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Abstract

Gradual semantics with abstract argumentation provide each argument with a
score reflecting its acceptability, i.e. how “much” it is attacked by other arguments.
Many different gradual semantics have been proposed in the literature, each fol-
lowing different principles and producing different argument rankings. A sub-class
of such semantics, the so-called weighted semantics, takes, in addition to the graph
structure, an initial set of weights over the arguments as input, with these weights
affecting the resultant argument ranking. In this work, we consider the inverse
problem over such weighted semantics. That is, given an argumentation frame-
work and a desired argument ranking, we ask whether there exist initial weights
such that a particular semantics produces the given ranking. The contribution of
this paper are: (1) an algorithm to answer this problem, (2) a characterisation of
the properties that a gradual semantics must satisfy for the algorithm to operate,
and (3) an empirical evaluation of the proposed algorithm.

1 Introduction
Abstract argumentation semantics aim to identify the justification status of arguments
by considering interactions between arguments. Such semantics typically operate over
a directed graph, with nodes representing the (abstract) arguments, and directed edges
denoting the interactions between them, e.g., attacks or supports among others. Stan-
dard argumentation semantics [5, 13, 8] identify sets of arguments which are consid-
ered justified (as well as unjustified and undecided). In contrast, ranking-based se-
mantics seek to assign a ranking (or ordering) over arguments, with higher ranked
arguments being considered more justified (or “less attacked”) than lower ranked argu-
ments. Such rankings are — in most ranking-based semantics — determined by assign-
ing numerical values (called acceptability degrees) to all arguments, with the ranking
on arguments being computed based on the numerical ordering. Those ranking-based
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semantics are called gradual semantics. Note that not all ranking-based semantics fol-
low this numerical approach. For instance, the ranking on arguments obtained from the
burden-based or the discussion-based semantics, defined in [1], are computed using the
lexicographical order on vectors of argument scores.

While some ranking-based semantics [1, 6, 12, 2] only consider the structure of a
standard Dung’s argumentation framework, others take in one or more additional fea-
tures, such as a set of initial weights for each argument [10, 4]; weights for attacks
between arguments [9, 26]; a support relation [20, 19, 22]; or even set attacks [27]. In
most gradual semantics, the final acceptability degree of an argument then depends on
a range of parameters. In this paper, we focus on gradual semantics which take into
account the structure of the graph, the initial weights of arguments, and the peculiar-
ities of the semantics being used. Of course, the proposed approach could easily be
generalised to other settings.

Rather than describing how an initial set of argument weights map to a ranking on
arguments via some semantics, in this paper we consider the inverse problem. That is,
given an abstract argumentation framework and a desired ranking on arguments, we
seek to identify what initial weights should be assigned to arguments so as to obtain the
desired argument ranking. We provide an algorithm for undertaking this task for a set
of well-known gradual semantics (trust-based, iterative-schema, weighted max-based,
weighted card-based, and weighted h-categorizer semantics) which satisfy some basic
properties, and then empirically evaluate the algorithm’s performance.

While we do not discuss the applications of our results, we note that potential areas
in which they can be used include persuasion [21] and preference elicitation [18].

The remainder of this paper is structured as follows. First, in Section 2, we pro-
vide the necessary background to understand our approach. Second, in Section 3, we
describe our algorithm. In Section 4, we highlight the requisite properties of the se-
mantics over which the algorithm operates. Our empirical evaluation is detailed in
Section 5, and we discuss potential applications of this work as well as avenues for
future research in Section 6.

2 Background
We begin this section by providing a brief overview of abstract argumentation, as well
as several gradual semantics. Following this, we introduce the bisection method, a
simple technique for finding the roots of an equation which lies at the heart of our
approach.

2.1 Argumentation
We situate our approach in the context of abstract argumentation. Here, arguments are
atomic entities which interact with each other via a binary attack relationship. Such
systems are easily encoded as directed graphs (c.f., [13]). In this paper, since our
departure point involves assigning each argument an initial weight, we instead consider
weighted argumentation frameworks (WAFs) [14, 3].
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Definition 1 (WAF) A weighted argumentation framework (WAF) is a triple F =
〈A,D, w〉, where A is a finite set of arguments, D ⊆ A × A is a binary attack re-
lation, and w : A → [0, 1] is a weighting function assigning an initial weight to each
argument.

The set of attackers of an argument a ∈ A is denoted as Att(a) = {b ∈ A |
(b, a) ∈ D}.

A ranking-based semantics allows us to move from a weighted argumentation frame-
work to a ranking over arguments. While myriad semantics have been proposed, we
consider the gradual semantics described in [4] due to this work’s recency and the
popularity of the semantics described therein. We note in advance that some of these
semantics do not work with our approach, but we will use these to help explain the
properties of those semantics to which our approach applies. Furthermore, while [6]
describes 13 ranking-based semantics, it is only these gradual semantics which allow
for an initial weight to be assigned to an argument.

Definition 2 (Gradual Semantics) A gradual semantics σ is a function that asso-
ciates to each weighted argumentation graph F = 〈A,D, w〉, a scoring function
σF : A → [0, 1] that provides an acceptability degree to each argument. In this paper,
we consider the gradual semantics σx, for x ∈ {TB, IS,MB,CB,HC}, defined as
follows.

• The trust-based semantics σTB [10] is defined such that the acceptability degree
of an argument a ∈ A is σFTB(a) = TB∞(a), where TBi(a) = 1

2 ·TBi−1(a)+
1
2 ·min(w(a), 1− max

b∈Att(a)
TBi−1(b)) and for all b ∈ A, TB0(b) = w(b).

• The iterative-schema semantics σIS [15] is defined such that the acceptability
degree of an argument a ∈ A is σFIS(a) = IS∞(a), where ISi(a) = (1 −
ISi−1(a))·min( 12 , 1− max

b∈Att(a)
ISi−1(b))+ISi−1(a)·max( 12 , 1− max

b∈Att(a)
ISi−1(b))

and for all b ∈ A, IS0(b) = w(b).

• The weighted max-based semantics σMB [4] is defined such that the acceptabil-
ity degree of an argument a ∈ A is σFMB(a) = MB∞(a), where MBi(a) =

w(a)
1+ max

b∈Att(a)
MBi−1(b)

and for all b ∈ A,MB0(b) = w(b) .

• The weighted card-based semantics σCB [4] is defined such that the acceptabil-
ity degree of an argument a ∈ A is σFCB(a) = CB∞(a) where CBi(a) =

w(a)

1+|Att∗(a)|+

∑
b∈Att∗(a)

CBi−1(b)

|Att∗(a)|

, for all b ∈ A, CB0(b) = w(b), and Att∗(a) =

{b ∈ Att(a) | w(b) > 0} if Att∗(a) 6= ∅ and w(a) otherwise.

• The weighted h-categorizer semantics σHC[4] is defined such that the accept-
ability degree of an argument a ∈ A is σFHC(a) = HC∞(a) where HCi(a) =

w(a)
1+

∑
b∈Att(a)

HCi−1(b)
and for all b ∈ A, HC0(b) = w(b) .
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a0

a1

a2 a3

Figure 1: Graphical representation of a WAF

With the exception of σIS , the ranking on arguments is obtained from the accept-
ability degree assigned to them. For σIS , the semantics returns those arguments whose
acceptability degree is set to 1. As usual, for every a, b ∈ A, we write a � b iff a � b
and b 6� a, a � b iff a 6� b, a ≺ b iff a 6� b, and a ' b iff a � b and a � b.

Example 1 LetF = 〈A,D, w〉 be a WAF, whereA = {a0, a1, a2, a3},D = {(a0, a2), (a1, a1), (a1, a2), (a2, a2),
(a3, a2)}, w(a0) = 0.43, w(a1) = 0.39, w(a2) = 0.92, and w(a3) = 0.3. The WAF
is represented in Figure 1 and the acceptability degrees for the gradual semantics of
Definition 2 are shown in Table 1.

a0 a1 a2 a3 Argument ranking

σFTB 0.43 0.39 0.50 0.30 a3 ≺ a1 ≺ a0 ≺ a2
σFIS 1.00 0.50 0.00 1.00 a2 ≺ a1 ≺ a0 ' a3
σFMB 0.43 0.30 0.58 0.30 a1 ' a3 ≺ a0 ≺ a2
σFHC 0.43 0.30 0.38 0.30 a1 ' a3 ≺ a2 ≺ a0
σFCB 0.43 0.18 0.17 0.30 a2 ≺ a1 ≺ a3 ≺ a0

Table 1: Acceptability degrees of the arguments from Figure 1

We note that the semantics described above are able to operate on cyclic graphs.
Semantics such as DF-Quad [22], while popular, are designed to operate on acyclic
graphs only, and we therefore ignore them in this work.

2.2 The Bisection Method
The algorithm we describe in Section 3 requires us to find the roots of a continuous
function. While many techniques for doing so exist [11, 7, 24], the bisection method
is easily understood and numerically stable, and is therefore used in our experiments.
Note that more advanced root finding methods could be used within our approach with
no loss of generality.

Algorithm 1 details the bisection method. As input, the method takes in a function
f , a tolerance ε, and upper and lower bound values (α and β respectively), such that
f(β) < 0 < f(α). A single iteration of the algorithm identifies the midpoint µ =
(α + β)/2. If f(µ) > 0, α is set to µ; if f(µ) < 0, β is set to µ, tightening the upper
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Algorithm 1 The bisection method.
function BISECT(f, α, β, ε)

µ← α+β
2

if |f(µ)| < ε then return µ
if f(µ) > 0 then return BISECT(f, µ, β, ε)
else return BISECT(f, α, µ, ε)

end function

and lower bounds. The process then repeats until the absolute value of the image of
the midpoint is sufficiently small, i.e., |f((α + β)/2)| < ε. Note that one can choose
to also stop when the distance between α and β is small. The number of iterations
required to achieve an error ε is bounded by dlog2((| α − β |)/ε)e. Note that for the
bisection method to work correctly and return a unique root, the function f must be
continuous and monotonic in the interval [α, β].

3 The Inverse Problem
Our aim in this work is to identify a set of initial weights to obtain some desired final
ranking on arguments. More formally, we take as input: (1) an unweighted argumenta-
tion framework 〈A,D〉, (2) a gradual semantics σ, and (3) a desired preference relation
�⊂ A×A. Our aim is to find a weighting function w such that in the resultant WAF
F = 〈A,D, w〉, for all a, b ∈ A, σF (a) ≥ σF (b) iff a � b.

In Sections 3.2 and 3.3, we describe an algorithm to identify an appropriate weight-
ing function. The proposed algorithm involves two phases. In phase 1, we identify an
achievable acceptability degree for an argument, taking into account the desired rank-
ing on arguments. In phase 2, we undertake a search — using the bisection method —
for the initial weights necessary to achieve this desired acceptability degree.

Before examining the algorithm, we consider several special cases of the inverse
problem.

3.1 Special Cases
We begin by considering the trust-based semantics. We note that, if w(a) < 0.5 for
all a ∈ A, then σFTB(a) = w(a), making the inverse problem trivial to solve in this
case. We note that while such a solution satisfies the inverse problem, it is at odds
with the intuition behind trust based semantics as described in [10]. In cases where,
for all a ∈ A, w(a) ≥ 0.5, the presence of cycles can mean that no solution exists
for the inverse problem under the σTB semantics. As an example of this, consider the
standard 3-cycle WAF: 〈{a, b, c}, {(a, b), (b, c), (c, a)}, w〉. If w(a), w(b), w(c) ≥ 0.5,
the acceptability degrees of all arguments will be 0.5.

Turning to the σIS semantics, we observe that it was designed to have acceptabil-
ity degrees converge to either 1, 0.5, or 0. This means that the inverse problem is
not always applicable to this semantics as it can only accommodate three levels of ac-
ceptability. Moreover, there are rankings which cannot be achieved, e.g. consider the
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simple WAF: 〈{a, b}, {(a, b)}, w〉, it is not possible to get a ≺ b as σFIS(a) = 1 and
σFIS(b) = 0, for any weighting w.

Finally, consider a fully connected graph. We can easily prove the following propo-
sition, which makes the solving the inverse problem on such graphs trivial.

Proposition 1 For a fully connected WAFF = 〈A,D, w〉, semantics σ ∈ {σMB , σCB , σHC}
and any arguments a, b ∈ A, σF (a) ≥ σF (b) iff w(a) ≥ w(b).

Given these special cases, in the remainder of the paper we consider only σMB , σCB
and σHC . We can trivially solve the inverse problem for fully connected graphs as all
the semantics will converge quickly, even in the presence of a significant number of
arguments and edges.

3.2 Phase 1: Computing Acceptability Degrees
We partition the set of arguments A into a sequence of non-empty sets of arguments
[Ar0, . . . , Arn] such that for any a, b ∈ Ari, 0 ≤ i ≤ n, a ' b, and for any a ∈
Ari, b ∈ Arj where 0 ≤ i < j ≤ n, a � b. Now consider an argument a ∈ Ar0. For
each semantics, we can reason as follows.

• σMB : Assume that a is attacked by an argument with acceptability degree 1. If
w(a) = 1, its acceptability degree can be at most 0.5.

• σCB : Assume that a is attacked by n other arguments with degree 1. Then its
acceptability degree can be at most 1/(2+n). If a is the most attacked argument
in Ar0, then all other arguments in Ar0 will have an acceptability degree equal
to or greater than this value.

• σHC : Assume that a is attacked by n other arguments with degree 1. Then its
acceptability degree can be at most 1/(1+n). If a is the most attacked argument
inAr0, then all other arguments will have an acceptability degree equal or greater
to this value.

We refer to the aforementioned values as the minimal upper bounds for the argu-
ments in Ar0, as this is the lowest value we are guaranteed to be able to achieve (with
the corresponding semantics) if the arguments in Ar0 have an initial weight of 1. Sim-
ilarly, the maximal upper bound for arguments in Ar0 is 1, achievable if all attackers
of arguments in Ar0 have an acceptability degree of 0. The idea is to make sure that
all the arguments from Ar0 have acceptability degree in the interval [mup, 1], where
mup is the minimal upper bound corresponding to the semantics in question, e.g. all
the arguments from Ar0 are within [ 1

1+n , 1] for σHC .
Now, consider Ar1. If the maximal upper bound of the acceptability degree of

these arguments is lower than the minimal upper bound for the arguments in Ar0, then
we will comply with our desired ranking on arguments. To achieve this, we set the
initial weights of arguments in Ar1 to (just below) the minimal upper bound of Ar0.
We can repeat this, computing initial weights, and concomitant maximal upper bounds
forAri by considering the minimal upper bounds ofAri−1. Algorithm 2 describes this
process. Note that a small constant ζ is added to the denominator in all cases to ensure
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that the minimal upper bound is still reduced for the special case where all arguments
in some Ari are unattacked.

Algorithm 2 Computing arguments’ minimal upper bounds
function COMPUTEBOUNDS([], , )

return {}
end function

function COMPUTEBOUNDS([Ar0, . . . , Arn],max, σ)
switch σ do

case σMB : min← max/(1 +max+ ζ)

case σHC : min← max/(1 + max
a∈Ar0

|Att(a)|+ ζ)

case σCB : min← max/(2 + max
a∈Ar0

|Att(a)|+ ζ)

return {(Ar0,min)}∪ COMPUTEBOUNDS([Ar1, . . . , Arn],min, σ)
end function

function COMPUTEBOUNDS([Ar0, . . . , Arn], σ)
return COMPUTEBOUNDS([Ar0, . . . , Arn], 1, σ)

end function

3.3 Phase 2: Finding the Initial Weights
Having identified appropriate minimum upper bounds for all Ar0 to Arn, we now turn
our attention to finding initial weights for each argument in these sets so as to have
that argument’s acceptability degree equal to the corresponding set’s minimum upper
bound. By doing this, we obtain our desired ranking on arguments.

Our approach to achieving this involves picking an argument and modifying its
initial weight (using the bisection method), causing it to approach its minimum upper
bound value. We then pick another argument and repeat this process, until all argu-
ments reach their desired values. There are several choices we must consider, and
optimisations possible, when instantiating this approach. The most obvious choices we
face revolve around selecting an argument for modification, and the decision of how
much to modify the selected argument by. Myriad strategies for argument selection are
possible, and in this work we consider 5 simple strategies:

S1 : Select more preferred arguments for modification first. The rationale here is that
such arguments have higher acceptability degrees, and fixing their values will
cause fewer perturbations in the remainder of the process.

S2 : Select less preferred arguments for modification first. Such arguments, with their
small degree, would have little influence on the network.

S3 : Select arguments further from their target degree first. By selecting arguments
with the largest error first, we may perturb the network less.
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S4 : Select arguments nearest their target degree first. These, due to needing only
minor perturbations, would have minimal effect on the rest of the argumentation
system.

S5 : Pick arguments at random. This is the baseline strategy.

Observe that additional strategies can be used, e.g. picking arguments with most,
or fewest attackers, or which attack most or fewest arguments, first. We leave consid-
eration of such strategies to future work.

It is important to note that the bisection method is only guaranteed to work for a
function with a single variable, and the selection of an appropriate strategy is therefore
critical to our algorithm’s success. As discussed in Section 5, some of these strategies
work much better than others, but we are unable to provide an analytical proof of
correctness for any of the strategies.

With regards to how much we should modify a selected argument, we could do so
until it is within some tolerance ε of its acceptability degree, or until a certain number
of iterations of the bisection method have been carried out. The rationale behind the
second approach is that it allows us to respond to changes in acceptability degrees of
other arguments due to our modifications more rapidly than if we modify only a single
argument at a time.

If d is the desired acceptability degree for an argument a, then we can use the
bisection method to find a new initial weight wa for a such that |σF (a)−d| ≤ ε where
σF (a) is the acceptability degree of a in the WAF where the weight of a is now wa. To
apply the bisection method we need to also identify an initial upper and lower bound.
While we can use the values 1 and 0 for this, we can also identify tighter bounds,
leading to a small improvement in performance. First, consider the lower bound α
passed to the bisection method. Since our denominator is at least 1, we can set α to
the minimal upper bound. For β, assume we wish to achieve a minimal upper bound
of m(a) for argument a, which has n attackers. Now consider σMB , and assume that
the strongest attacker has acceptability degree 1. We have that m(a) = w(a)/(2 + ζ)
and so can set β to min{(2 + ζ) ·m(a), 1}. Using this idea, for σHC, we can set β to
min{m(a) · (1 + n+ ζ), 1}, and for σCB to min{(2 + n+ ζ) ·m(a), 1}.

From a practical point of view, observe that the target acceptability degree com-
puted in Phase 1 may be very small. The stopping condition of our bisection method
should therefore use a relative error |(α + β)/2 − m(a)|/m(a) < ε rather than an
absolute error. Since we evaluate acceptability degrees as part of the bisection method,
we can also terminate our algorithm early if the acceptability degrees returned in the
evaluation match our desired ranking, even if they have not yet converged to the desired
minimum upper bound.

4 Algorithm Properties
We now examine several properties of our approach and the underlying semantics,
identifying necessary conditions over the latter which are needed for the former to
work. Given the iterative nature of the underlying semantics, proving that some of
these properties hold is difficult, and in Section 5, we carry out an empirical evaluation
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which strongly suggests that the σMB , σHC and σCB semantics respect these proper-
ties. Properties which we are able to demonstrate are identified as propositions, with
associated proofs in the supplementary material, while those we are unable to analyti-
cally demonstrate are labelled as conjectures.

The first property we consider involves the weights obtained in Phase 1 (Section
3.2). We need to demonstrate that the computed weights are achievable. While we can
easily demonstrate that the computed weight is achievable in isolation, doing so for the
entire system is more difficult.

Conjecture 1 (Weighting Validity) For any unweighted argumentation graph 〈A,D〉
and σ ∈ {σMB , σHC , σCB}, there is a weighting function w such that for all 0 ≤ i ≤
n, for all a ∈ Ari, σF (a) is equal to its minimum upper bound (as computed by
Algorithm 2), where F = 〈A,D, w〉.

In Phase 2, for the bisection method to operate, we must demonstrate that our se-
mantics is continuous (otherwise we may be unable to converge to a solution); and
that these changes are (strongly) monotonic (as otherwise we may have any number of
solutions). This also implies that our solution satisfies uniqueness (though uniqueness
does not imply monotonicity).

Property 1 (Uniqueness) Given two WAFs F = 〈A,D, w〉,F ′ = 〈A,D, w′〉 and
some a ∈ A such that w(a) 6= w′(a) and for all b 6= a ∈ A, w(b) = w′(b). It holds
that σF (a) 6= σF

′
(a), for σ ∈ {σMB , σCB , σHC}.

Property 2 (Continuity) A gradual semantics σ satisfies continuity iff for any WAF
F = 〈{a1, a2, . . . , an},D, w〉, XF = (σF (a1), σ

F (a2), . . . , σ
F (an)), we can find

F ′ = 〈{a1, a2, . . . , an},D, w′〉 (with unbounded weights) such that there is at least
one a ∈ A s.t. w(a) 6= w′(a) and |XF ′ −XF | < δ for any positive δ. We say that σ
satisfies bounded continuity iff it satisfies continuity and the initial weights for F ′ are
restricted to [0, 1].

Property 3 (Strong Monotonicity) A gradual semantics σ satisfies strong monotonic-
ity iff for any two WAFs F = 〈A,D, w〉,F ′ = 〈A,D, w′〉 for which there is some
a ∈ A such that w(a) = w′(a) + δ, δ > 0 and for all b ∈ A \ {a}, w(b) = w′(b), it
holds that σF (a) > σF

′
(a).

This in turn yields the following proposition.

Proposition 2 A gradual semantics σ which does not satisfy strong monotonicity or
bounded continuity could have multiple, or no solutions to the inverse problem. In other
words, both are necessary conditions for a unique solution for the inverse problem to
exist.

We conjecture that σMB , σHC and σCB meet these conditions. We are unable to
demonstrate strong monotonicity and bounded continuity though we show uniqueness
and continuity for them in our supplementary material). The empirical evaluation sug-
gests our approach operates successfully.
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ζ 1
Graph Size 10, 20, . . . , 150
Runs per graph size 15
Erdos-Renyi probability 0.1,0.3,0.5,0.7
Maximum relative error 0.001
Bisection method iterations 10,100,2000
Bisection method ε 0.001
Maximum bisection method calls 1000

Table 2: Parameters used in our evaluation

Proposition 3 The gradual semantics σ satisfies continuity and uniqueness, for σ ∈
{σMB , σHC , σCB} .

Conjecture 2 The gradual semantics σ satisfies strong monotonicity and bounded
continuity for σ ∈ {σMB , σHC , σCB} .

5 Evaluation
We evaluated each of the strategies discussed in Section 3.3 over directed scale-free,
small world (Erdos-Renyi), and complete graphs of different sizes (number of argu-
ments)1. As part of our evaluation, we ran 10, 100 and 2000 iterations of the bisection
method for each argument before using a strategy to pick the next desired argument.
Table 2 describes the remaining parameters used in our evaluation.

We created a simple target preference ordering for our experiments, randomly plac-
ing each argument within the graph into one of 5 levels of preference. This meant that
in all cases, at least some arguments had equal desired preference levels.

Our experiments evaluated the runtime of the different strategies, the number of
times the bisection method was invoked, and the number of times the total iterations
required exceeded the permitted maximum number of iterations. Given the number of
dimensions across which our evaluation took place, we present only a subset of our
results here; full results can be found in the supplementary material.

Our main criterion for evaluation revolves around the number of times the bisection
method was called by our approach. As shown in Figure 2, which is representative of
the results for most graph topologies, our runtime grows in a super-linear manner, due
— as shown in [4] — to the increased time taken to evaluate a semantics on larger
graphs. The number of bisection method iterations is shown in Figure 2 for our dif-
ferent semantics and graph types when selecting the next argument based on largest
relative error. We observe that this value grows linearly (with a gradient between 1
and 2 depending on topology and semantics) for all semantics considered (R2 > 0.99
for all cases). This means that arguments are typically only recomputed at most twice
before our approach converges. These results not only demonstrate the feasibility of

1Source code for our algorithm and evaluation can be found on GitHub at https://github.com/jhudsy/
numerical inverse.
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Figure 2: Runtime (in seconds) and number of iterations for the different semantics and graph
types

our approach for large argumentation graphs, but also highlight the effectiveness of
this specific argument selection strategy. We also note that there is little variance in our
results for CB. We believe that this is due to the extra |Att| term in the semantics; this
term overwhelms the term which depends on other arguments’ final degrees, making
the result more dependent on the topology of the graph than in the case of the other
semantics.

Due to space, we have omitted detailed results about several other aspects of our
approach. In summary,

• From all argument selection strategies, only selecting arguments from largest to
smallest relative error resulted in always finding a solution to the inverse prob-
lem.

• Allowing for partial convergence (via fewer iterations per argument before mov-
ing to the next one) decreased performance, often failing to find a solution.

• Optimising the α and β bounds (c.f. Section 3.3) had almost no influence on
runtime. This is not surprising due to the speed at which the bisection method
converges.

Note that in the absence of equivalent arguments with the same acceptability de-
gree, one could allow for early termination without getting to the target acceptability
degrees, but that was not investigated in the current paper.
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6 Conclusion & Discussion
In this paper we considered the inverse problem for a weighted argumentation frame-
work. We demonstrated that a solution to this inverse problem exists for at least one
family of semantics, and that a solution does not exist for at least some semantics. We
then described an algorithm to solve the inverse problem, and empirically evaluated its
performance. Our results show the viability of our approach. When selecting argu-
ments for initial weight perturbation based on relative error, each argument is typically
perturbed at most twice (depending on semantics and graph topology).

Our approach was able to find weightings over all evaluated graphs and semantics,
suggesting that HC,CB and MB meet all the requirements described in Section 4.
While we have been unable to analytically prove many of our results, relying instead
on an empirical analysis, searching for such analytic proofs forms a critical avenue of
future work.

No work has — to our knowledge — explicitly considered the inverse problem
applied to gradual semantics as described in this paper, but several works have ex-
amined related concepts under different guises. Work on the epistemic approach to
probabilistic argumentation [16] describes families properties which probabilistic ar-
gumentation semantics should satisfy. Selecting a set of these properties constrains the
possible probabilities which arguments can have. A similar strand of work in the con-
text of fuzzy argumentation [25] allows one to calculate legal ranges of fuzzy degrees
for arguments based on initial weights assigned to arguments and the semantics un-
derpinning the fuzzy argumentation system. Another strand of somewhat related work
comes from the area of argumentation dynamics. Work here examines what arguments
or attacks should be introduced to strengthen or weaken an argument, in a manner
somewhat analogous to our changing of an initial argument weight.

There has been some work on sensitivity analysis within argumentation [23]. This
work considers whether (small) changes in argument weights will affect the conclu-
sions that can be drawn from an argumentation framework.

We are extending this research in several directions as part of our current and future
work. The results reported on in this paper are a first step towards our long-term goal
to provide a formal analysis of sensitivity to initial weights in MB,CB and HC style
semantics.

The conditions specified in Prop. 2 are necessary for our algorithm to operate. As
mentioned above, we are still investigating whether these conditions are also sufficient,
or whether additional properties need to be identified. Once this is done, we will be
able to categorise other weighted semantics unrelated to those discussed in the current
work (e.g., the constellation-based probabilistic semantics [17]) and consider whether
our approach can be applied to them.

The efficiency of our approach suggests that the underlying problem can be solved
analytically. A final strand of future work involves searching for such an analytical so-
lution. We note that the different equations describing the respective semantics would
require fine-tuning such a solution to the individual semantics, while the bisection
method proposed in the current work can be applied more generally.
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à base de Classement pour l’Argumentation Abstraite). PhD thesis, 2017.

[13] P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artif. In-
tell., 77(2):321–358, 1995.

[14] P. E. Dunne, A. Hunter, P. McBurney, S. Parsons, and M. Wooldridge. Weighted
argument systems: Basic definitions, algorithms, and complexity results. Artif.
Intell., 175(2):457–486, 2011.

[15] D. M. Gabbay and O. Rodrigues. Equilibrium states in numerical argumentation
networks. Logica Universalis, 9(4):411–473, 2015.

13



[16] A. Hunter and M. Thimm. Probabilistic reasoning with abstract argumentation
frameworks. J. Artif. Intell. Res., 59:565–611, 2017.

[17] H. Li, N. Oren, and T. J. Norman. Probabilistic argumentation frameworks. In
TAFA, volume 7132 of Lecture Notes in Computer Science, pages 1–16, 2011.

[18] Q.-a. Mahesar, N. Oren, and W. W. Vasconcelos. Computing preferences in ab-
stract argumentation. In Proc. PRIMA, pages 387–402, 2018.

[19] T. Mossakowski and F. Neuhaus. Bipolar Weighted Argumentation Graphs.
CoRR, abs/1611.08572, 2016.

[20] T. Mossakowski and F. Neuhaus. Modular Semantics and Characteristics for
Bipolar Weighted Argumentation Graphs. CoRR, abs/1807.06685, 2018.

[21] S. Polberg and A. Hunter. Empirical evaluation of abstract argumentation: Sup-
porting the need for bipolar and probabilistic approaches. International Journal
of Approximate Reasoning, 93:487–543, 2018.

[22] A. Rago, F. Toni, M. Aurisicchio, and P. Baroni. Discontinuity-Free Decision
Support with Quantitative Argumentation Debates. In KR 2016, pages 63–73,
2016.

[23] Y. Tang, N. Oren, and K. Sycara. Markov argumentation random fields. In Pro-
ceedings of AAAI Conference on Artificial Intelligence, 2016.

[24] J. Verbeke and R. Cools. The newton-raphson method. International Journal of
Mathematical Education in Science and Technology, 26(2):177–193, 1995.

[25] J. Wu, H. Li, N. Oren, and T. J. Norman. Gödel fuzzy argumentation frameworks.
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A Appendix - Proofs
Proposition 1 For a fully connected WAFF = 〈A,D, w〉, semantics σ ∈ {σMB , σCB , σHC}
and any arguments a, b ∈ A, σF (a) ≥ σF (b) iff w(a) ≥ w(b).

Proof Let σ ∈ {σMB , σCB , σHC} and F = 〈A,D, w〉 be a fully connected WAF
(including self attacks for every arguments). As a result, for every a ∈ A, σF (a) =
w(a)
1+XσF

, whereXσ
F is a positive constant which depends on the structure of the WAF and

the semantics (see Definition 2). Now, consider two arguments a, b such that w(a) ≤
w(b), it holds that σF (a) ≤ σF (b) (and vice-versa). �

Proposition 2 A gradual semantics σ which does not satisfy strong monotonicity
or bounded continuity could have multiple, or no solutions to the inverse problem. In
other words, both are necessary conditions for a unique solution for the inverse problem
to exist.

Proof To show that multiple or zero solutions exist, we provide two examples.

• Consider the semantics σNM such that for all WAFs F = 〈A,D, w〉 and a ∈
A, σFnm(a) = min(−2w(a)2 + w(a), 0). It is clear that σNM does not satisfy
strong monotonicity. In the case of a WAF with a single argument a. If we wish
to obtain an acceptability degree of 0 to a, we need to assign an initial weight of
0 or any number in [0.5, 1] to a, demonstrating multiple solutions.

• The σIS semantics does not satisfy continuity. For example, we cannot achieve
an acceptability degree of 0.9 for any argument, demonstrating that no solution
exists to the inverse problem.

�

Proposition 3 (Uniqueness) Given two WAFs F = 〈A,D, w〉,F ′ = 〈A,D, w′〉 for
which there is some a ∈ A such that w(a) 6= w′(a) and for all b 6= a ∈ A, w(b) =
w′(b). It holds that σF (a) 6= σF

′
(a), for σ ∈ {σMB , σCB , σHC}.

Proof Assume an arbitrary WAF F = 〈A,D, w〉 such that a ∈ A and σ ∈
{σMB , σCB , σHC}. Assume there is a path from a to one of its attackers, we have
that σF (a) = w(a)/fa(σ

F (a)), where fa is a function that depends on the WAF and
the semantics considered. For instance, if F = 〈{a0, a1}, {(a0, a1), (a1, a0)}, w〉 and
σ = σHC , then fa0(x) = 1 + (w(a1)/(1 + x)). If there is no path from a to one of its
attackers, fa is a constant function.

Now, consider F ′ = 〈A,D, w′〉, where w′(a) = w(a) + δ, δ 6= 0 and for all
b ∈ A\{a}, w(b) = w(a). Let us prove the proposition by contradiction. Assume it is
false, i.e., that we have the σF (a) = σF

′
(a). Then we must have w(a)/fa(σF (a)) =

(w(a) + δ)/fa(σ
F ′(a)), which can only hold if δ = 0, this is a contradiction. �
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Proposition 3 (Continuity) The semantics σ ∈ {σCB , σHC , σMB} satisfies conti-
nuity.

Proof In this proof, we first focus on the σHC semantics. We will denote by A
the square adjacency matrix of a WAF F = 〈{a1, a2, . . . , an},D, w〉 and HCt =
(HCt(a1), HCt(a2), . . . ,HCt(an))

T the column vector of intermediate scores at step
t for all arguments.

It holds that for all ai ∈ A,HCt+1(ai) = w(ai)/([A ·HCt]i+1), where [A ·HCt]i
is the i-th element of the column vector A ·HCt. At the equilibrium point, it holds that
σFHC(ai) = HC∞(ai) = w(ai)/([A ·HC∞]i + 1). The evolution of the semantics is
described by:

HCt+1 = F (HCt) = w(ai)/([A ·HCt]i + 1),

with F : [0, 1]n → [0, 1]n.
Defining the notation HCt(ai) ≡ HCit , the Jacobian matrix of F is:

J =



∂HC1
t+1

∂HC1
t

∂HC1
t+1

∂HC2
t

. . .
∂HC1

t+1

∂HCnt

∂HC2
t+1

∂HC1
t

...
... ∂HC2

t+1

∂HCnt
...

...
...

...
∂HCnt+1

∂HC1
t

∂HCnt+1

∂HC2
t

. . .
∂HCnt+1

∂HCnt


We make use of the quotient rule, i.e. d

dx
f(x)
g(x) = f ′(x)g(x)−f(x)g′(x)

g2(x) . Since w(ai) is

not a function ofHCjt , ∂w(ai)

∂HCjt
= 0 and Jij reduces to− f(x)g

′(x)
g2(x) , where f(x) = w(ai)

and g(x) = 1 + [AHCt]i. Thus, Jij = −
∂(1+[AHCt]i)

∂HC
j
t

·w(ai)

(1+[AHCt]i)2 = −
∂([AHCt]i)

∂HC
j
t

·w(ai)

(1+[AHCt]i)2 .
Now consider the column vector AHCt. A is a matrix containing 1s and 0s, while

HCt is a column vector. Then the product AHCt is:

AHCt =


[A]11[HCt]1 + [A]12[HCt]2 + . . .
[A]21[HCt]1 + [A]22[HCt]2 + . . .

...
[A]n1[HCt]1 + [A]n2[HCt]2 + . . .


And so,

∂([AHCt]i)
∂HCjt

= [A]ij .

Therefore, our Jacobian can be denoted as:

Jij = −
[A]ijw(ai)

(1 + [AHCt]i)2

The equilibrium point is obtained for t = ∞ and it is represented by HC∞. The
Jacobian at the equilibrium point is given by replacing HCt in the above by HC∞.
The calculated Jacobian matrix shows that the evolution dynamics of the semantics is

16



continuous at the equilibrium point, i.e., it has a first derivative at that point. As such,
a continuous variation in the initial conditions HCt in the vicinity of the equilibrium
point induces a continuous variation in HCt+1. The equilibrium point can be continu-
ously approached as t→∞. This proof can be adapted in a straightforward manner to
deal with the σMB and σCB semantics.

�
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