Automated Well Log Pattern Alignment and Depth-Matching Techniques:
An Empirical Review and Recommendations

Chinedu P Ezenkwu?, John Guntoro®, Andrew Starkey®, Vahid Vaziri®, Maurillio Addario®

@School of Engineering, University of Aberdeen, UK
YANSA Data Analytics

Abstract

Well-logging has been an integral part of decision-making at different stages (drilling, completion, pro-
duction, abandonment) of a well’s history. However, the traditional human-reliant approach to well-log
interpretation, which has been the most common practice in the industry, can be time-consuming, subjec-
tive, and incapable of identifying fine details in log curves. Previous studies have recommended automated
approaches as a candidate for addressing these challenges. Despite the progress made so far, what is not yet
clear from the existing literature is the extent to which these automated approaches can dispense with hu-
man interventions in real-life scenarios. This paper presents an empirical review of different depth-matching
techniques in real-life timelapse well-logs, primarily focusing on Gamma Ray and the extent to which the
outcomes of these techniques match the results from a human expert. Specifically, the performances of
dynamic time warping (DTW), constrained DTW (CDTW), and correlation optimised warping (COW) are
investigated. The experiments also consider the effects of filtering and normalisation on the performance of
each of the techniques. Concerning the correlations of each technique’s outcome with the reference data and
an expert-generated outcome, this research identifies and discusses its key challenges, as well as providing
recommendations for future research directions. Although the COW technique has its limitations, as dis-
cussed in this paper, our experiments demonstrate that it shows more potential than DTW and its variants
in the well-log pattern alignment task. The work entailed by this research is significant because identifying
and discussing the limitations of these techniques is vital for solution-oriented future research in this area.
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1. Introduction ent noise levels between different logging passes

o o have remained a challenging problem within the
Well-logging is a fundamental decision-support industry [44) 20, 5]. Depth misalignments can be

practice in the oil and gas industry because of its caused by several factors, depending on the log-
crucial role in subsurface exploration and formation ging technique (logging while drilling (LWD) or
evaluation. Well-logs provide insightful petrophys- wireline logging (WL)) used [30, 35, B8]. These
ical and geo-mechanical information, which can be factors include differences in weather conditions,
significant at different stages of a well’s lifecycle varying sampling rates between tool types and log-
[19, 38]. However, the acquisition of logs is often ging passes, and friction or stick-slip between the
characterised by several uncertainties and limita- wireline cable and the borehole wall, which can be
tions, making preprocessing a desideratum for the higher if the borehole wall is rough or contains mud-
data analysis phase. While improvements in the cake. The oil and gas industry, so far, relies hugely
quality of logging suites can help minimise noise on the judgements of human log analysts to manu-
and uncertainty due to random and systematic er- ally synchronise mismatched logs before providing
rors, depth misalignments of logs recorded at dif- interpretations for them. Nonetheless, this tradi-
ferent passes or with disparate logging tools in the tional human-dependent depth-alignment process

same well as well as different resolutions, differ- is subjective, time-consuming, and cannot match
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insightful minutiae within log curves. These lim-
itations of the manual well-logging process have
driven considerable attention towards automating
the depth-matching of logs as a potential solution
to the problem. The automation of well-log pre-
processing can speed up the well-integrity process,
reduce costs, and make the process more practica-
ble to non-specialists.

Due to the availability of big historical data, high
compute power, and the recent development of sev-
eral powerful Artificial Intelligence (AI) algorithms,
the oil and gas industry now leverages digital tech-
nology on virtually all fronts, including reservoir
depth-matching. In the literature, different ma-
chine learning paradigms have found applications
in the automation of well-log preprocessing and in-
terpretations [9, [I8], B3]. For example, [40] and
[15] both applied deep neural networks, a super-
vised learning technique, to the log matching prob-
lem. Deep reinforcement learning has also been
applied in the same task [5, [4]. Although these
techniques have been reported to have performed
well at this task, they have several issues capa-
ble of limiting their real-life applications. Firstly,
training these algorithms requires a large amount
of data (which cannot always be guaranteed in ge-
ological problems [I0]) and high-performance com-
puting hardware which can contribute substantially
to climate change [36]. To illustrate, despite being
described as the best in natural language process-
ing (NLP) tasks [11] B9], the carbon dioxide emis-
sions of training and applying a transformer (a type
of deep neural networks) are even more substantial
than the lifetime emissions of an automobile [36].
With calls from different quarters to decarbonise
the energy system, within which the oil and gas in-
dustry has a significant role to play, the industry
has to reconsider operations that can further con-
tribute to global warming [42] 24], [34]. Moreover,
due to the difficulty in implementing complex algo-
rithms such as deep neural networks from scratch,
the AI community depends, to a large extent, on
third-party libraries such as TensorFlow [I], Py-
torch [26], Theano [2], and Keras [I4]. However,
the combination between the novel deep learning
approaches with industrial software are limited.

This paper drives towards an optimal but easy
to implement and deploy, lightweight solution to
the depth-matching problem. The insights from
this study are from collaborative research between
academia and the industry on addressing practical
challenges with automating the well-log alignment

process. Due to the problems associated with the
powerful but expensive Al techniques, as identified
in the preceding paragraph, this paper focuses on
dynamic time warping (DTW), constrained DTW
(CDTW) [21}, 29], and correlation optimised warp-
ing (COW) [23]. Our experiments with these algo-
rithms on real-life well-logs reveal that none of these
algorithms can eliminate the need for a human spe-
cialist. Nonetheless, COW demonstrates to have
more potential than DTW and CDTW. This paper
discusses practical problems identified with these
algorithms and also recommends strategies to im-
prove their performances.

The remainder of this paper proceeds as follows:
Section [2| reviews related subjects and papers; Sec-
tion |3| presents the experiments. Recommendations
and future research directions are discussed in Sec-
tions [4) while Section [f] concludes the paper.

2. Theory

2.1. Mathematical description of the
matching problem

depth-

[12] presents the mathematical description of the
depth-matching problem as follows — s(t) and r(t)
are continuous functions representing the survey
and the reference respectively as functions of a vari-
able depth, t. A warping function w(t) represents
the misalignment between the survey and the ref-
erence curves. The most common misalignment is
an offset. For example, with an offset of k metres
between the curves, the warping function would be
w(t) = t — k and the relation between the curves
is that r(¢) and s(w(t)) = s(t — k) are similar pat-
terns. Since w(t) is unknown in reality, methods for
estimating warping functions have attracted lots of
research attention.

In practice, both the survey and the reference
are discretised into a set of noisy samples. Vectors
s and r denote the data points from the survey and
the reference respectively. The samples are taken
at a certain depth, ¢;. To avoid ambiguity, s(ts;)
is the measurement recorded for the survey at ¢, ;
and r(t,;) is the measurement for the reference at
t,,i; these are expressed in equations [T and [2}
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Given the vectors r and s, the depth-matching
problem seeks to estimate the warping function,
w(t). However this problem, in practice, is more
complicated than the description above. Factors
such as noise, differences in sampling rates and the
logs’ amplitudes, along with depth-misalignment,
can contribute to the complexity of the problem [?
]. The characteristics of the log curves determine
the most suitable approach for the depth-matching
process. Section [2.2] reviews different methods for
curve alignment.

2.2. Qverview of automated warping methods

Despite being recorded in depth, well logs can
also be construed as a time series due to its uni-
dimensional domain. Throughout this paper, the
time series is assumed to be a direct analogue to
depth series of well logs. Several methods for the
comparison of different time series exist in the liter-
ature. However, some of these approaches are linear
and can only yield a good result if the signals align
in the time dimension. For example, the Euclidean
distance metric is useful in computing the similar-
ity between different time series if similar attributes
or patterns in the signals correspond in time. How-
ever, there are situations in practice which involve
time series which do not align properly. These sit-
uations are better addressed using non-linear dis-
tance similarity metrics such as DTW. This section
reviews non-linear similarity metrics that are suit-
able for signal alignment.

2.2.1. Dynamic Time Warping (DTW)

DTW is useful for measuring the similarity be-
tween two temporal sequences, which do not align
in time, by warping these sequences in a non-linear
fashion to match each other. For example, Fig.
shows the linear element wise distance between the
two signals which might not be representative for
measuring their similarity. In contrast, Fig. [Ib]
shows the non-linear DTW measure between the
two. Computing the similarity of the sequences in
Fig. requires a non-linear metric such as DTW.
This uses a recursive distance calculation method
to generate a cost matrix which can be used to

determine the optimal match between any two se-
quences.

(b)

Figure 1: (a) Linear matching (b) Non-linear matching

Given the datasets of Equations [I] and 2] DTW
aims to transform s such that it will match r as
closely as possible. The algorithm transforms each
data point in s to match another point in r while
satisfying three necessary conditions — boundary
condition, monotonicity condition, and step size
condition [3I, 2I]. DTW uses dynamic program-
ming to generate a global cost matrix D € RVXM
from a local cost matrix C € RNXM  where each
element C(4, j) = c(s;,7;) is a local cost that mea-
sures the similarity between two points in the sur-
vey and the reference logs. C(i,7) can be the
Manhattan or Euclidean distance between the two
points.

With D(n,0),Vn € [1 : N] and D(0,m),Vm €
[1: M] set to oo and D(0,0) set to 0, each element
of the matrix D is computed according to Equation

B
D(l,]) :mm{D(z —1,5— 1),
D(Zaj - 1)7 (3)
D(i —1,7)} + c(si,75)

Backtracking from the upper right corner to the
bottom left corner through valleys or low-costs on
the global cost matrix D, DTW finds the alignment
path. The corresponding elements between the two
sequences on the alignment path define a match
between them. Fig. [2[ shows an alignment path on
a global cost matrix. The darker the shade, the
lower the cost.
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Figure 2: Alignment path on a global cost matrix. N/B:
The darker the shade, the lower the cost.

DTW has a wide range of application areas, in-
cluding speech recognition [27, B], handwriting and
digital signature matching [22] 25], sign language
and gestures recognition [I7) [7]. However, experi-
ments in this paper reveal some of the challenges
with the application of DTW in well-log depth-
matching. Some of these challenges are due to fac-
tors such as differences in amplitudes between the
two sequences, noise, variations in the lengths of the
logs and the possibility of one-to-many or many-to-
one mapping between the sequences. Section [3|em-
pirically demonstrates different preprocesses to im-
prove the effects of noise and amplitudes on DTW
and other warping methods.

2.2.2. Constrained  Dynamic Time  Warping
(CDTW)

In practice, there are situations where the re-
sult of standard DTW does not give the best so-
lution to a log alignment problem; this could be
either because of many-to-one matching or due to
large amounts of shift. The CDTW methods set
a constraint to limit the extent of shifts within a
given window as well as eliminating many-to-one
or one-to-many matching of the indexes of the sig-
nals to prevent overstretching or over-compression.
The two most popular members of CDTW are the
Sakoe-Chiba band and the Itakura parallelogram
methods [I3] 28 [16]. They derive a parameter to
limit the warping extent around the diagonal of the
cost matrix.

The Sakoe-Chiba band method is parameterised
by a radius r (r is also called the warping window
size), which is the number of off-diagonal elements
to consider. The Itakura parallelogram method sets
a maximum slope s for alignment paths, which leads

to a parallelogram-shaped constraint. Fig. and
represent the Sakoe-Chiba band and the Itakura
parallelogram methods. [8] report that although
the CDTW has a higher classification accuracy than
standard DTW, fixing a correct window size can be
problematic. A wrong choice for r or s can prevent
relevant regions from participating in the alignment

process [43].
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Figure 3: Constrained DTW methods (a) Sakoe-Chiba
(b)Itakura. N/B: The darker the shade, the lower the cost.

2.2.8. Correlation Optimised Warping (COW)

Although DTW and CDTW have been applied
substantially in practice, they are not the best
methods in shape-based pattern matching of sig-
nals because they make element-wise comparisons
between time series.

[23] proposed COW, which maintains the overall
shape of a sequence by warping it in segments with
limited allowable flexibility within these segments.
COW first splits the sequence into equal segments,
which, based on a parameter known as slack, uses
different ranges of the segments to search for the op-
timal match between the sequence. The segments



are scaled in time using linear interpolation.

The number of segment borders is determined us-
ing the ratio of the points in the reference to the
selected segment length. The cost matrix for COW
consists of the normalised cross-correlation between
the different segments. Because the length of the
segments is variable, the different configurations re-
alised with different adjustments of slack must be
considered; to obtain this, a secondary matrix is de-
fined per segment. Similarly to DTW, the problem
is finally solved using dynamic programming and
backtracking the optimum path on the cost matrix.

COW has been popularly reported in the litera-
ture for its applications in chromatographic align-
ment problems [6, 23, 37]. One issue with COW
is that it is very dependent on user-defined param-
eters such as the length of the segments and the
slack (which determines the maximum stretch or
squeeze of the warped segments). Slack and seg-
ment length contribute to the accuracy and speed of
the method. For example, a larger segment length
and a lower slack can speed up the computation
time of COW. However, selecting a good segment
size and an accurate slack can be challenging in the
practical applications of COW.

3. Experiments

3.1. Datasets

The experiments in this research are based on an
anonymised real-world well. The dataset, as shown
in Fig. consists of the reference log, the survey
log, and a manually-shifted log provided by a log
analyst. The findings made in this paper is con-
sistent with the results we obtained from applying
these techniques on several wells from diverse lo-
calities. However, for the sake of this review, we
focus on one representative well from our dataset.
Table [1| presents the summary statistics of the logs.
Because manually shifting a log does not affect the
statistics of the dataset, the manually-shifted log
has the same statistics as the survey log. As can
be seen in Fig. 4 and Table[l] the reference log has
more than twice the amplitude of the survey log.
Moreover, with a signal-to-noise ratio (SNR) (or a
coefficient of variation(CV)) of 1.48 (or 67.57%),
the reference log is noisier than the survey log with
SNR. (or CV) of 2.18 (or 45.87%) respectively.

Noise and difference in amplitudes can constitute
a problem for some warping methods more than
others. As is conventional in most well-log pattern

alignment tasks, the survey log is to be shifted in
depth such that its features align as closely as pos-
sible with similar features in the reference log. The
manually-shifted GR will be used as a benchmark
throughout the experiments since the automation
of the well-log pattern alignment process aims to
achieve at least human-level accuracy in the task.

Survey GR Reference GR Manually Shifted GR
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Figure 4: Dataset

Table 1: Summary statistics of the logs

Statistics | Survey log | Reference log
Size 15678 15678
mean 9.24 18.27
std 4.36 12.38
min 2.16 1.19
25% 6.86 11.07
50% 8.24 14.67
5% 10.16 20.80
max 52.53 140.11

3.2. Description of experiments

Using the dataset of Fig. [ experiments were
conducted to demonstrate how the performances of
different automated well-log warping methods com-
pare with a manually-shifted log from a specialist.
The experiments investigate the standard DTW
technique, two CDTW (the Sakoe-Chiba band and
the Ttakura parallelogram) methods, and the COW.
Each technique has been combined with one or
more preprocessing steps to understand how each
method can be improved using different preprocess-
ing such as normalisation (either z-score normalisa-
tion or min-max normalisation) and filtering (me-
dian filtering or wavelet denoising (WD) [32]). All
possible combinations of the normalisation and the



filtering techniques have been applied to the prob-
lem. The results obtained using these methods are
compared against the manually shifted log. Figure
[B] presents the experiment workflow. These exper-
iments will help to identify methods that compare
more closely to the performance of a human analyst.
We also explore what works best for each method
using different preprocessing techniques and on this
basis, recommend how to improve the automation
of the well-log alignment process.

| Reference Log ,/—- Filtering }—'Nurmzlisaiion

[ 7 s
| surveylog / Filtering Normalisation
/

r 7
Warping /| Depth- /
technique ——/ corrected |/
/ | surveylog |
L /

Evaluate

[ Manualy- | isati
shifted Log |

Figure 5: Experiment workflow

3.3. Implementation details

The parameters for parametric methods such as
the Sakoe-Chiba band, the Itakura parallelogram,
the COW technique, and the WD method are em-
pirically selected to ensure that they yield the best
result they can for this task. For the sake of re-
producibility, the parameters have been reported
in Table 2] Moreover, the DTW and the CDTW
have been implemented with the dtwalign Python
package E| while WD has been implemented using
the Python scikit-image package El For COW, we
replicated exactly the MATLAB implementation by
[37] in Python.

The algorithms are run on Python version 3.8
on a 64-bit Windows 10 computer with Intel(R)
Core(TM) i5-4570 CPU @ 3.20GHz 3.20GHz and
16.0GB (15.9GB usable) RAM.

Table 2: Parameters

Technique | parameter value Description
Sakoe-Chiba r 2 warping window size
Ttakura s 2 maximum slope

COW slack 50 slack
seg 100 segment length
WD method BayesShrink | thresholding method
levels 3 wavelet levels
wavelet coif3 kernel

Thttps://github.com/statefb/dtwalign
2https:/ /scikit-image.org

3.4. Results and Discussions
3.4.1. Quality of log alignment

While the well-log pattern alignment task aims
to match the survey log to the reference log, the
aim is not to realise an output log that overfits the
reference log to the extent of distorting the survey
log unnecessarily. While we intend to match peaks
in the survey log with those of the reference log,
the aim is to achieve it similar to the manner a log
analyst solves the task. We define the quality of
log alignment as a measure of how well a shift table
solves the pattern alignment task without unnec-
essarily distorting the survey log. A warping tech-
nique can yield an excessively shifted log due to
overfitting or many-to-one mapping of log features.
For example, Figures[6a] - [6d] show alignment paths
for the different warping techniques applied on the
survey log before preprocessing. In this case, COW
produces the most similar alignment path to the
manually-shifted depths in Figure The align-
ment path in Figure[7a]does not indicate any notice-
able shifts because the maximum depth-shift from
the manual picks is only about 6ft as illustrated
in Figure [fb] From Figure [6a] DTW resulted in
an extreme distortion of the survey log due to its
many-to-one mapping of depths. CDTW methods
do not result in as much distortion of the log as in
DTW; this is because of the constraints the CDTW
methods impose on the alignment path. However,
the outputs from the CDTW methods on the un-
processed logs are worse than COW'’s, using the
manually-shifted alignment path as a benchmark.

Table [3] shows that the outputs of DTW and
CDTW (Itakura and Sakoe-Chiba) are poorly cor-
related with the original survey GR except when
they are normalised (although unlike in other cases,
normalisation has not improved DTW when com-
bined with WD). COW’s outputs give the highest
correlation with the original survey log throughout
Table [3] except for the z-score normalised datasets
in which COW gives a similar correlation as other
methods. From the table, after filtering, COW'’s
correlation with the survey log is 0.74, with or
without normalisation. This value is the same as
the correlation of the manually-shifted log with the
original survey log. This result implies that COW
provides a similar depth-alignment as the manually-
shifted log after filtering, with either median or WD
filtering.

Unlike DTW and CDTW, normalisation does not
show any noticeable effect on COW’s outputs; this
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outcome can be explained by the fact that COW is a
shape-based and does not realise depth-alignments
using pointwise distance metrics similar to DTW
and CDTW. Table[3]also reveals that the outputs of
DTW and CDTW (Itakura and Sakoe-Chiba) give
a relatively low correlation with the original survey
GR except when they are normalised (although, un-
like in other cases, normalisation has not improved
DTW when combined with WD). Figure [§ shows
preprocessing techniques that can lead to the best
alignment path for each algorithm. While a com-
bination of median filtering and z-score normali-
sation can improve the alignment paths of DTW
and CDTW, COW does not need normalisation.
With only median filtering, COW’s outputs com-
pare more closely to the manually-shifted log than
the other warping techniques, as has been previ-
ously demonstrated.

3.4.2. Correlation with the reference log

Table [] shows that the output logs due to DTW
and CDTW give correlations of between 0.88 and
0.93 with the reference log, while COW’s logs con-
sistently give a correlation of 0.63 with the reference
log. From Table[d]alone and assuming a higher cor-
relation to mean improvement, DTW and CDTW
can be adjudged better than COW and even the
manually-shifted log, which gives a correlation of
0.58

with the reference log. These results have been
illustrated in Figure[0] This section seeks to under-
stand whether a high correlation with the reference
log implies a better performance of a warping tech-
nique.

In machine learning parlance, reference logs are
the training labels in well-log pattern alignment
tasks. Warping techniques should be used to cor-
rectly reposition the survey log in depth while com-
paring the features of the two logs. However, while
reference logs provide an example for the task, a
high correlation between the output log and the
reference log does not necessarily guarantee a good
result. A possible factor as to why the outputs of
DTW and CDTW result in a high correlation with
the reference log is overfitting. DTW and CDTW
cost function is based on pointwise distance metrics
such as Euclidean distance or Manhattan distance.
These distance measures do not pay attention to the
shape of the logs to be aligned. Using pointwise dis-
tance comparisons, DTW and CDTW try to fit the
reference log as much as possible, which leads to the
overstretching of the survey log (and in some cases,

the reference log as well) due to many-to-one or one-
to-many mapping between the two logs. Although
CDTW seeks to prevent overstretching using con-
straints around the alignment paths, the problem
persists with the current CDTW approaches.

Figure illustrates overfitting in the well-log
pattern alignment task using DTW as an exam-
ple. From the graphs, DTW overstretched the sur-
vey and the reference logs to enable them to match
more closely with each other. In this case, DTW
extrapolated the logs from the original maximum
length of 15,000 ft to 30,000 ft. Not only that
this overstretching resulted in an incorrect solution
to the task, the magnitude of the overstretching is
also physically impossible. We argue that the rea-
son why DTW and CDTW give a high correlation,
as reported in Table [d] is because the two algo-
rithms optimise the overfitting of the reference and
the survey logs.

Table [ shows that the correlations of COW'’s
outputs with the reference log are closest to
that of the manually-shifted log. COW is a
shape-preserving segment-based warping technique.
COW uses segments and slacks to prevent over-
stretching of signals while optimising their shape-
alignment. COW relates more closely to what a hu-
man analyst does in practice. A log analyst seeks
to identify related features between the logs using
their shapes while ignoring the numerical value and
magnitude of each point on the curves. Figure [I]
presents the windowed correlations of the survey
log, the manually-shifted log and a COW output
log against the reference log. From left to right of
each of Figures and the window size
is decreased in order to reveal small differences be-
tween each log and the reference log. Figures[I1a]
[I1D and show that the COW output correlates
better with the reference log than the survey log
but in a similar manner to the manually-shifted
log. Figure provides a zoomed-in section of
the logs for easier visual inspection of the extent to
which the COW-automated warping of the survey
log compares with the manually-shifted log.

3.4.3. Direct correlation with the manually shifted
log

The numerous researches in automating the well-
log alignment process intend to realise a technique
that can guarantee the same quality of service ob-
tainable with log analysts. Hence, a suitable com-
parison for this task is the manually-shifted log. In
Sections [3:41] and [3:4:2] the performances of the
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Figure 6: Alignment paths due to each of the warping techniques applied on the datasets without any preprocessing

Table 3: Correlations between shifted GR due to the different methods and the original survey GR. The correlation between
the manually shifted GR and the survey GR is 0.74 while that of reference with survey is 0.48. These are results of 10 trials

for each experiment.

Preprocessing(Filtering +Normalisation)
Mean (standard error)

‘Warping technique None Median WD Z-score Min-max  Median + Z-score Median + Min-max WD + Z-score WD + Min-max
DTW 0.35(0.00)  0.35(0.00) 0.24(0.00) 0.72(0.00) 0.71(0.00) 0.73(0.00) 0.71(0.00) 0.27(0.00) 0.27(0.00)
Ttakura 0.55(0.00)  0.55(0.00) 0.56(0.00) 0.72(0.00) 0.71(0.00) 0.73(0.00) 0.71(0.00) 0.71(0.00) 0.70(0.00)
Sakoe-Chiba 0.33(0.00)  0.45(0.00) 0.37(0.00) 0.72(0.00) 0.71(0.00) 0.72(0.00) 0.72(0.00) 0.70(0.00) 0.72(0.00)
COW 0.72(0.00)  0.74(0.00)  0.74(0.00) 0.72(0.00) 0.72(0.00) 0.74(0.00) 0.74(0.00) 0.74(0.00) 0.74(0.00)

Table 4: Correlations between shifted GR due to the different methods and the reference GR. The correlation between the
manually shifted GR and the reference GR is 0.58. These are results of 10 trials for each experiment.

Preprocessing(Filtering +Normalisation)
Mean (standard error)

‘Warping technique None Median WD Z-score Min-max  Median + Z-score Median + Min-max WD + Z-score WD + Min-max
DTW 0.88(0.00)  0.88(0.00) 0.92(0.00) 0.93(0.00) 0.93(0.00) 0.93(0.00) 0.92(0.00) 0.91(0.00) 0.91(0.00)
Ttakura 0.90(0.00)  0.88(0.00) 0.90(0.00) 0.93(0.00) 0.93(0.00) 0.92(0.00) 0.92(0.00) 0.93(0.00) 0.93(0.00)
Sakoe-Chiba 0.91(0.00)  0.89(0.00)  0.90(0.00) 0.93(0.00) 0.93(0.00) 0.93(0.00) 0.92(0.00) 0.93(0.00) 0.93(0.00)
COW 0.63(0.00)  0.63(0.00) 0.63(0.00) 0.63(0.00) 0.63(0.00) 0.63(0.00) 0.63(0.00) 0.63(0.00) 0.63(0.00)
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Figure 7: (a) Alignment paths for the manually-shifted
depths
(b) Shift profile for the manually-shifted depths

different techniques have been indirectly compared
to the manually-shifted log. For completeness, we
discuss the direct correlation between the outputs
from the automated well-log alignment techniques
and the manually-shifted log.

Table [5l demonstrates that COW shows the over-
all best correlation with the manually-shifted log
when compared with DTW and CDTW. The ta-
ble further confirms that while normalisation (espe-
cially the z-score normalisation) improves the per-
formances of DTW and CDTW, only filtering im-
proves COW’s performance.

While the evaluations of the automated well-log
alignment techniques have been on the basis of their
direct or indirect comparisons with the output from
a human log analyst, it is not clear at this stage

how best to determine which, between COW and
the manually-shifted log, is the most efficient. This
warrants future research.

4. Recommendations and future research

Given the enormous research interest in the au-
tomation of the well-log pattern alignment process
in the oil and gas sector, the findings made from
this research are significant both for academia and
industry. Firstly, this research has demonstrated
that a high correlation between an output log from
a warping technique and the reference log does
not guarantee good performance. Key attributes
for suitable warping techniques for well-log pattern
alignment include good quality of alignment, shape-
preservation during alignment, not overfitting, and
indirectly learning to generate outputs similar to a
manually-shifted log. These attributes can be eval-
uated using the analyses provided in this paper.

DTW and CDTW perform poorly in the well-
log pattern alignment task because they distort the
logs to optimise their overfitting. Their warping
process results in shifted logs which do not repre-
sent a good solution to the task. A fundamental
property of these techniques which contributes to
this outcome is their dependency on pointwise dis-
tance metrics. One way to improve DTW could be
by re-engineering its cost function to use a shape-
based similarity metric. However, if for any reason
DTW or CDTW is a requirement for a well-log pat-
tern alignment task, then the normalisation of the
logs before warping is recommended.

CDTW techniques are designed to overcome the
many-to-one challenge of DTW. But because these
methods are parametric, choosing suitable parame-
ters for them remains a challenging task. Hence, in-
tegrating an adaptive parameter selection strategy
for CDTW techniques warrants future research.

Amongst the different techniques, COW com-
pares more favourably to the manually-shifted log
than others. However, there are several issues with
the current implementation of COW. Firstly, COW
works well when the survey and the reference logs
are of equal length. The reason for this is that
COW assumes that the ends of the logs are al-
ready matched and fixed. This situation will not
always be true especially when the logs are of dif-
ferent lengths. Solving this limitation of COW will
bring an overarching improvement to COW and the
automated well-log alignment process.
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Figure 8: preprocessing techniques that lead to the best alignment for each warping technique

Table 5: Correlations between shifted GR due to the different methods and the manually shifted GR. These are results of 10

trials for each experiment.

Preprocessing(Filtering +Normalisation)
Mean (standard error)
‘Warping technique None Median WD Z-score Min-max  Median + Z-score Median + Min-max WD + Z-score WD + Min-max
DTW 0.34(0.00)  0.34(0.00)  0.46(0.00) 0.79(0.00) 0.78(0.00) 0.79(0.00) 0.77(0.00) 0.39(0.00) 0.39(0.00)
Ttakura 0.59(0.00)  0.58(0.00) 0.57(0.00) 0.79(0.00) 0.78(0.00) 0.79(0.00) 0.77(0.00) 0.79(0.00) 0.76(0.00)
Sakoe-Chiba 0.46(0.00)  0.44(0.00)  0.43(0.00) 0.79(0.00) 0.77(0.00) 0.79(0.00) 0.76(0.00) 0.79(0.00) 0.75(0.00)
COW 0.79(0.00)  0.81(0.00) 0.81(0.00) 0.79(0.00) 0.79(0.00) 0.81(0.00) 0.81(0.00) 0.81(0.00) 0.81(0.00)

Moreover, COW relies on two essential param-
eters — segment length and slack. As with any
parametric algorithm, selecting correct parameters
can be challenging, therefore an automated tech-
nique for choosing the right segment length and the
slack variable will hugely improve COW'’s perfor-
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mance. Furthermore, the current implementation
of COW uses the same slack and equal segment
length except for the last segment, which can be of
a different length. Since logs are not equally dense
or sparse throughout, varying segment lengths and
slacks could be considered for COW. Our future re-
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search will consider heuristics for choosing optimal
parameters for the different regions of the log.
Finally, COW’s outputs in this research have
closely compared to a manually-shifted log better
than other techniques. However, we have not been
able to confirm the extent to which COW performs
in comparison to the manually-shifted logs. Al-
though COW’s outputs yielded higher correlations
with the reference log than the manually-shifted
log, it cannot be guaranteed that it outperforms
the manually-shifted log. The preceding statement
is the case because Section B.4.2] reveals that DTW
and CDTW show good correlations to the reference
log due to overfitting. Future research will seek to
quantify how well COW performs in comparison to
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an analyst using a blind evaluation of COW outputs
and manually-shifted logs.

5. Conclusion

This paper provides an empirical review of auto-
mated well-log pattern alignment techniques. The
paper focuses primarily on DTW, CDTW, and
COW because of their ease of implementation, sam-
ple efficiency, and ease of deployment in everyday
petrophysical software. The methods have been ex-
perimented on gamma-ray logs — a reference log,
a survey log, and a manually-shifted log as the
ground truth. For each method, a combination
of filtering and normalisation techniques are ap-
plied to the logs. The results show that COW
compares more closely to the manually-shifted logs
than the other techniques. Furthermore, COW
performance largely improves with filtering while
DTW and CDTW perform better with normalisa-
tion. DTW and CDTW have not shown a good
result because they use pointwise distance metrics
which overstretches both the survey log and the ref-
erence log. Although COW performs relatively bet-
ter than the other techniques, it still requires sev-
eral improvements to enable it to cope with logs of
different lengths as well as choosing the right pa-
rameters.
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