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Abstract1

The human colon contains a dynamic microbial community whose2

composition has important implications for human health. In this work3

we build a process-based model of the colonic microbial ecosystem and4

compare with general empirical observations and the results of in-vivo5

experiments. Our model comprises a complex microbial ecosystem along6

with absorption of short chain fatty acids (SCFA) and water by the host7

through the gut wall, variations in incoming dietary substrates (in the8

form of “meals” whose composition varies in time), bowel movements,9

feedback on microbial growth from changes in pH resulting from SCFA10

production, and multiple compartments to represent the proximal, trans-11

verse and distal colon. We verify our model against a number of ob-12

served criteria, e.g. total SCFA concentrations, SCFA ratios, mass of13

bowel movements, pH and water absorption over the transit time; and14
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then run simulations investigating the effect of colonic transit time, and15

the composition and amount of indigestible carbohydrate in the host diet,16

which we compare with in-vivo studies. The code is available as an R17

package (microPopGut) to aid future research.18

Introduction19

The human colon harbours a dense and diverse community of microbiota whose20

interactions with the host can have a profound effect on human health (e.g.21

Rios-Covian et al. (2016), Morrison and Preston (2016)). Due to the location of22

this community within its host, data collection and experimentation are prob-23

lematic. Information on this system mostly comes from volunteer experiments24

in which diet and stool samples are monitored or from laboratory experiments25

using the microbes found in stool samples. Another approach is to put current26

knowledge into a mathematical framework and run simulations of the system to27

test our understanding and identify knowledge gaps. To this end a number of28

mathematical models of this system have been developed - e.g. Cremer et al.29

(2016), Cremer et al. (2017), Munoz-Tamayo et al. (2010), Smith et al. (2021),30

Moorthy et al. (2015).31

When developing a model, a number of assumptions about the system are32

made in order to reduce complexity/dimensionality so that the model is easier to33

parameterise, run and analyse. Some modellers choose to reduce the microbial34

complexity and focus on the physics of the gut (e.g. Cremer et al. (2016),35

Cremer et al. (2017)), some try to achieve a balance of both (e.g. Munoz-Tamayo36

et al. (2010)) and some choose to develop the microbial community (e.g. Smith37

et al. (2021)). The model described here focuses on the microbial community38

dynamics and on interactions with the host, with a fairly simple model of the39

colon. We include the simulation of ‘meals’ (of random composition and size)40

arriving at the colon and look at the effects of bowel movements, both of which,41

as far as we are aware, have not been previously incorporated into such models.42
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Having developed a complex model of human gut microbiota in a fermentor43

system (Kettle et al., 2015), and publicly available software (microPop - an44

R package for modelling microbial communities (Kettle et al., 2018)) we now45

incorporate this 10-group microbial ecosystem model (Table 1) into a model of46

the human gut in order to simulate the effects of diet and host on the microbial47

composition and subsequent short chain fatty acid (SCFA) production.48

Since approximately 95% of the SCFA produced by the microbes during49

growth are absorbed by the host through the gut wall this represents a strong50

interaction between the microbes and the host. Indeed the ratio of the 3 main51

SCFAs (acetate, butyrate and propionate) is known to have a significant effect52

on human health (Louis et al. (2014), Morrison and Preston (2016)). Thus,53

we prioritise information on the values of these ratios in our model verification.54

Similarly approximately 90% of the water flowing into the colon is absorbed.55

Changes in the volume of water have a significant effect on the concentration of56

the molecules in the colon which in turn affects pH which then affects microbial57

growth, all of which are included in our model.58

Due to its shape within the body, the colon is commonly divided into 359

different regions - the proximal, transverse and distal sections running from60

beginning to end (Fig. 1A and B). The availability of substrate, microbial61

growth and hence pH vary along the colon, therefore, although our model is not62

spatial we simulate these three regions explicitly, with flow from one to another.63

Furthermore, as well as incorporating varying substrate inflow in the form of64

meals we also add in the release of mucins along the length of the colon which65

can be microbially broken down to release proteins and carbohydrates, allowing66

for further microbial growth away from the beginning of the colon where the67

substrates enter. A graphical summary of the model is shown in Fig. 2, the68

microbial functional groups are shown in Table 1 and the model state variables69

are summarised in Table 2.70

We use the following criteria to verify our model captures the main features71

established for the system:72
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1. Total SCFA (TSCFA) concentration in the proximal, transverse and distal73

compartments should be around 123, 117 and 80 mM respectively accord-74

ing to sudden death human autopsies (Cummings et al., 1987)75

2. Acetate:Propionate:Butyrate ratios are similar (around 3:1:1) in all regions76

of the colon and around 60:20:20 mM (Cummings et al., 1987)77

3. Over 95% of SCFA are absorbed by the host (Topping and Clifton, 2001)78

4. Approx. 90% of incoming water is absorbed by the host (Phillips and79

Giller, 1973)80

5. pH in the proximal, transverse and distal compartments should be around81

5.7, 6.2 and 6.6 respectively (Cummings et al. (1987), and telemetry data82

from Mikolajczyk et al. (2015), Bown et al. (1974))83

6. Normal daily fecal output in Britain is 100-200 g d−1 of which 25-50 g is84

solid matter (i.e. 50-175 g d−1 is water). Bacteria make up about 55%85

of the solid matter i.e. 14-28 g d−1 of microbes emitted (Stephen and86

Cummings, 1980).87

7. TSCFA concentration decreases with transit time (Lewis and Heaton,88

1997)89

After model verification we examine the effects of including meals, bowel move-90

ments and fixed/varying pH into the model. We then use the model to look at91

how carbohydrate composition (based on the fractions of resistant starch (RS)92

and non-starch polysaccharides (NSP)) and total carbohydrate affect the mi-93

crobial community and SCFA composition. The simulations are then compared94

with in-vivo data from human volunteer experiments.95

Although gut microbiota are highly complex and not fully understood, here96

we show that it is nonetheless possible to develop predictive models of key com-97

ponents of this ecological system. An important goal of our modelling is to aid98

and inform the interpretation of data obtained, mostly from faecal samples, in99
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A. Schematic of human 
colon
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with schematic A) 

C. Comparison of model results for time-averaged 
TSCFA and pH with observed properties shown in Table 
B (pink lines). 

Figure 1: A. Colon schematic, B. Table of typical values for physical properties
(length, volume, pH and TSCFA) and C. plots of summarised model simulations
for average TSCFA and pH for comparison with typical values. Red dots show
results from meals-inflow averaged over 4 random seeds; blue dots show results
from continuous substrate inflow.

studies on diet and health in humans. Our results show promise and we believe100

this model represents a significant step forward in analysing this highly complex101

system. We refer to the model as “microPopGut” and to aid future research the102

code is available as an R-package on github (https://github.com/HelenKettle/microPopGutCode)103

and instructions on how to use the package are given in the supplementary file104

‘getStartedWithMicroPopGut.pdf’.105

Results106

Standard Model107

The model settings which give the best fit to our criteria are shown in Table108

4 (colon parameters and dietary inflow). The microbial group parameters are109

listed in Supp. Info. (section 3). These define our default model. From this we110

investigate the effects of different model configurations, e.g. with/without bowel111

movements, meals and variable pH, for a range of transit times. Simulations112

with meals have a random component therefore the model is run for a number of113

5



SCFA & other 
metablites

Microbial 
ecosystem

(10 functional 
groups)substrates:

RS
NSP
Protein

water

water 
absorption

water 
absorption

cross feeding

SCFA absorption

SCFA absorption

COLON

Host blood stream

Host blood stream

Inflow of water 
and substrates 

from small 
intestine can be 

constant or 
stochastically 

composed 
‘meals’ 

smoothed over 
time. pH varies with TSCFA. pH affects microbial growth 

Outflow can 
be modelled 
as constant 

or bowel 
movements 

can be 
simulated

Figure 2: Model system with the microbial ecosystem comprising 10 microbial
functional groups (Table 1) which consume substrates (RS, NSP and protein)
and water. The microbes produce metabolites some of which are consumed by
other MFGs (‘cross-feeding’). SCFA and water are absorbed through the colon
wall (at a different specific rates). The system shown within the dashed line
is repeated in each of the modelled regions of the colon (proximal, transerve,
and distal) with the contents of the previous region, flowing into the next. The
first compartment (proximal) has inflow from the small intestine - this can
be constant inflow or simulated meals whose composition varies randomly in
time. The third model compartment (distal) has outflow to stool which can be
constant or evacuation via bowel movements can be simulated. pH varies with
the TSCFA concentration and affects the rate of microbial growth differently
for each MFG.
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Table 1: Microbial functional groups included in the model (and the R package
microPop (Kettle et al., 2018)) and described by Kettle et al. (2015). Users
should be aware that the parameter values given in the data frames in the soft-
ware will almost certainly change with increasing knowledge of gut microbiota
and in some cases are simply a “best guess”.

microPop Name Abbr. Description Examples

Bacteroides B Acetate-propionate-
succinate group

Bacteroides spp., Prevotella spp.,
Akkermansia muciniphila (Verru-
comicrobia)

NoButyStarchDeg NBSD Non-butyrate-forming
starch degraders

Ruminococcaceae related to Ru-
minococcus bromii. Also includes
certain Lachnospiraceae

NoButyFibreDeg NBFD Non-butyrate-forming fi-
bre degraders

Ruminococcaceae related to Ru-
minococcus albus, Ruminococcus
flavefaciens. Also includes certain
Lachnospiraceae

LactateProducers LP Lactate producers Actinobacteria, especially Bi-
fidobacterium spp., Collinsella
aerofaciens

ButyrateProducers1 BP1 Butyrate Producers Lachnospiraceae related to Eubac-
terium rectale, Roseburia spp.

ButyrateProducers2 BP2 Butyrate Producers Certain Ruminococcaceae, in
particular Faecalibacterium praus-
nitzii

PropionateProducers PP Propionate producers Veillonellaceae e.g. Veillonella
spp., Megasphaera elsdenii

ButyrateProducers3 BP3 Butyrate Producers Lachnospiraceae related to Eubac-
terium hallii, Anaerostipes spp.

Acetogens A Acetate Producers Certain Lachnospiraceae, e.g.
Blautia hydrogenotrophica

Methanogens M Methanogenic archaea Methanobrevibacter smithii

different starting seed values. Due to the random fluctuations these simulations114

will not reach steady state therefore the summary values are taken as the mean115

from day 7 (to remove the effect of the initial conditions) to the end of the116

simulation (28 days) and are averaged over multiple seeds.117

Table 3 gives summary results of the model simulations without bowel move-118

ments but with varying pH for each bowel region. Fig. 3 shows results from119

more simulations but for the distal colon only. Fig. 3a shows that although120

bowel movements make a difference to the total biomass and the TSCFA they121

do not have a large effect on the community composition or the SCFA ratios.122

Thus in the interests of model simplicity we decide to not include bowel move-123

ments in later simulations. However, varying pH with TSCFA can be seen to124

7



Table 2: State variables included in the model. They are all in units of mass
(g; with the exception of pH) and they are computed for each model compart-
ment (e.g. prox., trans. and dist.). They are derived automatically from the
substrates and metabolites specified for each microbial functional group (MFG)
in the input file/dataframe to the R package microPop Kettle et al. (2018).

Name Details
Microbial biomass Computed for each of the 10 MFGs (Table 1)
water from dietary intake or from microbial metabolism
Protein from dietary intake or mucin
Resistant starch (RS) from dietary intake or mucin
Non-starch polysaccharides (NSP) from intake or mucin
pH Computed from TSCFA (Eq. 5)
Acetate metabolite
Butyrate metabolite
Propionate metabolite
Formate metabolite
Carbon dioxide metabolite
Methane metabolite
Ethanol metabolite
Lactate metabolite
Succinate metabolite
Hydrogen metabolite

make a large difference to the microbial community (Fig. 3b) and also improves125

the SCFA ratios with respect to our verification criteria. The addition of meals126

makes a significant difference which increases with increasing transit time (Fig.127

3c). In Fig. 4 the time series output from the model shows how the meals-128

inflow allows the community to experience large shifts over time (on a much129

longer time scale than the variations in the input), as opposed to the fixed state130

approached using a constant substrate inflow.131

Fig. 1C shows the average pH and TSCFA for the proximal, transverse132

and distal compartments. A decrease in TSCFA (and concomitant increase in133

pH) with longer transit time is predicted in the proximal colon both for meal134

inflow and continuous input and this is in broad agreement with experimental135

findings (Lewis and Heaton 1997). In section 2 of the Supp. Info. we suggest136

a mathematical explanation for this based on the supposition that the specific137

rate of absorption of water through the gut wall is slower than that for SCFA.138

Regarding Table 3, for some criteria, e.g. pH, the continuous inflow setting139
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gives results closer to our verification values, but in other cases, e.g. A:B:P140

in distal colon, simulating meals gives closer results. Note that we consider a141

transit time of 1 day the most typical of the three transit times, and the one142

that should be compared with our verification criteria, the others are included to143

show the variation in results. Ideally TSCFA should be 123, 117 and 80 mM for144

prox., trans., dist. but the best match we have to this is for a 3 d transit time and145

continuous inflow. This is most likely due to the fact that our model has fixed146

rates of specific absorption of SCFA and water throughout the colon. However,147

our TSCFA values are within a reasonable range and display the general trend148

of decreasing TSCFA from the proximal to distal colon. The microbe output,149

i.e. the outflow of fecal microbes is steady at around 20 g d−1 in all cases which150

fits well in the verification range (14-28 g d−1). The water fraction is the ratio151

of the rate of fecal water over the rate of water flowing into the colon, since 90%152

of water is absorbed this should be 0.1. This is approximately correct for our 1153

d simulations (0.14) but, as expected, when transit time increases this decreases154

significantly. In summary, comparing these simulation results with our list of155

model verification criteria shows that in general our model is fit for purpose,156

and that the inclusion of meals-inflow and varying pH improve our simulations.157

Table 3: Summary of model results (for comparison with our list of criteria) for
3 different transit times, with meals or continuous inflow and with pH varying
with TSCFA. Microbe output is the mass of microbes leaving the colon per
day and the water fraction is amount of water leaving the colon per day di-
vided by the amount entering. All simulations were run for 28 days and the
results shown are the average over days 7-28. The results for the simulations
with meals are averaged over 4 random seeds. ‘A:B:P dist’ refers to the Ac-
etate:Butyrate:Propionate ratio (mM) in the distal colon.

Meals Continuous inflow

transit time 1d 2d 3d 1d 2d 3d

TSCFA prox (mM) 115.3 110.3 105.2 124.4 123.5 122.1
TSCFA trans (mM) 102.1 88.1 83.4 75.5 96.1 111.1
TSCFA dist (mM) 107.6 64.8 69.0 89.5 62.0 83.3
A:B:P dist (mM) 62:28:17 31:23:10 34:23:12 56:27:7 38:18:6 59:17:7

pH prox 6.0 6.1 6.2 5.9 5.9 5.9
pH trans 6.2 6.5 6.6 6.7 6.4 6.1
pH dist 6.2 6.9 6.8 6.5 6.9 6.6

microbe output (g d−1) 20.2 20.1 20.1 20.0 20.1 20.0
water fraction 0.14 0.04 0.02 0.14 0.04 0.02
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Figure 3: Summary results (averaged over days 7-28 and over random seeds) for
the distal compartment for continuous inflow or fluctuating inflow (i.e. ‘meals’)
for continuous outflow from colon or for 2 bowel movements per day (‘2 BM/d’).
The RS fraction is 0.78 (i.e. 78% of the dietary carbohyrate is resistant starch
and 22% is NSP) and the transit time is 0.93 d for a), 1.25 d for b) and at 0.25,
0.5, 1, 1.5, 2, 2.5 and 3 days for c). The top row shows the biomass of each
group, the bottom row shows the SCFA.

Model Experiments158

We now use our model to simulate two scenarios – firstly, the effects of decreasing159

total carbohydrate intake and secondly, the effects of changing carbohydrate160

composition (whilst keeping total intake fixed) on the microbial commnuity and161

associated SCFA production. Comparing our simulations with data from human162

volunteer experiments is not straightforward since in order to run our model,163

ingested food must be translated to non-digestable substrates reaching the colon.164

This is problematic due to unknown water consumption and transit times and165

uncertainties associated with the absorption rates of the ingested carbohydrate166

and protein higher up the digestive tract. Thus we do not attempt to reproduce167

human experiments exactly but rather we run simulations based on variations168

to our standard model set up which are qualitatively similar, and then compare169

our results with the trends in the available data.170
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Figure 4: Simulation results for the distal compartment for continuous inflow
(first plot on each row) or fluctuating inflow (i.e. ‘meals’) for transit times of 1
d (top row) and 2 d (bottom row) and for 2 random seeds. Modelled pH varies
with TSCFA and the RS fraction is 0.78. There are no bowel movements (i.e.
outflow is continuous). See Table 1 for microbial groups.

Effects of total dietary carbohydrate171

In this model experiment we investigate the effects of decreasing carbohydrate172

on the microbial community. Here we compare our results qualtitatively with173

the human dietary study of Duncan et al. (2007) which explored the impacts of174

carefully controlled decreases in carbohydrate intake upon weight loss and mi-175

crobial fermentation products in obese subjects using 3 diets – a maintenance176

(M) diet, a high protein, moderate carbohydrate diet (HPMC) and a high pro-177

tein, low carbohydrate diet (HPLC) (see Fig. 5 for details). This is of course,178

the composition for ingested food, which is not easily translated into substrate179

concentrations entering the colon. However, we can look at the general trends180

in SCFA and microbial composition with changing colonic carbohydrate intake181

rate. Thus, in these model experiments we keep protein inflow to the colon at182

10 g d−1 (our default value) and then increase inflowing non-digestable (ND)183

carbohydrate from 10 g d−1 to 60 g d−1 in 10 g d−1 intervals. To include the184
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effects of different ND-carbohydrate composition we run the model for an resis-185

tant starch (RS) fraction of either 0.2 or 0.78 (the default value), with non-starch186

polysaccharides (NSP) making up the remaining ND-carbohydrate in each case.187

Although subject to large uncertainties, we estimate the RS fractions for the188

Duncan et al. (2007) experiments of 0-0.6 (M diet), 0-0.68 (HPMC) and 0-0.12189

(HPLC) (based on RS is 0–20% of ingested starch (Capuano et al., 2018) and190

bio-available NSP is 75% of ingested NSP (Slavin et al., 1981)). Due to the191

low fibre nature of many of these simulations we run the model with a slightly192

longer transit time of 1.5 d and for both continuous inflow and meals.193

Fig. 6 shows the SCFA results from our model experiment and Fig. 5 shows194

the results from the in vivo experiment. It is clear, from both the model and195

in vivo results that the proportion of butyrate increases as the amount of ND-196

carbohydrate in the diet increases. Furthermore, both model and in vivo results197

show an increase in TSCFA with ND-carbohydrate intake rate. Since Duncan198

et al. (2007) also look at the relationship between butyrate concentration and199

grams of carbohydrate eaten per day, we plot butyrate against carbohydrate en-200

tering the colon (Fig. 7) to compare with their Fig. 1. In both cases, butyrate201

concentration increases with incoming carbohydrate. Furthermore, as seen in202

both the model and the data, the percentage of butyrate increases with carbo-203

hydrate intake (Fig. 7). Analysis of 10 human studies involving 163 subjects204

has shown a highly significant increase in percentage butyrate with increasing205

total SCFA concentration in faecal samples (LaBouyer et al., 2022).206

In terms of microbial composition, Fig. 6 shows the results from our simula-207

tions are reasonably consistent across inflow type (meals or continuous), with B208

dominating at low carbohydrate intake. When the RS fraction is low (i.e. when209

ND-carbohydrate is made up of 80% NSP) then NBFD increase with increased210

C intake. Whereas when C is mostly RS then NBSD and BP1 increase with C.211

In both cases BP2 increase with increasing C intake.212
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Figure 5: Table on left shows the dietary intake for two human studies (Duncan
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Figure 6: Simulated Biomass and SCFA results for increasing carbohydrate
inflow. Simulations are run with continuous substrate inflow (cts) and with
‘meals’ for a transit time of 1.5 days. The results are the average over the last
3 weeks of a 28 day simulation and ‘meals’ is the average over 4 stochastically-
generated simulations.
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Figure 7: Plot of modelled butyrate, %butyrate and TSCFA against grams of
carbohydrate entering the colon each day. Data from Duncan et al. (2007) is
shown in magenta - due to uncertainties in converting ingested starch to RS
entering the colon there are large error bars on the amount of C (g/d). Error
bars show C estimated by the sum of 75% of ingested NSP plus 0-20% of ingested
starch.

Effects of carbohydrate composition213

Here we use the model to simulate the effects of changing carbohydrate compo-214

sition on the microbial community composition by changing the ratio of RS to215

NSP whilst keeping the same amount of total incoming carbohydrate. Fig. 8216

show a summary of the model results. Although there are differences between217

the continuous inflow/meals, and also for the different transit times (1 d and 3218

d), the modelled trends are generally similar, showing a significant shift in com-219

munity as the fraction of RS increases, an increase in TSCFA and changes in220

the SCFA ratios. We compare our results with a human dietary study (Walker221

et al. (2011), Salonen et al. (2014) and references therein) examining the im-222

pact of switching the major type of ND-carbohydrate from wheat bran (NSP)223

to resistant starch. Volunteers were provided successively with a maintenance224

diet, diets high in RS or NSPs and a reduced carbohydrate weight loss (WL)225

diet, over 10 weeks (Fig. 5).226

There are large discrepancies between the SCFA predicted by our model (Fig.227

8) and the measured SCFA data (Fig. 5). Our model predicts an increase in228

TSCFA as proportion of RS increases whereas total fecal SCFA were significantly229
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lower for the RS and WL diets compared to the other two diets (in which NSP230

is higher). One possible explanation is that fermentation of RS occurs in more231

proximal regions of the colon compared with NSP fibre fermentation, such that232

there is greater absorption of the SCFA products. A second possibility, also233

likely, is that transit times were longer for the RS diet than for the NSP diet,234

which we predict would result in decreased SCFA concentrations. In our model235

the effect of the RS fraction on TSCFA is greater than the effect of transit time236

so we do not see this in Fig. 8.237

The human study also included detailed compositional analysis of the fecal238

microbiota (Walker et al. (2011), Salonen et al. (2014)) that revealed specific239

responses mainly by different groups of Firmicutes bacteria to the RS and NSP240

diets. This information was particularly important for the phylogenetic assign-241

ments to the functional groups used here and previously in the model of Kettle242

et al. (2015). Our modelling predicts striking shifts in the microbial commu-243

nity, especially involving the NBSD, NBFD and butyrate-producing groups,244

with changing proportions of RS and NSP fibre (Fig. 8). We should also note245

that in the volunteer experiments many bacterial species were not significantly246

altered by the RS-NSP switch in vivo (Walker et al., 2011) indicating that many247

may be generalists, able to switch quickly between energy sources.248

Discussion249

The development of a complex model of the microbial community in the human250

colon, whose simulations compare well with data, represents a significant step251

forward. Previous models have been based on simpler microbial models (e.g.252

Cremer et al. (2017), Munoz-Tamayo et al. (2010), Moorthy et al. (2015)), or253

have not shown such a good agreement with data (e.g. Smith et al. (2021)). Our254

previous complex model community consisted of 10 functional groups, but the255

model was designed only to simulate continuous culture conditions in a chemo-256

stat (Kettle et al., 2015). Translating this 10-group model into an in vivo setting257
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Figure 8: Biomass and SCFA results for changing the RS fraction of inflowing
carbohydrate with continuous substrate inflow (‘cts inflow’) and with ‘meals’.
Protein and carbohydrate inflow are 10 and 50 g d−1 respectively. The results
are the average over the last 3 weeks of a 28 day simulation and ‘meals’ is the
average over 4 stochastically-generated simulations.
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has required introducing multiple gut compartments, and the absorption of wa-258

ter and SCFA, followed by comparison with generally observed characteristics259

of the system. We were then able to use this model to examine the predicted260

impact of changes in the amount and type of non-digestible carbohydrate (fibre)261

present in human diets upon concentrations of fermentation products (SCFA)262

in different gut compartments and in stool. At the same time, we predict the263

likely impact of dietary changes and variations in gut transit upon microbiota264

composition and fermentation products. The model must be regarded as work265

in progress particularly with respect to microbiota composition. Predictions can266

however become improved and refined as more information becomes available267

in time.268

Assignments of microbial taxa to our ten functional groups were based ini-269

tially on evidence from cultured isolates. These assignments have since been270

supported and greatly extended by analysis of genes diagnostic for different fer-271

mentation pathways within genomes and metagenomes (Reichardt et al., 2014)272

and by molecular detection of species enriched within the community by defined273

growth substrates in chemostat experiments (Duncan et al., 2016) and dietary274

intervention studies (Salonen et al., 2014). Nevertheless, these assignments in-275

evitably remain provisional and incomplete and we do not claim that the model276

predictions can be made precise at a phylogenetic level. More emphasis is placed277

in our model on the prediction of metabolic outputs based on microbial transfor-278

mations and interactions. While there is relatively little phylogenetic overlap for279

example between producers of propionate and butyrate (Reichardt et al. (2014),280

Louis and Flint (2017)) there are many cases where individual species are known281

to use multiple alternative substrates as energy sources, which complicates as-282

signments. For this reason, more weight was given to fermentation pathways283

than to substrate preferences in defining the functional groups. However, it284

would also be possible to define completely different groupings that relate to285

other outputs (e.g. bile acid metabolism, or vitamin/micronutrient supply) in286

order to address specific questions. Furthermore, it may well be worthwhile to287
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increase the number of functional groups in the future. The large B group for288

example currently includes members of the Bacteroidetes phylum, but its char-289

acteristics are mainly based on well-studied members of the Bacteroides genus.290

We know that Prevotella is another highly abundant genus of Bacteroidetes in291

the human colon, but the two genera tend not to co-occur at high levels in the292

same individuals (Wu et al. (2011), Chung et al. (2020)). Less is known about293

human colonic Prevotella, for which there are relatively few cultured representa-294

tives, making it premature to create a separate grouping, but this would clearly295

be desirable in the future as their prevalence is reported to affect health and296

responses to dietary intervention. In future it should become possible to define297

the relative abundance of functional groups (MFGs) and their relationship to298

phylogeny directly from genomic and metagenome analysis, by examining genes299

diagnostic for particular pathways and functions (e.g. Reichardt et al, 2014).300

The parameter values for the microbial groups used in our model are from301

the intrinsic data frames in the microPop package (the only changes are to302

LactateProducers). Although the work presented here did not attempt to fit303

particular parameters to data, as we focussed on expanding the scope of the304

model (i.e. changing the environment from fermentor to colon), these values305

are easy to alter, e.g. Wang et al. (2020) changed many of these parameters to306

achieve a better model fit to their data. As well as adjusting the parameters307

for each group to represent inter-individual variation, groups can also be easily308

added or removed from the model through the input argument ‘microbeNames’.309

Furthermore, it is also possible to include any number of strains (with varying310

parameter values) within each functional group in order to add more variation311

in outcome (see Kettle et al. (2015)) but we did not do this here in the interests312

of computational time. It should also be noted that the parameter values are313

highly uncertain in many cases and within each of our functional groups there314

will be large variability due to adaptation and evolution. Given this, we do315

not claim that the model response is necessarily representative of what may316

happen in an individual’s gut, rather it can be used as an aid to gain insight317
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into the relative importance of the different processes we are currently aware of318

and potentially to highlight, those we are not.319

In addition to this, it must be noted that the default diet chosen here with320

10 g of protein and 50 g of carbohydrate fibre reaching the colon each day could321

be revised for any given population. However, converting from quantities of322

ingested food to substrate inflow to the colon is highly uncertain with large323

variations between studies, as well as technical issues with measuring this accu-324

rately. With more time, it would be interesting to investigate a larger range of325

typical diets but this was beyond the scope of the current work.326

In summary, although performing reasonably well, the model has the poten-327

tial to be considerably improved simply by altering the parameter values and328

existing settings, however, more fundamental changes such as those listed below329

could also be investigated in future work:330

• Adding more functional groups or pathway switches in the existing func-331

tional groups. For example at present only the Bacteroides group can332

utilise protein but it is now known that some butyrate producers can also333

utilise amino acids (Louis and Flint, 2017)334

• Our pH relation with TSCFA is very simplistic and could potentially be335

improved, although host secretions mean this is not necessarily straight-336

forward.337

• Currently we set the transit time for the colon and then this is split be-338

tween the 3 model compartments based on their relative sizes. An interest-339

ing addition would be to alter transit time based on the composition of the340

various substrates entering the colon. For example, increasing residence341

time for high protein and/or low fibre diets. Due to variation in individual342

response this may need to include significant uncertainty ranges.343

• Related to this is changing the absorption rate of water through the gut344

wall based on the diet, for example more water could remain in the gut345

on a high fibre diet.346
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• A longer term goal would be to model the processes in the gastrointestinal347

tract preceding the colon in order to simulate how substrates entering the348

colon relate to dietary intake. This would allow more accurate prediction349

of microbial metabolite production based on diet.350

To conclude, our model helps to explain some important, but poorly under-351

stood, relationships that have been reported in human studies, including the352

increase in butyrate proportion with increasing total faecal SCFA (LaBouyer353

et al., 2022). This phenomenon has important implications in view of the354

claimed benefits of butyrate supply for colorectal cancer prevention and the355

health of the colonic mucosa (Louis et al. (2014), Hamer et al. (2008)). The356

model also predicts increasing total faecal SCFA with greater fibre intake and357

more rapid gut transit. Gut transit is also shown to have potentially important358

consequences for microbiota composition and gut metabolism. In addition, the359

model confirms that the amount and type of non-digestible carbohydrate in the360

diet has the potential to cause major changes in microbiota composition. The361

nature of such changes is, however, predicted to be influenced by patterns of362

meal feeding and by any effects of dietary components (e.g. dietary fibre) upon363

gut transit. Human studies suggest that they will also depend on the initial364

microbiota composition. There is potential to use the model to explore how the365

presence of particular functional groups (such as lactate-utilizers (Wang et al366

2020)) within an individual’s microbiota can influence their gut metabolism and367

response to dietary intervention. This may indeed be one of the most intriguing368

and fruitful applications of such modelling approaches in the future.369

Materials and methods370

Software371

To facilitate continued research and future model development by other re-372

searchers we provide all model code on github (https://github.com/HelenKettle/microPopGutCode).373
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The R package microPopGut is contained in the file microPopGut 1.0.tar.gz.374

This can be downloaded and installed in R using install.packages(‘microPopGut 1.0.tar.gz’).375

Furthermore instructions on how to use the package are given in the supplemen-376

tary file ‘gettingStartedWithMicroPopGut.pdf’.377

Microbial Model378

The microbial functional group model is based on the model described by Ket-379

tle et al. (2015) and implemented using the R package microPop (Kettle et al.,380

2018). The microbial groups include producers of the three major SCFA de-381

tected in fecal samples (acetate, butyrate and propionate) together with uti-382

lizers of acetate, lactate, succinate, formate and hydrogen (see Table 1 for a383

summary, or refer to Kettle et al. (2015) for more detail). The model and its384

equations are described in detail by Kettle et al. (2015) and Kettle et al. (2018)385

so only a brief overview is given here The microbial groups are defined as data386

frames within the R package and these are shown in section 3 of the Supp. Info..387

Although this application uses the microbial parameters (e.g. maximum growth388

rates, yields etc) that are in the package’s intrinsic data frames, these can be389

easily changed by either modifying the dataframe in R or by providing a new390

dataframe - either as an input csv file or by creating one in R. One of the input391

arguments to the function microPopGut() is microbeNames which allows the392

user to also enter other microbial groups.393

The growth substrates available in the large intestine are divided into four394

categories: protein (P), non starch polysaccharides (NSP), resistant starch (RS)395

and sugars (and oligosaccharides and sugar alcohols); for simplicity, all carbo-396

hydrate units are regarded as being hexoses. NSP comprise major components397

of dietary fibre including the structural polysaccharides of the plant cell wall398

(cellulose, xylan, pectin), whereas RS refers to the fraction of dietary starch399

that resists digestion in the small intestine. We consider 10 major metabolites400

that arise from substrate fermentation: acetate, propionate, butyrate, lactate,401

succinate, formate, hydrogen, carbon dioxide, methane and ethanol. Six of these402
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metabolites (acetate, lactate, succinate, formate, hydrogen and carbon dioxide)403

are also considered as substrates, because they are known to be consumed by404

some groups (cross-feeding). It is well known that pH affects growth rate there-405

fore each group is assigned a preferred range of pH within which it can reach its406

maximum growth rate, but outside of which, its growth is reduced or zero. We407

model the rate of bacterial growth using Monod kinetics and assume that from408

1 g of resource, Y g of biomass is produced. We assume that resource that is409

taken up by microbes, but not used to produce biomass, is converted to metabo-410

lites. If not all of the resource is converted to biomass or to the metabolites411

represented in our model, it is discarded. This applies, for example, to many412

diverse fermentation products of proteins (e.g. phenols, amines) that are not413

among the 10 major products covered by the model. Although the model was414

initially developed to be run with multiple strains within each functional group,415

in the current work we do not do this due to the high CPU time associated with416

multiple compartments.417

Inflow to colon418

Incoming substrates and water419

The main sources of nutrient for microbiota in the colon are complex dietary420

carbohydrates that are not absorbed higher up the digestive tract. We use421

a default value of 50 g d−1 of carbohydrate, C, in our model and we vary the422

proportion of this which is NSP or RS using the RS fraction (i.e. RS/(RS+NSP)423

where RS+NSP=C). Based on Cremer et al. (2017) and references therein,424

about 15 g of bio-available NSP and 30-40 g of RS enter the colon per day425

which gives us an RS fraction of 0.67-0.9 with average value of 0.78 which we426

use as our default value. According to Yao et al. (2016) less is known regarding427

dietary proteins, P, that escape digestion to reach the large intestine, although it428

is estimated that around 6 - 18 g P reaches the large intestine daily, the majority429

from the diet and a small proportion from endogenous origins. Given this, here430
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Table 4: Summary of default values used in the model. Parameter values for
the microbial groups are given in the Supp. Info. (section 3)

Symbol Description Default Value

Tt transit time through colon 1.25 d

Ṗdiet protein inflow rate 10 g d−1

Ċdiet carbohydrate inflow rate 50 g d−1

Ẇdiet water inflow rate 1100 g d−1

Ṁ mucin inflow rate 5 g d−1

KM half saturation constant for Mucin breakdown 0.5 g l−1

aW rate of water absorption by host 3 d−1

aZ rate of SCFA absorption by host 9.6 d−1

we assume that 10 g d−1 of undigested P reaches the colon from dietary intake431

along with a small amount from mucin degradation (approx. 1 g d−1). Phillips432

and Giller (1973) state that water enters at approximately 1.5 l d−1 and about433

90% of this is absorbed by the colon. Stephen and Cummings (1980) states that434

normal fecal daily output in Britain is 100-200 g d−1 of which 25-50 g d−1 is435

solid matter and the rest (50-175 g d−1) is water. Thus if 90% is absorbed then436

this indicates water inflow in the range 0.5 - 1.75 l d−1. The midpoint of this437

range is 110 g d−1 of water outflow which, if 90% is absorbed, implies that the438

inflow of water is approximately 1100 g d−1. This will clearly vary depending439

on the host’s oral water intake but we use 1100 g d−1 as our default value. The440

default inflow values are summarised in Table 4.441

Meals442

The normal human diet does not consist of continuous fixed inflow of substrate;443

for a more realistic substrate inflow to the colon we simulate eating 3 meals a444

day with randomly varying composition. We then approximate the passage of445

these meals through the stomach and small intestine to obtain a smoothed time446

series for substrate entering the colon. Note that we are not simulating all the447

food ingested by the host (most of which will not reach the colon) but rather448

simply trying to produce a more realistic time series for the substrates that we449

know reach the colon.450

We specify three meals per day each with a duration of 30 minutes. This451
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time-series is then passed through a one-compartment ordinary differential equa-452

tion model representing the time spent in the stomach and small intestine (es-453

timated to take 7 hours), i.e.454

ds(t)

dt
= ˙s(t)in − vs(t) (1)

where v=3.4 d−1 (inverse of 7 h transit time in days); ˙s(t)in is time series455

representing 3 meals a day (g d−1) and t is time in days. The inflow to the456

colon (i.e. the outflow from small instestine) is given by vs(t). The composition457

(in terms of P, NSP, RS and water (W)) of these meals varies randomly around458

the mean of each component (Table 4) for each meal. To generate such random459

fluctuations we draw samples for each meal from a gamma distribution (since460

this is always above zero) defined by a scale parameter (γs) and the daily average461

inflow of the substrate (g d−1). We assume the magnitude of the substrate462

fluctations are proportional to the mean value. Preliminary simulations showed463

that γs equal to half the mean value of each substrate gave a good variation for464

P, RS and NSP, and for water variation we assumed γs was one tenth of the465

incoming daily flow. The distributions and flow patterns are shown in Fig. 9.466

Mucin467

There is a further input of protein and carbohydrate from the host via the468

breakdown of host-released mucin by many strains in the B group (Ravcheev469

and Thiele, 2017) and in our NBFD group (Crost et al., 2013). It is estimated470

that 2.7-7.3 g d−1 of mucin, denoted Ṁ , is secreted into the colon (Florin471

et al., 1991), therefore we take the midpoint value 5 g/d. We assume our mucin472

degraders break down 1 g of mucin into 0.05 g sulphate, 0.2 g P and 0.75 g C,473

based on Sung et al. (2017), but consider their yield on mucin to be negligible474

compared with growth on other substrates. We split C equally between NSP475

and RS - this arbitrary choice did not affect model results since C from mucin476

(3.75 g d−1 maximum) is much less than dietary C (50 g d−1), but this should477
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Figure 9: a) Gamma distribution from which random values are drawn to gen-
erate the composition of each meal (note water is not shown due to the large
difference in magnitude between water and dietary substrates). b) The sub-
strate inflow time series to the proximal colon after passing through the small
intestine. Examples shown for 3 stochastic simulations starting with different
seeds. c) Barplots showing the composition of 6 meals over 2 days for 3 different
stochastic simulations.
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be revised if considering very different dietary drivers. Since the compartments478

of the colon are not equal-sized we assume that the rate of mucin entering the479

colon is divided through the model compartments proportional to their relative480

volumes. We assume this enters the colon at a fixed, continuous rate and mucin-481

derived P and C are a function of the mass of mucin degraders, DM (B and482

NBFD), such that,483

˙C(t) = 0.75
DM (t)

DM (t) +KMWv(t)
Ṁ (2)

˙P (t) = 0.2
DM (t)

DM (t) +KMWv(t)
Ṁ (3)

where C, P , DM are in mass units and the over dot indicates a rate (e.g. g484

d−1), t is time and Wv is the volume of water in the model compartment. KM485

(g l−1) is chosen such that if DM << KMWv then there is minimal breakdown486

of mucin and if DM >> KMWv there is maximal breakdown. The smaller the487

value of KM the more breakdown there will be at low concentrations of mucin488

degraders. We set KM=0.5 g l−1 based on preliminary model simulations.489

Absorption by host490

SCFA and water are both absorbed by the host through the gut wall; over 95%491

of SCFA (Topping and Clifton, 2001) and approximately 90% of incoming water492

is absorbed (Phillips and Giller, 1973). Experiments by Ruppin et al. (1980)493

found that the absorption rates of SCFA to be approximately 0.4 h−1 (i.e. 9.6494

d−1) with little difference in rates between the different SCFA (Ruppin et al.495

(1980), Topping and Clifton (2001)).496

We can estimate mathematically the specific water absorption rate required497

to give 90% absorption of inflowing water for a given number of compartments498

in the colon (N) and a given transit time, Tt, using499

aW =
16.95 − 9.72N + 1.77N2

Tt
(4)
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(see Supp. Info. Section 1.3 for the derivation). As a rough estimation, for500

a 3 compartment model with a transit time 1-1.5 days, gives aW ≈ 3 d−1
501

(Supp. Info. Fig. S1a). Given this will not be significantly affected by the502

microbial model (microbial uptake/production of water is small) this is a robust503

estimation.504

To estimate the value of the specific absorption rate of SCFA, aZ , we used505

a simple model (see Supp. Info. sections 1.1 and 1.4). Estimating the value506

of the specific absorption rate of SCFA based on the values of SCFA given in507

the verification criteria and given our estimate for aW we found that it was508

necessary for the specific absorption rate to change along the colon (see Supp.509

Info. section 1.4). The best estimates were given by aZ values of 25.2, 4.2 and510

9.2 d−1 in the proximal, transverse and distal colon respectively. However, in511

the interests of a robust model (i.e. the fewer parameter values, the better)512

we made the decision to use one value for aZ . Since the experimental value of513

9.6 d−1 compares well with our estimate in the distal colon we set aZ=9.6 d−1
514

throughout. It should be noted though that our model results could potentially515

be improved by varying aZ between model compartments.516

pH517

Calculating pH in our model is not straightforward due to a lack of necessary518

state variables as well as pH buffering via secretions from the host. However,519

observations tell us the pH in the colon goes from 5.7 in the proximal, 6.2 in520

the transverse and 6.6 in the descending colon and TSCFA in these regions is521

around 123 mM, 117 mM and 80 mM respectively (Cummings et al., 1987).522

Therefore an approximate approach is to simply make pH a function of TSCFA.523

Fitting a line through the above points gives us the following relationship524

pH = 8.02 − 0.0174 × TSCFA. (5)
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Figure 10: a) Relating pH to TSCFA using Eq. 5 and data from (Cummings
et al., 1987). b) Example of microbial tolerance to pH. A pH tolerance function
of this form is specified individually for each microbial group in our model.

which we further limit by setting the minimum and maximum pH values at 5525

and 8 respectively i.e. if the TSCFA values give predicted pH outside of this526

range (Fig. 10).527

The impact of pH on microbial growth is modelled via a pH limitation func-528

tion whereby there is a range over which there is no limit on growth but outside529

of this range the growth rate decreases linearly to reach zero at the specified530

outer limits. Thus there are 4 parameters used to describe the pH tolerance – 2531

for the inner range where there is no limit on growth and 2 for the outer range532

outside which there is no growth – an example is shown in Fig. 10. The pH533

tolerance range for each microbial group is specified under the entry ‘pHcorners’534

in the data frame for each group and shown in Supp. Info. section 3.535

Fecal outflow536

Fecal outflow (g d−1) at time, t, is given by md(t)Vd where md(t) is the mass537

in the distal colon (i.e. microbes, unconsumed substrate, microbial metabolites538

and water) and Vd is the specific wash out rate from the colon (the inverse of539

the time spent in the distal colon). For continuous outflow (as is used in most540

gut models) we compute the specific wash out rate from each compartment by541

assuming the fraction of time spent in compartment, i, is proportional to its542
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volume fraction, thus543

Ti =
vi

vcolon
Tt (6)

where vi is the volume of compartment i and vcolon is the total volume of the544

colon. The specific wash out rate is then Vi = 1/Ti.545

If we introduce bowel movements then, assuming the distal colon is approx-546

imately emptied for each bowel movement, the total transit time is given by547

Tt = Σ2
i=1Ti +

1

NBM
(7)

where NBM is the number of bowel movements per day. For example, using vol-548

ume measurements (Table 1B) and assuming a total transit time of 1 day would549

mean about 45% of the transit time is spent in the proximal and transverse550

colon and about 55% of the day spent in the distal, which would be similar to 2551

bowel movements per day. In model experiments where we vary the number of552

bowel movements per day we also change the time spent in the rest of the colon553

since we assume increased bowel movements are indicative of a general increase554

in passage rate. We estimate the wash out rate from the colon during a bowel555

movement, VBM , by556

VBM = − ln(fd)

∆tBM
(8)

where fd is the fraction of mass left in the distal colon after the bowel movement557

and ∆tBM is the time taken for the bowel movement (d). For example, if a bowel558

movement takes 10 minutes to remove 90% of the contents of the distal colon559

then VBM is 332 d−1. This is not affected by the number of bowel movements560

per day.561
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microPopGut: R package for simulating microbial populations in
the human colon

Helen Kettle

Overview of microPopGut

MicroPopGut is an R package which simulates/predicts the growth of interacting microbial populations in
the human colon based on the solution of a system of ordinary differential equations (ODEs). It models
the colon as three compartments (proximal, transverse and distal) with a microbial community based on 10
microbial functional groups (MFGs) in each one. Protein and carbohydrates (resistant starch and non-starch
polysaccharide (NSP)) enter the proximal compartment. This inflow can be modelled as a constant rate or
with fluctuations to simulate meals (which have passed through the stomach and small intestine). The outflow
from the distal compartment can be modelled as a constant flow or bowel movements can be simulated.

To simulate microbial growth we use our previous R package, microPop, which is a generic package for
modelling microbial communities. The 10 microbial functional groups used in microPopGut are instrinsic
data frames in microPop (see Table 1 in the paper Kettle et al. 2018, in the link below for details of the
MFGs). The main difference to the usual use of microPop used here is that we include water as a state
variable. Water is injested by the host and absorbed through the colon walls and its volume is not constant.
When calculating concentrations we use the current volume of water in each compartment.

the microPop package

For background info, the microPop package is described in the paper:

Kettle H, G Holtrop, P Louis, HJ Flint. 2018. microPop: Modelling microbial populations
and communities in R. Methods in Ecology and Evolution, 9(2), p399-409. doi: 10.1111/2041-
210X.12873

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12873

The user specifies the system via a number of input files (csv files that become dataframes) and the function
microPopModel() will construct and solve the necessary equations (ordinary differential equations) and
provide an output containing the solution (e.g. the concentrations of microbes, substrates and metabolites at
the required time points) as well as all the settings/parameters involved in the simulation, and plots of the
microbes and resources over time.

Also see the webpage:

https://www.bioss.ac.uk/people/helen/microPop/microPop.html

Getting started with microPopGut

Install the package and add the library:
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install.packages(’microPopGut’)

#> Loading required package: usethis
#> i Loading microPopGut
#> Loading required package: microPop
#> Loading required package: deSolve
#> Loading required package: visNetwork

library(microPopGut)

Basic model run

Note that simulating a complex microbial community of 10 MFGs in 3 compartments is fairly slow to run, so
the code evaluated in this tutorial only simulates very short time periods.

In this first example we only use two microbial groups and have constant inflow and outflow to and from the
colon and we run the simulation for 2 hours.

sim.time.h=2 #time to simulate in hours

m.out=microPopGut(
numDays=sim.time.h/24, #number of days to simulate
time.step=1/24/60, #time step at which you want output
transitTime=1.25, #time taken to move through colon (days)
microbeNames=c(’Bacteroides’,’ButyrateProducers1’), #vector of MFG names

#(these are data frames provided in the microPop package)
microbeNames.short=c(’Bacteroides’=’B’,’ButyrateProducers1’=’BP1’) #abbreviated names used for plotting

)
#> [1] "simulating growth in compartment 1 - please wait!"
#> [1] "using microPopGut"
#> [1] "Set up completed, ODE solver called..."
#> [1] "simulating growth in compartment 2 - please wait!"
#> [1] "using microPopGut"
#> [1] "Set up completed, ODE solver called..."
#> [1] "simulating growth in compartment 3 - please wait!"
#> [1] "using microPopGut"
#> [1] "Set up completed, ODE solver called..."

Here we can see several messages telling us which compartment the processor is currently simulating - this is
helpful if the model is running over several hours.

To look at the results of the model there are two inbuilt functions. The first is verification() (see below)
which gives a summary of the concentrations of the short chain fatty acids (SCFA) in each compartment,
which are released as the microbes grow (averaged over the time period start.av to fin.av), as well as the
fraction of the incoming water that reaches the end of the colon (should be about 0.1, i.e. 10%) and the
microbial outflow from the colon (should be around 16 g/d). Note, TSCFA is the total SCFA.
time=m.out$solution[[1]][,’time’]
verification(m.out,start.av=0.8*max(time),fin.av=max(time))
#> prox trans dist
#> TSCFA (mM) 136.1 118.5 117.7
#> Acetate (mM) 10.1 42.8 51.1
#> Butyrate (mM) 108.7 53.4 42.7
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#> Propionate (mM) 17.3 22.3 23.9
#> [1] "Fraction of the incoming water that leaves colon is 0.12"
#> [1] "fecal microbe output rate is 17.04 g/d"

Next we use plotMPG() to see a summary plot of the SCFA concentration, the mass of each microbial
group and the pH in each model compartment.
plotMPG(m.out)
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Changing host diet

A standard western diet is the default setting in the microPopGut() but this can be changed via the input
arguments, init (i.e. the starting mass in each of the 3 model compartments) and inflow which is the mass
inflow each day of carbohydrate, protein and water. Here you can also specify the division of carbohydrate
into resistant starch and NSP using RS.frac. In this example we change from 10 g/d of protein to zero and
add an extra 10 g/d to the carbohydrate default of 50 g/d. Results are shown in Fig. 1.
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m.out=microPopGut(
numDays=1,
time.step=1/24/60,
transitTime=1.25,
microbeNames=c(’Bacteroides’,’ButyrateProducers1’),
microbeNames.short=c(’Bacteroides’=’B’,’ButyrateProducers1’=’BP1’),

#initial mass in each compartment
init=list(

C=2, #carbohydrate (g)
P=0, #protein (g)
B=10, #biomass (g)
Acetate=0.3606, #g
Propionate=0.1482, #g
Butyrate=0.1762, #g
W=100), #water (g)

#inflow from diet
inflow=list(

C=60, #carbohydrate (g/d)
P=0, #protein (g/d)
W=1100, #water (g/d)
RS.frac=0.78) #fraction of C that is resistant starch (rest is NSP)

)

time=m.out$solution[[1]][,’time’]
verification(m.out,start.av=0.8*max(time),fin.av=max(time))
dev.new()
plotMPG(m.out)

Meal composition/fluctuations

The default setting in microPopGut() is constant inflow but there is also the option to include a more
realistic inflow which aims to represent intermittent host eating. This is specified in the meals input list.

The gamma.mag option in the meals list controls the magnitude of the fluctuations in meal composition
and size by controlling the spread of the gamma distribution that the values are drawn from for each substrate.

m.out=microPopGut(
numDays=1,
time.step=1/60/24,
transitTime=1.25,
microbeNames=’Bacteroides’,
microbeNames.short=c(’Bacteroides’=’B’),
meals=list(

seed=1,
fluc.inflow=TRUE,
fluc.subst.comp=TRUE,
plotInflow=TRUE,
saveInflowFig=TRUE,
breakfast.start=7, #time (24 h clock) to start breakfast
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Figure 1: Summary results for a diet with no protein and 2 MFGs

5



lunch.start=13, #time (24 h clock) to start lunch
dinner.start=19, #time (24 h clock) to start dinner
meal.duration.h=0.5, #length of time eating one meal in hours
time.to.reach.colon.h=7, #time take to pass through stomach and small intestine in hours
gamma.mag=1 #scaling factor to control the fluctuations in meals

)
)

Figs. 2-4 shows meals over 7 days for gamma.mag equal to 0.1, 1 and 1.9 respectively for 3 arbitrary substrates
A, B and C, and water. Note that after stochastically generating the composition the output is scaled so that
the mean substrate values are maintained over the time period (this information is printed to screen when
you run the model). Due to smoothing delays as the meals pass through the small intestine and stomach the
final inflow to the colon may have slightly smaller means (this is also printed to screen).
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Figure 2: Meal composition for gamma.mag=0.1
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Figure 3: Meal composition for gamma.mag=1

The “meals” are then passed through an ODE model representing the stomach and small intestine - the
amount of smoothing caused by this is controlled by the time.to.reach.colon.h item in the meals list. The fig.
below shows the input to the colon for gamma.mag=1.9 and time.to.reach.colon.h=7 hours.

Full gut model (10 MFGs with meals for 7 days)

In this example we show the settings for simulating the full model. In this example we also change the pH
tolerance and the maximum growth rate on resistant starch of the LactateProducers group. The code below
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Figure 5: Substrate inflows to colon (after passing through stomach and small intestine model) for
gamma.mag=1.9

7



takes over an hour to run so if you want to try it out it is better to change num.days from 5, to 1 or less, or
to try fewer groups e.g. microbeNames=microbeNames[1:2].
microbeNames = c(’Bacteroides’,’ButyrateProducers1’,

’ButyrateProducers2’,’ButyrateProducers3’,
’LactateProducers’,’PropionateProducers’,
’Methanogens’,’NoButyFibreDeg’,
’NoButyStarchDeg’,’Acetogens’)

microbeNames.short = c(’Bacteroides’=’B’,’ButyrateProducers1’=’BP1’,
’ButyrateProducers2’=’BP2’,’ButyrateProducers3’=’BP3’,
’LactateProducers’=’LP’,’PropionateProducers’=’PP’,
’Methanogens’=’M’,’NoButyFibreDeg’=’NBFD’,
’NoButyStarchDeg’=’NBSD’,’Acetogens’=’A’)

#Change pH tolerance & Gmax(RS) for lactate producers
#read LPc from batch file
LactateProducers[’pHcorners’,2:5]=c(4.5,5.25,7.2,7.95)
LactateProducers[’maxGrowthRate’,’RS’]=7

m.out=microPopGut(
numDays=5,
time.step=1/24/60,
transitTime=1.25,
microbeNames=microbeNames,
microbeNames.short=microbeNames.short,
meals=list(

seed=1,
fluc.inflow=TRUE,
fluc.subst.comp=TRUE,
plotInflow=TRUE,
saveInflowFig=TRUE,
breakfast.start=7,
lunch.start=13,
dinner.start=19,
meal.duration.h=0.5,
time.to.reach.colon.h=7,
gamma.mag=1

)
)

See Fig. 6 for the results of plotMPG(m.out)

Bowel Movements

By default the model is set up for zero bowel movements per day (BMpd) i.e there is constant outlow. To
turn on bowel movements, set BMpd in the bowel.movements input to either 1, 2 or 3 (see code below).
The start.BM.time list gives the start times for 1, 2 or 3 bowel movements per day and the bowel movement
duration is set using BM.duration.h. In our model we assume that bowel movements only affect the distal
part of the colon.

microbeNames = c(’Bacteroides’,’ButyrateProducers1’,’ButyrateProducers2’,’ButyrateProducers3’,’LactateProducers’,’PropionateProducers’,’Methanogens’,’NoButyFibreDeg’,’NoButyStarchDeg’,’Acetogens’)

microbeNames.short = c(’Bacteroides’=’B’,’ButyrateProducers1’=’BP1’,’ButyrateProducers2’=’BP2’,’ButyrateProducers3’=’BP3’,’LactateProducers’=’LP’,’PropionateProducers’=’PP’,’Methanogens’=’M’,’NoButyFibreDeg’=’NBFD’,’NoButyStarchDeg’=’NBSD’,’Acetogens’=’A’)

8



0 1 2 3 4 5

0
5

0
1

0
0

1
5

0

prox

time (d)

S
C

F
A

 (
m

M
)

Acetate
Butyrate
Propionate

0 1 2 3 4 5

0
1

2
3

4
5

6
7

prox

time (d)

M
ic

ro
b

e
s
 (

g
)

B
BP1
BP2
BP3
LP
PP
M
NBFD
NBSD
A

0 1 2 3 4 5

5
.0

6
.0

7
.0

prox

time (d)

p
H

0 1 2 3 4 5

0
5

0
1

0
0

1
5

0

trans

time (d)

S
C

F
A

 (
m

M
)

Acetate
Butyrate
Propionate

0 1 2 3 4 5

0
1

2
3

4
5

6
7

trans

time (d)

M
ic

ro
b

e
s
 (

g
)

B
BP1
BP2
BP3
LP
PP
M
NBFD
NBSD
A

0 1 2 3 4 5

5
.0

6
.0

7
.0

trans

time (d)

p
H

0 1 2 3 4 5

0
5

0
1

0
0

1
5

0

dist

time (d)

S
C

F
A

 (
m

M
)

Acetate
Butyrate
Propionate

0 1 2 3 4 5

0
1

2
3

4
5

6
7

dist

time (d)

M
ic

ro
b

e
s
 (

g
)

B
BP1
BP2
BP3
LP
PP
M
NBFD
NBSD
A

0 1 2 3 4 5

5
.0

6
.0

7
.0

dist

time (d)

p
H

Figure 6: Summary results for 10 MFGs over 5 days
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sim.time.h=48 #time to simulate in hours

m.out=microPopGut(
numDays=sim.time.h/24,
time.step=1/24/60,
transitTime=1.25,
microbeNames=microbeNames[1:2],
microbeNames.short=microbeNames.short[1:2],
bowel.movements = list(

BM.duration.h = 15/60,
frac.distal.emptied = 0.9,
BMpd = 3,
start.BM.time = list(7, c(7, 19), c(7, 15, 21)))

)

time=m.out$solution[[1]][,’time’]
verification(m.out,start.av=0.8*max(time),fin.av=max(time))
dev.new()
plotMPG(m.out)

Multiple strains per group

By default there is only one strain in each MFG but using the functionality of microPop (on which microPopGut
is based) we can add multiple strains in each group. In versions of microPop from 1.6 onwards we can have
different numbers of strains in each group. The parameters for each strain in a group are drawn randomly
from a given range for that particular group. The particulars of this are controlled by the strainOptions
input argument.

m.out=microPopGut(
numDays=2,
time.step=1/24/60,
transitTime=1.25,
microbeNames=c(’Bacteroides’,’ButyrateProducers1’),
microbeNames.short=(’Bacteroides’=’B’,’ButyrateProducers1’=’BP1’),
numStrains=c(’Bacteroides’=3,’ButyrateProducers1’=2),
strainOptions = list(

randomParams = c("halfSat", "yield", "maxGrowthRate",
"pHtrait"),
seed = 3,
distribution = "uniform",
percentTraitRange = 10,
maxPHshift = 0.1,
applyTradeOffs = FALSE,
tradeOffParams = NULL,
paramsSpecified = FALSE,
paramDataName = NULL)

)

time=m.out$solution[[1]][,’time’]

10



0.0 0.5 1.0 1.5 2.0

0
5

0
1

0
0

1
5

0

prox

time (d)

S
C

F
A

 (
m

M
)

Acetate
Butyrate
Propionate

0.0 0.5 1.0 1.5 2.0

0
5

1
0

1
5

prox

time (d)

M
ic

ro
b

e
s
 (

g
)

B
BP1

0.0 0.5 1.0 1.5 2.0

5
.5

6
.0

6
.5

7
.0

prox

time (d)

p
H

0.0 0.5 1.0 1.5 2.0

0
5

0
1

0
0

1
5

0

trans

time (d)

S
C

F
A

 (
m

M
)

Acetate
Butyrate
Propionate

0.0 0.5 1.0 1.5 2.0

0
5

1
0

1
5

trans

time (d)

M
ic

ro
b

e
s
 (

g
)

B
BP1

0.0 0.5 1.0 1.5 2.0

5
.5

6
.0

6
.5

7
.0

trans

time (d)

p
H

0.0 0.5 1.0 1.5 2.0

0
5

0
1

0
0

1
5

0

dist

time (d)

S
C

F
A

 (
m

M
)

Acetate
Butyrate
Propionate

0.0 0.5 1.0 1.5 2.0

0
5

1
0

1
5

dist

time (d)

M
ic

ro
b

e
s
 (

g
)

B
BP1

0.0 0.5 1.0 1.5 2.0

5
.5

6
.0

6
.5

7
.0

dist

time (d)

p
H

Figure 7: Summary results for 2 MFGs over 2 days with 3 bowel movements per day

11



verification(m.out,start.av=0.8*max(time),fin.av=max(time))
plotMPG(m.out)
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Figure 8: Summary results for 2 MFGs: Bacteroides with 3 strains and ButyrateProducers1 with 2 strains

Troubleshooting

Failure of ODE solver

If you get warnings about time steps then this mean the ODE solver is failing - generally because the
problem is too stiff i.e. there are rapid changes in time. Ways to deal with this are to make your time step

12



(microPopGut input argument) smaller, to make gamma.mag smaller (nearer to zero) which will decrease the
size of the meal fluctuations, or to alter the tolerances in the ODE solver (see ode.options list of microPopGut
input arguments). If you are running the system with only one group, adding more groups often makes the
system more stable as this slows down the growth of each individual group due to resource competition.
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Supp. Info. for “Process-based modelling of

microbial community dynamics in the human

colon”

Helen Kettle, Petra Louis and Harry J. FLint

July 1, 2022

1 Mathematical Model1

1.1 Simple Model2

In this section we present a very simple model with one microbial group and3

one colon compartment that we then use to derive bounds on parameters (e.g.4

absorption of SCFA and water) and to look at the bulk properties of the system,5

e.g. the relationship between transit time and SCFA concentration.6

This simple model consists of, bacteria (X), substrate (S), SCFA mass (Z)7

and water (W ) all with units of mass. We set fs as the fraction of the waste8

products of X that are SCFA, and Y is the amount of microbial growth for 1 g9

of S and aZ and aW are the absorption rates of Z and W . The rates of change10

are given by11

dX(t)

dt
= G(t)X(t)−X(t)V (1)

dS(t)

dt
= ˙Sin −

G(t)X(t)

Y
− S(t)V (2)

dZ(t)

dt
= fs

(
1

Y
− 1

)
G(t)X(t)− (V + aZ)Z(t) (3)

dW (t)

dt
= Ẇin − (V + aW )W (t) (4)

where microbial growth, G, is given by12

G(t) = Gm S(t)

S(t) + K
(5)

where K is the half-saturation constant and Gm is the maximum growth rate13

of X on S. Transit time is incorporated via the washout rate, V such that14

V = 1/Tt.15

Steady state analysis (i.e. when the system is not changing with time) of16

the one group model can be used to give us some bounds or checks on the bulk17

properties of the system. The steady state solution (at time, ts), assuming18

X > 0, is given by19

X(ts) = ( ˙Sin/V − S(ts))Y (6)

1



S(ts) =
V K

Gmax − V
(7)

Z(ts) ≈ V X(ts)
1− Y

Y (aZ + V )
(8)

W (ts) =
Ẇin

aW + V
(9)

where Ẋin is the inflow rate of X.20

1.2 Microbial yield and substrate inflow21

Assuming the microbes consume all available substrate, then the steady state22

mass of microbes can be approximated by23

X(ts) ≈
˙SinY

V
(10)

where Ṡin is the dietary inflow of all substrates (i.e. dietary P, C and mucin); V24

is the wash out rate from the system and Y , the microbial yield. Assuming the25

output of microbes (given by XtsV ) is 14-28 g d−1 (Stephen and Cummings,26

1980) (with midpoint of 21) and the substrate inflow is about 65 g d−1; Eq. 1027

suggests that Y is 21/65 i.e. about 0.3 which matches very well with the yield28

values for our functional groups which have yield values around 0.28 or 0.33 (see29

other Supp. Info. file).30

1.3 Specific water absorption, aW31

Extending Eq. 9 to N compartments with downstream flow from 1 to N, and32

assuming the specific absorption rate is the same in all, then at steady state the33

water in each compartment is given by,34

W1 =
Ẇin

aW + V1
, (11)

W2 =
W1V1

aW + V2
, ... (12)

...,WN =
WN−1VN−1

aW + VN
(13)

Successively substituting for the unknowns gives35

WN =
ẆinV1V 2...VN−1

(aW + V1)(aW + V2)...(aW + VN )
(14)

If 90% of water is absorbed over the transit time then in the last compartment,36

N , WNVN = 0.1Ẇin. Substituting this into Eq. 14 gives37

N∏
k=1

(aW + Vk) = 10

N∏
j=1

Vj . (15)

This can be solved numerically where Vj is computed by dividing the colon into38

N compartments which each take fraction, fT
j , of the total transit time to pass39

2
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Figure S1: a) Achieving 90% water absorption for different transit times (1,
1.5 and 2 days represented by solid, dashed and dotted line respectively) and
different number of compartments (1, 2, and 3 by colour, as shown in legend).
The dotted horizontal line shows the required value for 90% incoming water
absorption in the colon and the vertical blue lines show the aW value which gives
the correct total absorption for the 3 different transit times (which are as before,
1, 1.5 and 2 days represented by solid, dashed and dotted line respectively). b)
Investigating SCFA absorption. TSCFA (mM) for different aZ for transit time
of 1.25 days, for the one group, three compartment model. aZ is from 1,2,...30
/d with values constant throughout the colon. The dashed horizontal lines show
the expected TSCFA in each compartment. The simulation is for 5 days and
the results are the mean over the last day. Constant inflow and outflow (no
meals or bowel movements) with aW changing with transit time according to
Eq. 16.

through. Using fractional times based on compartment volume (Fig. 1 in main40

manuscript) and assuming that aW is the same in each compartment we find41

that for a one compartment model, aW = 9
Tt

; for a two compartment model,42

aW = 4.59
Tt

; and for a three compartment model, aW = 3.72
Tt

(see Fig. S1). This43

can be expressed exactly by44

aW =
16.95− 9.72N + 1.77N2

Tt
(16)

where N is the number of compartments in the model. Note that this does45

not mean that specific water absorption changes with transit time, rather that46

to fulfill the 90% absorption criteria we can set aW based on N and Tt. Once47

a typical transit time is chosen, the value of aW can be fixed. As a rough48

estimation, aW ≈ 3 /d for a 3 compartment model with a transit time between49

one to one and a half days (Fig. S1). Given this will not be significantly50

affected by the microbial model (microbial uptake/production of water is small)51

this result will apply to all of the models in this work.52
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1.4 Specific SCFA absorption, aZ53

Using our one group microbial group model but adapted for 3 compartments,54

and our estimation for aW based on transit time and the number of compart-55

ments (Eq. 16), we run the model for a transit times of 1.25 d with continuous56

inflow and outflow, over a range of aZ from 1-30 d−1. We compute TSCFA from57

our model by converting Z from g to mM using58

ZmM = 106
Zg

WgmZ
(17)

where mZ is computed by assuming TSCFA is in the ratio 3:1:1 (Ac:Bu:Pr)59

to give a weighted mean molar mass of TSCFA, mZ of 68.4 g mol−1. Fig. S1,60

shows the TSCFA in each model compartment versus aZ . The horizontal dashed61

lines show the TSCFA value matching the model criteria, indicating the best62

estimates were aZ equal to 25.2, 4.2 and 9.2 d−1 in the proximal, transverse63

and distal colon respectively. However, this was determined using aZ constant64

through the colon so if aZ varies between compartments this will change the65

results. In the interests of a robust model (i.e. the fewer parameter values, the66

better) we made the decision to use one value for aZ . Given the experimental67

value of 9.6 d−1 compares well with our best estimate for the distal colon (9.268

d−1) we decided to set aZ =9.6 d−1 throughout. It should be noted however69

that decreasing aZ along the colon has been implemented in other models e.g.70

Labarthe et al. (2019).71

2 Effect of Transit Time72

Experimental evidence (e.g. (Lewis and Heaton, 1997)) shows that TSCFA73

(mM) decreases as transit time increases. We can explain why this is, mathe-74

matically, using a very simple one group model with monod growth, which we75

can solve analytically at steady state. To compute TSCFA in mM we need to76

use the fraction of P that is SCFA and then divide by the mean molor mass77

(mm)and multiply by 1000 to find mmol. We then need to divide by W in litres,78

thus,79

TSCFA = 106
Pfs

Wmm
(18)

Substituting for P and W , ignoring scaling constants and assuming remaining80

substrate at steady state is negligible, shows that TSCFA is linearly related to81

the expression82

˙Sin

Ẇin

aW + V

aP + V
(19)

To see the effect of simply changing the transit time through the colon on TSCFA83

we assume ˙Sin and Ẇin are fixed and replace V by 1/T t to get84

TSCFA ∝ aWTt + 1

aPTt + 1
(20)

Since we have aW =3 and aP =9.6, the denominator will increase much faster85

than the numerator as Tt increases thus, theoretically, TSCFA will decrease as86

transit time increases as SCFA are absorbed faster than water. Using realistic87
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Figure S2: TSCFA as a function of transit time obtained from the solution of
Eqs. 2-4. We convert from product mass, P , to moles using the average molar
mass (weighted according to A:B:P = 3:1:1) of 68.5 g/mol and compute fs as an
average of the microPop microbial group stoichiometries to be approximately
0.5. We set inflowing substrate at 65 g/d (dietary substrate plus mucin) and
inflowing water at 1100 g/d, with parameter values Y =0.3, Gmax=20 /d and
K=0.001. [transitTimeModel.R]

parameter values in the above model (Eq. 2-4) allows us to plot TSCFA against88

transit time – see Fig S2 which compares very well with the experimental data89

shown in Fig. 1 by Lewis and Heaton (1997).90

3 Microbial group parameter values91

The parameters describing the different microbial groups are the same as the92

intrinsic functional groups given in the microPop R package (version 1.6), with93

one exception. We increased the maximum growth rate of Lactate Producers94

on RS from 6 d−1 to 7 d−1 and their pH tolerance were cordinates changed95

to tolerate lower pH (first two pH coordinates now 4.5 and 5.25, rather than96

4.95 and 5.7) to ensure a better chance of their survival in the model. This97

section shows the data frames used for each microbial group in microPopGut.98

The following list explains the different entries in these data frames.99

• ‘Rtype’ refers to the substrate type on the pathway:100

– ‘X’: not involved in pathway101

– ‘S’: substitutable substrate (this can be interchanged with other sub-102

stitutable substrates)103

– ‘Se’: essential substrate (the microbes can not grow without this)104

– ‘Sb’: boosting substrate (if this is present the microbe can grow105

faster)106
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– ‘Sw’: water107

– ‘P’: metabolic product108

• ‘halfsat’ is the half saturation constant for monod growth109

• ‘yield’ is the microbial mass produced from one gram of substrate110

• ‘maxGrowthRate’ is the specific maximum growth rate of the microbes111

• ‘stoichiom’ refers to the number of moles of each molecules involved in112

growth113

• ‘keyResource’ is the substrate whose uptake rate is used to compute the114

uptake of the other substrates on the pathway according to the stoichiom-115

etry116

• ‘numPathways’ defines how many metabolic pathways the microbial group117

has. When there is more than one pathway, numbered parameter names118

for the subsequent pathways are used.119

For more details please refer to Kettle et al. (2015) and Kettle et al. (2018) or120

use the help function within the microPopGut package.121

Table 1: Bacteroides
units Protein NSP RS Acetate Propionate Succinate H2 CO2 other

Rtype none X S S P P P P P X
halfSat g/l 0.001 0.001

yield g/g 0.286 0.333
maxGrowthRate /d 12 24

stoichiom mol 2 2 2 1 1 2 1
keyResource none

numPathways none 2
Rtype.2 none S X X P P P P P P

halfSat.2 g/l 0.001
yield.2 g/g 0.2

maxGrowthRate.2 /d 24
stoichiom.2 mol 6 2 1 1 2 1 7

keyResource.2 none
pHcorners pH 5.6 6.35 7.85 8.6

Table 2: NoButyStarchDeg
units NSP RS Acetate H2 CO2 H2O

Rtype none S S P P P Sw
halfSat g/l 0.001 0.001

yield g/g 0.286 0.333
maxGrowthRate /d 3.6 14.4

stoichiom mol 1 1 2 4 2 2
keyResource none

numPathways none 1
pHcorners pH 5.35 6.1 7.6 8.35
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Table 3: NoButyFibreDeg

units NSP RS Acetate Succinate H2
Rtype none S S P P P

halfSat g/l 0.001 0.001
yield g/g 0.286 0.333

maxGrowthRate /d 16.8 3.6
stoichiom mol 1 1 1 1 1

keyResource none
numPathways none 1

pHcorners pH 5 5.75 7.25 8

Table 4: LactateProducers
units NSP RS Sugars Acetate Lactate Formate Ethanol H2O

Rtype none S S S P P P P Sw
halfSat g/l 0.001 0.001 0.001

yield g/g 0.286 0.333 0.333
maxGrowthRate /d 7.2 7 24

stoichiom mol 6 6 6 10 4 2 1 1
keyResource none

numPathways none 1
pHcorners pH 4.5 5.25 7.2 7.95

Table 5: ButyrateProducers1
units NSP RS Sugars Acetate Butyrate H2 CO2 H2O

Rtype none S S S Sb P P P P
halfSat g/l 0.001 0.001 0.001 0.001

yield g/g 0.286 0.333 0.333
maxGrowthRate /d 8.4 8.4 24

stoichiom mol 2 2 2 2 3 2 4 2
keyResource none Hex

numPathways none 1
nonBoostFrac none 0.75

pHcorners pH 4.95 5.7 7.2 7.95

Table 6: ButyrateProducers2
units NSP RS Sugars Acetate Butyrate Lactate Formate CO2 H2O

Rtype none S S S Sb P P P P P
halfSat g/l 0.001 0.001 0.001 0.001

yield g/g 0.286 0.333 0.333
maxGrowthRate /d 14.4 7.2 24

stoichiom mol 6 6 6 4 7 2 6 4 4
nonBoostFrac none 0.1

keyResource none Hex
numPathways none 1

pHcorners pH 4.85 5.6 7.1 7.85
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Table 7: PropionateProducers
units NSP RS Sugars Acetate Propionate CO2 Lactate H2O

Rtype none S S S P P P X P
halfSat g/l 0.001 0.001 0.001

yield g/g 0.286 0.333 0.333
maxGrowthRate /d 7.2 7.2 24

stoichiom moles 3 3 3 2 4 2 2
keyResource none

numPathways none 2
Rtype.2 none X X X P P P Se P

halfSat.2 g/l 0.001
yield.2 g/g 0.111

maxGrowthRate.2 /d 4.8
stoichiom.2 moles 1 2 1 3 1

keyResource.2 none Lactate
pHcorners pH 4.75 5.5 7 7.75

Table 8: ButyrateProducers3
units NSP RS Sugars Acetate Butyrate Formate H2 CO2 Lactate H2O

Rtype none S S S P P P P P X Sw
halfSat g/l 0.001 0.001 0.001

yield g/g 0.286 0.333 0.333
maxGrowthRate /d 7.2 7.2 24

stoichiom mol 10 10 10 2 9 12 10 8 2
keyResource none

numPathways none 2
Rtype.2 none X X X Se P X P P Se P

halfSat.2 g/l 0.001 0.001
yield.2 g/g 0.111

maxGrowthRate.2 /d 4.8
stoichiom.2 mol 2 3 2 4 4 2

keyResource.2 none Lactate
pHcorners pH 4.85 5.6 7.1 7.85

Table 9: Acetogens
units NSP RS Sugars Acetate H2 CO2 Formate H2O

Rtype none S S S P X X X X
halfSat g/l 0.001 0.001 0.001

yield g/g 0.286 0.333 0.333
maxGrowthRate /d 7.2 7.2 24

stoichiom moles 1 1 1 3
keyResource none

numPathways none 3
Rtype.2 none X X X P Se Se X P

halfSat.2 g/l 0.001 0.001
yield.2 g/g 0.03

maxGrowthRate.2 /d 2.4
stoichiom.2 moles 1 4 2 2

keyResource.2 none CO2
Rtype.3 none S S S P P P Se X

halfSat.3 g/l 0.001 0.001 0.001 0.001
yield.3 g/g 0.286 0.333 0.333

maxGrowthRate.3 /d 7.2 7.2 24
stoichiom.3 moles 1 1 1 3 2 2 2

keyResource.3 none Hex
pHcorners pH 5.25 6 7.5 8.25
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Table 10: Methanogens
units H2 CO2 CH4 H2O Formate

Rtype none Se Se P P X
halfSat g/l 0.001 0.001

yield g/g 0.03
maxGrowthRate /d 2.4

stoichiom mol 4 1 1 2
keyResource none CO2

numPathways none 2
Rtype.2 none X P P P Se

halfSat.2 g/l 0.001
yield.2 g/g 0.00724

maxGrowthRate.2 /d 2.4
stoichiom.2 mol 3 1 2 4

keyResource.2 none Formate
pHcorners pH 5.25 6 7.5 8.25

9



References122

H Kettle, G Holtrop, P Louis, and Harry J. Flint. micropop: Modelling micro-123

bial populations and communities in r. Methods in Ecology and Evolution, 9124

(2):399–409, 2018. doi: 10.1111/2041-210X.12873.125

Helen Kettle, Petra Louis, G Holtrop, Sylvia H. Duncan, and Harry J. Flint.126

Modelling the emergent dynamics and major metabolites of the human127

colonic microbiota. Enviromental Microbiology, 17(5):1615–1630, 2015. doi:128

10.1111/1462-2920.12599.129

Simon Labarthe, Bastien Polizzi, Thuy Phan, Thierry Goudon, Ma-130

gali Ribot, and Beatrice Laroche. A mathematical model to in-131

vestigate the key drivers of the biogeography of the colon micro-132

biota. Journal of Theoretical Biology, 462:552 – 581, 2019. ISSN133

0022-5193. doi: https://doi.org/10.1016/j.jtbi.2018.12.009. URL134

http://www.sciencedirect.com/science/article/pii/S002251931830599X.135

S.J. Lewis and K.W. Heaton. Increasing butyrate concentration in the distal136

colon by accelerating intestinal transit. Gut, 41:245–251, 1997.137

AM Stephen and JH Cummings. The microbial contribution to hu-138

man fecal mass. J. Medical Microbiology, 13(1):45–56, 1980. doi:139

https://doi.org/10.1099/00222615-13-1-45.140

10


	MSForPress
	getStartedWithMicroPopGut
	Overview of microPopGut
	the microPop package

	Getting started with microPopGut
	Basic model run
	Changing host diet
	Meal composition/fluctuations
	Full gut model (10 MFGs with meals for 7 days)
	Bowel Movements
	Multiple strains per group
	Troubleshooting
	Failure of ODE solver


	SuppInfo

