UNIFORM BOUNDEDNESS FOR ALGEBRAIC GROUPS AND LIE GROUPS

JAREK KĘDRA, ASSAF LIBMAN, AND BEN MARTIN

Abstract

Let G be a semisimple linear algebraic group over a field k and let $G^{+}(k)$ be the subgroup generated by the subgroups $R_{u}(Q)(k)$, where Q ranges over all the minimal k-parabolic subgroups Q of G. We prove that if $G^{+}(k)$ is bounded then it is uniformly bounded. Under extra assumptions we get explicit bounds for $\Delta\left(G^{+}(k)\right)$: we prove that if k is algebraically closed then $\Delta\left(G^{+}(k)\right) \leq 4 \operatorname{rank}(G)$, and if G is split over k then $\Delta\left(G^{+}(k)\right) \leq 28 \operatorname{rank}(G)$. We deduce some analogous results for real and complex semisimple Lie groups.

1. Introduction

In this paper we investigate the boundedness behaviour of a semisimple linear algebraic group G over an infinite field k. (For definitions of boundedness and related notions, see Section 2.) If $k=\mathbb{R}$ then G is a semisimple Lie group, and it is well known that G is compact in the real topology if and only if it is anisotropic. The authors showed in [5, Thm. 1.2] that if G is compact then G is bounded but is not uniformly bounded; on the other hand, if G has no simple compact factors then G is uniformly bounded. Motivated by this, we make the following conjecture.

Conjecture 1.1. Let G be a semisimple linear algebraic group over an infinite field k. Then $G^{+}(k)$ is uniformly bounded.

Here $G^{+}(k)$ denotes the subgroup of $G(k)$ generated by the subgroups $R_{u}(Q)(k)$, where Q ranges over the minimal k-parabolic subgroups of G. If $k=\bar{k}$ then $G^{+}(k)=G(k)$, while if G is anisotropic over k then $G^{+}(k)=1$. If G has no anisotropic k-simple factors then $G^{+}(k)$ is dense in G. Note that a finite group is clearly uniformly bounded,

[^0]so Conjecture 1.1 and the other results below all hold trivially for a semisimple linear algebraic group over a finite field k.

We make some steps towards proving the conjecture.
Theorem 1.2. Let G be a semisimple linear algebraic group over an infinite field k, and suppose $G(k)=G^{+}(k)$. Then $G(k)$ is finitely normally generated. Moreover, if $G(k)$ is bounded then $G(k)$ is uniformly bounded.

We want to give explicit bounds for $\Delta(G)$ in terms of Lie-theoretic quantities such as $\operatorname{rank} G$ and $\operatorname{dim} G$. We can do this in some special cases. The first improves the bound $4 \operatorname{dim} G$ from [5, Thm. 4.3].

Theorem 1.3. Let G be a semisimple linear algebraic group over an algebraically closed field k. Then $\Delta(G(k)) \leq 4 \operatorname{rank} G$.

Theorem 1.4. Let G be a split semisimple linear algebraic group over an infinite field k. Then $\Delta\left(G^{+}(k)\right) \leq 28 \operatorname{rank} G$.

When $k=\mathbb{R}$, we get the following result.
Theorem 1.5. Let H be a real semisimple linear algebraic group with no compact simple factors. Then H is uniformly bounded. Moreover, if H is split then $\Delta(H) \leq 28 \operatorname{rank} G$.

When $k=\mathbb{C}$, we get the following result.
Theorem 1.6. Let H be a complex semisimple linear algebraic group. Then H is uniformly bounded and $\Delta(H) \leq 4 \operatorname{rank} G$.

The idea of the proofs is as follows. First we prove Theorem 1.3 (Section 4); the new ingredient is that we work in the quotient variety $G / \operatorname{Inn}(G)$ rather than in G, which allows us to improve on the bound in [5, Thm. 4.3]. A key result underpinning our theorems for nonalgebraically closed k is Proposition 5.5. We prove this in Section 5 and deduce Theorem 1.2. When G is split we obtain Theorem 1.4 from Proposition 5.5 and the Bruhat decomposition; see Section 6. In Section 7 we prove Theorems 1.5 and 1.6.

Acknowledgements. This work was funded by Leverhulme Trust Research Project Grant RPG-2017-159.

2. Boundedness And uniform boundedness

A conjugation-invariant norm on a group H is a non-negative function $\|\|: H \rightarrow \mathbb{R}$ such that $\| \|$ is constant on conjugacy classes, $\|g\|=0$ if and only if $g=1$ and $\|g h\| \leq\|g\|+\|h\|$ for all $g, h \in H$. The diameter of H, denoted $\|H\|$, is $\sup _{g \in H}\|g\|$. A group H is called bounded
if every conjugation-invariant norm has finite diameter. In [5] we introduced two stronger notions of boundedness. We briefly recall them now.

A subset $S \subseteq H$ is said to normally generate H if the union of the conjugacy classes of its elements generates H. Thus, every element of H can be written as a word in the conjugates of the elements of S and their inverses. Given $g \in H$, the length of the shortest such word that is needed to express g is the word norm of g denoted $\|g\|_{S}$. It is a conjugation-invariant norm on H. The diameter of H with respect to this word norm is denoted $\|H\|_{S}$. For every $n \geq 0$ we define

$$
B_{S}^{H}(n)=\left\{g \in H \mid\|g\|_{S} \leq n\right\}
$$

the ball of radius n (of all elements that can be written as a product of n or fewer conjugates of the elements of S and their inverses). When there is no danger of confusion we simply write $B_{S}(n)$ (cf. Notation 3.1).

We will use the following result [5, Lem. 2.3] repeatedly: if $X, Y \subseteq H$ and $Y \subseteq B_{X}(m)$ then $B_{Y}(n) \subseteq B_{X}(m n)$.

We say that H is finitely normally generated if it admits a finite normally generating set. In this case we define

$$
\begin{aligned}
& \Delta_{k}(H)=\sup \left\{\|H\|_{S}: S \text { normally generates } H \text { and }|S| \leq k\right\} \\
& \Delta(H)=\sup \left\{\|H\|_{S}: S \text { normally generates } H \text { and }|S|<\infty\right\}
\end{aligned}
$$

A finitely normally generated group H is called strongly bounded if $\Delta_{k}(H)<\infty$ for all k. It is called uniformly bounded if $\Delta(H)<\infty$. Notice that $\Delta_{k}(H) \leq \Delta(H)$ for all $k \in \mathbb{N}$, so uniform boundedness implies strong boundedness. It follows from [5, Corollary 2.9] that strong boundedness implies boundedness.

3. LINEAR ALGEBRAIC GROUPS

We recall some material on linear algebraic groups; see [2] and [9] for further details. Below k denotes an infinite field and G denotes a semisimple linear algebraic k-group; we write r for $\operatorname{rank} G$. We adopt the notation of [2]: we regard G as a linear algebraic group over the algebraic closure \bar{k} together with a choice of k-structure. We identify G with its group of \bar{k}-points $G(\bar{k})$. If H is any k-subgroup of G then we denote by $H(k)$ the group of k-points of H. More generally, if C is any subset of G-not necessarily closed or k-defined-then we set $C(k)=C \cap G(k)$. By [2, V.18.3 Cor.], $G(k)$ is dense in G.

Fix a maximal split k-torus S of G. Let $L=C_{G}(S)$ and fix a k-parabolic subgroup P such that L is a Levi subgroup of P. Set $U=R_{u}(P)$. Then P is a minimal k-parabolic subgroup of G, L and S are k-defined and P, S are unique up to $G^{+}(k)$-conjugacy [9, 15.4.7].

Fix a maximal k-torus T of G such that $S \subseteq T$ and a (not necessarily k-defined) Borel subgroup B of G such that $T \subseteq B \subseteq P$.

Notation 3.1. If $X \subseteq G^{+}(k)$ then we write $B_{X}(n)$ for $B_{X}^{G^{+}(k)}(n)$.
Lemma 3.2. Let O, O^{\prime} be nonempty open subsets of G. For any $g \in$ $G(k)$, there exist $h \in O(k)$ and $h^{\prime} \in O^{\prime}(k)$ such that $g=h h^{\prime}$.

Proof. Since G is irreducible as a variety, $O^{-1} g \cap O^{\prime}$ is an open dense subset of G. Since $G(k)$ is dense in G, we can choose $h^{\prime} \in\left(O^{-1} g\right)(k) \cap$ $O^{\prime}(k)$. We can write $h^{\prime}=h^{-1} g$ for some $h \in O(k)$. This yields $g=h h^{\prime}$, as required.

For the rest of the section we assume that G is split over k; then $S=T$ and $P=B$. Let Ψ_{T} denote the set of roots of G with respect to T. For $\alpha \in \Psi_{T}$, we denote by U_{α} the corresponding root group. Let $\alpha_{1}, \ldots, \alpha_{r}$ be the base for the set of positive roots associated to B. Note that $U_{\alpha_{i}}$ commutes with $U_{-\alpha_{j}}$ if $i \neq j$ because $\alpha_{i}-\alpha_{j}$ is not a root. Let U^{-}be the opposite unipotent subgroup to U with respect to T. Let $G_{\alpha}=\left\langle U_{\alpha} \cup U_{-\alpha}\right\rangle$ for $\alpha \in \Psi_{T}$; then G_{α} is k-isomorphic to either SL_{2} or PGL_{2}. Let $\alpha^{\vee}: \mathbb{G}_{m} \rightarrow G_{\alpha}$ be the coroot associated to α. The image T_{α} of α^{\vee} is $G_{\alpha} \cap T$, and this is a maximal torus of G_{α}.

We use the Bruhat decomposition for $G(k)$. We recall the necessary facts [2, Sec. V.14, Sec. V.21]. Fix a set $\widetilde{W} \subseteq N_{G}(T)(k)$ of representatives for the Weyl group; we denote by $n_{0} \in \widetilde{W}$ the representative corresponding to the longest element of W (note that $n_{0}^{2} \in T(k)$ and $n_{0} U n_{0}^{-1}=U^{-}$). The Bruhat decomposition $G=\bigsqcup_{n \in \widetilde{W}} B n B$ for G yields a decomposition $G(k)=\bigsqcup_{n \in \widetilde{W}} B(k) n B(k)$ for $G(k)$ [2, Thm. V.21.15]. The double coset $B n_{0} B$ is open and k-defined. The map $U \times B \rightarrow B n_{0} B,(u, b) \mapsto u n_{0} b$ is an isomorphism of varieties. Hence if $g \in B n_{0} B(k)$ then $g=u n_{0} b$ for unique $u \in U$ and $b \in B$, and it follows that $u \in U(k)$ and $b \in B(k)$. Likewise, multiplication gives k-isomorphisms of varieties

$$
U^{-} \times T \times U \rightarrow U^{-} \times B \rightarrow U^{-} B=n_{0}\left(B n_{0} B\right)
$$

so $U^{-} B$ is open and $\left(U^{-} B\right)(k)=U^{-}(k) B(k)=U^{-}(k) T(k) U(k)$.

4. The ALGEBRAICALLY CLOSED CASE

Throughout this section k is algebraically closed. We need to recall some results from geometric invariant theory [7, Ch. 3]. Let H be a reductive group acting on an affine variety X over \bar{k}. We denote the orbit of $x \in X$ by $H \cdot x$ and the stabiliser of x by H_{x}. One may form the affine quotient variety X / H. The points of X / H correspond to the
closed H-orbits. We have a canonical projection $\pi_{X}: X \rightarrow X / H$. The closure $\overline{H \cdot x}$ of any orbit $H \cdot x$ contains a unique closed orbit $H \cdot y$, and we have $\pi_{X}(x)=\pi_{X}(y)$. If $C \subseteq X$ is closed and H-stable then $\pi_{X}(C)$ is closed.

In particular, H acts on itself by inner automorphisms-that is, by conjugation - and the orbit $H \cdot h$ is the conjugacy class of h. We denote the quotient variety by $H / \operatorname{Inn}(H)$ and the canonical projection by $\pi_{H}: H \rightarrow H / \operatorname{Inn}(H)$. If $h=h_{s} h_{u}$ is the Jordan decomposition of h then $H \cdot h_{s}$ is the unique closed orbit contained in $\overline{H \cdot h}$; so $H \cdot h$ is closed if and only if h is semisimple, and $\pi_{H}(h)=\pi_{H}(1)$ if and only if h is unipotent. Fix a maximal torus T of H. The Weyl group W acts on T by conjugation. The inclusion of T in G gives rise to a map $\psi_{T}: T / W \rightarrow H / \operatorname{Inn}(H)$; it is well known that ψ_{T} is an isomorphism of varieties.

Now assume G is simply connected. We can write $G \cong G_{1} \times \cdots \times G_{m}$, where the G_{i} are simple. Let $\nu_{i}: G \rightarrow G_{i}$ be the canonical projection. Set $r_{i}=\operatorname{rank}\left(G_{i}\right)$ for $1 \leq i \leq m$.

Lemma 4.1. Let C be a closed G-stable subset of G such that $C \nsubseteq$ $Z(G)$. Then there exist $g \in C$ and $x \in G$ such that $[g, x]$ is not unipotent.

Proof. Let $g \in C$ such that $g \notin Z(G)$. Note that $g_{s} \in C$ as C is closed and conjugation-invariant. If g_{s} is not central in G then we can choose a maximal torus T^{\prime} of G such that $g_{s} \in T^{\prime}$; then $\left[g_{s}, x\right]$ is a nontrivial element of T for some $x \in N_{G}(T)$, and we are done. So we can assume g_{s} is central in G. Then g_{u} is a nontrivial unipotent element of G. By [3, Lem. 3.2], $\overline{G \cdot g}$ contains an element of the form $g_{s} u$, where $1 \neq u$ belongs to some root group U_{α}. Let $n \in N_{G_{\alpha}}\left(T_{\alpha}\right)$ represent the nontrivial element of the Weyl group $N_{G_{\alpha}}\left(T_{\alpha}\right) / T_{\alpha}$. Recall that G_{α} is isomorphic to SL_{2} or PGL_{2}. Explicit calculations with 2×2 matrices (cf. the proof of Lemma 6.1 below) show that $[u, n]=\left[g_{s} u, n\right]$ is not unipotent. This completes the proof.

Suppose we are given G-conjugacy classes C_{1}, \ldots, C_{m} of G such that for each $i, \nu_{i}\left(C_{i}\right)$ is noncentral in G_{i} (we do not insist that the C_{i} are all distinct). Set $D_{i}=\left[C_{i}, G_{i}\right]$ and $\left.E_{i}=\overline{D_{i}}=\overline{\left[\overline{C_{i}}, G_{i}\right.}\right]$. Note that for each i, D_{i} is conjugation-invariant and constructible, and $D_{i}^{-1}=D_{i}$; likewise, E_{i} is conjugation-invariant and irreducible, and $E_{i}^{-1}=E_{i}$.

Proposition 4.2. Let G, etc., be as above, and set $X=D_{1} \cup \cdots \cup D_{m}$. Then $B_{X}(r)$ contains a constructible dense subset of G.

Proof. It suffices to prove that the constructible set $D_{i_{1}} \cdots D_{i_{r}}$ is dense in G for some i_{1}, \ldots, i_{r}. It is enough to show that the constructible set $E_{i_{1}} \cdots E_{i_{r}}$ is a dense subset of G for some i_{1}, \ldots, i_{r}.

Fix a maximal torus T of G and set $T_{i}=T \cap G_{i}$ for each i. Clearly it is enough to prove that $\left(E_{i}\right)^{r_{i}}$ is a dense subset of G_{i} for each i. For notational convenience, we assume therefore that $m=1$ and $G=G_{1}$ is simple; then $T=T_{1}$. Set $C=C_{1}=\nu_{1}\left(C_{1}\right)$ and $E=E_{1}$; we prove that E^{r} is a dense subset of G. By hypothesis, $E=\overline{[\bar{C}, G]}$ is an irreducible positive-dimensional subvariety of G. Set $A=E \cap T$. We claim that A has an irreducible component A^{\prime} such that $\operatorname{dim}\left(A^{\prime}\right)>0$.

Set $F=\pi_{G}(E)$; note that F is closed and irreducible because E is closed, conjugation-invariant and irreducible. Suppose $\operatorname{dim}(F)=0$. Since $1 \in E$, we have $F=\left\{\pi_{G}(1)\right\}$, which forces E to consist of unipotent elements. But this is impossible by Lemma 4.1. We deduce that $\operatorname{dim}(F)>0$. Clearly $\pi_{G}(A) \subseteq F$. Conversely, given $g \in E$, write $g=g_{s} g_{u}$ (Jordan decomposition). Since E is conjugation-invariant, we can, by conjugating g, assume without loss that $g_{s} \in T$. We have $g_{s} \in \overline{G \cdot g} \cap T \subseteq A$ and $\pi_{G}\left(g_{s}\right)=\pi_{G}(g)$. This shows that $F \subseteq \pi_{G}(A)$. Hence $F=\pi_{G}(A)$. Let $\pi_{W}: T \rightarrow T / W$ be the canonical projection. Now $F^{\prime}:=\psi_{T}^{-1}(F)$ is an irreducible closed positive-dimensional subset of T / W, with $A=\pi_{W}^{-1}\left(F^{\prime}\right)$. Since W is finite, π_{W} is a finite map and the fibres of π_{W} are precisely the W-orbits. Hence the irreducible components of A are permuted transitively by W, and each surjects onto F^{\prime}. Thus any irreducible component A^{\prime} of A has the desired properties.

Let A_{1}, \ldots, A_{t} be the W-conjugates of A^{\prime}. The A_{i} generate a nontrivial W-stable subtorus S of T. Hence the subset V of $X(T) \otimes_{\mathbb{Z}} \mathbb{R}$ spanned by $\{\chi \in X(T) \mid \chi(S)=1\}$ is proper and W-stable. But W acts absolutely irreducibly on $X(T) \otimes_{\mathbb{Z}} \mathbb{R}$, so $V=0$. This forces S to be the whole of T. So the A_{i} generate T. By the argument of [5, Sec. 5] or [4, 7.5 Prop.], there exist $i_{1}, \ldots, i_{r} \in\{1, \ldots, t\}$ and $\epsilon_{1}, \ldots, \epsilon_{r} \in\{ \pm 1\}$ such that $A_{i_{1}}^{\epsilon_{1}} \cdots A_{i_{r}}^{\epsilon_{r}}$ is a constructible dense subset of T. Hence E^{r} contains a constructible dense subset of T, and we deduce that E^{r} is a constructible dense subset of G. This completes the proof.

Proof of Theorem 1.3. We have $\Delta(\widetilde{G}) \leq \Delta(G)$ by [5, Lem. 2.16], where \widetilde{G} is the simply connected cover of G. Hence there is no harm in assuming G is simply connected. Let X be a finite normal generating set for G. We can choose $x_{1}, \ldots, x_{m} \in X$ such that $\nu_{i}\left(x_{i}\right)$ is noncentral in G_{i} for $1 \leq i \leq m$. Let $C_{i}=G \cdot x_{i} \subseteq X$, let $D_{i}=\left[C_{i}, G\right]$ and let $X^{\prime}=$ $D_{1} \cup \cdots \cup D_{m}$. By Proposition 4.2, $B_{X^{\prime}}(r)$ contains a dense constructible subset of G. Since $D_{i} \subseteq B_{C_{i}}(2)$ for each $i, B_{X}(2 r)$ contains a nonempty
open subset U of G. Now $U^{2}=G$ by [2, I.1.3 Prop.], so $B_{X}(4 r) \supseteq$ $B_{X}(2 r) B_{X}(2 r) \supseteq U^{2}=G$. It follows that $\Delta(G) \leq 4 r$, as required.

5. The isotropic case

Now we consider the case of arbitrary semisimple G. There is no harm in replacing G with the Zariski closure of $G^{+}(k)$, which is the product of the isotropic k-simple factors of G. Hence we assume in this section that $G^{+}(k)$ is dense in G.

We start by noting a corollary of Proposition 4.2. Let $X \subseteq G^{+}(k)$ such that X is a finite normal generating set for G. By Proposition 4.2, there exist $i_{1}, \ldots, i_{r} \in\{1, \ldots, m\}$ such that the image of the map $f: G^{2 r} \rightarrow G$ defined by

$$
f\left(h_{1}, \ldots, h_{r}, g_{1}, \ldots, g_{r}\right)=\left(h_{1} x_{1} h_{1}^{-1} g_{1} x_{1}^{-1} g_{1}^{-1}\right) \cdots\left(h_{r} x_{r} h_{r}^{-1} g_{r} x_{r}^{-1} g_{r}^{-1}\right)
$$

contains a nonempty open subset G^{\prime} of G. Now let O be a nonempty open subset of G. Then $f^{-1}\left(G^{\prime} \cap O\right)$ is a nonempty open subset of $G^{2 r}$. But $G^{+}(k)$ is dense in G, so $G^{+}(k)^{2 r}$ is dense in $G^{2 r}$. It follows that $f\left(h_{1}, \ldots, h_{r}, g_{1}, \ldots, g_{r}\right) \in O$ for some $h_{1}, \ldots, h_{r}, g_{1}, \ldots, g_{r} \in G^{+}(k)^{2 r}$. We deduce that for any nonempty open subset O of G,

$$
\begin{equation*}
B_{X}(2 r) \cap O \neq \emptyset . \tag{5.1}
\end{equation*}
$$

Remark 5.1. Let $C=\operatorname{im}(f)$, where f is as above. It follows from Eqn. (5.1) and Lemma 3.2 that $C(k)^{2}=G(k)$. We cannot, however, conclude directly from this that $B_{X}(2 r)^{2}=G(k)$: the problem is that although the map $f: G^{2 r} \rightarrow C$ is surjective on \bar{k}-points, it need not be surjective on k-points.
Lemma 5.2. There exists $t \in P(k)$ such that t is regular semisimple.
Proof. Define $f: G \times P \rightarrow G$ by $f(g, h)=g h g^{-1}$. Then f is surjective since every element of G belongs to a Borel subgroup of G. Let O be the set of regular semisimple elements of G, a nonempty open subset of G. By [2, Thm. 21.20(ii)], $P(k)$ is dense in P, and we know that $G(k)$ is dense in G, so $G(k) \times P(k)$ is dense in $G \times P$. It follows that there is a point $(g, t) \in(G(k) \times P(k)) \cap f^{-1}(O)$. Then $g t g^{-1}$ is regular semisimple, so $t \in P(k)$ is regular semisimple also.

Lemma 5.3. Let $t \in P(k)$ be regular semisimple. Then $U(k) \subseteq B_{t}(2)$.
Proof. Define $f: U \rightarrow U$ by $f(u)=u t u^{-1} t^{-1}$. The conjugacy class $U \cdot t$ is closed because orbits of unipotent groups are closed, so $\operatorname{im}(f)$ is a closed subvariety of U. Since t is regular, it is easily checked that f is injective and the derivative $d f_{u}$ is an isomorphism for each $u \in U$. It follows from Zariski's Main Theorem that f is an isomorphism of
varieties. As f is defined over k, f gives a bijection from $U(k)$ to $U(k)$, and the result follows.

Lemma 5.4. Let X be a finite normal generating subset for $G^{+}(k)$. Then X normally generates G.

Proof. There exists $d \in \mathbb{N}$ such that $(G(k) \cdot X)^{d}=G^{+}(k)$. So the constructible set $(G \cdot X)^{d}$ contains $G^{+}(k)$ and is therefore dense in G. This implies that $(G \cdot X)^{d}$ contains a nonempty open subset of G, so $(G \cdot X)^{d}(G \cdot X)^{d}=G$. Hence X is a finite normal generating set for G.

Proposition 5.5. Let X be a finite subset of $G^{+}(k)$ such that X normally generates G. Then $U(k) \subseteq B_{X}(8 r)$.

Proof. The big cell $P n_{0} P$ is open, so by Eqn. (5.1), we can choose $g \in B_{X}(2 r) \cap P n_{0} P$. We can write $g=x n_{0} x^{\prime}$ for some $x, x^{\prime} \in P(k)$. Since $B_{X}(2 r)$ is conjugation-invariant, there is no harm in replacing g with $\left(x^{\prime}\right)^{-1} g x^{\prime}$, so we can assume that $x^{\prime}=1$ and $g=x n_{0}$. Let $C_{1}=$ $\left\{n_{0} x_{1} \mid x_{1} \in P, x n_{0}^{2} x_{1}\right.$ is regular semisimple $\}$. Let $O_{1}=P \cdot C_{1}=U \cdot C_{1}$; then O_{1} is a constructible dense subset of G. By Eqn. (5.1), there exists $g \in B_{X}(2 r) \cap O_{1}$. We can write $g=u n_{0} x_{1} u^{-1}$ where $x n_{0}^{2} x_{1}$ is regular semisimple and $u \in U$. Since $g \in G(k)$, both u and $x_{1} u^{-1}$ belong to $G(k)$. Hence $n_{0} x_{1} \in B_{X}(2 r) \cap C_{1}$. It follows that $t:=x n_{0}^{2} x_{1}$ is regular semisimple and belongs to $B_{X}(4 r)$. We have $t \in B_{X}(4 r) \cap P(k)$, so $U(k) \subseteq B_{t}(2) \subseteq B_{X}(8 r)$ by Lemma 5.3. This completes the proof.

Proof of Theorem 1.2. Suppose $G(k)=G^{+}(k)$. By Lemma 5.2, there exists $t \in P(k)$ such that t is regular semisimple. By Lemma 5.3, $B_{t}(2)$ contains $U(k)$. Since $G(k)$ is generated by the $G(k)$-conjugates of $U(k)$, we deduce that $\{t\}$ normally generates $G(k)$. Hence $G(k)$ is finitely normally generated.

Now suppose further that $G(k)$ is bounded. Fix a finite normal generating set Y for $G(k)$. Then $G(k)=B_{Y}(s)$ for some $s \in \mathbb{N}$ and $Y \subseteq B_{U(k)}(d)$ for some $d \in \mathbb{N}$. Let X be any finite normal generating set for $G(k)$. Then X is normally generates G by Lemma 5.4. By Proposition 5.5, $U(k) \subseteq B_{X}(8 r)$. So

$$
G(k)=B_{Y}(s) \subseteq B_{U(k)}(s d) \subseteq B_{X}(8 r s d)
$$

This shows that $G(k)$ is uniformly bounded, as required.
Remark 5.6. The hypothesis that $G^{+}(k)=G(k)$ holds in many cases if G is k-simple and simply connected-this is the content of the KneserTits conjecture, which holds, for example, when k is a local field.

Example 5.7. It is well known that the abelianisation of $\mathrm{SO}_{3}(\mathbb{Q})$ is $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$, which is an infinitely generated abelian group. It follows that $\mathrm{SO}_{3}(\mathbb{Q})$ is not finitely normally generated. Note that $\mathrm{SO}_{3}^{+}(\mathbb{Q})=1$ since SO_{3} is anisotropic over \mathbb{Q}.

6. The split case

In this section we assume G is split over k. If G is simply connected then the Kneser-Tits Conjecture holds for G, so $G^{+}(k)=G(k)$ in this case.

Lemma 6.1. Suppose ($*$) each G_{α} is isomorphic to SL_{2}. Let $t_{i} \in T_{\alpha_{i}}(k)$ for $1 \leq i \leq r$ and set $t=t_{1} \cdots t_{r}$. There exist $u_{i}, w_{i} \in U_{\alpha_{i}}(k)$ and $v_{i}, x_{i} \in U_{-\alpha_{i}}(k)$ for $1 \leq i \leq r$ such that $t=x_{r} \cdots x_{1} u_{r} \cdots u_{1} v_{1} \cdots v_{r} w_{1} \cdots w_{r}$.

Proof. We use induction on r. The case $r=0$ is vacuous. Now consider the case $r=1$. Then $G \cong \mathrm{SL}_{2}$. For any $a, b, c, d \in k$ we have

$$
\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)\left(\begin{array}{ll}
1 & c \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
d & 1
\end{array}\right)=\left(\begin{array}{cc}
1+a b & a \\
b & 1
\end{array}\right)\left(\begin{array}{cc}
1+c d & c \\
d & 1
\end{array}\right)=\binom{1+a b+c d+a b c d+a d}{b+b c d+d}
$$

Let $x \in k^{*}$. Set $a=-x, b=x^{-1}-1, c=1$ and $d=x-1$; then the matrix above becomes $\left(\begin{array}{cc}x & 0 \\ 0 & x^{-1}\end{array}\right)$. Hence the result holds when $r=1$.

Now suppose $r>1$. Let H be the semisimple group with root system spanned by $\pm \alpha_{1}, \ldots, \pm \alpha_{r-1}$. Clearly condition $(*)$ holds for H. Let $s=t_{1} \cdots t_{r-1}$. By our induction hypothesis, there exist $u_{i}, w_{i} \in U_{\alpha_{i}}(k)$ and $v_{i}, x_{i} \in U_{-\alpha_{i}}(k)$ for $1 \leq i \leq r-1$ such that

$$
s=x_{r-1} \cdots x_{1} u_{r-1} \cdots u_{1} v_{1} \cdots v_{r-1} w_{1} \cdots w_{r-1}
$$

By the SL_{2} case considered above, $t_{r}=x_{r}^{\prime} u_{r}^{\prime} v_{r}^{\prime} w_{r}^{\prime}$ for some $u_{r}, w_{r} \in U_{\alpha_{r}}$ and some $v_{r}, x_{r} \in U_{-\alpha_{r}}$. Set $x_{r}=s x_{r}^{\prime} s^{-1}, u_{r}=s u_{r}^{\prime} s^{-1}, v_{r}=v_{r}^{\prime}$ and $w_{r}=w_{r}^{\prime}$. We have

$$
\begin{aligned}
& x_{r} x_{r-1} \cdots x_{1} u_{r} u_{r-1} \cdots u_{1} v_{1} \cdots v_{r-1} v_{r} w_{1} \cdots w_{r-1} w_{r} \\
= & x_{r} u_{r} x_{r-1} \cdots x_{1} u_{r-1} \cdots u_{1} v_{1} \cdots v_{r-1} w_{1} \cdots w_{r-1} v_{r} w_{r} \\
= & x_{r} u_{r} s v_{r} w_{r} \\
= & s x_{r}^{\prime} u_{r}^{\prime} v_{r}^{\prime} w_{r}^{\prime} \\
= & s t_{r}=t .
\end{aligned}
$$

The result follows by induction.
Proposition 6.2. Suppose G is simply connected. Let $X \subseteq G^{+}(k)$ such that $U(k) \subseteq X$. Then $B_{X}(7)=G^{+}(k)$.

Proof. Since G is simply connected, $(*)$ holds for G and the map $\psi: \mathbb{G}_{m}^{r} \rightarrow T$ given by $\psi\left(a_{1}, \ldots, a_{r}\right)=\alpha_{1}^{\vee}\left(a_{1}\right) \cdots \alpha_{r}^{\vee}\left(a_{r}\right)$ is a k-isomorphism. It follows that $T(k)=T_{\alpha_{1}}(k) \cdots T_{\alpha_{r}}(k)$, so $T(k) \subseteq B_{X}(4)$ by Lemma 6.1.

Hence $U^{-}(k) B(k)=U^{-}(k) T(k) U(k) \subseteq B_{X}(1) B_{X}(4) B_{X}(1) \subseteq B_{X}(6)$. Now $G(k)=\left(U^{-} B\right)^{-1}(k)\left(U^{-} B\right)(k)$ by Lemma 3.2. But

$$
\begin{aligned}
& \left(U^{-} B\right)^{-1}(k)\left(U^{-} B\right)(k)=B(k) U^{-}(k) U^{-}(k) B(k)=U(k) T(k) U^{-}(k) T(k) U(k) \\
& \quad=U(k) U^{-}(k) T(k) U(k)=U(k) U^{-}(k) B(k) \subseteq B_{X}(1) B_{X}(6) \subseteq B_{X}(7)
\end{aligned}
$$

so we are done.
Proof of Theorem 1.4. Let \widetilde{G} be the split form of the simply connected cover of G and let $\psi: \widetilde{G} \rightarrow G$ be the canonical projection. Then ψ is a k-defined central isogeny, so by [2, V.22.6 Thm.], the map $\widetilde{B} \mapsto \psi(\widetilde{B})$ gives a bijection between the set of k-Borel subgroups of \widetilde{G} and the set of k-Borel subgroups of G; moreover, for each \widetilde{B}, ψ gives rise to a k-isomorphism from $R_{u}(\widetilde{B})$ to $R_{u}(B)$ [2, Prop. V.22.4]. It follows that $\psi\left(\widetilde{G}^{+}(k)\right)=G^{+}(k)$. By [5, Lem. 2.16] we have $\Delta\left(G^{+}(k)\right) \leq$ $\Delta\left(\widetilde{G}^{+}(k)\right)$, so we can assume without loss that G is simply connected. In particular, $G^{+}(k)=G(k)$.

Let X be a finite normal generating set for $G(k)$. Then X is a finite normal generating set for G (Lemma 5.4), so by Eqn. (5.1) there exists $t \in B_{X}(2 r)$ such that t is regular semisimple. We have $U(k) \subseteq B_{t}(2)$ by Lemma 5.3 and $G(k) \subseteq B_{U(k)}(7)$ by Proposition 6.2. So

$$
G(k) \subseteq B_{U(k)}(7) \subseteq B_{t}(14) \subseteq B_{X}(28 r)
$$

This shows that $\Delta(G(k)) \leq 28 r$, as required.
Example 6.3. (a) Let $G=\mathrm{SL}_{n}(k)$ where $n \geq 3$, let g be the elementary matrix $E_{1 n}(1)$ and let $X=G(k) \cdot g$. By [5, Prop. 6.23], X generates $G(k)$. One sees easily by direct computation that the centraliser $C_{G}(g)$ has dimension $n^{2}-2 n+1$, so $\operatorname{dim}(G \cdot g)=2 n-2$. A simple dimension-counting argument shows that if $t<\frac{1}{2} \operatorname{rank}(G)$ then $\overline{X^{t}}$ is a proper closed subvariety of G. Since $G(k)$ is dense in G, it follows that $\overline{X^{t}}$ does not contain $G(k)$, so $X(k)^{t}$ does not contain $G(k)$. We deduce that $\Delta(G(k)) \geq \frac{1}{2} \operatorname{rank}(G)$.
(b) The bounds in Theorems 1.3 and 1.4 are far from sharp. Aseeri has shown by direct calculation that $3 \leq \Delta\left(\mathrm{SL}_{3}(\mathbb{C})\right) \leq 6$ and that $\Delta\left(\mathrm{SL}_{2}(\mathbb{C})^{m}\right)=3 m$ and $\Delta\left(\mathrm{PGL}_{2}(\mathbb{C})^{m}\right)=2 m$ for every $k \in \mathbb{N}[1$, Thm. 8.0.2, Thm. 7.2.10, Thm. 7.2.6], whereas Theorem 1.3 yields the bounds $\Delta\left(\mathrm{SL}_{3}(\mathbb{C})\right) \leq 8$ and $\Delta\left(\mathrm{SL}_{2}(\mathbb{C})^{m}\right), \Delta\left(\mathrm{PGL}_{2}(\mathbb{C})^{m}\right) \leq 4 m$. Aseeri also showed that $3 \leq \Delta\left(\mathrm{SL}_{3}(\mathbb{R})\right) \leq 4$, whereas Theorem 1.4 gives $\Delta\left(\mathrm{SL}_{3}(\mathbb{R})\right) \leq 56$.

7. Semisimple Lie groups

Proof of Theorems 1.5 and 1.6. Let H be a linear semisimple Lie group such that H has no compact simple factors. By [6, Thm. III.2.13], there is a complex semisimple algebraic group G defined over \mathbb{R} such that $G^{+}(\mathbb{R})=H$. Now $Z(H)$ is finite, so H is finitely normally generated and bounded by [5, Thm. 1.2]. It follows from Theorem 1.2 that H is uniformly bounded. If H is split then G is split over \mathbb{R}, so $\Delta(H) \leq$ $28 \operatorname{rank}(H)$ by Theorem 1.4.

The argument for the complex case is similar: if H is a semisimple linear complex Lie group then there is a semisimple complex algebraic group G such that the complex Lie group associated to G is H (cf. [8, Ch. 4, Sec. 2, Problem 12], and G is isomorphic to H. The result now follows from Theorem 1.3.

References

[1] Fawaz Aseeri. Uniform boundedness of groups. PhD thesis, University of Aberdeen, 2022.
[2] Armand Borel. Linear algebraic groups, volume 126 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.
[3] Robert M. Guralnick and Gunter Malle. Classification of $2 F$-modules. II. In Finite groups 2003, pages 117-183. Walter de Gruyter, Berlin, 2004.
[4] James E. Humphreys. Linear algebraic groups. Springer-Verlag, New YorkHeidelberg, 1975. Graduate Texts in Mathematics, No. 21.
[5] Jarek Kędra, Assaf Libman, and Ben Martin. On boundedness properties of groups. J. Topol. Anal., 2021. DOI: 10.1142/S1793525321500497.
[6] James S. Milne. Lie algebras, algebraic groups, and Lie groups. Version 2.00, https://www.jmilne.org/math/CourseNotes/LAG.pdf, 2013.
[7] P. E. Newstead. Introduction to moduli problems and orbit spaces, volume 51 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978.
[8] A. L. Onishchik and È. B. Vinberg. Lie groups and algebraic groups. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites.
[9] T. A. Springer. Linear algebraic groups. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, second edition, 2009.

University of Aberdeen and University of Szczecin
Email address: kedra@abdn.ac.uk
University of Aberdeen
Email address: a.libman@abdn.ac.uk
University of Aberdeen
Email address: b.martin@abdn.ac.uk

[^0]: Date: February 28, 2022.
 2010 Mathematics Subject Classification. Primary 20G15; Secondary 20B07, 22E15.

 Key words and phrases. semisimple algebraic group; semisimple Lie group; uniform boundedness.

