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ABSTRACT
The thermodynamics of hard spheres tethered to a Face-Centered Cubic (FCC) lattice is investigated using event-driven molecular-dynamics.
The particle–particle and the particle–tether collision rates are related to the phase space geometry and are used to study the FCC and fluid
states. In tethered systems, the entropy can be determined by at least two routes: (i) through integration of the tether collision rates with
the tether length rT or (ii) through integration of the particle–particle collision rates with the hard-sphere diameter σ (or, equivalently, the
density). If the entropy were an entirely analytic function of rT and σ, these two methods for calculating the entropy should lead to the same
results; however, a non-analytic region exists as an extension of the solid–fluid phase transition of the untethered hard-sphere system, and
integration paths that cross this region will lead to values for the entropy that depend on the particular path chosen. The difference between
the calculated entropies appears to be related to the communal entropy, and the location of the non-analytic region appears to be related
to conditions where the regions of phase space associated with the FCC configuration become separated from those associated with the
disordered fluid. The non-analytic region is finite in extent, vanishing below rT/a ≈ 0.55, where a is the lattice spacing, and there are many
continuous paths that connect the fluid and solid phases that can be used to determine the crystal free energy with respect to the fluid.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0101238

I. INTRODUCTION

The hard-sphere system is a foundational thermodynamic
model, providing the first example of a purely entropic transition
from the disordered fluid phase to an ordered solid crystalline
phase.1 Determining the location of this transition is not trivial,
as these two phases are separated by a strong first-order phase
transition that cannot be avoided; as a result, straightforward ther-
modynamic integration cannot be used to calculate the free energy
difference between the phases, due to the presence of hysteresis.2
As a consequence, different methods need to be developed. Hoover
and Ree3 introduced the single occupancy model to more precisely
explore the hard-sphere fluid–solid transition. In this model, space
is partitioned into mutually exclusive regions, such as the Voronoi
polyhedra constructed from a Face-Centered Cubic (FCC) lattice,
and the centers of the particles are constrained to remain in one of

these regions. This model was employed by Woodcock4,5 to finally
establish that FCC lattices are marginally more stable than hexag-
onal close packed (HCP), a remarkable achievement at the time.
Meanwhile, Speedy6 had proposed in 1993 a closely related model
where each of the particles were “tethered” to remain within a set
distance from a location in the system, rather than confined to dis-
joint regions of space. This approach was explored for non-spherical
particles by Donev et al.7 in 2007 although their analysis is restricted
to the close-packed limit. The tethered particle model was recently
reanalyzed in 2021 from the perspective of phase space allowing
the development of additional methods to calculate the free energy
without considerable restriction, including even in the fluid phase.8
These approaches are easily generalized to arbitrary dimensions
and have already been used to determine the free energy of vari-
ous crystal structures of hard hyperspheres in six dimensions.9 It
is remarkable that, despite 65 years of simulation, the hard-sphere
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model continues to provide insight into phase transitions, and it
still remains a rich testing ground for developing new free-energy
sampling techniques.

The tethered hard-sphere model has frequently only been used
as a means to determine the free energy of the untethered hard-
sphere system; however, this work considers the thermodynamics
of the tethered hard-sphere model on its own merits to gain insight
into the structure of phase space for hard-sphere systems. This addi-
tional insight is possible as the tether collision rate is directly related
to the geometry of the configurational phase space8 and thus to the
entropy and the free energy of the system. As a result of this analy-
sis, we also aim to provide general guidelines for finding and using
continuous paths between the solid and fluid phases for determining
the free energy of solids.

The remainder of this paper is organized as follows. In Sec. II,
the tethered hard sphere model is briefly described and the details
of the molecular dynamics simulations are provided. Afterward, the
data for the particle–particle and the tether collision rates from the
simulations are presented and reviewed. Then, in Sec. IV, the con-
sistency of these data is examined and then used to determine the
entropy of the system. With knowledge of the entropy and the col-
lision rates, the geometry of the accessible phase of tethered hard
sphere systems examined in Sec. V. In Sec. VI, a diagram of states is
presented for the tethered hard sphere model, which includes a dis-
cussion of the properties of the system in each of these states. Finally,
the main findings of the paper are summarized in Sec. VII, along
directions for future research.

II. SIMULATION DETAILS
The system studied here is comprised of N = 13 500 particles

in a cubic periodic volume V , which is varied in size to control
the number density ρ = N/V . The particles are identical and have
a diameter σ and mass m. Each is restricted to remain within a
distance rT from a “tether” point. While the tether point can be
located arbitrarily, in this study, the tether point is an FCC (face
centered cubic) lattice site to generate pathways from the most-
stable hard-sphere crystal state. To generate measurements of this
system, event-driven molecular dynamics (EDMD) simulations are
performed using DynamO.10 For each state point, three configura-
tions of spheres are initialized in a perfect FCC lattice. The velocities
are randomly assigned from a Maxwell–Boltzmann distribution and
then shifted and rescaled to zero the total momentum of the systems
and to set the kinetic temperature exactly equal to one. An Andersen
thermostat is used to thermalize the system, as ergodicity is poor at
short tether lengths,8 and its mean-free time is adjusted to set it to 5%
of the total number of events. The Andersen thermostat is adjusted
every 100N events and is typically stable after the first adjustment.

Each configuration is first equilibrated for 103 N events before
ten production runs of 103N events are performed to collect aver-
ages. Measurement uncertainties are estimated by taking the stan-
dard deviation of results from the three configurations and each
of their ten production runs. All results are reported in reduced
units using the particle diameter σ as a length scale, particle mass
m as the mass scale, and temperature to provide the time scale
√

m σ/(kB T). The key dimensionless parameters of the system are
the reduced density ρσ3 and the reduced tether length rT/σ; how-
ever, it is more convenient to consider the tether length reduced by

distance between nearest FCC tether points, a/σ = (ρc/ρ)1/3, where
ρc σ3

=
√

2 is the close-packed number density for the FCC lattice.

III. EVENT RATES
In this section, the rates of particle–particle collisions and tether

events from the EDMD simulations are analyzed. As shown previ-
ously,8 the tether event rates are directly related to the geometry of
the accessible configurational phase space of the hard sphere system.
This is briefly summarized here.

Consider the tethered hard sphere system as a single state point
moving through a 3 N-dimensional vector space, which is the con-
figurational phase space of the system. As overlaps are not possible in
this system, the configurations where pairs of spheres intersect cre-
ate impenetrable walls within the configurational phase space which
the system state point cannot enter. The “thickness” of these walls is
directly related to the hard-sphere diameter. The state point bounces
off these walls continuously as each intersection with these walls is a
particle–particle collision. Ergodicity is typically assumed; thus, the
state point is assumed to visit phase space evenly. This ultimately
implies that the geometry of this phase space, including measures
such as the surface-to-volume ratio, is directly related to the rates
of particle–particle events, and thus to pressure and other thermo-
dynamic variables. The configurational phase space is considered to
be “unraveled” so that it extends infinitely in all dimensions. Thus,
the periodic boundary conditions imposed on the simulations cause
these particle–particle walls associated with the excluded volume
interactions to repeat throughout the vector space.

With this background, it is interesting to contrast the effect of
the tethers. The tethers confine the system state point to remain
within a fixed region in phase space. Geometrically, this region
corresponds to a hyperdimensional volume formed by a union of
N three-dimensional spheres each sited on the lattice site of a par-
ticle in its coordinates only and with a radius of the tether length;
thus, it is a highly localized volume in phase space. Again the tether
collision rates are directly related to how much of the confining
tether hypersurface is accessible to the state point particle com-
pared to the hypervolume of the accessible space. Crucially though,
the geometry of the tether volume is known; thus, measurements
of the tether event rate can be used to determine the hypersurface
area. As this can only be reduced by particle–particle walls intruding
into the tethered region, the tether rates can indirectly tell us about
that geometry too. With this established, it is interesting to examine
the rate of tether collisions and how it varies in the FCC tethered
hard-sphere system.

The ideal tether model is a system where the particles only
collide with their tethers; there are no particle–particle collisions.
This corresponds to systems with tethers such that

rT

a
≤ max(0,

1
2
(1 −

σ
a
)) = max

⎛

⎝
0,

1
2
⎛

⎝
1 − (

ρ
ρc
)

1/3
⎞

⎠

⎞

⎠
(1)

so that the particles are unable to interact with each other. For the
ideal tether model, the tether collision rate Ṅ T is given by8

Ṅ id
T = (2πβm)−1/2N

D
rT

, (2)
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where D = 3 is the dimensionality of the system, β = 1/(kBT), kB is
the Boltzmann constant, and T is the absolute temperature of the
system. Generally, the observed tether rate is reduced below this
ideal tether model as the particle–particle walls in phase space reduce
the accessible area of the tether volume; however, values above it
have been observed at high densities where the accessible hyper-
volume has been reduced sufficiently to offset reductions in the
hypersurface area as shown later.

The particle–particle collision rate Ṅ is directly related11,12 to
the pressure p of the system as follows:

βp
ρ
= 1 + (πβmσ2

)
1/2 Ṅ

DN
. (3)

As a basis for comparison, the pressure of hard sphere systems in
the fluid phase is well described by the Carnahan–Starling equation
of state13

βp
ρ
= 1 +

4y(1 − y/2)
(1 − y)3 , (4)

where y = πρσ3
/6 is the volume fraction of space occupied by the

spheres. For the solid phase, the equation of state from Pieprzyk
et al.14 is used for comparison,

βp
ρ
− 1 =

3
1 − ω

+ AeB(1−ω)
+ CeD(1−ω)

− E, (5)

where A = 0.016 22, B = 6.151, C = 3.8437 × 10−5, D = 27.72,
E = 0.495 41, and ω = ρ/ρc.

The tether and particle–particle event rates for tethered systems
over a range of densities and tether lengths are shown in Figs. 1
and 2. Care must be taken to not label the tethered system as a
fluid at any point as it always contains some long-range order;
however, as it is an extension of the untethered system, it is nat-
ural to explore representative densities in the untethered fluid

FIG. 1. Variation of the tether collision rates with the tether length for systems of
hard spheres tethered to an FCC lattice at different densities in the fluid phase. The
solid black line is the tether collision rate for the ideal tether model [see Eq. (2)].

FIG. 2. Variation of the particle–particle collision rates with the tether length for
systems of hard spheres tethered to an FCC lattice at different densities in the
fluid phase. The small symbols denote particle–particle collision measurements,
while the larger corresponding symbol indicates the particle–particle collision rates
predicted from the Carnahan–Starling equation of state for the fluid phase [see
Eq. (4)]. The dashed lines represent the particle–particle collision rates predicted
from the equation of state of Pieprzyk et al.14 for the solid phase.

(ρσ3
= [0.1, 0.8, 0.92]), solid (ρσ3

= [1.0, 1.2]), and transition
(ρσ3

= 0.96) densities. Generally, tether event rates decrease with
increasing tether length, which may be expected as the confining
tether hypersurface area to accessible volume ratio decreases, which
is the source of the 1/rT scaling in the ideal tether rate [see Eq. (2)].
All densities in the fluid range display a dip below the ideal tether
rate as particle–particle interactions begin to occur, but approach
the ideal rate once the tether radius is large enough (rT/a ≳ 1). At
this point, the tethered system can access the majority of the con-
figurations contributing to the pressure, and it can be seen in Fig. 2
that the particle–particle collision rates approach a value very closely
predicted by the Carnahan–Starling equation of state for hard sphere
fluids [by combining Eqs. (3) and (4)]. It can be imagined that,
once particles can fully interact with their neighbors at rT/a ≈ 1, the
remaining configurations are either translations of already accessi-
ble configurations or large density fluctuations that are improbable
in this system, and thus phase space begins to takes on a regular
structure, which is analyzed in more depth later (e.g., see Fig. 7).

For solid densities, the tether event rates in Fig. 1 again decrease
as tether length is increased; however, unlike in the fluid density
range, there is no increase back to the ideal tether rate line, where
the event rates appear to level off at a value close to zero temporar-
ily before dropping off the figure to zero. The system appears to be
localized in phase space by the particle–particle “walls” and unable
to reach the tether surface, which becomes a redundant confinement
for long tethers. It is clear in Fig. 1 that particles rarely travel further
than rT/a ≈ 0.75. The particle collision event rates in Fig. 2 for solid
densities also show an increase initially with increasing tether length
as in fluid densities, before quickly leveling off at a value very closely
predicted by the Pieprzyk equation of state for hard sphere fluids [by
combining Eqs. (3) and (5)], denoted by the horizontal dashed lines
in the figures.

J. Chem. Phys. 157, 114501 (2022); doi: 10.1063/5.0101238 157, 114501-3

© Author(s) 2022

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Finally, the density ρσ3
= 0.96 is considered as it lies within

the fluid–solid transition density for the untethered system, from
the onset of freezing ρ f σ3

≈ 0.938 90 to the melting density
ρsσ

3
≈ 1.037 15.8 This density, in particular, is chosen as there is a

clear minimum in the tether collision rate with tether length for
densities up to ρσ3

≈ 0.96 before they “melt” at longer tether lengths
(rT/a ≳ 0.5) to the ideal tether model suggesting that the tethered
“fluid” is recovered. At higher densities, this minimum continues to
deepen; however, the collision rate no-longer increases back up to
the ideal tether collision line, as for the density ρσ3

≈ 1.0 in Fig. 1.
This can be interpreted to mean that the system remains in the solid
phase and does not quite “escape” from the solid phase to transition
to a liquid, although this cannot be precisely defined as the system
may yet still melt at longer tether lengths or simulation times than
studied here.

Consider again the particle collision rates in Fig. 2 and the result
for the same transition density ρσ3

≈ 0.96 and the adjacent densi-
ties. For ρσ3

< 0.91, the particle collision rates clearly trend toward
and level off at the values predicted by the Carnahan–Starling equa-
tion of state, indicating that these systems closely resemble fluids.
For ρσ3

> 0.97, the particle collision rates clearly trend toward and
level off at the values predicted by the Pieprzyk equation of state,
indicating that these systems closely resemble solid hard sphere
systems; however, at values of 0.91 < ρσ3

< 0.97, the trend toward
the equation of state predictions is far less clear and the highlighted
curve at ρσ3

= 0.96 shows this clearly, where the initial trend with
increasing tether looks to be toward the solid equation of state line,
before there is a sharp increase in collision rate up to the fluid equa-
tion of state prediction, and then another “jump” back and forth,
presumably between the two phases. The tether lengths that these
jumps happen at match up with those where the minimum in tether
collision rates are observed (see Fig. 1). This further emphasizes that
the system is seemingly becoming jammed and unjammed as the
tether length is made longer through densities around this transi-
tion region. This suggests there is “jumping” between phases as the
system is forced into different configurations that each allow more
or less freedom of movement. It is clear that a transition region exists
in the tether space as well as the density space thus a phase diagram
might be considered provided the free energy can be calculated, and
this is discussed in Sec. IV.

IV. CALCULATION OF THE ENTROPY
As discussed earlier and in our previous work,8 the event rates

in this system are directly related to ratio of the exposed surface area
associated with the event and the volume of accessible phase space.
The entropy S is directly related to the tether collision rate and the
particle–particle collision rate,

k−1
B dS = d ln ΩT(ρ, rT , σ)

= (πβm)1/2
(Ṅ Ta

√
2 d(

rT

a
) −

σ
D
Ṅ d(ρσ)D

ρσD ), (6)

where ΩT is the density of states and D is the dimensionality. This
relation provides at least two routes to calculate the entropy of the
tether system.8 The first is to integrate the particle–particle collision
rate with respect to the density and hard-sphere diameter σ, while
holding the tether length constant,

ΔS(σ)T /kB = ln
ΩT(ρ, rT , σ)

Ωid(rT)

= −
1
D∫

ρ

ρ0

d(ρ′σD
)

ρ′σD (πβmσ2
)

1/2 Ṅ . (7)

The excess entropy calculated using this expression ΔS(σ)T /kB
corresponds to standard thermodynamic integration.

The other path is to integrate the tether collision rate with
respect to the tether length, while holding the density and hard-
sphere diameter constant. The entropy difference between a tethered
system and an ideal tethered system at the same tether length and
particle density can be determined from the tether event rate Ṅ T as

ΔS(rT)

T /kB = ln
ΩT(ρ, rT , σ)

Ωid
T (rT)

= ∫

rT

rT,0

dr′T (2πβm)1/2Ṅ id
T (

Ṅ T

Ṅ id
T
− 1)

= D∫
rT

rT,0

dr′T
r′T
(
Ṅ T

Ṅ id
T
− 1). (8)

The excess entropy calculated using this expression is known as the
tether integration route. The difference between the entropy of the
tethered hard sphere system and that of an ideal tethered system at
the same density and tether length is deemed the “excess” entropy
[i.e., ΔST(ρ, rT , σ) ≡ ST(ρ, rT , σ) − Sid

T (rT)]. The excess entropy esti-
mated using the two different methods presented above is shown in
Fig. 3. If the entropy were an analytic function for all densities and
tether lengths, the two methods of calculating the entropy should

FIG. 3. The entropy of the tethered hard sphere model over a range of conditions.
The crosses are the result of numerical integration of the particle–particle collision
rate data with respect to density (or, equivalently, hard sphere diameter) at a fixed
tether length (ΔS(σ)

T /kB), using Eq. (7). The circles are the result of integration
of the tether event rates with respect to the tether length using Eq. (8) at con-
stant density and hard sphere diameter (ΔS(rT)

T /kB). The black dashed line is the
residual free energy of the untethered hard sphere system in the fluid phase,13

and the black dashed–dotted line is residual free energy in the solid phase.14 The
dotted vertical lines indicate the transition densities for the untethered hard-sphere
system.
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lead to the same results. This is generally true at low densities and
tether lengths; however, the two routes diverge in the range of den-
sities between the freezing and melting densities at longer tether
lengths.

To better understand this difference, it is illuminating to com-
pare the calculated excess entropies against theoretical predictions
for the residual entropy of the untethered hard sphere system.8 The
residual entropy is defined as the difference between the entropy of a
system and the entropy of an ideal gas with the same number of
particles, volume, and temperature. The excess tethered entropy is
expected to approach the residual untethered entropy in the limit of
long tethers,

Sres
(ρ, σ) = lim

rT→∞
ΔST(ρ, σ, rT),

ln
Ω(ρ, σ)
Ωig(ρ)

= lim
rT→∞

ln
ΩT(ρ, σ, rT)

Ωid
T (rT)

.
(9)

At densities below the hard sphere freezing density, the excess
entropy of the tethered systems, calculated using both methods,
lies below the residual entropies of the hard sphere system. This is
expected as the tethered system is close to the maximally spaced-out
state, thus reducing the possibility of interactions over an uncon-
strained state. The excess entropies gradually increase with the tether
length and closely approach the residual entropy of the untethered
hard-sphere fluid. Above the freezing density, calculated ΔS(σ)T /kB
values lie below the residual free energy of the hard sphere FCC solid
(black dashed–dotted line); as tether length increases, the excess
entropy approaches the residual entropy, just as before; however,
calculated ΔS(rT)

T /kB values lie above the residual free energy of the
untethered hard-sphere solid.

Above the melting density, the tether collision rate drops
rapidly with tether length (see Fig. 1). This is an indication that the
system becomes trapped in the region of phase space around the
perfect FCC lattice by the excluded volume interactions. In this sit-
uation, it could be expected that the excess entropy will continue to
decrease without bound as the tether length increases. The volume of
phase space accessible by the system remains constant as the tether
length increases, while the phase space volume accessible to the ideal
tether system continues to grow. In fact, if ΔS(rT)

T /kB is shifted by
the difference in the entropy between the ideal gas and ideal tether
systems,

ln
Ωid

T (rT)

Ωig
T (ρ)

= ln ϕT + ln
N!1/N

N
, (10)

the results are once again in close agreement with the residual
entropy of the untethered systems, as shown in Fig. 4.

In contrast, when ΔS(σ)T is shifted by ln Ωid
T (rT)/Ω

ig
T (ρ), the

results move further from the residual entropies of the untethered
systems for systems with longer tether lengths. This does not make
physical sense, as the longer the tether length, the closer the sys-
tem should resemble an untethered system. For the shorter tether
lengths, these values, much like the shifted values from the tether
integrations, also are in close agreement with the residuals of the
untethered system.

Another manner to check the consistency of the data is to com-
pare the pressure, as determined from the free energy obtained from

FIG. 4. The excess entropy of the tethered hard sphere model over a range of
conditions. The crosses are the results for ΔS(σ)

T /kB while the circles are the

results for ΔS(rT)
T /kB plus the communal entropy difference constant. The dashed

lines are the residual free energy of the untethered hard sphere system in the fluid
phase13 (black) and the solid phase14 (grey). The dashed vertical lines indicate
the transition densities for the untethered hard-sphere system.

tether event rates. The particle–particle collision rate for tethered
systems is shown in Fig. 5. The crosses are directly from the EDMD
simulations. The circles are calculated from derivatives of spline fits
to the entropies calculated from tether integrations.

The collision rates derived from the integration of the tether
event rates are in good agreement with the simulation data, with the
exception of systems with sufficiently long tethers in and near the

FIG. 5. The particle–particle collision rates of the tethered hard sphere model.
The crosses are the data from the MD simulations, and the open circles are from
the density derivatives of ΔS(rT)

T /kB, the entropy calculated via integration of the
tether event rate. The black dashed line is the Carnahan–Starling13 equation of
state, while the black dashed–dotted line is the equation of state developed by
Pieprzyk et al.14 for the solid FCC phase.
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FIG. 6. The difference between ΔS(rT)
T /kB [see Eq. (8)] and ΔS(σ)

T /kB [see
Eq. (7)] (a) as a function of density for various tether lengths rT/a, and (b) as
a function of tether radius for various densities ρσ3.

fluid–solid coexistence region. The fact that the pressures agree out-
side this region implies that the free energies from tether collision
rate integration and the particle–particle collision rate integration
are the same with respect to density, but are only shifted by a
constant.

Figure 6 shows the difference between the excess entropies
calculated via the two different methods. The difference is only
non-zero at densities lying in the solid phase for tether lengths of
rT/a > 0.7. There is a critical tether length rT/a ≈ 0.55 below which
the entropies calculated using both methods are consistent across all
densities. One key thing to note is that the difference between the
entropies is dependent only on the tether length and not on the den-
sity. This observation is consistent with the fact that the pressures
from the two routes are the same outside the transition region.

V. PHASE SPACE GEOMETRY
The event rates allow us to more carefully explore the geom-

etry of phase space. For a tethered system, the maximum possible
accessible volume is that of an ideal system [i.e., Ωid

= (4π r3
T/3)

N
].

The inclusion of excluded volume between the particles will decrease
the accessible volume of phase space and increase the bounding sur-
face area. As the hard-sphere diameter increases, the thickness of
these bodies will increase. There are two types of bounding surfaces:
One corresponding to the tethers and the other corresponding to
the particle excluded volumes (the constraint that particles cannot
overlap). The tether collision rates are directly related to the area
Σ of bounding surface due to the tether constraint to the volume of
phase space accessible by the system8 as given,

Σ
Ω
= (2πβm)1/2Ṅ T. (11)

Let us first consider systems with a fixed tether length rT/a and
observe what happens with increasing the value of σ/a. In this case,
the maximum available surface area will be constant and equal to
the surface area in the ideal tether model. The fraction of the surface

area in the ideal tether model that is accessible by the system can be
determined by

Σ
Σid =

Ṅ T

Ṅ id
T

ΩT(ρ, rT , σ)
Ωid

T (rT)

= (2πβm)1/2rT
Ṅ T

ND
eΔST(ρ,rT ,σ). (12)

In Fig. 7, the fraction of the tether boundary that is accessible to
the system as a function of tether length and density is presented. At
fluid-like/low densities and large tether lengths, the fraction of the
accessible surface area approaches a constant equal to the ratio of
the volume of accessible phase space to the system to that of an ideal
tether system [i.e., ΩT(ρ, rT , σ)/Ωid

T (rT)]. This can be rationalized
by considering the phase space of the tethered hard sphere system
to be a porous material, with the allowed regions corresponding
to the pores of the system and the regions of phase space disal-
lowed by the excluded volume and tether constraint corresponding
to the pore walls. For a sufficiently large sample of a uniform porous
material, the pore area fraction on an exposed surface is expected to
be the same as the pore volume fraction in the bulk of the material,
regardless of dimensionality.

At densities well above the freezing point, the ratio of the acces-
sible surface area in Fig. 7 no longer approaches the ratio of the
accessible phase space volume at large tether lengths, instead it falls
to values far below it. At these solid densities, the system is locked
into a small section of phase space by the particle–particle excluded
volume interactions, and there is almost no possibility of reaching
the tether bound phase space boundary. Finally, consider the frac-
tion of accessible tether bound surface area for the density in the
transition region. There is a clear minimum observed in the data,
similar to that observed in the tether collision rate data for lower
densities; however, the area does not recover to the untethered limit

FIG. 7. Fraction of the tether surface area accessible by the tethered hard sphere
system. Small empty symbols denote values calculated from particle collision inte-
gration, and small filled symbols (with a black outline) denote values from tether
collision integration. The larger symbols on the right limit are used to denote the
accessible phase space volume ratio in the untethered system.
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and appears to show considerable instability over the tether lengths
considered.

The data for tether collisions and accessible surface area suggest
that as the tether length initially increases, particle–particle collisions
block the system from reaching the tether surface, which means that
the pathways for the system to escape the FCC region of phase space
become restricted. As the tether length is increased beyond a certain
value, the fraction of accessible tether bound surface area increases,
which means that pathways out of the FCC configuration widen.
This decrease and subsequent increase of Σ/Σid with tether length
suggests that there is a “bottleneck” in the pathways from the region
of phase space near the perfect FCC configuration and that of the
disordered fluid. At these transition densities, the particle–particle
interactions seem to form a distinct barrier that distinguishes these
regions of phase space from each other.

Figure 8 shows the variation of the accessible ratio of tether
bound phase space area with increasing density. This can be pictured
as a study of how a fixed region of phase space bound by the tether
constraints becomes increasingly inaccessible by the system as the
hard sphere diameter is increased. The ratio Σ/Σid

= 1 when ρσ3
= 0

and decreases monotonically with increasing for the ratio of accessi-
ble surface area as particle diameter for all tether volumes used. The
rate of decrease with density increases as the tether length increases.
At very short tether lengths, the presence of excluded volume inter-
actions do not significantly decrease the accessible surface area until
the density becomes fairly large; this is, in part, due to the fact that
the FCC configuration is the most efficiently packed. For very long
tether lengths, the rate of drop off of Σ/Σid with density eventually
coincides with the residual free energy of the untethered hard sphere
fluid (black dashed line in Fig. 8). This corresponds to the expec-
tation that the fraction of pores on a surface of a porous material
is approximately equal to the pore volume fraction when the same

FIG. 8. Variation of the ratio of accessible tether bound phase space surface area
with density at different fixed value of the tether length rT/a. The pluses denote
values calculated using ΔS(σ)

T , and the circles denote values calculated using

ΔS(rT)
T . The black dashed line is the residual free energy of the untethered hard

sphere fluid,13 and the black dashed–dotted line is the residual free energy of the
untethered hard sphere FCC solid.14

size is sufficiently large. For intermediate values of the tether length,
the value of Σ/Σid falls below the residual free energy of the fluid
at higher densities. These tether lengths correspond to those where
there is a bottleneck in passing from the FCC to the disordered fluid
regions of phase space (e.g., see ρσ3

= 0.96 in Fig. 7).
For all tether lengths, Σ/Σid lie below the residual free energy

of the untethered fluid at densities beyond the freezing density,
eventually falling to zero. This is an indication that the system
becomes trapped in the region of phase space near the FCC
configuration.

VI. DIAGRAM OF STATES
If the entropy was an analytic function of the tether length rT/a

and the density ρσ3 for all state points, the value of a line integral
along any closed path should be zero. This implies that the entropy
calculated by any path should lead to the same value. However, from
the analysis of the entropy derived from the collision rates in Sec. IV,
it is observed that this is not the case for the tethered hard sphere
system, as the entropy determined by integrating the tether collision
rate with respect to the tether length, at constant density [see Eq. (8)],
can lead to a different result to that obtained by integrating the
particle–particle collision rate with respect to the density (or hard
sphere diameter), at a fixed tether length [see Eq. (7)]. This implies
that there must be regions in the states of the tethered hard sphere
system (i.e., particular values of rT/a and ρσ3) where the entropy is
not analytic.

It is well established that thermodynamic integration cannot
be performed through a first-order phase transition. In particular,
the integration of the pressure cannot be used directly through the
freezing transition to determine the free energy of the solid phase.
This has led to the development of a variety of alternate methods
to determine the free energy of the solid phase, such as the Einstein
crystal method,2,15 self-referential methods,16–18 as well as the use of
the single occupancy cell model,3–6 along with other methods. This
non-analytic behavior of the untethered hard sphere system in the
fluid–solid transition region is expected to extend to the tethered
systems. In fact, indications of this are given by the sharp drop in the
pressure with density for sufficiently large tether lengths (see Fig. 5).

The difference between the entropy calculated from tether inte-
gration and density integration is shown in Fig. 6. In Fig. 6(a), it
is observed that the differences between the two methods vanish
for densities below about the freezing density. At low tether lengths
(where rT/a ≲ 0.55), the two methods lead to the same result across
all densities. The consistency between the two methods suggests that
the entropy is analytic in these regions. In fact, it might be expected
that the entropy is analytic everywhere the pressures are consistent
between the two methods (see Fig. 5).

As can be seen in Fig. 6, the entropies between the tether
integration and the density integration methods differ at densities
above the freezing density and rT/a ≳ 0.55. In this region, difference
between the two methods is independent of density, but depends on
the tether length, becoming larger with increasing rT/a. This obser-
vation is in-line with the fact that the two methods lead to the same
value pressure in this region (see Fig. 5). This implies that for a
set tether length, the density integration entropies can be shifted
by an amount independent of the density to align the results with
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the entropy calculated by tether integration. In Fig. 6(b), the differ-
ence between ΔS(rT)

T /kB and ΔS(σ)T /kB at a fixed density is shown as a
function of tether length. The dashed black line is the entropy differ-
ence between the ideal tether model and an ideal gas [see Eq. (10)].
As the density of the system increases, the difference between the
two calculated entropies appear to approach a common curve that is
independent of density; this curve differs from zero at a tether length
rT/a ≈ 0.55 and monotonically increases, asymptotically growing as
3 ln(rT/a) for very large tether lengths.

A schematic diagram of states for a hard sphere system teth-
ered to an FCC lattice is shown in Fig. 9. The shaded, light blue area
on the left side of the diagram denotes the ideal tether state, where
the particles are too far apart to interact with each other. The dark
gray shaded area gives an indication of the region where we pre-
sume that the entropy is not analytic, based on where the entropy
and pressure calculations depend on the method of calculation
(see Figs. 3 and 5). For an untethered hard sphere system, which
is related to the limit rT →∞, there is a fluid–solid coexistence
region with a fluid density of ρ f σ3

≈ 0.938 90 and the melting density
ρsσ

3
≈ 1.037 15.8 The non-analytic behavior of the entropy might be

expected to be related to this transition and to persist as the tether
length decreases. The gray region appears to vanish below a crit-
ical tether length of about rT/a ≈ 0.55. Outside this gray area, the
entropy should be analytic. This implies that, if we take a line inte-
gral around any simply closed path in this region (which excludes
enclosing any portion of the gray shaded area), the results should be
zero. For example, the line integral of the entropy along either of the
blue curves would be zero.

If the line integral of the entropy encloses a portion of the gray
shaded region, its value would be non-zero. Examples of this include
any of the red curves in Fig. 9 would be non-zero. Based on the
observed differences in the excess entropies from tether integration
and density integration, the value of the line integral would be posi-
tive, if the path is taken in a counterclockwise manner and negative
if it is taken in a clockwise manner. The more of the gray region that
is enclosed by the path, the larger the magnitude of the line integral;

FIG. 9. Schematic diagram of states for tethered a hard sphere system. The blue
shaded region denotes conditions where the system behaves as an ideal tether
model. The dark gray shaded region is a qualitative depiction of the region where
the entropy estimated to be non-analytic.

FIG. 10. A contour plot of the Steinhardt order parameter for the tethered hard
sphere system in the vicinity of the analytic to non-analytic entropy transition. The
value of the contours is indicated using the color map on the right side. The small
orange circles denote the state points where MD simulations are performed. The
rapid change of the order parameter is indicative of a phase transition; however,
the tethered system always retains some signature of its underlying tether lattice.

so the magnitude of the line integral for curve 4 would be larger than
that for curve 3.

To attempt relate the non-analytical region of the entropy to
structural changes of the system, the Steinhardt q6 order parameter19

is calculated using the software package Freud,20 and the result is
given in Fig. 10.

The Steinhardt order parameter characterizes the local organi-
zation of particles in the system. The directions of the “bond” vectors
b formed between a tagged particle and its nearest neighbors are pro-
jected along a set of spherical harmonic functions Y lm of a particular
order l,

Qlm(b) = Ylm(θ(b), ϕ(b)),

where b is a “bond” vector. This quantity is then averaged over all
bonds in the system to give ⟨Qlm⟩. The Steinhardt ql order para-
meter is defined19 as a rotationally invariant combination of these
coefficients,

ql = (
4π

2l + 1

l

∑
m=−l
∣⟨Qlm⟩∣

2
)

1/2

.

In this work, the value l = 6 is used as it is a good discriminator
between FCC and random/fluid ordering.

The non-analytic region appears to correlate with where the
order parameter rapidly changes, indicating the transition from a
slightly less ordered structure held together by the tether at lower
densities to a slightly more order structure at higher densities. Inter-
estingly, there is an angled shape of the non-analytical region to
below even the fluid transition density for the untethered system.
It appears that staying below a tether length of rT/a ≈ 0.55 allows
the avoidance of the non-analytic region entirely while perform-
ing thermodynamic integrations with respect to density. Previous
uses of the tether model to calculate the free energy have been
largely limited to integration with respect to the tether length,
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mainly to avoid the need to pass through the fluid–solid phase
transition.7,21,22 Consequently, they did not consider the possibil-
ity of a continuous path between the fluid and solid phases, which
avoids the non-analytical region. Earlier works with the single occu-
pancy model for hard sphere, where the particles are confined to
Voronoi cells of the lattice sites, have used density integration to
determine the free energy;4 however, closer examination of the pres-
sure variation with density indicated that these simulations did pass
through a non-analytical region, although its effect was thought to be
negligible.

VII. DISCUSSIONS AND CONCLUSIONS
In this work, the properties of systems of hard spheres that are

tethered to an FCC lattice are examined. The tethered hard sphere
model gives us detailed information of the structure of phase space,
and more specifically the behavior of the entropy, around the point
where the configuration is tethered. The phase space of the system
can be considered to be a porous material, with the pores corre-
sponding to the regions accessible to the system, and the pore walls
corresponding to the disallowed regions due to overlap of spheres or
violation of the tether constraint. The “pore volume” of phase space
is directly related to the entropy of the system, while its “porosity”
is directly related to the excess entropy of the system. The colli-
sion rates of the particles with their tethers give an indication of the
pathways away from the perfect FCC configuration.

At low to moderate fluid densities, the porosity of phase space
appears to be fairly uniform moving away from the perfect FCC con-
figuration to the regions of phase space corresponding to the more
disordered fluid phase. The tether collision rates gradually decrease
to eventually reach the value for the ideal tether mode, while the
particle–particle collision rates gradually increase from zero to the
bulk fluid value.

At the higher solid densities, the FCC configuration becomes
isolated from the rest of the phase space by excluded volume inter-
actions. The system becomes “trapped” in the FCC configuration.
Moving away from the perfect FCC lattice (by increasing the tether
length), the particle–particle collision rate increases from zero to
the values for the bulk, untethered system; however, the tether col-
lision rate decreases exponentially with the tether length and then
suddenly drops to zero.

At intermediate densities, there is a “bottleneck” separating the
phase space corresponding to the FCC configuration and that of the
disordered, fluid phase. The tether collision rate drops rapidly to
low values as the tether length increases, before jumping up to the
ideal tether rate. The particle–particle collision rate first increases to
a value corresponding to solid phase, but then later switches to the
fluid phase value, sometimes transitioning back and forth between
the two before settling to the fluid value.

This change in the pathways out of the FCC configuration
leads to the entropy developing a path dependence, and this can be
represented as a region in rT/a and ρσ3 where the entropy is non-
analytic. This region extends at extremely large tether lengths from
the solid–fluid coexistence region of the untethered hard sphere sys-
tem and ends at a tether length rT/a ≈ 0.55 and a density slightly
lower than the density at the onset of freezing.

The direct geometric interpretation of the tether and
particle–particle collision rates can be used to determine the entropy

of the system: by integrating the particle–particle collision rate with
respect to the system density or by integrating the tether collision
rate with respect to the tether length. As long as both these paths
do not cross this non-analytic region, they will lead to consistent
results. If either path does cross the non-analytic region, the discrep-
ancy between the two methods will depend on what portion of the
non-analytic region is enclosed by the path.

The results of this work can be extended in many ways. An
FCC lattice is explored here; however, the particular shape of the
non-analytic region is expected to depend on the lattice used for the
tethers. For example, if the spheres were tethered to a BCC (Body-
Centered Cubic) lattice, the location of the non-analytic region
would be expect to change due to the difference in the fluid–solid
coexistence densities as compared to the FCC crystal structure. A
more interesting case is for a system that is tethered to a “fluid”
configuration, rather than to a regular lattice. This would allow the
behavior of particle systems that are trapped in glassy states to be
explored. In fact, Speedy6 used this approach to calculate entropy of
hard sphere systems that were jammed in various disordered config-
urations in order to determine the “statistical” entropy of the glassy
system. It would be interesting to determine if the non-analytic
region appears for these systems, if so, where is it located, how does
this depend on the particular arrangement of the tether sites, and
how does this relate to the presence of a glass transition?

Also of interest is the relationship of the tethered particle model
to the random pinning glass model,23,24 where a fraction of parti-
cles are forced to maintain a fixed position. The “pinning” of these
particles imposes a quenched disorder in the system, which can be
analyzed within the framework of the random first order transi-
tion theory,25–27 and a glass transition is expected to occur, signaled
by the vanishing of the configurational entropy, as the fraction of
pinned particles increases above a critical value.27 Can the quenched
disorder imposed by the tether constraint be analyzed in a similar
manner?

The solid–fluid phase transition in the three-dimensional hard
sphere system is well established and understood. It would be inter-
esting to examine the analytic structure of the entropy in such
two-dimensional hard disk system28,29 and the parallel hard cube
model,30–32 where the transition has been more difficult to examine.
After 65 years, there is still a rich variety of phenomena to explore in
the phase transitions of hard systems, and the tether model opens a
complementary line of investigation and interest.
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