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Connectivity is a central concept in ecology, wildlife management, and conservation 
science. Understanding the role of connectivity in determining species persistence is 
increasingly important in the face of escalating anthropogenic impacts on climate and 
habitat. These connectivity augmenting processes can severely impact species distribu-
tions and community and ecosystem functioning.

One general definition of connectivity is that it is an emergent process arising from 
a set of spatial interdependencies between individuals or populations, and increasingly 
realistic representations of connectivity are being sought. Generally, connectivity con-
sists of a structural component, relating to the distribution of suitable and unsuitable 
habitat, and a functional component, relating to movement behavior, yet the interaction 
of both components often better describes ecological processes. Additionally, although 
implied by ‘movement’, demographic measures such as the occurrence or abundance 
of organisms are regularly overlooked when quantifying connectivity. Integrating such 
demographic contributions based on the knowledge of species distribution patterns is 
critical to understanding the dynamics of spatially structured populations.

Demographically-informed connectivity draws from fundamental concepts in 
metapopulation ecology while maintaining important conceptual developments from 
landscape ecology, and the methodological development of spatially-explicit hierar-
chical statistical models that have the potential to overcome modeling and data chal-
lenges. Together, this offers a promising framework for developing ecologically realistic 
connectivity metrics.

This review synthesizes existing approaches for quantifying connectivity and advo-
cates for demographically-informed connectivity as a general framework for addressing 
current problems across ecological fields reliant on connectivity-driven processes such 
as population ecology, conservation biology and landscape ecology. Using support-
ing simulations to highlight the consequences of commonly made assumptions that 
overlook important demographic contributions, we show that even small amounts 
of demographic information can greatly improve model performance. Ultimately, we 
argue demographic measures are central to extending the concept of connectivity and 
resolves long-standing challenges associated with accurately quantifying the influence 
of connectivity on fundamental ecological processes.
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Introduction

The ability to accurately measure connectivity is crucial for 
managing habitat loss and fragmentation (Rayfield  et  al. 
2011, Wasserman  et  al. 2012, Haddad  et  al. 2015, 2016) 
in order to preserve genetic diversity and promote popula-
tion persistence (Hilty  et  al. 2020). Connectivity, concep-
tually, is the strength of links among locations mediated by 
effective dispersal (Calabrese and Fagan 2004) and how the 
environment facilitates or hinders those links (Taylor  et  al. 
1993). Therefore, connectivity is a property of a landscape 
that emerges from the set of spatial dependencies that arise 
between individuals and populations within a particular 
landscape (or seascape, etc., Kool et al. 2013). Beyond this 
general definition, however, the ability to effectively quantify 
how, when, and to what extent, connectivity contributes to 
ecological processes has been beset by semantic uncertainties 
(Kool et al. 2013) and debate (Tischendorf and Fahrig 2000, 
2001, Moilanen and Hanski 2001).

Such uncertainty and debate is fueled, in part, by a diversity 
of ecological sub-disciplines and conservation applications 
that draw upon the concept and seek to quantify connec-
tivity through a continually increasing array of models and 
metrics (Kindlmann and Burel 2008, Rayfield  et  al. 2011, 
Fletcher  et  al. 2016). Population dynamics (Clinchy  et  al. 
2002), disease networks (Margosian  et  al. 2009), for-
estry planning (Banks  et  al. 2005), wildlife management 
(Horváth  et  al. 2019), conservation reserve design (Blowes 
and Connolly 2012, Gupta  et  al. 2019), spatial conserva-
tion planning (Daigle  et  al. 2020), invasive species mitiga-
tion (Drake et al. 2017a), landscape genetics (Marrotte et al. 
2017) and more, all invoke the concept of connectivity, but 
often in different contexts and spatiotemporal scales. While 
we acknowledge that such context-dependency makes it 
unrealistic to find a single connectivity metric that would sat-
isfy all applications, idiosyncratic uses of connectivity have 
proliferated into a loosely related set of tools. Therefore, we 
find it pertinent to synthesize the properties of connectivity 
to understand how common assumptions in various model-
ing approaches influence estimates of connectivity.

Connectivity is traditionally considered to be a function 
of two core components: a structural component, relat-
ing to the distribution of suitable and unsuitable habitat 
(Calabrese and Fagan 2004), and a functional component, 
relating to the influence of the landscape matrix on dispersal 
success (Kindlmann and Burel 2008, Rayfield et al. 2011). 
Comprehensive quantification of connectivity (i.e. the prob-
ability of an organism successfully leaving point A and arriv-
ing at point B, including what goes on in between), should 
ideally consider both structural and functional components. 
The consideration of both the available habitat and the move-
ment behavior can be described as ‘potential’ connectivity 

(Calabrese and Fagan 2004) and can be applied to identify 
potential corridors or pinch points (Ziółkowska et al. 2012), 
and other useful conservation planning indices such as the 
probability of connectivity (Saura and Pascual-Hortal 2007). 
However, this approach is arguably incomplete because the 
underlying distributions of populations are often not incor-
porated (Moilanen and Nieminen 2002). Indeed, spatially 
explicit information about the distribution (e.g. occupancy), 
size (e.g. abundance) or demography (e.g. survival) of a pop-
ulation or set of populations is crucial for understanding how 
and why both structural and functional components of con-
nectivity influence ecological dynamics across time and space. 
Changes in any one of these components can contribute to 
shifts in the emergent connectivity and the resulting ecologi-
cal processes in important, yet hitherto unexplored, ways. For 
example, landscapes and populations change through space 
and time, and at different spatial and temporal scales, and 
the judicious inclusion of information about the dynamics 
of both in connectivity modeling is likely to provide greater 
insight about their relative contribution to the spatiotempo-
ral dynamics of spatially structured populations.

Through our synthesis, we have identified a third compo-
nent that is garnering increasing recognition when describing 
connectivity, i.e. landscape connectivity is the combina-
tion of structural, functional and demographic components 
(Fig. 1). Connectivity is a representation of movement pro-
cesses, through the lens of dispersal, by individuals among 
focal habitats (Matthysen 2012, Baguette et al. 2013). These 
patches contain varying qualities of habitat and exist in the 
landscape where movement between them responds to the 
intervening matrix. Incorporating a demographic weighting 
to established components based on the spatiotemporal dis-
tribution of the populations producing dispersers allows for 
a dynamic and demographically-informed view of connectiv-
ity, which we refer to as demographically-weighted connec-
tivity (Fig. 1).

Specifically, we advocate demographically-weighted con-
nectivity as a dynamic framework synthesized from con-
tributions across ecological and conservation literature for 
understanding the role of connectivity-driven processes that 
cuts across discrepancies among sub-disciplines. Further, 
using simulation, we explore key demographic assumptions 
(representing increasing amounts of biological realism found 
in connectivity studies) to demonstrate the value of incor-
porating demographic components of connectivity and the 
consequences for ignoring it. This simulation highlights the 
importance of estimating key parameters that control the 
scale of colonization and dispersal and their probabilities. 
Such a focused approach on connectivity and its core com-
ponents should allow for increased integration across sub-
disciplines and help progress the search for general ecological 
processes (Rapacciuolo and Blois 2019). We reassert that 
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individual decisions and population dynamics are not only 
a product of connectivity but also an important determinant 
of connectivity.

Demographic connectivity: synthesizing 
core contributions

Demographically-informed connectivity draws from funda-
mental concepts in metapopulation ecology (Hanski 1994, 
Hanski and Ovaskainen 2000, Ovaskainen and Hanski 2001) 

while maintaining important conceptual developments from 
landscape ecology (Turner 2005), and the methodological 
development of spatially-explicit hierarchical statistical mod-
els that have the potential to overcome modeling and data 
challenges (Box 1). Ecological connectivity has tradition-
ally been approached from either a structural or functional 
perspective (Taylor et al. 1993, 2006). This false dichotomy 
masks a complex gradient of ecological assumptions about 
connectivity. Instead, we argue that, in addition, connectivity 
metrics should consider demographic weighting, when appli-
cable, across this gradient. Although movement is implied 

Figure 1. Demographically-weighted connectivity considers three core components of connectivity: landscape (structure and resistance), the 
dispersal process and population demographic information. Landscape connectivity has often been seen as a static process among habitat 
patches on the landscape. Connectivity not only influences population dynamics but is influenced by them. Connectivity in the landscape 
shifts across space and time coincident with the spatiotemporal distribution of organisms. While some habitat may be within effective 
dispersal range (α) of an organism (Box 2), others may be functionally isolated due to a landscape that is resistant to successful dispersal. 
Even when such habitat is within the dispersal capability of another parcel of habitat, only when populations of organisms are there, and 
capable of dispersing, would habitat be functionally connected. The data used to weight connectivity may take the form of simple occur-
rence data (as shown here), but also abundance, number or breeders, fecundity or any other demographic representation that is hypothe-
sized to relate to the dispersal process and impact connectivity. Demographically-weighted connectivity thus provides an extended 
conceptual representation of landscape connectivity that considers, explicitly, the population dynamics and demographics which can influ-
ence connectivity and the ecological processes dependent upon it. Image designed by Tina Sotis based on research by Drake et al. (2021).
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to qualitatively achieve measures of functional connectiv-
ity, demographic measures (e.g. occupancy, abundance; see 
below) have historically rarely been considered in investiga-
tions of connectivity (Prugh et al. 2008), but an increasing 
awareness for their need is developing (Fletcher et al. 2019). 
Next, taking recent developments and historic contributions 
from the literature, we develop the justification and impor-
tance of considering demographic contributions for a more 
holistic connectivity by discussing each component of con-
nectivity in turn.

Dispersal

Dispersal, the movement of individuals and propagules that 
may have consequences for gene flow across space (Ronce 
2007), links populations, making it essential to connectivity 
and, as a result, local colonization–extinction dynamics and 
the maintenance of gene flow and genetic diversity (Bowler 
and Benton 2005, Crooks and Sanjayan 2006, Baguette et al. 

2013). However, lack of empirical dispersal knowledge is often 
cited as a serious impediment to research (Driscoll et al. 2014), 
particularly in applications of connectivity (Zeller et al. 2012). 
For example, when available, sample sizes are often small and 
lack power, and pooling likely masks important sex-, age- and 
stage-specific variation (Elliot et al. 2014a). Yet, it is the inclu-
sion of information about dispersal that makes connectivity 
metrics functional. This is true whether considering fluid dis-
persed propagules (Munoz 2004), plants (Auffret et al. 2017), 
small flying insects (Jangjoo  et  al. 2016), anadromous fish 
(Bradbury et al. 2014) or large predatory mammals (Zeller et al. 
2018). The constraints that impact dispersal for any given spe-
cies will impact both the potential or realized connectivity that 
emerges from the landscape structure (Vasudev et  al. 2015). 
Understanding dispersal is therefore key to accurately char-
acterizing the intersection of, and mechanistic link between, 
landscape structure and population connectivity.

Unfortunately, this presents a limited perspective of an 
assumed measure of functional connectivity that often ignores 

Box 1. The current state of demographic connectivity modeling, a spatially realistic metapopulation 
perspective

Spatially realistic metapopulation theory (SMT) has the potential to act as a unifying force in ecological research (Hanski 
and Gilpin 1991, Hanski and Ovaskainen 2003), providing a strong conceptual basis and analytical framework for the 
conservation of fragmented species. Its implementation through the stochastic patch occupancy framework (SPOM; 
Moilanen 1999, Ovaskainen and Hanski 2004) has allowed the exploration of connectivity’s influence on (meta)popula-
tion dynamics through the lens of dispersal. It has historically been difficult to implement (Baguette 2004, Sutherland et al. 
2014), but recent advances have increased the popularity and utility of SMT.

Connectivity in SPOMs is often modelled as a function of dispersal from occupied patches in the spatially explicit 
patch network (Hanski 1994) and often relies on an assumption of abundance scaling with patch size. This approach 
is often criticized, because when this assumption does not hold, it can cause erroneous inference, performing poorly as 
a connectivity predictor (Prugh 2009). While this model has classically relied on such assumptions, occupancy models 
that are used to estimate dispersal and infer connectivity would benefit from more direct inclusion of demographic 
data (Clinchy et al. 2002). This can be achieved with the flexibility of Bayesian hierarchical modeling (Risk et al. 2011, 
Sutherland et al. 2014, Howell et al. 2020a).

Bayesian hierarchical modeling has allowed for the accounting for imperfect detection (Royle and Kery 2007, 
Guillera-Arroita 2017, MacKenzie et al. 2018) and estimation of missing data (O’Hara et al. 2002, Risk et al. 2011, 
Sutherland et al. 2014), making traditionally error-prone data easier to analyze. Although the need to incorporate more 
detailed demographic data is not always needed (Chandler  et  al. 2015), the inclusion of population size and struc-
ture can lead to more accurate representations of connectivity and population dynamics structure (Pellet et al. 2007, 
Sutherland et al. 2012). Weighting of model components can inherently increase acknowledgement of spatiotemporal 
heterogeneity of spatially structured populations (Thomas and Kunin 1999), allowing the combination of temporal 
dynamism and demographic weighting to produce more dynamic representations of connectivity (Drake et al. in review).

Inclusion of other core components of demographic connectivity has been facilitated by the conditional flexibility of 
hierarchical modeling (Royle and Dorazio 2009). First, the internal state of patch dynamics, often overlooked by classical 
SPOMs (Holt 1992), can be estimated through the use of sub-models (Sutherland et al. 2014), thus directly addressing the 
population size/structure to patch area relationship directly (Bender et al. 1998). Second, recent advances by Howell et al. 
(2018) has allowed the generalization of SMT to allow landscape resistance to be included in the model. This addresses a 
perennial criticism of the metapopulation framework in general (With 2004), allowing more mechanistic understanding of 
the dispersal process and acknowledging non-Euclidean movement, reducing the reliance on expert opinion. As well, the 
inclusion of non-Euclidean dispersal and demographics address both system-scale and local issues of population dynam-
ics (Howell et al. 2020a). This integration of landscape and metapopulation ecological fields has been long anticipated 
(Hanski and Gilpin 1991) but rarely achieved (Moilanen and Hanski 1998, With 2004, Howell et al. 2018).
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the underlying population distribution. This is evident in 
applications of landscape resistance mapping. For exam-
ple, when predicting functional connectivity for bullfrogs, 
Lithobates catesbeianus, in the Sonoran Desert, Drake et  al. 
(2017b) produced resistance estimates to illustrate landscape-
scale shifts in potentially connected habitat, regardless of 
occupancy state. Such demographically-naïve approaches are 
widely applied and, while useful, represent hypotheses of con-
nectivity that are prone to biases (Zeller et al. 2012) resulting 
from a mischaracterization of the underlying distribution and 
behavior of individuals, i.e. of potential dispersers (Riotte-
Lambert and Laroche 2021). Indeed, including information 
on known occurrences, and hence a refined representation of 
dispersal sources, can generate altogether different character-
izations of landscape connectivity and of management priori-
ties (Cushman et al. 2013, Drake et al. 2017a). Overlooking 
the underlying distribution of potential dispersers is likely to 
overstate state-specific dispersal of a landscape and introduces 
biases in the characterization of connectivity which will be 
more strongly felt in more heterogeneous, spatially-struc-
tured populations (Box 2).

Dispersal has three stages: emigration, transfer and immi-
gration, each a multi-faceted context-dependent process. 
Despite the importance of each stage and the fact that each 
plays out at, and is influenced by, factors at characteristic 
spatial and temporal scales (Clobert et al. 2012), functional 
connectivity approaches have often viewed dispersal solely 
through the lens of the transfer stage (Diniz et al. 2020). Data 
at each stage can be limited, but data on the transfer stage are 
often scarcest (Cozzi  et  al. 2018); assumptions outnumber 
data in model representation of this movement. Such scarcity 
begets the use of proxies, such as functional connectivity, for 
these largely latent processes.

In fact, recognizing what controls emigration and immi-
gration may provide insight and may be as, if not more, 
important for estimating connectivity (Vasudev and Fletcher 
2016). Variation in emigration rates has been linked to 
inbreeding avoidance and kin competition (Lambin  et  al. 
2001, Bowler and Benton 2005), area-dependence (Wang 
and Altermatt 2019) and habitat quality (Hui et al. 2012). 
Likewise, immigration may depend on conspecific attrac-
tion (Matthysen 2005) and perception of site habitat quality 
(Betts  et  al. 2008), rather than solely the distance traveled 
from natal patches (Telfer et al. 2001). The balancing of dis-
persal costs and benefits is multi-causal and there is potential 
for a dynamic feedback loop whereby each of these demo-
graphic processes can be influenced by, and contribute to, 
variation in local- and landscape-level connectivity. Thus, fac-
tors such as the distribution and abundance of a population 
and dispersal behavior introduce a spatiotemporal dynamism 
to the concept of connectivity that has been often overlooked 
(Drake et al. unpubl.).

Where information on the processes influencing disper-
sal’s transfer stage is limited, patterns gleaned from observed 
emigration and immigration may provide a reasonable alter-
native source of dispersal data. Occupancy-based statistical 
methods can be used to interpret patterns of colonization and 

extinction (Hanski and Ovaskainen 2003, Ovaskainen and 
Hanski 2004) and have been commonly used to infer the scale 
and rate of dispersal (Sutherland et al. 2012, Driscoll et al. 
2014). Analytical advances have gone a long way towards 
the integration of even simple demographic data such as 
occupancy or abundance to increase the mechanistic under-
standing of connectivity and its contribution to ecological 
processes, including predictions of how landscape features 
influence movement (Vasudev et al. 2015; Box 1). Moreover, 
advances in data collection have shown that a variety of sam-
pling methods, including determining presence and absence 
of species through non-invasive methods such as hair snares 
(Dixon  et  al. 2006), scat samples (Long  et  al. 2007) and 
even environmental DNA (Sales  et  al. 2020), can increase 
our ability to examine the impact of connectivity more accu-
rately through the dispersal process for single species and for 
entire communities (Baguette et al. 2013, Rapacciuolo and 
Blois 2019). The rapid advances in sampling technology and 
analytical methods have revolutionized ecological monitor-
ing and modeling such that landscape-scale inference about 
species occurrence and abundance distributions is com-
monplace. Considering how valuable this information can 
be to refining measures of connectivity, we advocate for an 
integration of landscape-scale estimates of population state 
variables into connectivity research (Sutherland et al. 2015, 
Morin et al. 2017, Meyer et al. 2020).

Landscape

For spatially structured populations, the landscape is often 
divided thematically into the habitat patch and the inter-
patch matrix (Dilts et al. 2016). This paradigm is applicable 
across a wide assortment of environments, not solely in ter-
restrial ones (Baguette  et  al. 2013, Boulanger  et  al. 2020). 
The focal patch or patch network is often defined by breed-
ing habitat (Compton et al. 2007) or stepping-stones of suit-
able habitat too small for long-term occupancy (Saura et al. 
2014); these patches are surrounded by unsuitable inter-
patch matrix typically not permanently occupied by focal 
species. The amount and relative position of patches defines 
the landscape structure but rarely reflects the realized distri-
bution of populations or whether they are functionally con-
nected via the intervening matrix. It is worth noting that the 
patch-matrix landscape model represents one (a binary) end 
of a spectrum, while continuously occupied landscapes (e.g. 
gradients of habitat suitability) represents the other end. All 
landscapes exist along this gradient, depending on the degree 
of landscape heterogeneity. Therefore, while demographi-
cally-weighted connectivity may seem to stem from a patch-
centric view, these ideas are not limited to the binary matrix 
perspective.

Structural representations of landscape connectivity that 
focus solely on spatial structure of the patch network and 
overlook the underlying spatial distribution of individuals 
can generate biased representations of inter-patch connec-
tions (Lookingbill et al. 2010, Martensen et al. 2017). The 
simplifying assumptions of structural models can be useful 
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Box 2. Illustration of bias emerging from common connectivity modeling assumptions

We conducted a simulation (code available in Supporting information) of spatially-explicit patch occupancy dynamics 
in a homogenous matrix to determine how commonly applied assumptions about demography influences the ability to 
recover parameter estimates that influence connectivity. Using a metapopulation as an archetypal spatially structured 
system and the well-established stochastic patch occupancy model (SPOM; Ovaskainen and Hanski 2004) as pedagogical 
demonstration, we iteratively relax spatiotemporal invariance and realism of demographic contributions.

We initialized the metapopulation simulation with each patch having an occupancy probability of ψ. These colonization–
extinction rates are Markovian, i.e. they are conditional on the occupancy states, z, in the previous year for any given patch i:

y ei t i t i t i t i tz C z, , , , ,= -( ) + -( )- - - -1 11 1 1 1 	  

where ε is the probability of extinction (ε = 0.4) and C is the colonization probability. For every occupied patch, we 
generated local population size (Ni) by simulating a random Poisson variable according to an expected area–abundance 
relationship. This allowed for stochasticity in spatiotemporal abundances:

N A zit it it Pois  exp b b0 1+ ´( )´( ) 	  

where β0 is the intercept (β0 = −1) and β1 is the slope parameter relating area to abundance, and the multiplication 
by zit, the occupancy state, ensures only occupied sites have non-zero abundances. Patch areas were generated from a 
Uniform(1,3) distribution.

Transition rates themselves are a function of the number of individuals in a patch, i.e. they have a demographic basis:

C Si t i t, ,exp= - - ´( )1 g 	  

γ is the per capita effective dispersal rate and Si,t is the measure of connectivity:

S X dit
j i

it ij
* exp= -( )´

¹
-å 1 a

where the exponentiated term −αdij is what makes this representation of connectivity spatially explicit, being a decreas-
ing function of increasing interpatch distances, dij, scaled by the parameter α. Also, Xit represents a series of increasingly 
realistic demographic weightings (below).

We explore sensitivities by considering variation in time series length (t = 5, 10), patch network size (sizes = 30, 100) 
and area–abundance relationship (β1 = 1, 2). In addition to this area–abundance relationship scenario, we generated 
abundances to have the same overall mean and variance but without the area–abundance relationship (this we refer to as 
‘disrupting’ the relationship). We explored additional combinations of parameters including additional values, which are 
reported in Supporting information, although the results and scenarios used here are representative of general patterns.

Varying both total abundance and heterogeneity of populations sizes allowed us to consider how different population 
structures in the landscape impact recovery of parameter estimates. Varying the dispersal rate (γ = 0.2,0.03) and the slope 
of the area:abundance relationship (β1) to estimate abundance allowed us to examine scenarios reflecting diverse meta-
populations; from low population sizes with relatively low variance (ranging approximately from 1 to 11 mean = 2.72) 
such as those found in carnivores (Benson et al. 2016) to the those with high abundance and variance (ranging approxi-
mately from 1 to 154, mean = 20.09).

The patch area–disperser abundance relationship has been a core incidence function model assumption (Hanski 1994) 
that has recently received increased scrutiny (Ozgul et al. 2009). This disruption of the area–abundance relationship may 
reflect biologically realistic scenarios where this relationship may not exist (Prugh et al. 2008) and provide insight into 
bias introduced into modeling populations that do not conform to this assumption (Hovel and Lipcius 2001).

We consider five formulations of the data-generating model that represents increasingly unrealistic assumptions about 
connectivity. First, we fit the data generating model (Nit) described above that included abundance effects on connectiv-
ity. Second, we approximate abundance with occupancy-weighted patch sizes (Aizit). Third, we approximate abundance 
with occupancy state only (zit), ignoring any potential information contained in the size of the patch. Fourth, we approxi-
mate abundance with unweighted patch size (Ai), ignoring the occupancy state. Finally, we fit a model that assumes all 
patch contribute to connectivity equally by ignoring patch size and demographic contributions (U).
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These simulations were carried out in R (<www.r-project.org>), using the NIMBLE package (de Valpine et al. 2017); 
each model combination was run 500 times, each run iterated 30 000 times with 10 000 burn-in and a single chain. We wish 
to note that these simulations were computationally intensive, requiring multiple processor cores to work over several days 
or weeks depending on the settings applied. Extended description of the model can be found in Supporting information.

Influence of demography for parameter recovery
Here we focus specifically on the ability to recover the parameter α, the spatial scale parameter of the dispersal kernel 
that represents the spatial scale of connectivity. Dispersal kernels are central to representing spatial population processes 
(Nathan et al. 2012). We use a negative exponential version (but other forms may be used; Supporting information) of 
the incidence function model (Hanski 1994). This form relates the dispersal process to connectivity through the scaling 
parameter α, representative of the mean dispersal distance (Moilanen and Nieminen 2002). To determine the impact of 
increasing demographic assumptions on modelling connectivity, we calculated the mean estimator bias of the median 
connectivity parameter α for each of the 120 possible outcomes.

Unsurprisingly, the data-generating model, Nit, performed well and was unbiased in each scenario (mean bias < 0.05; 
Supporting information). Estimates of α were more biased in high abundance scenarios than in low abundance scenarios. 
The amount of bias propagation i.e. increasing bias for longer time series and more patches, was inversely proportional to 
the amount of demographic information included (inset Fig. 1). In fact, model z, which only used occupancy weighting, 
was the only model to reduce bias as data increased by year and patch number, and was able to have an acceptable amount 
of bias (from 5 year, 30 patches = 0.06 to 10 years, 100 patches = 0.024) even where the area–abundance relationship was 
disrupted in the low abundance variant; the high abundance variant of models weighted with z also reduced bias as spatial 
and temporal data increased. This may be due to the ability of occupancy data to capture the dispersal process through 
temporal patterns of colonization–extinction across the landscape.

When the area–abundance relationship held, model Aizit exhibited negligible bias, whereas, when this relationship was 
disrupted, only low abundance variants in smaller patch networks with fewer years of data maintained reasonable bias in 
the estimator. As the amount of assumptions for patch data increased both spatially and temporally, so did the bias. Of note 
is that the uninformed model U generally performed worse than model Ai when the area–abundance relationship held, 
but, unsurprisingly when this was disrupted, area weighting for connectivity models resulted in the greatest bias recorded 
(10 years, 100 patches = 0.262), performing less consistently than an unweighted metric (10 years, 100 patches = 0.192).
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when demographic data, such as the occupancy, is limited 
or absent (Urban and Keitt 2001), but may under-estimate 
connectivity when the distinction between patch and matrix 
is not clear (Wiens 2001). This is particularly true for contin-
uously-distributed organisms that use a wide variety of habi-
tat (Dilts et al. 2016) or when a single patch dominates the 
network and ecological processes (Cavanaugh et al. 2014).

It is well established that the matrix matters (Ricketts 
2001, Brady et al. 2009, Ruffell et al. 2017), and that over-
looking properties of the intervening matrix poses challenges 
to estimating connectivity (Calabrese and Fagan 2004). For 
example, barriers to movement limit the colonization poten-
tial and reduce the neighborhood’s disperser pool, thus limit-
ing patch-specific contributions to network connectivity and 
ultimately limiting gene flow (Kimmig et al. 2020). So, while 
functionally isolated patches that are not occupied or are 
occupied and produce no emigrants are assumed to contrib-
ute to network connectivity under the structural paradigm, in 
reality, they make no contribution to actual connectivity. The 
consequences of not acknowledging such ‘zombie patches’ 
is the equivalent of introducing false positive errors which 
could lead to bias in key model components and erroneous 
estimates of connectivity (Box 2). Further, considering occu-
pancy dynamics for functional connectivity better reflects 
both the dispersal pool, through the inclusion of occupancy 
states and the dispersal process, through colonization–extinc-
tion dynamics (Sutherland et al. 2014, Chandler et al. 2015). 
Thus, in the same way demographic data provides mechanis-
tic interpretations of structural connectivity, it can also offer a 
mechanistic interpretation of functional connectivity.

Functional connectivity seeks to introduce biological real-
ism by invoking increasingly realistic movement rules. Often 
this is through the use of landscape resistances that introduce 
variable strengths of spatial dependencies beyond Euclidean 
distance based measures (Zeller et al. 2012, Graves et al. 2014, 
Diniz  et  al. 2020). Resulting resistance surfaces are often 
modelled via cost–distance methods (Adriaensen et al. 2003) 
or circuit theory applications (McRae 2006, McRae  et  al. 
2008), that seek to quantify the interaction between move-
ment and landscape structure. Thus, the objective of func-
tional connectivity metrics is to identify inter-patch corridors 
with lower resistance to movement than the rest of the matrix 
(Beier and Noss 2008). As applied, many existing approaches 
to connectivity modeling represent hypotheses of naïve func-
tion that assume populations, and hence dispersers, are uni-
formly distributed through the landscape. In reality these 
dispersers are more likely to exhibit spatial heterogeneity 
(Zeller et al. 2018). This raises concerns about how well exist-
ing approaches represent the dispersal process, and the value 
of the resulting resistance surfaces in applied settings (Beier 
and Noss 2008, Laliberté and St-Laurent 2020). Noteworthy 
exceptions include the rarely applied weighting schemes 
available in the application of circuit theory (McRae  et  al. 
2008, Dickson et al. 2019) and the development of a unified 
framework for connectivity that can integrate species distri-
bution information (Fletcher et al. 2019).

While conceptually appealing, resistance models are chal-
lenging to parameterize due to the lack of information at the 
transfer stage, and if mis-specified, can be poor predictors of 
connectivity (Janin et al. 2009, Keeley et al. 2017), especially 

This exploration of several key assumptions found in connectivity studies show that disregarding demographic infor-
mation can bias parameter estimates and reduce model consistency. Further, this trend appears to couple with corre-
sponding parameter coverage performance with decreasing demographic data lending to decreased coverage (Supporting 
information). Information such as disperser abundance and structure of the populations in relation to the patch network 
can each have impacts individually or compounding to recover accurate connectivity assessments. As connectivity models 
become less general, results indicate that overestimation of parameter α (inset Fig. 1), i.e. the overestimation of species 
ability to disperse, and hence a bias to connectivity, could lead to misguided conservation decisions. The results of this 
simulation suggest that although increased demographic fidelity allows for less biased parameter estimates, the choice to 
include any demographic information (e.g. occupancy) may be more important than neglecting the state variable in favor 
of area-based approximations or a demographically uninformed model. We prescribe care to be taken when invoking an 
area-based assumption for connectivity unless system or species-specific patch size to abundance relationships have been 
empirically confirmed.

This simulation also shows how powerful the SPOM framework can be at integrating demographic connectivity for 
describing ecological processes (Box 1) as well as the importance of demographic connectivity itself in recovering accurate 
parameter estimations. While this simulation framework provides a useful perspective on parameter recovery, we use it 
as a pedagogical tool. If applied towards hypotheses in real world systems, it also provides a useful testing framework to 
extend to other models and methods pertaining to heterogeneity in connectivity on the landscape. Model selection meth-
ods such as information criterion may also be applied to explore the intersection of model parsimony and mechanistic 
explanations of animal behavior and landscape connectivity. Also, the model is further generalizable through the inclusion 
of other biologically informative distances, such as least cost paths, as pointed out by Hanski (1994) and implemented by 
Howell et al. (2018). As well, imperfect detection is likely to be complicating factor for real data and this model could be 
extended to account for such observational error (Sutherland et al. 2014, Chandler et al. 2015). This simulation shows 
a reflection of the current state of connectivity modeling and the implications these common assumptions can have on 
inference. There is room for improvement and many of the works referenced throughout this manuscript show that it is 
a possible and worthwhile pursuit.
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when parameterized using expert opinion (Koen et al. 2012, 
Zeller et al. 2012). Empirical estimates can be derived from 
techniques such as GPS telemetry, mark–recapture or genetic 
data (Epps et al. 2007, Graves et al. 2014, Sutherland et al. 
2015), or indirectly from observed locations of focal organ-
isms. For example, Zeller et al. (2018) found that movement 
corridors were best recovered using resistance surfaces esti-
mated by cost–distance pathways informed by GPS data, but 
also suggesting that circuit-theory based algorithms be used 
to infer dispersal if opportunistic presence-only data is the 
data available.

Another emerging interest is the existence of short- and 
long-term habitat shifts in response to disturbances, wild-
fire, climate change and fragmentation (Bishop-Taylor et al. 
2018, Littlefield et al. 2019). Accounting for temporal varia-
tion in habitat structure and its influence on connectivity by 
considering long term and ephemeral changes in landscapes 
(Ruiz et al. 2014, Zeigler and Fagan 2014, Drake et al. 2017b, 
Bishop-Taylor et al. 2018) are likely to become increasingly 
important as more species undergo climate-induced range 
reductions (Littlefield  et  al. 2017) and loss of habitat and 
the subsequent increasing landscape resistance and reducing 
structural and functional connectivity (Dilts et al. 2016). In 
fact, like spatiotemporal (meta)population dynamics, shifts 
in the extent, structure, and quality of habitat is an important 
contributor to spatiotemporal variation in connectivity (i.e. 
connectivity dynamics, Zeller et al. 2020). In a study of frag-
mented Brazilian Atlantic Forest patches, Martensen  et  al. 
(2017) showed that temporal changes in patch size resulted 
in up to 150% increase in connectivity between patches com-
pared to static snapshots of habitat availability. It is worth 
noting that the authors did not account for underlying occu-
pancy dynamics which are predicted to be linked to patch 
size (Hanski 1998). In general, both functional and struc-
tural measures of connectivity do not have spatial or temporal 
dynamics built into their conceptual interpretations. Spatial 
habitat variability over ecological time scales is not equal 
to short-term changes in populations within that habitat, 
which, we argue, renders the domain incomplete because, a 
patch is not a population. Integrating aspects of the underly-
ing population state directly resolves this concern.

Demographic weighting

Ideally, weighting connectivity measures via locale-specific 
demographic contributions would not be necessary if all 
movements could be observed completely which we suggest 
is unlikely in practice. Thus, information on spatiotemporal 
changes in the distribution or size of a population, which 
provides a measure of dispersers and their contribution to 
ecological processes, should be used to inform connectivity. 
Integrating spatiotemporal heterogeneity in population size 
and hence in the production of dispersers, which we refer 
to as demographic-weighting, directly and explicitly intro-
duces spatiotemporal dynamism into connectivity modeling 
(Sutherland  et  al. 2014, Drake  et  al. unpubl.). Such dyna-
mism is crucial to identify the ‘actual connectivity’ between 

extant populations amongst occupied habitat (Calabrese and 
Fagan 2004). Examples of relevant and now commonly esti-
mated demographic data useful for weighing the contribu-
tion of patches to connectivity are occupancy, a local state 
variable that describes the distribution of populations and 
whether they contribute to colonization–extinction dynam-
ics (Chandler  et  al. 2015, Howell  et  al. 2018), and popu-
lation size, the number of potential dispersing life stages in 
occupied patches (Sutherland  et  al. 2014). Alternatives 
to occupancy and abundance may include the number of 
reproductively active individuals (Robertson  et  al. 2019), 
fecundity (Castorani et al. 2015, 2017), the number of suc-
cessful reproducers (Robertson  et  al. 2018), stage-structure 
(Sutherland et al. 2012), conspecific condition (Clobert et al. 
2009, Cote and Clobert 2010), dispersal syndrome of indi-
viduals (Jones et al. 2015, Edelsparre et al. 2018, Fobert et al. 
2019), individual condition (Shima and Swearer 2009, 
Marshall  et  al. 2010) and individual behavioral expression 
(Cote and Clobert 2007, Brown  et  al. 2017). Each has in 
common the fact that they have the potential to vary spatially 
and therefore influence the number of potential dispersers, 
and hence connectivity.

These examples build upon earlier approaches to spatially 
realistic modeling in landscape ecology and metapopulation 
ecology. Hanski (1994) introduced a realistic metapopula-
tion model that accounted for simple occupancy states in the 
measure of connectivity between patches. This model also 
used a Euclidean distance but suggested that any meaningful 
biological distance could be included (Box 1). This model 
also accounted for variation in habitat amount or quality 
(Hanski 1994), but was focused on within-patch metrics. 
Conservation practitioners often focused on identifying cor-
ridors through interpatch matrix informed by coarse popula-
tion distributions to identify source locations and potential 
bottlenecks (Larkin et al. 2004). More recently, researchers 
have integrated species distribution models with informa-
tion on dispersal to advance the realism of landscape con-
nectivity, particularly useful for exploring predictions of 
range shift abilities in accordance with shifting habitats due 
to climate change (Ofori et al. 2017). These methods have, 
however, historically conflated the impact of landscape on 
movement and the mortality of dispersing individuals when 
quantifying resistance and connectivity (Zeller et al. 2012). 
Fletcher et al. (2019) used spatially absorbing Markov chains 
to disentangle these processes and improve least-cost path 
and circuit theory modeling, allowing multiscale temporal 
predictions as well as quantification of demographic parame-
ters related to connectivity. Identifying such divergent causal 
mechanisms (avoidance versus mortality) and their influence 
on ecological processes may be important for understanding 
how demography impacts spatiotemporal heterogeneity in 
connectivity and vice versa.

Spatiotemporal heterogeneity is an inherent characteris-
tic of any spatially structured population, and where such 
heterogeneity is prevalent, the assumption that all popula-
tions contribute equally to connectivity is difficult to justify 
(Prugh et al. 2008, Box 2). This concern is regularly alleviated 



10

Ecography E4 aw
ard

using theoretically justified proxies of population size such as 
patch size, and while surrogates likely capture longer term 
average population sizes, they fail to capture temporal stochas-
ticity resulting from local population dynamics or whether 
the species is even present. In this regard, such proxies may 
result in misrepresentations of connectivity, potentially simi-
lar to those in structural measures. For instance, while simple 
patch occupancy may be enough to increase the accuracy of 
dispersal estimates, Clinchy et al. (2002) found that occur-
rence data masked population declines such that the popula-
tion dynamic processes of pika could not be inferred without 
more detailed demographic data. Ultimately, connectivity 
measures that do not consider the spatial distribution of dis-
persers, may be overly simplistic for many ecological ques-
tions or management goals (Lambin et al. 2004).

Consequences of ignoring demography

Demographic proxies

The use of patch size as a surrogate for population size is com-
mon in ecology, especially in landscape-scale investigations. 
This is largely due to the time-, labor- and cost-intensive 
nature of gathering demographic data at spatial and temporal 
scales that are representative of landscape-scale or popula-
tion-level processes. However, the relationship between patch 
size and abundance are not always linear (Deza and Anderson 
2010) or even positive (Hovel and Lipcius 2001), and the 
strength of the relationship can be taxon- (Pellet et al. 2007) 
or stage-specific (Sutherland  et  al. 2012). Indeed, there is 
accumulating evidence suggesting that, when measuring con-
nectivity, area-abundance assumptions do not hold and that 
demographic information representing real-time heterogene-
ity in abundance is preferred (Moilanen and Nieminen 2002, 
Prugh 2009).

In addition to the spatial misrepresentation of local abun-
dances, area approximations that use a single measure of patch 
size implicitly assume a degree of temporal invariance with 
the potential to mask local dynamics (Sutherland et al. 2012). 
In this case, large patches will dominate, and potentially 
bias, inferences about network dynamics regardless of their 
internal state (Cavanaugh  et  al. 2014). Moreover, density-
dependent factors (e.g. dispersal, local population dynamics) 
are completely overlooked, despite their importance in deter-
mining both local and regional (meta)population dynamics 
(Eriksson et al. 2014, Spanowicz and Jaeger 2019). Attempts 
at addressing the deficiencies of the static measures, such 
as incorporating time-varying measures of habitat quality 
(Clinchy  et  al. 2002), are also likely to mischaracterize the 
response of either local population size or potential emigrants 
and overlook important thresholds (Harman et al. 2020).

Notwithstanding, population size is itself a proxy for the 
number of dispersers, which drives connectivity between 
patches. Dispersal rates can be sex-specific (Trochet  et  al. 
2016) and/or stage-structured (Sutherland  et  al. 2014, 
Tucker  et  al. 2017). Further, different demographic life 

stages within the same habitat patch, may experience the 
landscape differently during the transfer stage of dispersal, 
and per-capita contribution to connectivity varies accord-
ingly (Baguette et al. 2013). For example, in African lions, 
Panthera leo, differences in levels of risk aversion result in 
substantially different estimates of sex- and age-specific land-
scape resistance (Elliot et al. 2014b). Increases in mortality 
risk to dispersing individuals, whether due to human–wildlife 
conflict, predation, or exposure, can be masked in resistance 
surfaces (Fletcher et al. 2019), especially if demographic data 
are ignored when smaller and younger individuals experience 
increased mortality risk (Sibly  et  al. 1997). Such attention 
to demographic details also helps decipher effective dispersal 
which leads to successful habitat colonization and reproduc-
tion, a potentially crucial aspect to correctly interpret con-
servation objectives and ecological questions (Greenwood 
and Harvey 1982, Vasudev and Fletcher 2016). A failure to 
consider demographic determinants of connectivity has the 
potential, therefore, to lead to unsound management deci-
sions (Elliot et al. 2014b).

Using common proxies for demography in connectivity 
can lead to bias (Box 2), but demographic data is hard and/
or expensive to collect. Our simulation demonstrates what 
may occur if you fail to account for demographic variation 
or other additional (un)known sources of bias/variation. 
Rather than forgoing connectivity research due to this, there 
is potential for an application of Bayesian hierarchical mod-
eling (Box 1) to help account for this bias using a random 
effects parameterization. For example, Fletcher et al. (2011), 
used random effects to help account for variation in disper-
sal. Such an approach may help increase the robustness of 
connectivity models (Drake et al. in review) to bias but are 
unfortunately phenomenological and may be less powerful 
than including demographic data directly.

Ultimately, connectivity is a dynamic property of an 
embedded population-landscape system. Populations vary in 
space and time and are often structured such that contribu-
tions to ecological dynamics are not equal among individuals. 
This is no different for connectivity, and as such, direct mea-
sures of the functional component of the local population in 
space and time are critically important because they represent 
fundamental spatiotemporal contributions to emergent land-
scape connectivity.

Sources of error and structural weaknesses

Missing information about the functional state of a patch 
can arise in several ways, each with specific implications for 
inference about occupancy, dispersal, and hence, connectiv-
ity. One main source of error is the false negative error associ-
ated with imperfect detection: the assumption that a patch is 
not occupied after failing to detect a species at a site when it 
is actually present (Mackenzie et al. 2002, MacKenzie et al. 
2003, Guillera-Arroita and Lahoz-Monfort 2012). Missing 
a patch completely, or assuming it isn’t occupied (note that 
both overlook contributions to connectivity), overestimates 
dispersal rates and colonization in metapopulations and hence 
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biases estimates of connectivity (Moilanen 2002). Imperfect 
detection also skews resistance estimates of landscape features 
(Graves et al. 2014) and masks important demographic infor-
mation resulting in biased estimates of dispersal and inferred 
connectivity when these observational errors are left unac-
counted in models (MacKenzie et al. 2018). False positives 
can also occur, and while they are another important source 
of bias (Moilanen 2002, Miller et al. 2011), they are assumed 
to be less common (MacKenzie et al. 2018).

Interestingly, however, unweighted measures of connectiv-
ity, of which many are, systematically introduce false posi-
tives by failing to acknowledge the underlying spatiotemporal 
distribution of the population. Under the classical descrip-
tion of structural connectivity, where all viable patches are 
assumed to be hosting populations, landscape connectivity is 
overstated due to the inclusion of contributions from unoc-
cupied parts of the landscape. Even when weighting schemes 
are incorporated similar errors can occur. For example, the 
estimated mean dispersal distance for the water vole, Arvicola 
amphibius, when assuming data perfectly represented patch 
states compared to when errors were explicitly acknowledged 
was 12.4 km and 2.10 km, respectively (Sutherland  et  al. 
2012, 2014). The latter is more reflective of estimated dis-
persal confirmed by mark–recapture, telemetry and genetic 
analyses (Stoddart 1970, Telfer et al. 2003, Aars et al. 2006, 
Fisher  et  al. 2009). More generally, contributions to con-
nectivity are biased if area does not correlate to occupancy 
state or abundance (Box 2), or when occupancy states do not 
distinguish between functional states such as breeding and 
non-breeding populations (Sutherland et al. 2013). Sources 
of errors and biases in the underlying patch state such as erro-
neously missing or considering the functional importance of 
a patch, or misrepresentations of the functional component, 
erodes the connectivity signal resulting in, at best, estimates of 
connectivity and associated dynamics with high uncertainty, 
or at worst, biased estimates of connectivity (Prugh 2009). 
Recent advances in how data are collected and analyzed have 
naturally facilitated the integration of demographic data and 
methods for addressing imperfect detection upon which 
the concept of demographically informed connectivity has 
been synthesized (Sutherland et al. 2015, Morin et al. 2017, 
Meyer et al. 2020, Box 1).

The temporal scales of demographically-weighted 
connectivity

Long-term planning for promoting the persistence of species 
is often the end-goal for management actions, yet conserva-
tion planning is often based on relatively short time scales (e.g. 
annually) and therefore requires demonstration of success at 
corresponding scales. Demographically-weighted connectiv-
ity is most likely to be important at this scale of generations 
and 10’s of generations, i.e. at the scale of (meta)population 
dynamics which is driven by dispersal and colonization–
extinction dynamics. For example, when considering spe-
cies invasions or reintroductions, where small beachheads of 
organisms can lead to system-wide occupancy (Howell et al. 

2020a), this framework may be especially useful as an addi-
tion to others, as the acknowledgement of demographic states 
or population distributions may be crucial to understanding 
colonization, persistence and quickly shifting distribution of 
organisms though time in such systems.

Spatiotemporally shifting populations, when considered 
in connectivity analyses, can help account for the impact of 
intermittent or cyclic environmental disturbances and popu-
lation dynamics (Lambin et al. 2001, Howell et al. 2020b, 
Zeller et al. 2020). This may come through shifts in organ-
ismal ranges, potentially due to spatiotemporally correlated 
extinctions and colonization events shifting the whole sys-
tem’s configuration. Such a scenario shifts the numbers and 
distribution of dispersers, and resulting genetic diversity, 
across time and space. For example, current genetic spatial 
structure may be the result of past demographic structure 
and dispersal patterns (Driscoll and Hardy 2005), reflecting a 
connectivity that no longer exists on the landscape. This may 
result from a temporal lag in observed genetic structure due 
to loss of connectivity compared to the observed structure 
when the connectivity is facilitated by the removal of barriers 
to dispersal (Landguth et al. 2010, Driscoll et al. 2014). As 
well, demographic insights to connectivity, such as density 
dependent dispersal can be useful in determining the ability 
for species to track long-term climate change driven range 
shifts (Best  et  al. 2007). Determining the eco-evolutionary 
consequences of such shifts will be critical in the wake of large 
scale disturbances and environmental change (Dytham et al. 
2014); demographically-weighted connectivity metrics can 
help identify key population processes and critical habitat, 
as well as reduce bias in estimates of dispersal and population 
dynamics (Sutherland et al. 2014).

Conservation actions often aim to achieve long term per-
sistence of species, habitats or communities, even when con-
strained by the need for short term results. While we have 
focused on demographic-connectivity metrics, other metrics 
of ‘potential’ connectivity may still be appropriate to conser-
vation planning; particularly those metrics that emerge at the 
landscape scale from finer pair-wise metrics. This approach to 
connectivity may incorporate behavioral data (such as mean 
dispersal), but may not consider the demographic state (e.g. 
occupancy or distribution) of a species across the available 
habitat. One such example is metapopulation capacity (Hanski 
and Ovaskainen 2000), which has been used to explore the 
ability of a specific spatial aggregation of habitat to allow long 
term persistence of a species. Such measures are likely to pro-
vide insights into landscapes and habitat patches contribu-
tions to long-term population viability (Visconti and Elkin 
2009). Such tools are capable of identifying land for reserve 
designs (Strimas-Mackey and Brodie 2018) but often still rely 
on connectivity measures and proxies to determine population 
dynamics and persistence (Cabeza and Moilanen 2001).

The idea that demographics matter to connectivity, even 
at short time scales, and that the distribution of populations 
impacts connectivity inference is well supported in our simu-
lation study (Box 2, Supporting information). We demon-
strated that as demographic data was abstracted out of models 
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to greater degrees, the amount of bias increased, both as the 
number of patches or years increased. Particularly, if the pop-
ulation to area relationship does not hold, bias can emerge 
quickly and appeared to continue to propagate (Box 2, Fig. 1). 
Likewise, when connectivity was demographically-weighted, 
the distribution of dispersers was accounted for, resulting in 
negligible bias in parameter estimates (Box 2, Fig. 1).

Eco-evolutionary and management implications

Dispersal’s central role in life history is under strong selec-
tion (Ronce 2007). This leads to changes in dispersal pheno-
types tied to changes in the costs of dispersal and potentially 
shifting dispersal life stage, relative probability of effective 
dispersal success, and dispersal propensity (Legrand  et  al. 
2017). Changes in dispersal phenotype will impact func-
tional connectivity, i.e. the response to landscape and demo-
graphics (Legrand et  al. 2017). Eco-evolutionary feedbacks 
driven by changes to functional connectivity and response 
to the landscape and conspecifics would, in turn, impact dis-
persal (Fronhofer and Altermatt 2017). This feedback may 
increase dispersal, for example, through the adaptation to 
more efficient use of matrix allowing increased long-distance 
dispersal success (Bonte  et  al. 2012). If increased isolation 
increases dispersal costs, which in turn reduces colonization, 
this will likely decrease the magnitude of and selection for 
dispersal syndromes, shifting populations to increased resi-
dency instead (Matthysen et al. 1995, Legrand et al. 2017). 
However, Hanski and Mononen (2011) identified that sim-
ply changing model parameter values alters this prediction, 
especially when model assumptions are not reflective of the 
species biology (e.g. breakdowns in patch area abundance 
assumptions). Such work that explores dispersal and evolu-
tion often make these assumptions about connectivity out of 
necessity, sometimes reflecting spatiotemporal invariance or 
demographic naivety. As with Hanski and Mononen (2011), 
a re-parameterization of connectivity models explicitly 
considering demography, and associated demographically-
weighted connectivity feedbacks, also have the potential to 
alter standing expectations about the evolution of dispersal, 
particularly in the face of continued habitat fragmentation 
and loss (Thomas 2000, Cote et al. 2017).

The contribution of habitat fragmentation and habitat 
loss, or specifically the associated reductions in connectivity 
and gene flow (Mills and Allendorf 1996), is a major con-
servation concern (Soulé 1987). Also the reduction in dis-
persal or connectivity between patches (Griffen and Drake 
2008) can decrease potential for viable adaptations to future 
disturbances for the whole population (Kimura et al. 1963, 
Bonte  et  al. 2018). This limits the distribution of disper-
sal phenotypes and genetic diversity, ultimately reducing 
the effective population size (Palstra and Ruzzante 2008), 
again increasing potential inbreeding risks and genetic drift. 
A potential, catastrophic scenario is mutational meltdown, 
the accumulation of deleterious mutations, happening in 
an expedited fashion in highly fragmented and increasingly 
isolated populations, leading potentially to metapopulation 

collapse (Higgins and Lynch 2001). Static, structural, or 
other forms of connectivity that rely on area assumptions, 
would likely miss demographically driven shifts in con-
nectivity, resulting in overestimated persistence (Wang and 
Whitlock 2003). As well, the increase in realistic estimates 
of dispersal rates by inclusion of demographic data that 
address population processes (Sutherland  et  al. 2014) can 
help resolve problems of cryptic population genetic interac-
tions that emerge at shorter time scales, but have long-term 
eco-evolutionary consequences for conservation (Lowe et al. 
2017).

As climate change, invasions, fragmentation and other 
threats force species to adapt or shift their range (Shine et al. 
2011, Cote et al. 2017, Maher et al. 2017, Littlefield et al. 
2019), the role of connectivity in shaping species’ responses 
will be a function of the combined effects of genetic bottle-
necks, local adaptation, colonization–extinction dynamics 
and dispersal barriers (Parmesan 2006, Saura  et  al. 2014, 
Bonte  et  al. 2018, Senner  et  al. 2018, Bani  et  al. 2019). 
Now, more than ever, moving beyond unrealistic assump-
tions and unrepresentative surrogates, and parameteriz-
ing connectivity models with accurate information on the 
underlying processes that give rise to, and respond to, con-
nectivity is paramount (Lowe et al. 2017). In turn, viewing 
realized connectivity as inherently reliant on demographic 
inputs will offer greater insight about the eco-evolutionary 
consequences of connectivity and the mechanisms con-
trolling persistence of (meta)populations (Kinnison and 
Hairston 2007). Indeed, we suggest that demographically-
informed connectivity provides a conceptual framework 
(Fig. 1) along with associated modeling innovations to 
better quantify connectivity with wide ranging basic and 
applied implications.

Looking forward

Our review suggests that while both structural (e.g. avail-
able habitat) and functional (i.e. dispersal ability) connec-
tivity paradigms are important, demographic weighting is a 
comparably, if not more, important dimension of connec-
tivity. Our simulations illustrate the consequences of assum-
ing all patches contribute equally to connectivity (Box 2). 
The ability to accurately characterize connectivity dynamics 
increases when unrealistic assumptions about the underly-
ing population are relaxed through demographic-weighting. 
The simulations also suggest that inferences about the impact 
of connectivity on both short- and long-term population 
dynamics (and by extension genetic diversity) are likely to 
be biased if demographic contributions are ignored. While 
connectivity is obviously model-, situational-, species-, land-
scape-, and demographically-dependent, the generalities we 
derive are important for guiding future research.

Empirical modelling (Box 1) and simulations (Box 2) 
clearly demonstrate the value of integrating demographic 
information to increase mechanistic descriptions of connec-
tivity, yet studies such as these are still limited in number 
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and further work is needed. For example, stage-structured 
dispersal, area-based population scaling assumptions, and 
accounting for individual heterogeneity in dispersal need 
to be considered in more studies to better understand spa-
tiotemporal heterogeneity to dynamic connectivity across 
landscapes (Zeller et al. 2020). Managing populations frag-
mented by increasingly inhospitable matrix and its subse-
quent increase in resistance to connectivity will be necessary 
as anthropogenic landscape changes accelerate. Thus, the 
role of the disperser, the variation of dispersal behavior in 
response to landscape, the complex interaction of ecological 
and evolutionary processes, and the demographic influences 
upon them, is central to mitigating the detrimental effects 
of habitat loss and isolation (Burgess et al. 2014, Poli et al. 
2020). However, perhaps more important is to ensure that 
these processes are accurately represented in models that are 
used to make predictions about connectivity and support 
specific conservation actions.

We also believe that demographic landscape connectivity 
falls naturally within the larger toolbox of existing approaches 
for understanding eco-evolutionary processes. In fact, many 
of the most interesting ecological questions and pressing 
conservation concerns may only be tractable with comple-
mentary methods, such as demographic connectivity model-
ing and landscape genetic techniques (Cushman et al. 2018, 
Wan et al. 2018, Zeller et al. 2018, Peterman et al. 2019). 
Not only can demographically-weighted connectivity be used 
to improve understanding of individual species, but across 
taxa as well (Cushman and Landguth 2012). We predict that 
it can help identify multi-species generalities of connectiv-
ity for community-level inference (Brennan et al. 2020) and 
for uncovering connectivity trends for biodiversity in general 
(Hartfelder et al. 2020). Terrestrial ecologists may do well to 
look to marine systems for examples of demographically- or 
population-based connectivity in dynamic environments 
and vice versa (Cowen and Sponaugle 2009, Castorani et al. 
2015, Zeller  et  al. 2020). Demographic connectivity can 
help refocus sub-disciplines of ecology and conservation sci-
ences to integrate data and methods (Howell  et  al. 2018) 
across spatiotemporal scales to provide inference and insight 
into fundamental ecological processes controlling biodiver-
sity assembly rules like selection and dispersal (Pinto and 
MacDougall 2010, Rapacciuolo and Blois 2019).

The IUCN recently issued guidelines for connectivity 
conservation (Hilty  et  al. 2020). We agree that a focus on 
connectivity as a concept, and the central role it plays in miti-
gating global biodiversity loss is absolutely essential. We do 
note, however, that the guidelines put forth by the IUCN 
make very little mention of the demographic basis of con-
nectivity and view populations as being a result of connec-
tivity rather than acknowledging that population dynamics 
and connectivity are explicitly linked and should be treated as 
such. Claims that less than 10% of protected lands are viably 
‘connected’ for biodiversity conservation (Ward et al. 2020) 
are concerning, but acknowledgment of the demographic 
nature of connectivity is required to reaffirm if such claims 
are optimistic or pessimistic.

Conclusion

The connectivity paradigm has too often been suggested 
to be solely the driver of population dynamics and not to 
be driven by them. This is a remnant of the ‘if we build 
it, they will come’ mentality (Hilderbrand  et  al. 2005). 
Such 'field-of-dreams' hypotheses may be born out as 
Shakespearean tragedy. In an age of expanding rates of 
extinction (McCallum 2007, Ceballos et al. 2015, Sánchez-
Bayo and Wyckhuys 2019), in a not too distant future, the 
world may no longer have the necessary reservoirs of biodi-
versity to abide such thinking. Instead, we must continue to 
elucidate how populations are connected: the more popu-
lations, the more chance for connectivity and recoloniza-
tion of conserved habitat. Our framework addresses this 
directly. If we are not careful, we may conserve 'Nature’s 
Stage' (Beier et al. 2015) so perfectly that it lay set for 'The 
Tempest' (Shakespeare 1623), yet no survivors may yet cling 
to the fragments of our shipwreck whom may take their cue 
and enter stage-right.

Here we have presented a general conceptual synthesis 
of existing approaches for measuring and estimating con-
nectivity through the integration of information about the 
landscape, dispersal, and, importantly, demographic con-
tributions – demographically-weighted connectivity. It is 
our hope that this review will lead to further integration of 
demographic information into connectivity frameworks and 
will facilitate the crosstalk between sub-disciplines of ecology 
themselves. Indeed, demographically-informed connectivity 
helps us prevent Prospero’s hubris, moving the quantification 
of connectivity’s influence on ecological processes forward, 
instead of losing our way in the coming storm.
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