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UNIFORM BOUNDEDNESS FOR ALGEBRAIC

GROUPS AND LIE GROUPS

JAREK KĘDRA, ASSAF LIBMAN, AND BEN MARTIN

Abstract. Let G be a semisimple linear algebraic group over
a field k and let G+(k) be the subgroup generated by the sub-
groups Ru(Q)(k), where Q ranges over all the minimal k-parabolic
subgroups Q of G. We prove that if G+(k) is bounded then
it is uniformly bounded. Under extra assumptions we get ex-
plicit bounds for ∆(G+(k)): we prove that if k is algebraically
closed then ∆(G+(k)) ≤ 4 rank(G), and if G is split over k then
∆(G+(k)) ≤ 28 rank(G). We deduce some analogous results for
real and complex semisimple Lie groups.

1. Introduction

In this paper we investigate the boundedness behaviour of a semisim-
ple linear algebraic group G over an infinite field k. (For definitions of
boundedness and related notions, see Section 2.) If k = R then G is
a semisimple Lie group, and it is well known that G is compact in the
real topology if and only if it is anisotropic. The authors showed in [5,
Thm. 1.2] that if G is compact then G is bounded but is not uniformly
bounded; on the other hand, if G has no simple compact factors then
G is uniformly bounded. Motivated by this, we make the following
conjecture.

Conjecture 1.1. Let G be a semisimple linear algebraic group over an

infinite field k. Then G+(k) is uniformly bounded.

Here G+(k) denotes the subgroup of G(k) generated by the subgroups
Ru(Q)(k), where Q ranges over the minimal k-parabolic subgroups of
G. If k = k then G+(k) = G(k), while if G is anisotropic over k then
G+(k) = 1. If G has no anisotropic k-simple factors then G+(k) is
dense in G. Note that a finite group is clearly uniformly bounded,
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so Conjecture 1.1 and the other results below all hold trivially for a
semisimple linear algebraic group over a finite field k.

We make some steps towards proving the conjecture.

Theorem 1.2. Let G be a semisimple linear algebraic group over an

infinite field k, and suppose G(k) = G+(k). Then G(k) is finitely nor-

mally generated. Moreover, if G(k) is bounded then G(k) is uniformly

bounded.

We want to give explicit bounds for ∆(G) in terms of Lie-theoretic
quantities such as rankG and dimG. We can do this in some special
cases. The first improves the bound 4 dimG from [5, Thm. 4.3].

Theorem 1.3. Let G be a semisimple linear algebraic group over an

algebraically closed field k. Then ∆(G(k)) ≤ 4 rankG.

Theorem 1.4. Let G be a split semisimple linear algebraic group over

an infinite field k. Then ∆(G+(k)) ≤ 28 rankG.

When k = R, we get the following result.

Theorem 1.5. Let H be a real semisimple linear algebraic group with

no compact simple factors. Then H is uniformly bounded. Moreover,

if H is split then ∆(H) ≤ 28 rankG.

When k = C, we get the following result.

Theorem 1.6. Let H be a complex semisimple linear algebraic group.

Then H is uniformly bounded and ∆(H) ≤ 4 rankG.

The idea of the proofs is as follows. First we prove Theorem 1.3
(Section 4); the new ingredient is that we work in the quotient variety
G/Inn(G) rather than in G, which allows us to improve on the bound
in [5, Thm. 4.3]. A key result underpinning our theorems for non-
algebraically closed k is Proposition 5.5. We prove this in Section 5
and deduce Theorem 1.2. When G is split we obtain Theorem 1.4
from Proposition 5.5 and the Bruhat decomposition; see Section 6. In
Section 7 we prove Theorems 1.5 and 1.6.

Acknowledgements. This work was funded by Leverhulme Trust Re-
search Project Grant RPG-2017-159.

2. Boundedness and uniform boundedness

A conjugation-invariant norm on a group H is a non-negative func-
tion ‖ ‖ : H → R such that ‖ ‖ is constant on conjugacy classes, ‖g‖ = 0
if and only if g = 1 and ‖gh‖ ≤ ‖g‖+ ‖h‖ for all g, h ∈ H . The diam-
eter of H , denoted ‖H‖, is supg∈H ‖g‖. A group H is called bounded
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if every conjugation-invariant norm has finite diameter. In [5] we in-
troduced two stronger notions of boundedness. We briefly recall them
now.

A subset S ⊆ H is said to normally generate H if the union of the
conjugacy classes of its elements generates H . Thus, every element of
H can be written as a word in the conjugates of the elements of S and
their inverses. Given g ∈ H , the length of the shortest such word that
is needed to express g is the word norm of g denoted ‖g‖S. It is a
conjugation-invariant norm on H . The diameter of H with respect to
this word norm is denoted ‖H‖S. For every n ≥ 0 we define

BH
S (n) = {g ∈ H | ‖g‖S ≤ n},

the ball of radius n (of all elements that can be written as a product of
n or fewer conjugates of the elements of S and their inverses). When
there is no danger of confusion we simply write BS(n) (cf. Notation 3.1).

We will use the following result [5, Lem. 2.3] repeatedly: if X, Y ⊆ H
and Y ⊆ BX(m) then BY (n) ⊆ BX(mn).

We say that H is finitely normally generated if it admits a finite
normally generating set. In this case we define

∆k(H) = sup{‖H‖S : S normally generates H and |S| ≤ k}

∆(H) = sup{‖H‖S : S normally generates H and |S| <∞}.

A finitely normally generated group H is called strongly bounded if
∆k(H) < ∞ for all k. It is called uniformly bounded if ∆(H) < ∞.
Notice that ∆k(H) ≤ ∆(H) for all k ∈ N, so uniform boundedness
implies strong boundedness. It follows from [5, Corollary 2.9] that
strong boundedness implies boundedness.

3. Linear algebraic groups

We recall some material on linear algebraic groups; see [2] and [9]
for further details. Below k denotes an infinite field and G denotes a
semisimple linear algebraic k-group; we write r for rankG. We adopt
the notation of [2]: we regard G as a linear algebraic group over the
algebraic closure k together with a choice of k-structure. We identify
G with its group of k-points G(k). If H is any k-subgroup of G then
we denote by H(k) the group of k-points of H . More generally, if C
is any subset of G—not necessarily closed or k-defined—then we set
C(k) = C ∩G(k). By [2, V.18.3 Cor.], G(k) is dense in G.

Fix a maximal split k-torus S of G. Let L = CG(S) and fix a
k-parabolic subgroup P such that L is a Levi subgroup of P . Set
U = Ru(P ). Then P is a minimal k-parabolic subgroup of G, L and S
are k-defined and P , S are unique up to G+(k)-conjugacy [9, 15.4.7].
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Fix a maximal k-torus T of G such that S ⊆ T and a (not necessarily
k-defined) Borel subgroup B of G such that T ⊆ B ⊆ P .

Notation 3.1. If X ⊆ G+(k) then we write BX(n) for B
G+(k)
X (n).

Lemma 3.2. Let O,O′ be nonempty open subsets of G. For any g ∈
G(k), there exist h ∈ O(k) and h′ ∈ O′(k) such that g = hh′.

Proof. Since G is irreducible as a variety, O−1g ∩ O′ is an open dense
subset of G. Since G(k) is dense in G, we can choose h′ ∈ (O−1g)(k)∩
O′(k). We can write h′ = h−1g for some h ∈ O(k). This yields g = hh′,
as required. �

For the rest of the section we assume that G is split over k; then
S = T and P = B. Let ΨT denote the set of roots of G with respect
to T . For α ∈ ΨT , we denote by Uα the corresponding root group.
Let α1, . . . , αr be the base for the set of positive roots associated to B.
Note that Uαi

commutes with U−αj
if i 6= j because αi − αj is not a

root. Let U− be the opposite unipotent subgroup to U with respect to
T . Let Gα = 〈Uα ∪U−α〉 for α ∈ ΨT ; then Gα is k-isomorphic to either
SL2 or PGL2. Let α∨ : Gm → Gα be the coroot associated to α. The
image Tα of α∨ is Gα ∩ T , and this is a maximal torus of Gα.

We use the Bruhat decomposition for G(k). We recall the necessary

facts [2, Sec. V.14, Sec. V.21]. Fix a set W̃ ⊆ NG(T )(k) of represen-

tatives for the Weyl group; we denote by n0 ∈ W̃ the representative
corresponding to the longest element of W (note that n2

0 ∈ T (k) and
n0Un

−1
0 = U−). The Bruhat decomposition G =

⊔
n∈W̃

BnB for G
yields a decomposition G(k) =

⊔
n∈W̃

B(k)nB(k) for G(k) [2, Thm.
V.21.15]. The double coset Bn0B is open and k-defined. The map
U × B → Bn0B, (u, b) 7→ un0b is an isomorphism of varieties. Hence
if g ∈ Bn0B(k) then g = un0b for unique u ∈ U and b ∈ B, and it
follows that u ∈ U(k) and b ∈ B(k). Likewise, multiplication gives
k-isomorphisms of varieties

U− × T × U → U− ×B → U−B = n0(Bn0B),

so U−B is open and (U−B)(k) = U−(k)B(k) = U−(k)T (k)U(k).

4. The algebraically closed case

Throughout this section k is algebraically closed. We need to recall
some results from geometric invariant theory [7, Ch. 3]. Let H be a
reductive group acting on an affine variety X over k. We denote the
orbit of x ∈ X by H · x and the stabiliser of x by Hx. One may form
the affine quotient variety X/H . The points of X/H correspond to the
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closed H-orbits. We have a canonical projection πX : X → X/H . The
closure H · x of any orbit H ·x contains a unique closed orbit H ·y, and
we have πX(x) = πX(y). If C ⊆ X is closed and H-stable then πX(C)
is closed.

In particular, H acts on itself by inner automorphisms—that is, by
conjugation—and the orbit H · h is the conjugacy class of h. We de-
note the quotient variety by H/Inn(H) and the canonical projection
by πH : H → H/Inn(H). If h = hshu is the Jordan decomposition of
h then H · hs is the unique closed orbit contained in H · h; so H · h is
closed if and only if h is semisimple, and πH(h) = πH(1) if and only
if h is unipotent. Fix a maximal torus T of H . The Weyl group W
acts on T by conjugation. The inclusion of T in G gives rise to a map
ψT : T/W → H/Inn(H); it is well known that ψT is an isomorphism of
varieties.

Now assume G is simply connected. We can write G ∼= G1×· · ·×Gm,
where the Gi are simple. Let νi : G → Gi be the canonical projection.
Set ri = rank(Gi) for 1 ≤ i ≤ m.

Lemma 4.1. Let C be a closed G-stable subset of G such that C 6⊆
Z(G). Then there exist g ∈ C and x ∈ G such that [g, x] is not

unipotent.

Proof. Let g ∈ C such that g 6∈ Z(G). Note that gs ∈ C as C is closed
and conjugation-invariant. If gs is not central in G then we can choose
a maximal torus T ′ of G such that gs ∈ T ′; then [gs, x] is a nontrivial
element of T for some x ∈ NG(T ), and we are done. So we can assume
gs is central in G. Then gu is a nontrivial unipotent element of G.
By [3, Lem. 3.2], G · g contains an element of the form gsu, where
1 6= u belongs to some root group Uα. Let n ∈ NGα

(Tα) represent the
nontrivial element of the Weyl group NGα

(Tα)/Tα. Recall that Gα is
isomorphic to SL2 or PGL2. Explicit calculations with 2 × 2 matrices
(cf. the proof of Lemma 6.1 below) show that [u, n] = [gsu, n] is not
unipotent. This completes the proof. �

Suppose we are given G-conjugacy classes C1, . . . , Cm of G such that
for each i, νi(Ci) is noncentral in Gi (we do not insist that the Ci are

all distinct). Set Di = [Ci, Gi] and Ei = Di = [Ci, Gi]. Note that for
each i, Di is conjugation-invariant and constructible, and D−1

i = Di;
likewise, Ei is conjugation-invariant and irreducible, and E−1

i = Ei.

Proposition 4.2. Let G, etc., be as above, and set X = D1∪· · ·∪Dm.

Then BX(r) contains a constructible dense subset of G.
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Proof. It suffices to prove that the constructible set Di1 · · ·Dir is dense
in G for some i1, . . . , ir. It is enough to show that the constructible set
Ei1 · · ·Eir is a dense subset of G for some i1, . . . , ir.

Fix a maximal torus T of G and set Ti = T ∩Gi for each i. Clearly
it is enough to prove that (Ei)

ri is a dense subset of Gi for each i. For
notational convenience, we assume therefore that m = 1 and G = G1 is
simple; then T = T1. Set C = C1 = ν1(C1) and E = E1; we prove that

Er is a dense subset of G. By hypothesis, E = [C,G] is an irreducible
positive-dimensional subvariety of G. Set A = E ∩ T . We claim that
A has an irreducible component A′ such that dim(A′) > 0.

Set F = πG(E); note that F is closed and irreducible because E
is closed, conjugation-invariant and irreducible. Suppose dim(F ) = 0.
Since 1 ∈ E, we have F = {πG(1)}, which forces E to consist of
unipotent elements. But this is impossible by Lemma 4.1. We deduce
that dim(F ) > 0. Clearly πG(A) ⊆ F . Conversely, given g ∈ E, write
g = gsgu (Jordan decomposition). Since E is conjugation-invariant,
we can, by conjugating g, assume without loss that gs ∈ T . We have
gs ∈ G · g ∩ T ⊆ A and πG(gs) = πG(g). This shows that F ⊆ πG(A).
Hence F = πG(A). Let πW : T → T/W be the canonical projection.
Now F ′ := ψ−1

T (F ) is an irreducible closed positive-dimensional subset
of T/W , with A = π−1

W (F ′). Since W is finite, πW is a finite map
and the fibres of πW are precisely the W -orbits. Hence the irreducible
components of A are permuted transitively by W , and each surjects
onto F ′. Thus any irreducible component A′ of A has the desired
properties.

Let A1, . . . , At be the W -conjugates of A′. The Ai generate a non-
trivial W -stable subtorus S of T . Hence the subset V of X(T ) ⊗Z R

spanned by {χ ∈ X(T ) |χ(S) = 1} is proper and W -stable. But W
acts absolutely irreducibly on X(T )⊗ZR, so V = 0. This forces S to be
the whole of T . So the Ai generate T . By the argument of [5, Sec. 5] or
[4, 7.5 Prop.], there exist i1, . . . , ir ∈ {1, . . . , t} and ǫ1, . . . , ǫr ∈ {±1}
such that Aǫ1

i1
· · ·Aǫr

ir
is a constructible dense subset of T . Hence Er

contains a constructible dense subset of T , and we deduce that Er is a
constructible dense subset of G. This completes the proof. �

Proof of Theorem 1.3. We have ∆(G̃) ≤ ∆(G) by [5, Lem. 2.16], where

G̃ is the simply connected cover of G. Hence there is no harm in
assuming G is simply connected. Let X be a finite normal generating
set for G. We can choose x1, . . . , xm ∈ X such that νi(xi) is noncentral
in Gi for 1 ≤ i ≤ m. Let Ci = G ·xi ⊆ X, let Di = [Ci, G] and let X ′ =
D1∪· · ·∪Dm. By Proposition 4.2, BX′(r) contains a dense constructible
subset of G. Since Di ⊆ BCi

(2) for each i, BX(2r) contains a nonempty
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open subset U of G. Now U2 = G by [2, I.1.3 Prop.], so BX(4r) ⊇
BX(2r)BX(2r) ⊇ U2 = G. It follows that ∆(G) ≤ 4r, as required. �

5. The isotropic case

Now we consider the case of arbitrary semisimple G. There is no
harm in replacing G with the Zariski closure of G+(k), which is the
product of the isotropic k-simple factors of G. Hence we assume in this
section that G+(k) is dense in G.

We start by noting a corollary of Proposition 4.2. Let X ⊆ G+(k)
such that X is a finite normal generating set for G. By Proposition 4.2,
there exist i1, . . . , ir ∈ {1, . . . , m} such that the image of the map
f : G2r → G defined by

f(h1, . . . , hr, g1, . . . , gr) = (h1x1h
−1
1 g1x

−1
1 g−1

1 ) · · · (hrxrh
−1
r grx

−1
r g−1

r )

contains a nonempty open subset G′ of G. Now let O be a nonempty
open subset of G. Then f−1(G′∩O) is a nonempty open subset of G2r.
But G+(k) is dense in G, so G+(k)2r is dense in G2r. It follows that
f(h1, . . . , hr, g1, . . . , gr) ∈ O for some h1, . . . , hr, g1, . . . , gr ∈ G+(k)2r.
We deduce that for any nonempty open subset O of G,

(5.1) BX(2r) ∩ O 6= ∅.

Remark 5.1. Let C = im(f), where f is as above. It follows from
Eqn. (5.1) and Lemma 3.2 that C(k)2 = G(k). We cannot, however,
conclude directly from this that BX(2r)

2 = G(k): the problem is that
although the map f : G2r → C is surjective on k-points, it need not be
surjective on k-points.

Lemma 5.2. There exists t ∈ P (k) such that t is regular semisimple.

Proof. Define f : G× P → G by f(g, h) = ghg−1. Then f is surjective
since every element of G belongs to a Borel subgroup of G. Let O be
the set of regular semisimple elements of G, a nonempty open subset
of G. By [2, Thm. 21.20(ii)], P (k) is dense in P , and we know that
G(k) is dense in G, so G(k)× P (k) is dense in G× P . It follows that
there is a point (g, t) ∈ (G(k)×P (k))∩ f−1(O). Then gtg−1 is regular
semisimple, so t ∈ P (k) is regular semisimple also. �

Lemma 5.3. Let t ∈ P (k) be regular semisimple. Then U(k) ⊆ Bt(2).

Proof. Define f : U → U by f(u) = utu−1t−1. The conjugacy class U · t
is closed because orbits of unipotent groups are closed, so im(f) is a
closed subvariety of U . Since t is regular, it is easily checked that f
is injective and the derivative dfu is an isomorphism for each u ∈ U .
It follows from Zariski’s Main Theorem that f is an isomorphism of
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varieties. As f is defined over k, f gives a bijection from U(k) to U(k),
and the result follows. �

Lemma 5.4. Let X be a finite normal generating subset for G+(k).
Then X normally generates G.

Proof. There exists d ∈ N such that (G(k) · X)d = G+(k). So the
constructible set (G ·X)d contains G+(k) and is therefore dense in G.
This implies that (G · X)d contains a nonempty open subset of G, so
(G · X)d(G · X)d = G. Hence X is a finite normal generating set for
G. �

Proposition 5.5. Let X be a finite subset of G+(k) such that X nor-

mally generates G. Then U(k) ⊆ BX(8r).

Proof. The big cell Pn0P is open, so by Eqn. (5.1), we can choose
g ∈ BX(2r) ∩ Pn0P . We can write g = xn0x

′ for some x, x′ ∈ P (k).
Since BX(2r) is conjugation-invariant, there is no harm in replacing g
with (x′)−1gx′, so we can assume that x′ = 1 and g = xn0. Let C1 =
{n0x1 | x1 ∈ P, xn2

0x1 is regular semisimple}. Let O1 = P ·C1 = U ·C1;
then O1 is a constructible dense subset of G. By Eqn. (5.1), there exists
g ∈ BX(2r) ∩ O1. We can write g = un0x1u

−1 where xn2
0x1 is regular

semisimple and u ∈ U . Since g ∈ G(k), both u and x1u
−1 belong to

G(k). Hence n0x1 ∈ BX(2r) ∩ C1. It follows that t := xn2
0x1 is regular

semisimple and belongs to BX(4r). We have t ∈ BX(4r) ∩ P (k), so
U(k) ⊆ Bt(2) ⊆ BX(8r) by Lemma 5.3. This completes the proof. �

Proof of Theorem 1.2. Suppose G(k) = G+(k). By Lemma 5.2, there
exists t ∈ P (k) such that t is regular semisimple. By Lemma 5.3,
Bt(2) contains U(k). Since G(k) is generated by the G(k)-conjugates
of U(k), we deduce that {t} normally generates G(k). Hence G(k) is
finitely normally generated.

Now suppose further that G(k) is bounded. Fix a finite normal
generating set Y for G(k). Then G(k) = BY (s) for some s ∈ N and
Y ⊆ BU(k)(d) for some d ∈ N. Let X be any finite normal generating
set for G(k). Then X is normally generates G by Lemma 5.4. By
Proposition 5.5, U(k) ⊆ BX(8r). So

G(k) = BY (s) ⊆ BU(k)(sd) ⊆ BX(8rsd).

This shows that G(k) is uniformly bounded, as required. �

Remark 5.6. The hypothesis that G+(k) = G(k) holds in many cases if
G is k-simple and simply connected—this is the content of the Kneser-
Tits conjecture, which holds, for example, when k is a local field.
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Example 5.7. It is well known that the abelianisation of SO3(Q) is
Q∗/(Q∗)2, which is an infinitely generated abelian group. It follows
that SO3(Q) is not finitely normally generated. Note that SO+

3 (Q) = 1
since SO3 is anisotropic over Q.

6. The split case

In this section we assume G is split over k. If G is simply connected
then the Kneser-Tits Conjecture holds for G, so G+(k) = G(k) in this
case.

Lemma 6.1. Suppose (∗) each Gα is isomorphic to SL2. Let ti ∈ Tαi
(k)

for 1 ≤ i ≤ r and set t = t1 · · · tr. There exist ui, wi ∈ Uαi
(k) and

vi, xi ∈ U−αi
(k) for 1 ≤ i ≤ r such that t = xr · · ·x1ur · · ·u1v1 · · · vrw1 · · ·wr.

Proof. We use induction on r. The case r = 0 is vacuous. Now consider
the case r = 1. Then G ∼= SL2. For any a, b, c, d ∈ k we have

( 1 a
0 1 ) (

1 0
b 1 ) (

1 c
0 1 ) (

1 0
d 1 ) =

(
1+ab a
b 1

) (
1+cd c
d 1

)
=

(
1+ab+cd+abcd+ad c+abc+a

b+bcd+d bc+1

)
.

Let x ∈ k∗. Set a = −x, b = x−1 − 1, c = 1 and d = x − 1; then the
matrix above becomes

(
x 0
0 x−1

)
. Hence the result holds when r = 1.

Now suppose r > 1. Let H be the semisimple group with root system
spanned by ±α1, . . . ,±αr−1. Clearly condition (∗) holds for H . Let
s = t1 · · · tr−1. By our induction hypothesis, there exist ui, wi ∈ Uαi

(k)
and vi, xi ∈ U−αi

(k) for 1 ≤ i ≤ r − 1 such that

s = xr−1 · · ·x1ur−1 · · ·u1v1 · · · vr−1w1 · · ·wr−1.

By the SL2 case considered above, tr = x′ru
′

rv
′

rw
′

r for some ur, wr ∈ Uαr

and some vr, xr ∈ U−αr
. Set xr = sx′rs

−1, ur = su′rs
−1, vr = v′r and

wr = w′

r. We have

xrxr−1 · · ·x1urur−1 · · ·u1v1 · · · vr−1vrw1 · · ·wr−1wr

= xrurxr−1 · · ·x1ur−1 · · ·u1v1 · · · vr−1w1 · · ·wr−1vrwr

= xrursvrwr

= sx′ru
′

rv
′

rw
′

r

= str = t.

The result follows by induction. �

Proposition 6.2. Suppose G is simply connected. Let X ⊆ G+(k)
such that U(k) ⊆ X. Then BX(7) = G+(k).

Proof. Since G is simply connected, (∗) holds for G and the map
ψ : Gr

m → T given by ψ(a1, . . . , ar) = α∨

1 (a1) · · ·α
∨

r (ar) is a k-isomorphism.
It follows that T (k) = Tα1

(k) · · ·Tαr
(k), so T (k) ⊆ BX(4) by Lemma 6.1.
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Hence U−(k)B(k) = U−(k)T (k)U(k) ⊆ BX(1)BX(4)BX(1) ⊆ BX(6).
Now G(k) = (U−B)−1(k)(U−B)(k) by Lemma 3.2. But

(U−B)−1(k)(U−B)(k) = B(k)U−(k)U−(k)B(k) = U(k)T (k)U−(k)T (k)U(k)

= U(k)U−(k)T (k)U(k) = U(k)U−(k)B(k) ⊆ BX(1)BX(6) ⊆ BX(7),

so we are done. �

Proof of Theorem 1.4. Let G̃ be the split form of the simply connected

cover of G and let ψ : G̃→ G be the canonical projection. Then ψ is a

k-defined central isogeny, so by [2, V.22.6 Thm.], the map B̃ 7→ ψ(B̃)

gives a bijection between the set of k-Borel subgroups of G̃ and the

set of k-Borel subgroups of G; moreover, for each B̃, ψ gives rise to

a k-isomorphism from Ru(B̃) to Ru(B) [2, Prop. V.22.4]. It follows

that ψ(G̃+(k)) = G+(k). By [5, Lem. 2.16] we have ∆(G+(k)) ≤

∆(G̃+(k)), so we can assume without loss that G is simply connected.
In particular, G+(k) = G(k).

Let X be a finite normal generating set for G(k). Then X is a finite
normal generating set for G (Lemma 5.4), so by Eqn. (5.1) there exists
t ∈ BX(2r) such that t is regular semisimple. We have U(k) ⊆ Bt(2)
by Lemma 5.3 and G(k) ⊆ BU(k)(7) by Proposition 6.2. So

G(k) ⊆ BU(k)(7) ⊆ Bt(14) ⊆ BX(28r).

This shows that ∆(G(k)) ≤ 28r, as required. �

Example 6.3. (a) Let G = SLn(k) where n ≥ 3, let g be the ele-
mentary matrix E1n(1) and let X = G(k) · g. By [5, Prop. 6.23], X
generates G(k). One sees easily by direct computation that the cen-
traliser CG(g) has dimension n2 − 2n + 1, so dim(G · g) = 2n − 2. A
simple dimension-counting argument shows that if t < 1

2
rank(G) then

X t is a proper closed subvariety of G. Since G(k) is dense in G, it fol-
lows that X t does not contain G(k), so X(k)t does not contain G(k).
We deduce that ∆(G(k)) ≥ 1

2
rank(G).

(b) The bounds in Theorems 1.3 and 1.4 are far from sharp. Aseeri
has shown by direct calculation that 3 ≤ ∆(SL3(C)) ≤ 6 and that
∆(SL2(C)

m) = 3m and ∆(PGL2(C)
m) = 2m for every k ∈ N [1,

Thm. 8.0.2, Thm. 7.2.10, Thm. 7.2.6], whereas Theorem 1.3 yields
the bounds ∆(SL3(C)) ≤ 8 and ∆(SL2(C)

m),∆(PGL2(C)
m) ≤ 4m.

Aseeri also showed that 3 ≤ ∆(SL3(R)) ≤ 4, whereas Theorem 1.4
gives ∆(SL3(R)) ≤ 56.
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7. Semisimple Lie groups

Proof of Theorems 1.5 and 1.6. LetH be a linear semisimple Lie group
such that H has no compact simple factors. By [6, Thm. III.2.13], there
is a complex semisimple algebraic group G defined over R such that
G+(R) = H . Now Z(H) is finite, so H is finitely normally generated
and bounded by [5, Thm. 1.2]. It follows from Theorem 1.2 that H is
uniformly bounded. If H is split then G is split over R, so ∆(H) ≤
28 rank(H) by Theorem 1.4.

The argument for the complex case is similar: if H is a semisimple
linear complex Lie group then there is a semisimple complex algebraic
group G such that the complex Lie group associated to G is H (cf. [8,
Ch. 4, Sec. 2, Problem 12], and G is isomorphic to H . The result now
follows from Theorem 1.3. �

References

[1] Fawaz Aseeri. Uniform boundedness of groups. PhD thesis, University of Ab-
erdeen, 2022.

[2] Armand Borel. Linear algebraic groups, volume 126 of Graduate Texts in Math-

ematics. Springer-Verlag, New York, second edition, 1991.
[3] Robert M. Guralnick and Gunter Malle. Classification of 2F -modules. II. In

Finite groups 2003, pages 117–183. Walter de Gruyter, Berlin, 2004.
[4] James E. Humphreys. Linear algebraic groups. Springer-Verlag, New York-

Heidelberg, 1975. Graduate Texts in Mathematics, No. 21.
[5] Jarek Kędra, Assaf Libman, and Ben Martin. On boundedness properties of

groups. J. Topol. Anal., 2021. DOI: 10.1142/S1793525321500497.
[6] James S. Milne. Lie algebras, algebraic groups, and Lie groups. Version 2.00,

https://www.jmilne.org/math/CourseNotes/LAG.pdf, 2013.
[7] P. E. Newstead. Introduction to moduli problems and orbit spaces, volume 51 of

Tata Institute of Fundamental Research Lectures on Mathematics and Physics.
Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing
House, New Delhi, 1978.

[8] A. L. Onishchik and È. B. Vinberg. Lie groups and algebraic groups. Springer
Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990. Translated from
the Russian and with a preface by D. A. Leites.

[9] T. A. Springer. Linear algebraic groups. Modern Birkhäuser Classics. Birkhäuser
Boston, Inc., Boston, MA, second edition, 2009.

University of Aberdeen and University of Szczecin

Email address : kedra@abdn.ac.uk

University of Aberdeen

Email address : a.libman@abdn.ac.uk

University of Aberdeen

Email address : b.martin@abdn.ac.uk


	1. Introduction
	Acknowledgements

	2. Boundedness and uniform boundedness
	3. Linear algebraic groups
	4. The algebraically closed case
	5. The isotropic case
	6. The split case
	7. Semisimple Lie groups
	References

