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With an ageing population, there is an urgent need to find alternatives to current standard-of-care chemoradiation schedules in the
treatment of pelvic malignancies. The gut microbiota may be exploitable, having shown a valuable role in improving patient
outcomes in anticancer immunotherapy. These bacteria feed on dietary fibres, which reach the large intestine intact, resulting in
the production of beneficial metabolites, including short-chain fatty acids. The gut microbiota can impact radiotherapy (RT)
treatment responses and itself be altered by the radiation. Evidence is emerging that manipulation of the gut microbiota by dietary
fibre supplementation can improve tumour responses and reduce normal tissue side effects following RT, although data on tumour
response are limited to date. Both may be mediated by immune and non-immune effects of gut microbiota and their metabolites.
Alternative approaches include use of probiotics and faecal microbiota transplantation (FMT). Current evidence will be reviewed
regarding the use of dietary fibre interventions and gut microbiota modification in improving outcomes for pelvic RT patients.
However, data regarding baseline (pre-RT) gut microbiota of RT patients and timing of dietary fibre manipulation (before or during
RT) is limited, heterogenous and inconclusive, thus more robust clinical studies are required before these strategies can be applied
clinically.
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INTRODUCTION
The incidence of pelvic malignancies increases in the elderly [1]
and is now a significant problem due to the ageing population [2].
The standard treatment of pelvic cancers involves either surgical
removal of the tumour or organ preservation using radiotherapy-
based treatments. Radiosensitising chemotherapy may be given
concurrently to improve patients’ survival, but this can lead to
increased severity of adverse effects [3]. In patients over 80 years
old, where these adverse effects are poorly tolerated, radiotherapy
is often given alone [4, 5], resulting in compromised tumour
control. There is therefore an urgent need to develop new
approaches to improving radiotherapy outcomes, both in terms of
increasing tumour control and alleviating toxicity.
Research into the gut microbiota (defined as the bacteria residing

in the gastrointestinal tract) has increased significantly over the past
15 years, with the gut microbiota being of greater importance in
health and disease than previously recognised [6, 7]. It can positively
influence immune responses involved in the enhancement of
anticancer treatment efficacy and in protection against inflammatory
processes, including radiotherapy side effects. Differences in gut
microbiota composition and diversity have been found in responders
and non-responders to chemoradiation [8] and in patients experien-
cing different levels of toxicities following radiotherapy [9].

The gut microbiota can feed on dietary fibres which reach the
large intestine having avoided digestion earlier in the gastro-
intestinal tract. Fermentation of the fibre by the bacteria results in
the production of metabolites, including short-chain fatty acids
(SCFA; including acetate, propionate and butyrate) which are then
absorbed by the colonocytes (Fig. 1). A high-fibre diet increases
the abundance of specific bacteria that are capable of fermenting
these non-digestible carbohydrates, thus increasing SCFA produc-
tion [10]. Other metabolites have been shown to mitigate
radiation-induced intestinal damage, including tryptophan meta-
bolites [11], urolithin A [12] and valeric acid [13].
The gut microbiota interacts with radiotherapy in two ways,

impacting treatment response (RT efficacy against tumours
[14–16] and normal tissue toxicities [17]) and itself being changed
in composition by radiotherapy [18]. Furthermore, altered dietary
fibre intake can reduce radiotherapy side effects, leading to a
better quality of life for patients [3, 19]. However, while dietary
fibre can increase tumour responses to immunotherapy [7] and
chemotherapy [20], data on radiotherapy are limited [21].
This review explores the impact of dietary fibre manipulation

and the gut microbiota in the treatment of pelvic cancers with
radiotherapy and their potential as novel adjuvant therapies to
improve patient outcomes.
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PELVIC RADIOTHERAPY
Each year, ~12,000 people in the UK receive radiotherapy for their
pelvic malignancy [22]. Radiotherapy treatment involves the
delivery of beams of ionising radiation to a patient which react
with body matter and damage DNA, either directly by breaking
down molecules or indirectly by interacting with water in radiolysis
to produce free radicals, which if unrepaired can lead to cell death.
More recently, the concept of immunogenic cell death (ICD) has
emerged, where cell death and alteration of the tumour
microenvironment induce an adaptive immune response. This
occurs by the release of molecules, collectively termed as damage-
associated molecular patterns (DAMP), which stimulate immune cell
recruitment. Radiotherapy can initiate this process [23].
The overall aim of radiotherapy is to achieve tumour control

(cure) while minimising the acute and late side effects on
surrounding normal tissues. Tumour cure requires loss of
proliferation in the entire tumour cell population (i.e., sterilisation).
The therapeutic ratio aims to balance this tumour cell kill with
minimal toxicity to surrounding normal tissue [24]. Tissue
responses vary depending on cell turnover rates; both epithelial
and hematopoietic tissues have rapid turnover rates, predisposing
them to develop acute effects [25]. While combining radiotherapy
with chemotherapy may improve tumour control, this may
increase side effects.
Modern treatments, for example, 3D-CRT (three-dimensional

conformal radiotherapy) and IMRT (intensity modulated therapy),
use imaging modalities to precisely outline tumours to reduce the
volume of normal tissue in the irradiation field and hence toxicity
[26, 27]. IMRT allows the increased dose to the tumour with lower
dose deposition in the surrounding tissues compared to 3D-CRT
[19, 26]. However, this lower dose “bath” outside of the tumour
region may predispose to the development of a second
malignancy in these tissues [28], and can increase the volume of
intestine irradiated, albeit to a lower dose.

Pelvic radiation disease
Functional damage resulting from radiation to the abdominopel-
vic region is now termed “Pelvic Radiation Disease” (PRD) [26] and
affects 6000 patients annually in the UK [22]. However, many
symptoms (see later) go unreported as the patient assumes them
to be typical following treatment.
Radiation enteritis (RE) is characterised by damage to the

intestinal mucosa, and the diagnosis is based on the occurrence of
PRD symptoms. These symptoms can be described as acute in
90% of patients, occurring during the therapy and up to three
months afterwards, or chronic, either as a continuation of acute
symptoms or their appearance de novo after three months; up to
90% of patients report a permanent change in their bowel habits
and 50% develop symptoms which affect their quality of life.
Furthermore, 2–10% develop severe radiation-induced bowel
injuries, with 31% requiring surgical intervention [6]. Acute
symptoms include diarrhoea, nausea, abdominal pain, fatigue
[29], anxiety and depression [30]. In most patients, acute
symptoms resolve as intestinal stem cell regeneration recovers
the epithelium. In contrast, chronic symptoms are more severe,
presenting as fistulae, perforation, abscesses, fibrosis [27] and
malabsorption [29]. The risk of developing chronic effects is
greater in patients suffering from acute effects [3], although
chronic effects can occur alone and, in rare cases, result in
intestinal failure [26].

Cellular effects of radiation in the intestine
Radiation to the abdominopelvic area induces multiple cellular
processes, including early disruption of the cell cycle in epithelial
intestinal stem cells. These are prone to damage due to their rapid
turnover rates, with the small intestine and colon having rates of
1.5 and 4.5 days, respectively [6]. In addition, radiation dramati-
cally impacts the epithelial membrane by compromising the tight
junctions. This results in increased permeability, allowing bacteria
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Fig. 1 Schematic representation of the proposed effects of dietary fibre manipulation in pelvic radiotherapy patients. Dietary fibre
manipulation before or during radiotherapy strengthens or restores the gut microbiota, resulting in an increased production of gut
metabolites that may enhance tumour responses and protect the gut from radiation injury. Adapted from “Metabolism of SCFAs”, by
BioRender.com (2020). Retrieved from https://app.biorender.com/biorender-templates.

S.E. Eaton et al.

2088

British Journal of Cancer (2022) 127:2087 – 2098

https://app.biorender.com/biorender-templates


to invade the surface, thus generating an acute inflammatory
immune response [27, 31].
In the later phase, monocytes secrete vasoactive and fibrotic

molecules. Myofibroblasts differentiate from fibroblasts, a process
modulated by TGF-β1 (profibrogenic cytokine) [32]. A specific
increase in the expression of TGF-ß1, collagen, matrix metallopro-
teinases, macrophages and neutrophils, all of which promote
fibrosis, has been found in chronic lesions [6]. The vascular
epithelium becomes prothrombotic due to increased expression
of cell adhesion proteins and recruitment of leucocytes; if severe,
this results in occlusion and ischaemia. Damage involving the
enteric nervous system can result in decreased gut motility,
encouraging a build-up of Gram-negative bacteria on the villi [31],
leading to more inflammation.

THE GUT MICROBIOTA IN HEALTH AND CANCER
The gut microbiota is rapidly colonised from birth, influenced by
several factors, including host genotype, lifestyle, diet, environ-
ment and the immune system [33]. Changes in dietary habits, use
of antibiotics, illness [34] and anticancer treatment [35] can cause
chaotic microbiota shifts. The gut microbiota has a huge
beneficial impact on human physiological functions, including
maintaining mucous membrane integrity, developing normal
immune function and conferring protection against enteropatho-
genic bacteria [36]. However, several species of oral and gut
microbiota are associated with cancer development, including
gastric cancer (Helicobacter pylori) [37], colorectal cancer (Fuso-
bacterium nucleatum) [38] and pancreatic cancer (Porphyromonas
gingivalis) [39]. Reduced abundance of Clostridium cluster XI and
Prevotella, decreased faecal butyrate levels and impaired
intestinal integrity was found in newly diagnosed bladder cancer
patients [40]. Parvimonas was enriched in colorectal cancer [41]
and increased with respect to ageing [42] implying that ageing-
associated gut microbiota changes could impact cancer
development.

The effects of ageing on the gut microbiota
Pelvic malignancy is prevalent in the elderly population [43]. As
age increases, the gut microbiota shifts to a lower diversity [44],
with decreased SCFA-producing bacterial abundance [45] and a
bacterial composition less likely to respond to anticancer
treatments [46]. Three gut microbes, namely, Akkermansia
muciniphila [47], Bifidobacterium [48] and Faecalibacterium praus-
nitzii [49], associated with a better immunotherapy efficacy via
immunomodulation and protection against radiation-caused
injury, are depleted in older adults [50, 51]. Furthermore,
Bifidobacterium is depleted in the elderly population [52], and
dietary supplementation of probiotic Bifidobacterium lactis can
successfully restore cellular immune function [53]. Therefore, the
gut microbiota could be a therapeutic target to promote tumour
responses to radiotherapy in the elderly.

Immunomodulatory effects of the gut microbiota
The gut microbiota plays a crucial role in multiple immunological
processes, including:

1. Maturation and modulation of the immune response via
innate immune elements, such as pattern recognition
receptors (PRRs) expressed on cells in the intestinal mucosa
(e.g., enterocytes, dendritic cells (DCs), macrophages), and
adaptive immune elements formed by B cells and T cells [54].

2. Maturation and formation of Peyer’s patches (PP). PP form a
part of gut-associated lymphoid tissue (GALT). Specialised
microfold cells (M cells) located on their surface sample the
antigen and deliver it to antigen-presenting cells within the
patches. PP are also sites for B-cell maturation, making them
vital for immune surveillance and response.

3. Influencing B-cell activation, either directly via antigen
binding to B-cell receptors or indirectly by activation of
T cells and innate lymphoid cells, making them essential for
maintaining appropriate IgA levels.

4. Inducing increased natural killer (NK) cell activity and secretion
of IFN-γ, IL-2 and IL-12 which impacts the activation and
phenotype of macrophages, creating an anti-tumour environ-
ment. In addition, commensal bacteria can, directly or via DCs,
stimulate and prime effector T cells for tumour toxicity.

THE GUT MICROBIOTA IN RADIOTHERAPY AND PELVIC
CANCERS
The interaction of the gut microbiota and cancer treatments is
bidirectional, in that these treatments can disrupt the composition
of the gut microbiota, and those disruptions can impact on the
treatment response and the development of toxicities [55]. The
potential mechanisms underlying the bidirectional effects of the
gut microbiota and radiotherapy have been extensively reviewed
by Liu et al. [56].

Changes in the gut microbiota pre- and post-IR and its
correlation with toxicities
Ionising radiation (IR) significantly alters the gut microbiota profile.
Themost consistent finding across studies was a significant reduction
in richness and α-diversity (within sample diversity, commonly
measured by Shannon’s or Simpson’s indices) of the gut microbiota
following pelvic radiotherapy [17, 35, 57–59]. A significantly lower α-
diversity pre-radiotherapy correlated with the development of
toxicities, as seen in patients who developed post-radiation diarrhoea
[17]. A relatively lower α-diversity post-radiotherapy was also seen in
patients with RE [59] and post-radiation diarrhoea [9, 60]. Patients
harbouring a higher α-diversity at baseline had more favourable
outcomes, e.g., no self-reported symptoms following radiotherapy [9].
Specific changes in bacterial composition were also reported,
although the findings remain inconsistent. Overall, the consensus
observation is an increase in phyla Proteobacteria, Fusobacteria and
unclassified bacteria and a decrease in phyla Firmicutes and
Bacteroidetes and genera Faecalibacterium and Bifidobacterium
following pelvic radiotherapy [61, 62].
Characteristic pre-radiotherapy microbial compositions were

seen in patients who later developed RE during pelvic irradiation
[59] or post-radiation diarrhoea [17] and in patients demonstrating
improved survival [8]. An increased relative abundance of
Proteobacteria and decreased relative abundance of Clostridiales
and Bacteroides have been reported in patients with non-
favourable GI outcomes, such as RE, diarrhoea and colonic fibrosis
(Table 1). Proteobacteria are Gram-negative, and the overgrowth
of Gram-negative bacteria was vital to the pathogenesis of RE [63].
In contrast, Clostridiales and Bacteroides are SCFA-producing
bacteria known to promote intestinal homoeostasis; therefore,
their depletion might have detrimental effects (see later). These
findings suggest that an increase in deleterious bacteria and a
decrease in favourable bacteria may contribute to the develop-
ment of toxicities, hence recolonising the gut microbiota with
favourable species and increasing the diversity pre- and post-
radiotherapy may alleviate radiation-induced toxicities.
The underlying mechanisms of the gut microbiota on IR-caused

intestinal injury remain to be elucidated. Germ-free (GF) mice,
devoid of the gut microbiota, are remarkably resistant to lethal RE.
Histological analysis following 16 Gy total body irradiation (TBI)
revealed that GF mice had no evidence of RE, whereas control
mice harbouring a gut microbiota displayed an injury response
[64]. The colonisation of GF mice with irradiated microbiota and
subsequent radiation exposure resulted in more severe tissue
damage than in GF mice with naive microbiota [65], and the
irradiated microbiota induced pro-inflammatory cytokines,

S.E. Eaton et al.

2089

British Journal of Cancer (2022) 127:2087 – 2098



Ta
bl
e
1.

B
ac
te
ri
a
fe
at
u
re
d
in

st
u
d
ie
s
ev
al
u
at
in
g
th
e
as
so
ci
at
io
n
b
et
w
ee

n
m
ic
ro
b
ia
l
co

m
p
o
si
ti
o
n
an

d
ra
d
ia
ti
o
n
to
xi
ci
ti
es
.

M
od

el
Tr
ea

tm
en

t
C
an

ce
r

Pr
e-
/p
os
t-
R
T
an

d
m
ai
n
fi
n
d
in
g
s

R
ef
er
en

ce

H
u
m
an

(N
=
35

)
C
R
T
(P
el
vi
c
ra
d
io
th
er
ap

y
w
it
h

ci
sp
la
ti
n
)

C
er
vi
ca
l
ca
n
ce
r

Pr
e-
R
T.
Pa

ti
en

ts
w
h
o
la
te
r
ex
p
er
ie
n
ce
d
a
g
re
at
er

d
ec
lin

e
in

G
If
u
n
ct
io
n
h
ad

d
ec
re
as
ed

o
_C

lo
st
ri
d
ia
le
s
an

d
g
_D

es
ul
fo
vi
br
io
,a

n
d
in
cr
ea
se
d
g
_S
ut
te
re
lla
,

g
_F
in
eg
ol
di
a
an

d
f_
Pe

p
to
co

cc
ac
ea
e

[3
5]

H
u
m
an

(R
E
=
10

,
n
o
n
-R
E
=
8)

Pe
lv
ic

R
T
(5
0.
4
G
y/
28

)
C
er
vi
ca
l
ca
n
ce
r

Pr
e-
R
T.
Pa

ti
en

ts
w
h
o
la
te
r
d
ev
el
o
p
ed

R
E
h
ad

an
in
cr
ea
se
d
ab

u
n
d
an

ce
o
f

g
_C

op
ro
co
cc
us
.

Po
st
-R
T.

Pa
ti
en

ts
w
it
h
R
E
h
ad

a
si
g
n
ifi
ca
n
tl
y
in
cr
ea
se
d
p
_P

ro
te
o
b
ac
te
ri
a,

c_
G
am

m
ap

ro
te
o
b
ac
te
ri
a,

g
_S
er
ra
tia

,g
_B

ac
te
ro
id
es

an
d
g
_P
re
vo
te
lla
_9
,a

n
d

d
ec
re
as
ed

g
_B

ac
te
ro
id
es
.

[5
9]

H
u
m
an

(a
cu

te
=
32

,
la
te

=
87

,R
E
=
9,

co
n
tr
o
l=

6)

Pr
o
st
at
e
an

d
se
m
in
al

ve
si
cl
es

an
d
/o
r
ly
m
p
h
n
o
d
e
R
T
(5
5–

74
G
y)

Pr
o
st
at
e
ca
n
ce
r

Pr
e-
R
T.
Pa

ti
en

ts
w
it
h
R
E
h
ad

an
in
cr
ea
se
d
ab

u
n
d
an

ce
o
f
g
_C

lo
st
rid

iu
m

IV
,

g
_R

os
eb
ur
ia
,a

n
d
g
_P
ha

sc
ol
ar
ct
ob

ac
te
riu

m
.

[9
0]

H
u
m
an

(c
an

ce
r=

11
,

co
n
tr
o
l=

4)
Pe

lv
ic

R
T
(4
4–

50
G
y)

C
er
vi
ca
l,
an

al
,

co
lo
re
ct
al

ca
n
ce
r

Pr
e-
R
T.
Pa

ti
en

ts
w
h
o
la
te
r
d
ev
el
o
p
ed

d
ia
rr
h
o
ea

h
ad

an
in
cr
ea
se
d

p
_F
ir
m
ic
u
te
s
to

p
_B

ac
te
ro
id
et
es

ra
ti
o,

an
in
cr
ea
se
d
ab

u
n
d
an

ce
o
f

g
_B

ac
te
ro
id
es
,g

_D
ia
lis
te
r
an

d
g
_V

ei
llo
ne
lla

an
d
a
d
ec
re
as
ed

ab
u
n
d
an

ce
o
f

g
_C

lo
st
rid

iu
m

X
I
an

d
X
V
III
,g

_F
ae
ca
lib
ac
te
riu

m
,g

_O
sc
ill
ib
ac
te
r,

g
_P
ar
ab

ac
te
ro
id
es
,g

_P
re
vo
te
lla

an
d
u
n
cl
as
si
fi
ed

(g
en

u
s:
o
th
er
s)
.

[1
7]

H
u
m
an

(c
an

ce
r=

10
,

co
n
tr
o
l=

5)
Pe

lv
ic

R
T
(4
3–

50
G
y)

A
b
d
o
m
in
al

tu
m
o
u
r

Pr
e-
R
T.
Pa

ti
en

ts
w
h
o
la
te
r
d
ev
el
o
p
ed

d
ia
rr
h
o
ea

h
ad

an
in
cr
ea
se
d

ab
u
n
d
an

ce
o
f
c_
Ba

ci
lli

an
d
p
_A

ct
in
o
b
ac
te
ri
a.

[6
0]

M
o
u
se

A
b
d
o
m
in
al

IR
(1
5
G
y)

–
Po

st
-R
T.

Tr
an

sp
la
n
ta
ti
o
n
o
f
in
u
lin

-d
er
iv
ed

g
u
t
m
ic
ro
b
io
ta

an
d
m
et
ab

o
lit
es

m
it
ig
at
ed

IR
-in

d
u
ce
d
co

lo
n
ic

fi
b
ro
si
s.
Th

e
p
ro
p
o
rt
io
n
o
f
th
e
SC

FA
-

p
ro
d
u
ce
rs

w
as

si
g
n
ifi
ca
n
tl
y
h
ig
h
er

in
th
e
in
u
lin

+
IR

g
ro
u
p
co

m
p
ar
ed

to
th
at

fo
u
n
d
in

th
e
IR

g
ro
u
p
.T

h
e
SC

FA
-p
ro
d
u
ce
rs

in
cl
u
d
e
g_

A
llo
ba

cu
lu
m
,

g_
Ba

ct
er
oi
de
s,
g_

O
do

rib
ac
te
r,
g_

A
llo
pr
ev
ot
el
la
,g

_P
ar
as
ut
te
re
lla
,

g_
un

id
en
tifi

ed
_L
ac
hn

os
pi
ra
ce
a,

g_
Bi
fi
do

ba
ct
er
iu
m
,g

_u
ni
de
nt
ifi
ed
_C

lo
st
rid

ia
le
s,

g_
Bl
au

tia
,g

_I
nt
es
tin

im
on

as
.

[1
35

]

M
o
u
se

A
b
d
o
m
in
al

IR
(1
0
G
y)

–
Pr
e-
R
T.
A
n
ti
b
io
ti
c
co

ck
ta
il
(m

et
ro
n
id
az
o
le
,v

an
co

m
yc
in
,a

m
p
ic
ill
in

an
d

g
en

ta
m
ic
in
)
m
it
ig
at
ed

ra
d
ia
ti
o
n
-in

d
u
ce
d
in
te
st
in
al

in
ju
ry

b
y
re
d
u
ci
n
g

in
fl
am

m
at
io
n
an

d
in
te
st
in
al

fi
b
ro
si
s.
A
lp
h
a
d
iv
er
si
ty

o
f
an

ti
b
io
ti
c
co

ck
ta
il

g
ro
u
p
w
as

si
g
n
ifi
ca
n
tl
y
lo
w
er

co
m
p
ar
ed

to
co

n
tr
o
l.

[1
36

]

M
o
u
se

To
ta
l
b
o
d
y
IR

(8
.0

to
9.
2
G
y)

–
Po

st
-R
T.
In
cr
ea
se
d
ab

u
n
d
an

ce
o
f
f_
La
ch

n
o
sp
ir
ac
ea
e
an

d
f_
En

te
ro
co

cc
ac
ea
e

in
th
e
g
u
t
m
ic
ro
b
io
m
e
o
f
m
ic
e
su
rv
iv
in
g
h
ig
h
d
o
se

IR
(r
ad

io
p
ro
te
ct
iv
e

ef
fe
ct
s)
.

[1
1]

M
o
u
se

Lo
ca
lis
ed

in
te
rn
al

R
T
(2
2
G
y)

–
Pr
e-
R
T.
G
F
m
ic
e
co

lo
n
is
ed

w
it
h
ir
ra
d
ia
te
d
m
ic
ro
b
io
ta

m
an

ife
st
ed

a
m
o
re

se
ve
re

d
am

ag
e
fo
llo

w
in
g
ir
ra
d
ia
ti
o
n
co

m
p
ar
ed

to
co

n
tr
o
l,
an

d
th
ey

h
ad

in
cr
ea
se
d
ab

u
n
d
an

ce
o
f
p
_P

ro
te
o
b
ac
te
ri
a,

p
_B

ac
te
ro
id
et
es
,

g
_P
ar
ab

ac
te
ro
id
es

an
d
g_

Su
tt
er
el
la

sp
p.
,a

n
d
d
ec
re
as
ed

ab
u
n
d
an

ce
o
f

p
_F
ir
m
ic
u
te
s
an

d
m
em

b
er
s
b
el
o
n
g
in
g
to

o
_C

lo
st
ri
d
ia
le
s.

[6
5]

M
o
u
se

To
ta
l
b
o
d
y
IR

(6
.5
G
y)

–
Po

st
-R
T.

Fa
ec
al

m
ic
ro
b
io
ta

tr
an

sp
la
n
ta
ti
o
n
fr
o
m

h
ea
lt
h
y
m
o
u
se

d
o
n
o
r

re
sc
u
ed

th
e
d
ra
m
at
ic

d
ec
re
as
e
o
f
sm

al
l
in
te
st
in
e
in
ta
ct

vi
lli

an
d
th
ic
ke
n
ed

th
e
g
u
t
m
u
co

sa
l
in
ju
re
d
b
y
ir
ra
d
ia
ti
o
n
.I
R
re
d
u
ce
d
g
_B

ac
te
ro
id
es

(o
r

g
_L
ac
to
ba

ci
llu
s)
an

d
th
is
w
as

re
st
o
re
d
b
y
fa
ec
al

m
ic
ro
b
io
ta

tr
an

sp
la
n
ta
ti
o
n
.

[1
30

]

G
I
g
as
tr
o
in
te
st
in
al
,
G
y
G
ra
y,
IR

ir
ra
d
ia
ti
o
n
,
N
sa
m
p
le

si
ze
,R

E
ra
d
ia
ti
o
n
en

te
ri
ti
s,
RT

ra
d
io
th
er
ap

y,
p_

p
h
yl
u
m
,
c_

cl
as
s,
o_

o
rd
er
,f
_
fa
m
ily
,g

_
g
en

u
s,
s_
sp
ec
ie
s.

S.E. Eaton et al.

2090

British Journal of Cancer (2022) 127:2087 – 2098



particularly IL-1β, in vitro and in vivo. Antagonising the IL-1
receptor ameliorated tissue damage, implying that IL-1 was a
significant driver in its pathogenesis. Therefore, IR-induced
alterations to the gut microbiota could themselves contribute to
intestinal inflammation and hence exacerbate RE.
As current evidence is mostly limited to association studies

between the gut microbiota and normal tissue toxicities, studies
involving manipulation of the gut microbiota before and during
RT are required.

Effects of gut microbiota composition on tumour outcome
There has been recent interest in exploiting the effect of the
baseline gut microbiota profile on tumour response following
immunotherapy [66–68], chemotherapy [69–72], chemoradiation
[8] and radiotherapy [14–16], in both preclinical models and
human studies. Patients harbouring a higher α-diversity at
baseline had more favourable outcomes, as seen in patients with
improved tumour responses to chemoradiation, thus leading to
improved patient survival [8]. Rectal cancer responders to
concurrent chemoradiation had a higher pre-RT abundance of
Bacteroidales (Bacteroidaceae, Rikenellaceae, Bacteroides) com-
pared to non-responders [73].
Unfortunately, with high interindividual variability, heterogene-

ity among studies in humans and mice, and inconsistent findings
reported, a specific favourable microbiota profile associated with
the development of radiation-induced toxicities (Table 1) and/or
tumour response (Table 2) has not been defined. If such profiles
were to be established, modulating the gut microbiota by means
of probiotics, prebiotics or faecal microbiota transplant could
reduce toxicity and improve tumour responses in pelvic radio-
therapy patients. Since most studies utilised 16 S rRNA gene
sequencing for microbial analysis, which only identifies bacteria at
higher taxonomic levels, the need for strain-level metagenomic
analysis is therefore important for application in clinical practice.

THE ROLE OF SCFAS IN HEALTH AND CANCER
Short-chain fatty acids (SCFAs) are fermented from dietary fibres
by the gut microbiota. The three most common SCFAs, namely,
acetate (C2), propionate (C3), and butyrate (C4), are produced
primarily by two phyla of bacteria; Firmicutes, which produce
butyrate, and Bacteroidetes, which produce acetate and propio-
nate [10]. They account for approximately 90 to 95 percent of all
SCFAs produced, in a constant molar ratio of 3:1:1, and the minor
SCFAs are isobutyric, valeric (C5), isovaleric and caproate acid (C6).
Colonocytes absorb SCFAs following their production in the gut;
most of the butyrate absorbed and metabolised as fuel.
Propionate travels along the portal circulation to the liver, where
it is taken up by hepatocytes for energy. Acetate cannot be
oxidised in the liver, and so enters the systemic circulation, with
the remaining unabsorbed SCFAs, to travel to other target tissues
[74]. Butyrate maintains intestinal barrier integrity by increasing
the expression of claudin, a tight junction protein [75], and
stabilises hypoxia-inducible factor (HIF), thereby increasing the
expression of its barrier-protective target genes [76].

Mechanisms of action of SCFAs
The effects of SCFAs are mediated via two major mechanisms,
extracellular binding to their corresponding G-protein-coupled
receptors (GPCRs), GPR41, GPR43, GPR109A (butyrate only),
leading to a plethora of downstream signalling pathways, and
acting intracellularly as class I and IIa HDAC inhibitors (Fig. 2). The
GPR43 is expressed along the whole gastrointestinal tract, and
propionate and acetate are the most potent and selective
activators.
Butyrate was one of the first discovered histone deacetylase

(HDAC) inhibitors [77], and has the strongest HDAC inhibitory
activity of the SCFAs [78]. By allowing hyperacetylation of their

corresponding histone proteins, the SCFAs increase the accessi-
bility of transcription factors to the promoter regions of target
genes, thereby modulating gene expression epigenetically [79].
SCFA receptors are expressed in the intestine, immune cells,
adipose tissue, neurons, skeletal muscles and the heart. This
widespread expression partly explains their involvement in various
diseases [80]. Here, we will focus on their role in normal gut tissue
and as anticancer treatment in terms of immune and non-immune
effects (Fig. 2).

Effects of SCFAs on gut toxicity. The abundance of SCFA-producing
bacteria from the phyla Firmicutes and Bacteroidetes is decreased in
the gut microbiota of patients following radiotherapy and in those
suffering from post-radiation inflammatory conditions [62, 81].
Topical sodium butyrate was shown to be effective in treating acute
radiation proctitis in patients with pelvic malignancy after receiving
radiotherapy [82]. Hence SCFAs may have a role in the alleviation or
prevention of radiotherapy-induced toxicities, although the under-
lying mechanisms need to be determined.

Effects of SCFAs on gut immunity. SCFAs mediate communication
between the gut microbiota and the mucosal immune system. For
example, butyrate can inactivate nuclear factor kappa B (NF-κB)
[83] and downregulate the production of tumour necrosis factor
(TNF), decreasing inflammation, and it can decrease oxidative
stress in the colon, improve gut barrier function, and protect
against colon cancer and ulcerative colitis (an inflammatory bowel
disease) [84, 85]. In vitro incubation of SCFAs with healthy human
colon cells showed decrease in NF-κB activity, which has also
correlated with improvement of colitis in mice in vivo [83].
SCFAs also impact the maturation of DCs which in turn

stimulate regulatory T cells (Tregs). The microbiota has also an
ongoing crosstalk with Tregs, inducing secretion of immunosup-
pressive cytokines [54]. Furusawa et al. reported a positive
correlation between SCFA concentrations and colonic Tregs in
mice fed a high-fibre diet (HFD), and found in vitro that butyrate,
at physiological concentrations, significantly induced naive CD4+

T cells into Foxp3+ IL-10-producing Treg cells via HDACi activity.
These results translated in vivo with a butyrate-containing diet
ameliorating colitis induced by adoptive transfer of CD4+

CD45RBhi naive T cell into Rag−/− mice, with a higher colonic
Foxp3+ Treg population compared to the control group [86].
Peripheral Treg induction and proliferation as well as de novo
generation, at sites other than colon, have also been demon-
strated by feeding propionate- and butyrate-containing water to
mice treated with broad-spectrum antibiotics [87].
The current literature is inconsistent regarding SCFAs’ immune

effects. Some studies have shown that higher levels of SCFAs
stimulate pro-inflammatory cytokine-producing T cells in contrast
to their generally agreed anti-inflammatory role [88, 89]. This
agrees with studies which found an increased abundance of
SCFAs in patients with post-radiation RE and diarrhoea [90].

Effects of other metabolites on gut toxicities and immunity. The gut
microbiota, Lachnospiraceae and Enterococcaceae and SCFAs,
especially propionate, have been shown to mitigate radiation-
induced intestinal damage and the radioprotection was also
associated with two tryptophan pathway metabolites, namely,
1H-indole-3-carboxaldehyde(I3A) and kynurenic acid (KYNA) [11].
Xiao et al. also demonstrated that gut microbiota-derived indole
3-propionic acid reduced gastrointestinal injury after radiation
exposure. It attenuated local and systemic inflammatory levels,
such as IL-6 and TNFɑ in the small intestine and peripheral blood,
and mitigated radiation-induced colonic shortening [91]. In
addition, valeric acid improved intestinal epithelial integrity and
the recovery of gut microbiota after total abdominal irradiation
[13]. Urolithin A, produced from the transformation of ellagitan-
nins by gut microbiota, decreased the radiation-induced

S.E. Eaton et al.

2091

British Journal of Cancer (2022) 127:2087 – 2098



enterocyte apoptosis in the small intestine and restored gut
microbiota changes after total body irradiation [12].

Effects of SCFAs on cancer cells. An interesting inconsistency for
SCFAs in the literature is the “butyrate paradox”, in which butyrate
stimulates cell proliferation of healthy colonocytes in vitro and
in vivo but demonstrates opposing anticancer effects in cancer
cell lines [92]. Donohoe et al. were the first to explain the paradox
via the Warburg effect. In normal colonocytes, butyrate is rapidly
metabolised via β-oxidation for fuel, and little remains in the
cytoplasm. However, in cancerous cells, as a survival adaptation,
glucose is preferentially used as fuel over SCFA, so the spared
cytoplasmic butyrate can travel into the nucleus where it acts as
an HDACi, upregulating the expression of genes involved in anti-
tumour activities [93]. This property of butyrate makes it an
attractive candidate as a potential tumour radiosensitiser which
will be further discussed.
All three major SCFAs have demonstrated anticancer effects,

but butyrate’s role has been studied most extensively due to its
more potent activity as an HDACi compared to propionate and
acetate [94]. For example, propionate induced apoptosis in lung
cancer cells [95], and butyrate and propionate suppressed the
proliferation of breast cancer cells [96]. Acetate, propionate, and
butyrate increased histone deacetylase inhibition and radio-
sensitivity in human bladder cancer cells [97].
Despite these benefits of SCFAs, physiological concentrations of

SCFAs in human plasma are low. In a study where healthy subjects
were put on an HFD, taking 35 g of dietary fibre per day for 5 days,
despite significantly increased SCFA concentrations in the HFD
group, there were no changes to concentrations of anti-
inflammatory cytokines and the number of circulating Tregs [98].

Effects of SCFAs on the tumour microenvironment. SCFAs can boost
cellular metabolism and memory potential in CD8+ T cells [99], which
may mean that SCFAs can promote a favourable tumour micro-
environment in bladder cancer, in which T-cell inflamed tumours
[100] with increased FOXP3+ Treg infiltration [101] have been
associated with improved patient survival. Their anti-inflammatory
properties also point them to a potential treatment for IR-induced RE.

MODULATING THE GUT MICROBIOTA TO IMPROVE
RADIOTHERAPY OUTCOMES IN PELVIC CANCERS
The gut microbiota can be modulated by administering live
microorganism (probiotics) or altering the fibre that they feed upon
(prebiotics—see later) and such approaches are cheap and relatively
safe. As diet has a major impact on gut health in terms of microbiota
composition, diversity, and richness, dietary fibre manipulation could
be a promising approach to target the gut microbiota effectively in a
short period of time [102] to enhance RT efficacy or mitigating side
effects. We hypothesise that high fibre positively influences tumour
responses via fermentation of the high fibre and/or immunomodula-
tion and reinforces the pre-RT gut microbiota to be more resistant to
changes caused by IR. An alternative hypothesis is that it restores the
gut microbiota during radiotherapy, thereby reducing the effects of
the unfavourable IR-altered microbiota. Important questions need to
be answered to determine the timing of dietary fibre supplements in
RT patients to maximise the therapeutic ratio.

Tumour radiosensitisation and modulation of the gut
microbiota
Radiotherapy results in normal tissue toxicity and tumour cell
death. IR kills cells by inducing lethal double-strand breaks (DSBs)
in the genome. The cell detects this damage and initiates DNA
repair mechanisms, both error-prone non-homologous end-
joining (NHEJ) and accurate homologous recombination (HR),
which rescue the cell from apoptosis. Molecules that can interfere
with DNA repair or signalling processes can therefore act asTa
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radiosensitisers, increasing the number of DSBs lesions following
IR and promoting apoptosis [103].
Butyrate acts on key players in DNA repair, namely, the DNA

protein kinase catalytic subunit (DNA-PKcs), Ku70/Ku80 and ligase
IV/XRCC4/XLF (Lig IV complex) [104]. A study utilising three-
dimensional cultured organoids developed from intestinal stem
cells from colorectal cancer (CRC) patients to mimic the native
intestinal structure and environment, found that butyrate was the
only SCFA to suppress the proliferation of cancerous organoids,
and only radiosensitised tumour cell-derived organoids while
sparing normal tissue organoids via the Warburg effect [105].
Furthermore, HDACi have been shown to radiosensitise tumours
in vivo while sparing normal intestine from acute (panobinostat
[106]) and late effects (romidepsin [107]). Therefore, it is rational to
postulate that radiosensitisation might be achieved by increasing
the population of SCFA-producing bacteria within the gut
microbiota.
A study demonstrated that feeding a high soluble fibre (HSF)

diet with 10% inulin to mice transplanted with human bladder
cancer cells slowed tumour growth after irradiation compared to
mice fed diets with lower fibre content. In the HSF group, an
increased abundance of Bacteroides acidifaciens was found, which
positively correlated with survival [97]. B. acidifaciens produces
acetate, but faecal butyrate levels were found to be increased.
Since acetate is needed for butyrate synthesis via the butyryl-
CoA:acetate CoA transferase pathway [108], the putative explana-
tion for this phenomenon is cross-feeding, where B. acidifaciens
produces acetate to cross-feed other, butyrate-producing, bacteria
in the gut microbiota [109]. The radiosensitising effect observed
may possibly be attributed to increased SCFA production in the
HSF diet-fed mice due to enriched B. acidifaciens. This finding
opens an exciting avenue in which promising radiosensitisers like
butyrate can be enriched in patients via the low-cost, non-toxic
approach of dietary intervention. Such research is in its infancy;

more robust in vivo data are required, followed by clinical trials,
before such an approach can enter routine clinical practice.
There are relatively limited in vivo studies of gut microbiota and

the efficacy of radiotherapy. Three studies all used an antibiotics-
based approach to deplete specific groups of gut microbiota to
change the RT efficacy and two studied cancers outside the
gastrointestinal tract. Vancomycin, an antibiotic that kills Gram-
positive bacteria in the gut, successfully enhanced radiotherapy
efficacy via increasing dendritic cell antigen presentation [14, 15].
In contrast, an antibiotic cocktail of ampicillin, imipenem,
cilastatin, and vancomycin reduced efficacy of radiotherapy with
depletion of the commensal bacteria [16].

Amelioration of radiation-induced toxicity
Probiotics. Probiotics are live microorganisms that, when admi-
nistered in adequate amounts, confer health benefits to their host
by altering the metabolic and nutritional function of the
commensal microbiota [110]. They resist injury caused by gastric
acid and bile to reach the large intestine intact. They can be
obtained either from supplements or from specific foods prepared
by bacterial fermentation. Probiotics, usually complex combina-
tions of microorganisms, most commonly involve the Lactobacillus
and Bifidobacterium bacterial genera, and have a specific
mechanism of action [111].
Probiotics can modulate intestinal immune functions - decreas-

ing pro-inflammatory cytokines, increasing secretory IgA and
promoting tolerogenic cytokine profiles and regulatory pathways.
They help reduce inflammation within the gut by optimising the
epithelial barrier function, promoting cytoprotective responses
and increasing mucin secretion. Moreover, probiotics limit
possible harm by pathogenic bacteria: they decrease pathogen
binding sites, reduce luminal pH and aid the production of anti-
bacterial bacteriocins. However, little is currently known about the
effects of probiotics on RT tumour responses.
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The benefits of probiotics in reducing radiation-induced
adverse effects of cervical cancer therapies within the gastro-
intestinal tract have been extensively studied. L. acidophilus LA-5
plus B. animalis subsp. lactis BB-12 were associated with
significantly reduced use of loperamide, an antidiarrheal medica-
tion, among the probiotic patients, with a reduced incidence of
grade 2 abdominal pain and episodes of abdominal pain in days
after receiving radiotherapy [112]. In patients treated with
chemotherapy and radiotherapy taking a mixture of probiotics
and prebiotics over a 7-week period, faecal calprotectin was
reduced as well as their frequency and intensity of vomiting [113].
Supplementation with the probiotic mixture VSL resulted in
reduced daily bowel movements and a reduced incidence of
radiation-induced diarrhoea [114].
In patients with gynaecological malignancies undergoing

radiotherapy, fermented milk containing live L. acidophilus
bacteria (and 6.5% lactulose as the probiotic substrate) reduced
radiation-induced diarrhoea [115]. Moreover, patients supple-
mented with L. rhamnosus (Antibiophilus) had less radiation-
induced gastrointestinal toxicity, with improved faecal consis-
tency and fewer bowel movements [116].

Prebiotics. A prebiotic is “a non-digestible compound that,
through its metabolism by microorganisms in the gut, modulates
composition and activity of the gut microbiota, thus conferring a
beneficial physiological effect on the host” [117]. Most prebiotics
are classified as dietary fibres and are defined as substances
fermented by intestinal microbiota that encourage specific
intestinal bacteria growth and action. They must be resistant to
gastric acid, hydrolysis by gastrointestinal enzymes and absorp-
tion across the epithelium so that they reach the large intestine
intact. The gut microbiota and host exhibit a symbiotic relation-
ship where gastrointestinal bacteria metabolise dietary polysac-
charides, indigestible by human enzymes. This relationship makes
the microbiota subject to modulation based on dietary intake (of
specific prebiotics and fibre) since their growth and action is
dependent on substrate availability [117].
Some recommendations advise a low-fibre diet while under-

going pelvic radiotherapy, but, in contrast, one randomised
controlled trial (RCT) showed that a high-fibre diet may decrease
GI toxicity and associated symptoms [118]. In patients with
endometrial, cervical, colon, rectal or prostate cancer, prebiotics,
partially hydrolysed guar gum (PHGG; natural water-soluble fibre
source) reduced the frequency of diarrhoea following pelvic
radiation treatment [119].
A murine study researching the effects of oat bran in reducing

intestinal inflammation after pelvic irradiation reported similar
findings and further suggested that a low-fibre diet may be
harmful to patients [120]. A human RCT compared the effect of
Metamucil (psyllium husk, a dietary fibre) in preventing diarrhoea
related to pelvic radiotherapy [121]. Metamucil resulted in lowered
severity of diarrhoea than placebo. An RCT studying the effect of
fibre (inulin/fructooligosaccharides) compared to placebo in
preventing RE in gynaecological cancer patients undergoing
radiotherapy found that taking inulin generally improved stool
consistency [122]. They had previously found that abdominal
radiotherapy reduced Lactobacillus and Bifidobacterium counts but
supplementation with an inulin and fructooligosaccharides
mixture improved the recovery of both genera post-therapy
[123]. However, there was no significant improvement in
symptoms. One preparatory study recently reported plans for a
large RCT investigating dietary fibre intake during pelvic radio-
therapy [124], and, as available evidence continues to amass, this
approach may soon impact clinical practice.

Faecal microbiota transplant. Faecal microbiota transplant (FMT),
a procedure where donor faeces are mixed with saline solution
before being transplanted into a patient (often through

colonoscopy) to change their gut microbiota, has been used to
treat various gastrointestinal conditions, including Clostridiodes
difficile infection, showing to be effective [125–127]. NICE guide-
lines now support FMT as treatment for recurrent C. diff infections.
It has also been investigated as a treatment for refractory immune
checkpoint inhibitor-associated colitis (an immunotherapy side
effect) [128], with one patient having a significantly increased
prevalence of Blautia and Bifidobacterium species after FMT, which
has been linked to decreased levels of intestinal inflammation
[129]. Therefore, FMT may potentially be useful as a treatment for
gastrointestinal toxicity caused by pelvic radiotherapy.
In a murine study, FMT post-radiation increased the survival rate

of young mice [130]. However, when the experiment was
replicated using older mice, their survival was not increased by
FMT. Therefore, FMT may not solve the problem of post-radiation
gastrointestinal toxicity in the elderly population. Evidence
indicates the elderly population have an altered microbiota
composition including reduced diversity, more Proteobacteria/
other potentially pathological organisms, and fewer SCFA-
producing species [131, 132].
A five-patient pilot study investigating FMT as a treatment for

chronic RE caused by pelvic radiotherapy found that three
patients responded to FMT, including a reduction in symptoms
and physical improvement in mucosal injury on endoscopy [133].
Notably, symptoms recurred, possibly indicating a need for
multiple FMT’s long-term. Likewise, a case report on chronic
haemorrhagic radiation proctitis found that FMT relieved asso-
ciated symptoms [134]. Despite these promising results, larger
research studies are needed to test their applicability in the wider
population.

CONCLUSIONS AND FUTURE PERSPECTIVES
Research is now emerging into the influence of the gut microbiota
on pelvic cancers, and the possibility of exploiting this in
radiotherapy-based treatments, to improve both tumour control
and side effects, is an exciting prospect. However, further studies
are required to clarify the in-depth mechanisms, to provide
evidence of the causal effects of the gut microbiota, the
metabolome and immunity, and to explore the other potential
dietary fibres or combinations to maximise the therapeutic ratio of
radiotherapy.
Evidence is currently lacking regarding the involvement of the

gut microbiota in late radiation-induced bowel toxicity; if
modulation were possible, this could make a real impact on
improving patient outcomes long-term.
Modulating the gut microbiota by dietary fibre manipulation

may be particularly useful in the elderly, who cannot tolerate
current chemoradiation schedules and whose microbiota compo-
sition is less favourable than that found in young patients. They
therefore may have a gut microbiota with the most to gain in
terms of increasing bacterial diversity, elimination of potentially
pathogenic organisms and increasing SCFA-producing species. As
evidence for dietary fibre manipulation is still relatively limited,
more clinical studies with robust data are required before these
strategies can be applied clinically.
In addition, the “baseline” that exists in the RT population varies

hugely as intake of dietary fibre, microbiota profiles, production of
SCFA and gut motility are highly individual and heterogenous.
Further work should include clinical studies to better understand
the baseline from which we are operating and the potential for
improvement. Such work might help to identify those patients
who would benefit most from these novel interventions.
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