguments.
The continuity is also an important result which will be used during the bisection method to solve the inverse problem,
as per [2].

4 The Inverse Problem

Recall that our goal is to find a set of initial weights which, when applied to a specific argumentation framework under
the chosen semantics will result in a desired preference ordering, derived from the numeric acceptance degree computed
for each argument.

The approach described in [2] makes use of two phases to solve the inverse problem. In the first phase, a target
acceptance degree is computed for each argument. In the second phase, a numerical method (the bisection method) is
used to find the initial weights which lead to this acceptance degree. Since the bisection method is designed to find
the zeros of a function with only one variable, and since changing the initial weight of one argument can affect the
acceptance degree of other arguments, repeated applications of the bisection method are often necessary. [2] identify
several strategies for selecting the argument to which the bisection method should be applied, and demonstrate that
selecting the argument whose current acceptance degree is furthest away from its target acceptance degree works well
in practice.

In this work we will provide an alternative approach to calculate the initial weights to achieve a desired acceptance
degree. We therefore recall how [2] identifies target acceptance degrees for solving the inverse problem. We begin by
noting that the desired preference orderings can be represented as a sequence of non-empty sets [Ar0, . . . , Arn] which
partition the set of arguments A such that for any a, b ∈ Ari, 0 ≤ i ≤ n, a ' b, and for any a ∈ Ari, b ∈ Arj where
0 ≤ i < j ≤ n, a . b.

Algorithm 1, taken from [2], associates a minimal upper bound with every argument in the system. This minimal
upper bound — in effect — identifies an achievable final degree for an argument by assuming that all of an argument’s
attackers have some large value.

If we consider argumentation kernel functions ϕi(x) instead, what Algorithm 1 does is identify a maximum value for
ϕi(x) in terms of other arguments in the system, and set the minimal upper bound based on this value. The main part of
the algorithm can therefore be more generally rewritten for our larger class of semantics as shown in Algorithm 2.

We now depart from [2]; whereas they used the bisection method to identify initial weights for arguments which achieve
the desired acceptability degrees, we consider an analytic approach for doing so.

5 Computing Initial Weights from Acceptability Degrees

In this section we identify a vector representation for each semantics which allows us to compute appropriate initial
weights. Namely, given an arbitrary WAF F = 〈A,D, w〉 such that A = {a1, a2, . . . , an},−→w is the column vector
(w(a1), w(a2), . . . , w(an))T , and A is the adjacency matrix where Aij = 1 iff (aj , ai) ∈ D and 0 otherwise. Note that
−→
1 is a column vector containing 1s of length equal to |A|.

For each semantics σX , for X ∈ {MB,CB,HC}, we denote by
−→
X∞, the column vector

(σFX(a1), σFX(a2), . . . , σFX(an))T containing the acceptability degrees of all arguments. We now consider each seman-
tics in turn.

6
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Algorithm 1 Computing arguments’ minimal upper bounds.
function COMPUTEBOUNDS([], _, _)

return {}
end function

function COMPUTEBOUNDS([Ar0, . . . , Arn],max, σ)
switch σ do

case σMB : min← max/(1 +max+ ζ)

case σHC : min← max/(1 + max
a∈Ar0

|Att(a)|+ ζ)

case σCB : min← max/(2 + max
a∈Ar0

|Att(a)|+ ζ)

return {(Ar0,min)}∪ COMPUTEBOUNDS([Ar1, . . . , Arn],min, σ)
end function

function COMPUTEBOUNDS([Ar0, . . . , Arn], σ)
return COMPUTEBOUNDS([Ar0, . . . , Arn], 1, σ)

end function

Algorithm 2 More general computation of arguments’ minimal upper bound using an argumentation kernel.
function COMPUTEBOUNDS([Ar0, . . . , Arn],max, σ)

Let ϕi be the argumentation kernel of σ
Let m be the maximal value of ϕi when evaluated for i over all arguments in Ar0.
min← max/(1 +m+ ζ)
return {(Ar0,min)}∪ COMPUTEBOUNDS([Ar1, . . . , Arn],min, σ)

end function

5.1 H-categorizer semantics

As we will do for all other semantics, we examine the equation for the weighted h-categorizer semantics once
convergence has taken place. It holds that:

−−→
HC∞ =

−→w
−→
1 + A

−−→
HC∞

Here, the division occurs in an element-wise manner. We can rewrite this equation as:

−−→
HC∞ + MA

−−→
HC∞ = −→w

Where M is the diagonal matrix such that Mii = σFHC(ai), for 1 ≤ i ≤ n, and 0 otherwise. Since we know the values
of
−−→
HC∞ and M (the minimum upper bounds), as well as A (the adjacency matrix obtained from the structure of our

argumentation graph), we can therefore compute −→w (the initial weights) directly from the above equation.

5.2 Card-Based Semantics

Following the same process as above, at convergence, the weighted card-based semantics can be written as:

−−→
CB∞ + D

−−→
CB∞ + D−1MA

−−→
CB∞ = −→w

Here D is the diagonal matrix such that Dii = |Att∗(ai)|, for 1 ≤ i ≤ n, and 0 otherwise. Note that this matrix will
contain only 0s in row i if argument ai is unattacked or all its attackers have an initial weight of 0. However from the
definition of the semantics, the acceptability degree of such an argument should be equal to its initial weight. In cases
where the diagonal element is non-zero, we can simply solve the equation by performing an index-wise calculation.
Notice that D−1 is also a diagonal matrix where the elements are the reciprocal of the diagonal elements of D.

7
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a0 a1 a2 a3

σFHC 0.5 0.167 0.0278 0.167
σFMB 0.333 0.111 0.037 0.111
σFCB 0.333 0.0833 0.012 0.083

Table 2: Acceptability degrees computed by Algorithm 1 (ζ = 1)

w(a0) w(a1) w(a2) w(a3)

σHC 0.5 0.194 0.052 0.167
σMB 0.333 0.123 0.0494 0.111
σCB 0.333 0.174 0.061 0.083

Table 3: Initial weights computed for each semantics

5.3 Weighted Max-Based Semantics

The max operation present in these semantics can be written in a vector format as:

−→w =
−−→
MB∞ + Mmax{AO},

Where O is a square matrix whose columns are all equal to the vector
−−→
MB∞, and max{AO} takes the largest element

from each row of AO to form a column vector.

5.4 Generalisation

We observe that in general, the function kϕ, as per Definition 3.4, can be used to compute the initial weights by passing
the desired final degree as input (i.e., given an acceptability degree vector h ∈ Hϕ, we can compute kϕ(h) to obtain our
initial weights analytically).
Example 5.1. Consider the argumentation system shown in Figure 1, and assume we wish to obtain the preference
ordering a0 . a1 ' a3 . a2. Table 2 show, for each semantics, the acceptability degrees as computed by Algorithm 1
(assuming ζ = 1). Table 3 then shows the initial weights necessary to achieve these acceptability degrees.

5.5 Properties

Our results from the previous sections address the Weighting Validity conjecture described in [2], which states that
initial weights can be found such that the acceptability degrees of each argument is equal to the corresponding the
minimum upper bound generated by Algorithm 1.

We can also easily see that decreasing (resp. increasing) the acceptability degree of some arguments without increasing
(resp. decreasing) the degree of any other arguments can only come about by only decreasing (resp. increasing) some
initial weights while not increasing (resp. decreasing) any initial weights.
Proposition 5.2. Let us consider two WAFs F = 〈{a1, a2, . . . , an},D, w〉 and F ′ = 〈{a1, a2, . . . , an},D, w′〉
and the two corresponding acceptability degree vectors

−→
X∞,

−→
X ′∞, for X ∈ {HC,MB,CB} such that for any

1 ≤ i, j ≤ n, (
−→
X∞)i ≤ (

−→
X ′∞)j (resp.(

−→
X∞)i ≥ (

−→
X ′∞)j), it is the case that for any 1 ≤ i, j ≤ n,−→w i ≤

−→
w′j (resp.

−→w i ≥
−→
w′j).

It trivially follows that for X ∈ {HC,MB,CB}, if
−→
X∞ is a valid acceptability degree vector, so is any

−→
X ′∞ such

that for any 1 ≤ i ≤ n, 0 ≤ (
−→
X ′∞)i ≤ (

−→
X∞)i. Similarly, increasing the acceptability degree of one argument will

increase (or not affect) all initial weights, but we must then ensure that no initial weights exceeds 1. For example, if
F = 〈{a}, {(a, a)}, w〉 with w(a) = 1 then σFHC(a) ≈ 0.62. In this case, it is not possible to increase the acceptability
degree of a without the initial weight of a going above 1.

The result of Theorem 3.5 demonstrates that for any given unweighted argumentation graph, the acceptability degree
space (i.e., the set of all valid acceptability degree vectors Hϕ) for σ ∈ {σMB , σCB , σHC}, will be continuous. Namely,
we can always find a sequence of acceptability degree vectors that “links” two acceptability degree vectors. This
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builds on the result of [2], which demonstrated continuity, but only in the interval [0,∞). However, this result does

not mean that the acceptability degree space will be convex, i.e. if
−−→
X1
∞ and

−−→
X2
∞ are two valid acceptability degree

vectors, then α
−−→
X1
∞ + (1− α)

−−→
X2
∞, for α ∈ [0, 1], will not always be a valid acceptability degree vector. For example,

if 〈{a1, a2, a3}, {(a1, a2), (a2, a1), (a1, a3), (a2, a3)}〉 is an unweighted argumentation graph, we can find weighting
functions such that both (0, 0, 1) and (1, 0, 0.5) are valid acceptability degree vectors w.r.t. σHC but there is no α ∈]0, 1[
such that α(0, 0, 1) + (1− α)(1, 0, 0.5) is a valid acceptability degree vector.

In the next proposition, we show that having self-attacking arguments prevent us from achieving some acceptability
degree vectors.

Proposition 5.3. Given an unweighted argumentation graph 〈{a1, a2, . . . an},D〉, for all for X ∈ {HC,MB,CB},
i ∈ {1, . . . , n}, there exists

−−→
X∞ in the acceptability degree space such that [

−−→
X∞]i = 1 iff there is no a ∈ {a1, . . . , an}

such that (a, a) ∈ D.

Proof. This proof is split into two parts. First, assume that there is a self-attacking argument ai ∈ A, it is easy to show
that the maximum acceptability degree of ai is (−1 +

√
5)/2 ' 0.618, for σHC and σMB , and −1 +

√
2 ' 0.41 for

σCB , thus it is not possible to find an acceptability degree vector
−−→
X∞ such that [

−−→
X∞]i = 1, for X ∈ {HC,MB,CB}.

Now, assume that there are no self-attacking arguments in A, then for all X ∈ {HC,MB,CB}, i ∈ {1, . . . , n}, we
can create an acceptability degree vector

−−→
X∞ such that [

−−→
X∞]i = 1 by putting the weight of ai to 1 and the initial

weights of all other arguments to 0.

Definition 5.4. Given two unweighted argumentation graphs 〈A,D〉 and 〈A′,D′〉, we say that f is an isomorphism
from A to A′ if (a, b) ∈ D iff (f(a), f(b)) ∈ D′.

The next proposition shows that isomorphic arguments will induce a symmetry effect in the acceptability degree space.

Proposition 5.5. Given an unweighted argumentation graph 〈A,D〉,A = {a1, . . . , an} and ai, aj ∈ A such that
there is an isomorphism f from A to A and f(ai) = aj , it holds that for all X ∈ {HC,MB,CB},

−−→
X∞ is in the

acceptability degree space iff ([
−−→
X∞]1, . . . , [

−−→
X∞]i−1, [

−−→
X∞]j , [

−−→
X∞]i+1, . . . , [

−−→
X∞]j−1, [

−−→
X∞]i, [

−−→
X∞]j+1, . . . , [

−−→
X∞]n)T

is in the acceptability degree space.

The previous proposition follows directly from the anonymity principle which is satisfied by all three semantics
studied in the paper [4]. One important observation is that, apart from the structure of the graph, the semantics chosen
also plays an important role in the shape of the acceptability degree space. For instance, if we consider a complete
graph of size n with self-attacking arguments, the acceptability degree space for σMB is {(v1, v2, . . . , vn)T | ∀i ∈
{1, . . . , n}, 0 ≤ vi ≤ (−1+

√
5)/2} while for σCB it is {(v1, v2, . . . , vn)T | ∀i ∈ {1, . . . , n}, 0 ≤ vi ≤ (−1+

√
5)/2

and vi(1 +
∑n
j=1 vj) ∈ [0, 1]}. We provide an graphical representation of the acceptability degree space for σHC on an

example in Figure 2. It is clear here that the acceptability degree space for σCB is a subset of the acceptability degree
space for σMB for all n > 0. In the next proposition, we show that this inclusion holds in the general case.

Proposition 5.6. Given an arbitrary unweighted argumentation graph 〈A,D〉,A = {a1, . . . , an}, the acceptability
degree space for σHC is a subset of the acceptability degree space for σMB .

Proof. Let us consider an arbitrary acceptability degree vector
−−→
HC∞ = (v1, . . . , vn) such that vi ∈ [0, 1] for all

1 ≤ i ≤ n. We show that this vector is in the acceptability degree space for σMB . By definition, we know that for all i ∈
{1, . . . , n}, 0 ≤ vi(1 +

∑
aj∈Att(ai) vj) ≤ 1. It follows that for all i ∈ {1, . . . , n}, 0 ≤ vi(1 + maxaj∈Att(ai) vj) ≤ 1

and thus,
−−→
HC∞ is in the acceptability degree space for σMB .

The final property we consider is monotonicity, which — together with continuity — is required for the bisection
method of [2] to operate. Due to space constraints, we only prove this result for the weighted h-categoriser semantics.
This means that we fix our argumentation kernel function of Section 3 to be ϕi(x) = ‖(Ax)i‖1 =

∑
ai,jxj .

We will equip Rn with the L∞ norm. Recall that there is an induced operator norm [9] on the set of all linear
transformations of Rn which we denote as End(Rn) ∼= Matn×n(R) where for any matrix A we set this operator norm

9
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Figure 2: Representation of the acceptability degree space for σHC on a complete argumentation graph with 3 arguments (in blue).
Each axis represents the acceptability degree of one argument.

as

‖A‖ = sup{‖Ax‖∞
‖x‖∞

: 0 6= x ∈ Rn}

= max{‖Ax‖∞ : x ∈ Rn, ‖x‖∞ = 1}

= max{‖Ax‖∞
‖x‖∞

: 0 6= x ∈ Rn}.

It is well known (and easy to check) that this defines a norm on End(Rn). Since all norms on Rk are equivalent, the
operator norm makes End(Rn) a complete normed space. By definition for any x ∈ Rn

‖Ax‖∞ ≤ ‖A‖ · ‖x‖∞
Moreover, the operator norm is multiplicative, namely

‖AB‖ ≤ ‖A‖ · ‖B‖

This is a standard construction, see for example [9, Section 5.2 and Theorem 5.3 and Remark 5.4(1)].

Lemma 5.7. Consider a matrix A ∈ Matn×n(R) such that for every i = 1, . . . n

(a) ai,i = 0

(b)
∑
j |ai,j | < 1.

Then det(I +A) > 0.

Proof. First we show that any matrix A with these properties is invertible. For any x ∈ Rn with ‖x‖∞ = 1 we get

‖Ax‖∞ = max
i
|Axi| = max

i
|
∑
j

ai,jxj |

≤ max
i

∑
j

|ai,j | · |xj | ≤ max
i

∑
j

|ai,j |

It follows that ‖A‖ ≤ maxi
∑
j |ai,j | < 1. Since End(Rn) with the operators norm is complete, B =

∑∞
k=0(−1)kAk

converges and B(I +A) = I . It follows that I +A is invertible.

Let U ⊆ Matn×n(R) be the (open) subset of all matrices A satisfying the conditions in the lemma. Clearly 0 ∈ U .
Moreover U is path connected since for any A ∈ U the function λ : [0, 1]

t 7→tA−−−→ Matn×n(R) gives a path in U from 0
toA. The function f : U → R defined by f(A) = det(I+A) is clearly continuous. Since I+A is invertible, f(A) 6= 0
for all A ∈ U . Since f(0) = 1 > 0, the intermediate value theorem implies that f(A) > 0 for all A ∈ U .

Corollary 5.8. Let M ∈ Matn×n(R) be a matrix which satisfies the conditions

1. mi,j ≥ 0 for all i, j

10
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2. mi,i >
∑
j 6=imi,j for every i = 1, . . . , n.

Then det(M) > 0.

Proof. The conditions imply mi,i > 0 for all i = 1, . . . , n. By inspection

diag(m−1
1,1, . . . ,m

−1
n,n) ·M = I +A

where A is of the form in Lemma 5.7. Then det(M) = det(I +A) ·
∏
imi,i > 0.

M =


1 + a1,1x1 +

∑
j a1,jxj a1,2x1 a1,3x1 · · · a1,nx1

a2,1x2 1 + a2,2x2 +
∑
j a2,jxj a2,3x2 · · · a2,nx2

...
. . .

...
an,1xn an,2xn an,3xn · · · 1 + an,nxn +

∑
j an,jxj


Figure 3: The matrix of the M with entries ∂hi

∂x`

Corollary 5.9. Let A be an n × n matrix with 0 ≤ ai,j ≤ 1. Let x ∈ Rn be a column vector with 0 ≤ xi ≤ 1. Let
δ1, . . . , δn > 0. Let M be the matrix given by

mi,j =

{
δi +

∑
k ai,kxk if i = j

ai,jxi if i 6= j

Then det(M) > 0 and moreover the diagonal entries of M−1 are positive, i.e (M−1)i,i > 0 for all i.

Proof. First, we show that all matrices M of this form have det(M) > 0. Let M ′ be the matrix with m′i,i = mi,i and
m′i,j = ai,jxj . Observe that m′i,j ≥ 0 and that for any i

m′i,i = δi +
∑
j

ai,jxj >
∑
j 6=i

ai,jxj =
∑
j 6=i

m′i,j .

By Corollary 5.8 det(M ′) > 0.

Let Sn denote a permutation of n symbols. For any σ ∈ Sn, let fix(σ) denote those symbols which the permutation
does not shift (i.e., the fixed points of σ) and supp(σ) those symbols which are permuted (i.e., its support). Clearly, σ
induces a permutation of supp(σ). Therefore∏

i∈supp(σ)

mi,σ(i) =
∏

i∈supp(σ)

ai,σ(i)xi

=
∏

i∈supp(σ)

ai,σ(i) ·
∏

i∈supp(σ)

xi

=
∏

i∈supp(σ)

ai,σ(i) ·
∏

i∈supp(σ)

xσ(i)

=
∏

i∈supp(σ)

ai,σ(i)xσ(i) =
∏

i∈supp(σ)

m′i,σ(i).

We can now compute

det(M) =
∑
σ∈Sn

(−1)σ
∏
i

mi,σ(i)

=
∑
σ∈Sn

(−1)σ
∏

i∈fix(σ)

mi,i ·
∏

i∈supp(σ)

mi,σ(i)

=
∑
σ∈Sn

(−1)σ
∏

i∈fix(σ)

m′i,i ·
∏

i∈supp(σ)

m′i,σ(i)

=
∑
σ∈Sn

(−1)σ
∏
i

m′i,σ(i)

= det(M ′) > 0.
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We have shown that all matrices M of the form in the statement (for any n) have positive determinant and in particular
they are invertible. Let M [i, j] denote the (i, j)-minor of M , namely the (n− 1)× (n− 1) matrix formed by deleting
the ith row and jth column of M . A consequence of Cramer’s rule

(M−1)i,i =
det(M [i, i])

det(M)
.

Notice that M [i, i] is a matrix of the form in the statement (with A replaced with A′ = A[i, i] and x replaced
with x′ = (x1, . . . , x̂i, . . . , xn) and δi replaced with some δ′i > δi). So det(M [i, i]) > 0 and as a consequence
(M−1)i,i > 0.

Let A denote the adjacency matrix of a directed WAF F . We can now apply these results to the argumentation kernel
functions for σHC .
Theorem 5.10. Let hϕ : W → Hϕ and kϕ : Hϕ → W be associated with the argumentation kernel functions
ϕi(x) = ‖(Ax)i‖1 =

∑
ai,jxj . Then hϕ and kϕ are C∞ (differentiable infinitely many often) and moreover, for every

w ∈W and every i
∂hi
∂wi

(w) > 0.

In particular hϕ is increasing in each fibre, i.e if w,w′ ∈W are such that w′ − w = (0, . . . , 0, εi, 0, . . . , 0) for some
εi > 0 then hϕ(w) < hϕ(w′).

Proof. The function kϕ is the restriction to Hϕ of the C∞ function kϕ : Rn → Rn

kϕ(x)i = xi(1 +
∑
j

ai,jxj).

For any ` = 1, . . . , n, we get
∂ki
∂x`

= δi,`(1 +
∑
j

ai,jxj) + xiai,`.

The derivative of kϕ at x ∈ Rn is the matrix M with entries ∂hi

∂x`
so

Mi,` =

{
1 +

∑
j ai,jxj + ai,`xi if i = `

ai,`xi if i 6= `.

In matrix form this can be written as M = I + diag(Ax) + diag(x)A, which — by inspection — takes the form of the
matrix shown in Figure 3.

Thus, M has the form in Corollary 5.9 and we deduce that det(M) > 0 and the diagonal of M−1 has positive entries.
In particular M is invertible. By the inverse function theorem k is invertible in a neighbourhood of x with an inverse
k−1
ϕ defined in a neighbourhood U of y = kϕ(x) and the derivative of k−1

ϕ at y is equal to M−1.

Consider some w ∈W and set x = hϕ(w). We have seen that the matrix M of the derivative of kϕ at x is invertible
and M−1 has positive diagonal entries. Also kϕ is invertible at a neighbourhood of x with inverse k−1

ϕ defined in a
neighbourhood U of kϕ(x) = w and with derivative M−1 at w. But hϕ is the inverse of kϕ|Hϕ

so hϕ must coincide
with k−1

ϕ on U ∩W and in particular hϕ is C∞ at w and its derivative is given by M−1 whose diagonal entries are
positive.

6 Conclusions and Future Work

Like [2], this paper primarily examines the inverse problem in gradual argumentation semantics. It proves several
conjectures made in that work, namely demonstrating that the HC,MB and CB semantics are continuous, and that
the HC semantics are strongly monotonic. In addition, we prove that a more general class of gradual semantics is
continuous, and has a unique fixed point, than done in work such as [3, 4]. Using these properties we demonstrate that
— for any semantics which can be represented using an argumentation kernel — we can compute the initial weights
analytically, obviating the need for the numerical method described in [2].

We are pursuing several avenues of future work. First, we want to investigate whether our monotonicity results can be
extended to more general argumentation kernels, as well as investigating which existing weighted and ranking semantics
(e.g., [10, 11, 12]) can be represented using such argumentation kernels, and whether there is an overlap between the

12



Analytical Solutions for the Inverse Problem within Gradual Semantics

argumentation kernel approach and the properties described in [4, 8]. Second, we would like to further investigate the
utility of the class of semantics described by argumentation kernels, and identify whether useful semantics exist which
cannot be described by such kernels but which still respect monotonicity and continuity. If such semantics are found,
then the we wish to determine whether an analytical solution to the inverse problem for such semantics can be found, or
whether a numerical method for solving the inverse problem in such cases is applicable. In addition, characterising the
shape of the applicability degree in terms of a semantics and initial weights may yield interesting insights. We want to
examine how our work can be applied to dynamic argumentation and sensitivity analysis of arguments. In effect, our
work is an initial step to asking by how much an argument must change in order to change some conclusion. However,
it does not (as yet) provide a lower bound to this change, but rather only a sufficient bound. Finally, we observe that the
use of argumentation kernel functions have the potential to allow different arguments to compute a final acceptability
degree in different ways. This could allow for the modelling of — for example — different acceptability degrees arising
from different types of arguments, c.f., argumentation schemes, and serves as an exciting avenue of future research.
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