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Abstract: Orbital angular momentum (OAM) generation based on metasurfaces has
attracted tremendous interest due to its potential in capacity enhancement of high-speed
wireless communication systems. Reconfigurability is one of the key desired characteristics
for the design of future metasurfaces. In this paper, a metasurface taking advantage of
vanadium dioxide (VO2) is proposed. The proposed design can generate a non-diffractive
OAM beam and achieve the multiple reconfigurability of the topological charge, beam
radius, beam deflection angle. The operation frequency can be adjusted by controlling the
state of VO2 at terahertz (THz) region. Simulation results demonstrate that the designed
metasurface can generate a non-diffractive OAM beam with tunable topological charge and
beam radius, propagating along ±x or ±y directions with the controllable deflection angle
between 6.74° and 44.77°, ranging from 0.69 THz to 0.79 THz.

Index Terms: Terahertz (THz), reconfigurable metasurface, vanadium dioxide (VO2), orbital
angular momentum (OAM), topological charge (TC), non-diffractive beam, deflection angle.

1. Introduction
Electromagnetic (EM) waves have been demonstrated to carry angular momentum (AM), encom-
passing spin angular momentum (SAM) and orbital angular momentum (OAM) [1]–[3]. While SAM
is associated with the circular polarization state of the wave and so it has a limited number of states,
OAM manifests in the corkscrew-shaped phase in front of such beams. Therefore, the topological
charge (denoted l) of an OAM beam is theoretically unlimited and mutually orthogonal to each
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other. Recently, due to these properties, OAM has attracted tremendous interest in its ability to
offer capacity enhancement of high-speed wireless communications [4], [5].

There are various ways to generate OAM beams, such as forked gratings [6], spiral phase
plates (SPPs) [7], q plates [8], spiral reflectors [9], antenna arrays [10], cylindrical mode convert-
ers [11] and computer-generated holograms [12]. However, most of these technologies require
high-precision processes and large components. Also, they work only within a narrow bandwidth,
which significantly increases the system complexity and severely restricts practical applications.
To tackle these challenges, recent advancement in metasurfaces offers a new horizon for OAM
generation. As the two-dimensional (2D) version of metamaterials [13], metasurfaces [14] can
effectively engineer the phase, polarization and amplitude of the EM waves via spatially variant
abrupt phase changes. Metasurfaces, therefore, have versatile functionality, ultra-thin features, and
ease-of-integration, and are ideally suited for OAM generation.

Previous research has mainly focused on producing OAM beams based on metasurfaces without
tunable metaparticles. The majority of these metasurfaces are aimed at producing an OAM beam
with a particular l [15], [16]; realizing multichannel superpositions of OAM states with various l
values [17], [18]; or generating OAM beams with different topological charges at different wave-
lengths [19], [20], input beam intensities [21] and polarization states [22]. However, in general,
these metasurfaces are not tunable or reconfigurable, which inherently limits their practical impact.
In the optical regime, such control can be achieved straightforwardly using devices such as spatial
light modulators [23], but such technology is not readily available in the microwave or THz bands.
As such, in recent years, significant effort has been made to develop reconfigurable metasurfaces
by employing tunable metaparticles, such as vanadium dioxide (VO2) [24], indium tin oxide [25],
graphene [26], liquid crystal [27] germanium antimony telluride (GST) [28], InSb/In0.8Al0.2Sb
heterojunctions [29], micro-electromechanical systems (MEMS) [30], varactor diodes [31], and PIN
diodes [32].

Although these methods have been successfully applied to implement metasurfaces, they have
never been used to realize reconfigurable OAM beams in the terahertz (THz) range. The existing
reconfigurable structures have only produced OAM beams with tunable l values propagating with
a particular deflection angle at a single fixed frequency or a narrow band in the microwave
range [33]–[35]. In addition, these OAM beams expand along the propagation direction, which
limits power received at the receiver side in communication applications. Therefore, generating an
OAM beam with multiple reconfigurability of the topological charge, beam radius, deflection angle
and operating frequency simultaneously based the metasurface using tunable metapraticles, has
become an emerging research area that requires dealing with formidable challenges, especially
in THz applications, where the conventional microwave manipulation techniques are found to
be impractical. Compared with other tunable metaparticles used at THz region, VO2 exhibits
an insulator-to-metal transition at around 67 degrees driven by temperature. The corresponding
electrical conductivity increases by approximately five orders of magnitude in the THz region,
providing a larger dynamic range using a phase transition. Thus, it is a very promising material
for active control of electromagnetic properties for THz metasurface reconfigurability.

In this paper, a reconfigurable metasurface using VO2 is proposed for the generation of a
reconfigurable non-diffractive THz OAM beam. We present simulation results to demonstrate the
reconfigurability. The proposed metasurface holds great potential for the capacity enhancement
of high-speed wireless communication systems. This study can be used for the realization of
software-defined wideband reconfigurable metasurfaces for THz applications.

2. Theory
VO2 exhibits an insulator-to-metal transition driven by temperature [36], intense light [37] or charge
flow [38]. Among these technologies, the temperature inspired approach is found to be more
practical. As the temperature increases, the lattice structure of VO2 is changed from monoclinic to
tetragonal, resulting in an increased electrical conductivity by several orders of magnitude during

Vol. 12, No. 3, June 2020 4600712



IEEE Photonics Journal Terahertz Reconfigurable Metasurface

the insulator-to-metal transition at around 67 degrees. Generally, there are two ways to describe the
complex dielectric properties of VO2 in the THz region. The first method is based on the Bruggeman
effective-medium theory (EMT) [39]. The relative permittivity of VO2 is typically written as

εVO2 (V ) =
εi (2 − 3V ) + εm (3V − 1) +

√
[εi (2 − 3V ) + εm (3V − 1)]2 + 8εiεm

4
(1)

where εi and εm are the relative permittivity of the insulating and metallic VO2 films, respectively,
and V is the volume fraction of the metallic regions.

The varied permittivity of VO2 can also be described by the Drude model [40], as follows

εVO2 (ω) = ε∞ − ω2
p

(
σVO2

)

ω2 + iγω
(2)

where ε� = 12 is dielectric permittivity at the infinite frequency, γ = 5.75 × 1013 rad/s is the
collision frequency, ωp(σVO2 ) is the plasma frequency depending on the conductivityσVO2which is
approximately described as

ω2
p

(
σVO2

) = σVO2

σ0
ω2

p (σ0) (3)

where σ 0 = 3 × 103 �-1cm-1 and ωp(σ 0) = 1.4 × 1015 rad/s.
We note that the temperature-dependent conductivityσVO2can also be used to quantify the

dynamic insulator-to-metal transition of VO2. The relative permittivity of VO2 films in the insulating
state is nine and in the metallic state is described by Drude model, while the conductivity in the fully
insulating and metallic state is smaller than 2 × 102 S/m and higher than 2 × 105 S/m [41]–[43].

To generate an OAM vortex beam with topological charge l based on the metasurface, the
spatially varying phase distributions of the metasurface must satisfy the following equation [44]

ϕl (x, y ) = l · arctan
y
x
, l = ±1,±2, . . . (4)

where (x, y) is the arbitrary position on the metasurface plane. In addition, when l = 0, the beam is
a plane wave.

Generally, there are two methods to control the radius of the beam. A direct method is to focus
the beam at a specific position, and another method is to generate a non-diffractive beam, such as
a Bessel beam [45], [46]. The latter is more preferable than the former, because the non-diffractive
beam can propagate along the path with more concentrated energy distribution compared with
the converging beam. According to the designing principle of the non-diffractive beam generated
through the axicon lens [47], the phase distribution of the metasurface can be described as

ϕB (x, y ) = 2π

λ

√
x2 + y2 sin β (5)

where λ is the working wavelength, (x, y) is the arbitrary position on the metasurface plane, and β

is the base angle of the axicon.
According to the generalized Snell’s law of refraction [48], when the EM wave incident to the

interface vertically along the z-axis (θi = 0) and ni = nt = 1, the angle of refraction can be expressed
as follows

θt (x ) = arcsin
(

λ

2π
· dϕ

dx

)

θt (y ) = arcsin
(

λ

2π
· dϕ

dy

)
(6)
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Fig. 1. (a) The unit cell of the metasurface consists of a ring slot filled with VO2 on a gold sheet and
a silicon substrate. (b), (c) The side view and top view of the unit cell. Geometric parameters are the
following: P = 100 μm, ts = 70 μm, tg = 0.2 μm, R = 40 μm, and r = 30 μm. (d), (e) Different phase
responses can be simply achieved by switching the state of a part of the VO2 loop between insulator
and metal without physically changing the structure. The azimuth angle α is the angle between the
symmetric axis of the VO2 in the metallic state and the x-axis. γ is the angle of the metallic VO2 arc.

where λ is the working wavelength. To realize beam steering, the phase distribution of the tilt
wavefront for the four different directions along ±x and ±y directions is described as follows

ϕt x (x ) = ±2π

D
· x

ϕt y (y ) = ±2π

D
· y (7)

where D is the super-unit-cell period along the phase gradient direction. Obviously, according to
Equations (6) and (7), the angle of refraction θt is a function of λ and D.

Therefore, in order to generate a non-diffractive OAM beam with desired l value and the base
angle β, propagating along the ±x or ±y directions with the required deflection angle θ t at the
working frequency f, we superposed the OAM vortex phase distributions, the Bessel beam phase
distributions, and the tilt phase distributions as follows

ϕl ,Beseel ,t i l t (x, y ) = ϕl + ϕB + ϕt x

= l · arctan
y
x

+ 2π

λ

√
x2 + y2 sin β ± 2π

D
· x

ϕl ,Beseel ,t i l t (x, y ) = ϕl + ϕB + ϕt y

= l · arctan
y
x

+ 2π

λ

√
x2 + y2 sin β ± 2π

D
· y (8)

3. The Design of Unit Cell and Metasurface
3.1 Unit Cell

The unit cell of the proposed reconfigurable metasurface is sketched in Fig. 1(a), 1(b) and 1(c),
which consists of a ring slot filled with VO2 on a gold sheet and a silicon substrate. The period of
the unit cell is P = 100 μm. The silicon substrate is assumed to have the relative permittivity of
11.9 with a thickness of ts = 70 μm. The gold is 0.2 μm thick. R = 40 μm and r = 30 μm are the
outer and inner radii of the ring slot. Different phase responses can be achieved by switching the
states of a part of the ring-shaped VO2 between insulator and metal, without physically changing
the structure, as shown in Fig. 1(d) and 1(e). According to the theory proposed by N. F. Yu et al.
[48], the V-antennas support “symmetric” and “antisymmetric” modes and arbitrary phases of the

Vol. 12, No. 3, June 2020 4600712



IEEE Photonics Journal Terahertz Reconfigurable Metasurface

Fig. 2. The amplitude and phase of cross-polarized transmitted wave radiation from 292 different unit
cells numbered from 1 to 146 and 147 to 292 corresponding to α = 45° and −45°, respectively, while
γ is linearly stepping from 5° to 150° with a step width of 1°. (a) 0.69 THz. (b) 0.71 THz. (c) 0.73 THz.
(d) 0.75 THz. (e) 0.77 THz. (f) 0.79 THz.

scattered wave can be obtained by adjusting the geometric parameters of the antenna. Since there
are both two points for the C-shaped and V-shaped antenna, they hold similar properties. Thus,
C-shaped slot antennas also can be used to control the scattered wave. When a linearly-polarized
EM wave impinges on the unit cell, both symmetric and antisymmetric modes can be excited, and
a cross-polarized field is then scattered by these two modes. The amplitude and phase of the
re-emitted field can then be modulated by adjusting the geometrical parameters of the C-shaped
slot antennas, which can be changed by switching the state of a part of the VO2 loop. α is the angle
between the symmetric axis of the VO2 in the metallic state and the x-axis. γ is the angle of the
metallic VO2 arc.

In the simulation, periodic boundary conditions are set in the x- and y- directions and are open
in the z-direction under the condition of free space. A Floquet excitation port is applied in the unit
cell, making use of ANSYS HFSS software. The unit cell is normally illuminated by an x-polarized
incident wave. In addition, the relative permittivity of VO2 films in the insulating state is set as 9
and in the metallic state is described by Drude model, while the conductivity of VO2 in the fully
insulating and metallic state is set to 2 × 102 S/m and 2 × 105 S/m, respectively. 292 different units
are numbered from 1 to 146 and 147 to 292, corresponding to α = 45° and −45°, respectively, while
γ linearly steps from 5° to 150° in 1° steps. Based on the simulation, we find that the phase of the
transmitted cross-polarized THz wave modulated from 0 to 2π and generated from 292 different
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Fig. 3. The illustration of the reconfigurable metasurface and expected electromagnetic functionalities.
When a linearly-polarized EM wave impinges on the metasurface, both symmetric and antisymmetric
modes can be excited, and a cross-polarized field is then scattered by these two modes. Different
phase responses can be simply achieved by switching the state of a part of the VO2 loop between
insulator and metal without physically changing the structure. Therefore, a non-diffractive OAM beam
with reconfigurable topological charge, beam radius, deflection angle, and operating frequency can be
generated.

units, can cover 2π at frequencies ranging from 0.69 THz to 0.79 THz. Here, we just take six single
frequency points, which are 0.69 THz, 0.71 THz, 0.73 THz, 0.75 THz, 0.77 THz, and 0.79 THz, for
example. Fig. 2 presents the amplitudes and phase of cross-polarized transmission wave radiation
from 292 different units at these six frequency points.

3.2 Metasurface

Fig. 3 shows an illustration of the reconfigurable metasurface and expected electromagnetic
functionalities.

The proposed reconfigurable metasurface is composed of 20 × 20 unit cells of the type depicted
in Fig. 1(a). By independently controlling the states of VO2 hybridized into the slot shown in
Fig. 1(d), such a metasurface can manipulate the cross-polarized transmission phase, as shown
in Fig. 2. Thus, this metasurface expects to achieve the desired reconfigurability of the deflection
angle and generate a non-diffractive OAM beam with defined l and base angle β, propagating along
±x or ±y directions with the desired deflection angle θt .

The process to obtain the required reconfigurable metasurface is as follows: firstly, divide the
continuous phase from 0 to 2π into M equal parts. Then, select M units corresponding to M parts,
while maintaining the cross-polarized phase difference of transmitted waves 
ϕ = 2π

M between two
adjacent units. After that, the phase values of the metasurface should be wrapped within the range
from 0 to 2π and quantized into M values. Finally, corresponding units at different positions of
the metasurface are determined. M can be any integer between 6 and 36 based on the phase
characteristics of these 292 units. Suitable units can be selected according to Fig. 2. In addition,
based on Equations (6) and (7), the deflection angle θt of the beam is a function of D and D = M ×
P. Therefore, θt varies with M and can be calculated as

θt = arcsin
(

±λ

D

)
= arcsin

(
± λ

M · P

)
(9)

In this paper, we take l = −2 and 4, β = 50°, 30° and 20°, M = 36, 18 and 6 and f = 0.71 THz
(λ = 422.54 μm), for example, to demonstrate the reconfigurability our device and for verification of
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TABLE 1

The Number of Selected Three Groups of Unit Cells and Corresponding Calculated 
ϕ and |θt | with
M = 36, 18 and 6 Respectively at 0.71 THz

Fig. 4. (a), (b), and (c) Simulated amplitudes and phases of the cross-polarized transmitted wave
radiation from three groups of units with M = 36, 18 and 6 respectively. (d) The top view of one group of
units with M = 6. Units numbered 2, 57 and 102 have α = 45° and γ = 6°, 61° and 106°, respectively.
Units numbered 150, 200 and 246 have α = −45° and γ = 8°, 58° and 104°, respectively.

non-diffractive OAM beam generation. The required l and β propagates along ±x or ±y directions
with the desired θt at the working frequency f.

The number of three illustrative groups of units and corresponding 
ϕ and |θt | are shown in
Table 1. We note that since the minimum 
ϕ is 10° this is a lower limit. As long as units of a
selected group satisfy the chosen 
ϕ other units may be selected. Fig. 4(a), 4(b), and 4(c) show
simulated amplitudes and phases of the cross-polarized transmitted wave radiation from these
three groups of units. The schematic of one group of units is also depicted in Fig. 4(d).

4. Generation of OAM Beam
4.1 Generating an OAM Beam With a Reconfigurable l at the Working Frequency

First, to verify this metasurface can generate an OAM beam with reconfigurable l at the working
frequency, simulation of the EM characteristics of the reconfigurable metasurface that produces
an OAM beam with l = −2 or +4 and M = 36, 18 and 6 respectively is conducted according to
the Equation (4). An x-polarized terahertz plane wave usually illuminates the metasurface along
the negative direction of the z-axis. d is the distance from the bottom of the metasurface. The
schematics of the metasurface and simulated amplitude and phase distributions of the transmitted
cross-polarized wave at the yoz plane and a plane parallel to the xoy plane with d = 3λ are shown
in Fig. 5. According to the simulation results, OAM beams with l = −2 and +4 can be generated by
this reconfigurable metasurface with M = 36, 18, and 6 respectively at 0.71 THz. This verifies that
a VO2 based metasurface offers the desired reconfigurability.
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Fig. 5. The schematics of the metasurface and simulated amplitude and phase distributions of the
transmitted cross-polarized wave at the yoz plane and a plane parallel to the xoy plane with d = 3λ.
(a) The schematics of the metasurface with M = 36, l = −2, and 4. Amplitude and phase distributions
with (b) M = 36, l = −2, and 4. (c) M = 18, l = −2, and 4. (d) M = 6, l = −2, and l = 4.

4.2 Generating a Non-Diffractive OAM Beam With a Reconfigurable Beam Radius

Secondly, to verify this metasurface can generate a reconfigurable non-diffractive OAM beam,
simulation of the EM characteristics of the reconfigurable metasurface that generates a non-
diffractive OAM beam with l = +4, M = 36 and β = 50°, 30° and 20° respectively is conducted
by superposing Equations (4) and (5). The simulated amplitude and phase distributions of the
transmitted cross-polarized wave at the yoz plane and planes parallel to the xoy plane with d
linearly stepping from 1.5λ to 6.5λ with a step width of 1λ, are shown in Fig. 6(b), (c) and (d). As a
contrast, the simulated results of this metasurface generating a pure OAM beam with l = +4 and M
= 36 in corresponding xoy planes are also depicted in Fig. 6(a). According to the simulation results,

Vol. 12, No. 3, June 2020 4600712



IEEE Photonics Journal Terahertz Reconfigurable Metasurface

Fig. 6. Comparison of a pure OAM beam and non-diffractive OAM beams with reconfigurable beam
radius are generated by the metasurface. The simulated amplitude and phase distributions of the
transmitted cross-polarized wave at the yoz plane and planes parallel to the xoy plane with d linearly
stepping from 1.5λ to 6.5λ with a step width of 1λ. (a) A pure OAM beam with M = 36, l = 4. A
non-diffractive OAM beam with M = 36, l = 4 and (b) β = 50°. (c) β = 30°. (d) β = 20°.

it can be observed clearly that non-diffractive OAM beams with l = +4, M = 36 and β = 50°, 30°
and 20° can be generated by this reconfigurable metasurface at 0.71 THz, and the corresponding
non-diffractive distance dnon-diff equals 0.84 mm, 1.73 mm and 2.75 mm respectively.

4.3 Generating an OAM Beam With a Reconfigurable Deflection Angle

We also verify that the metasurface can be engineered to deflect the beam at the desired angle. We
investigate this using an OAM beam with l = +4 propagating along the +y or −y direction with |θt | =
6.74°, 13.58°, and 44.77° modeled by superimposing Equation (4) and (7). The simulated amplitude
and phase distributions of the transmitted cross-polarized wave at the yoz plane and planes with
θ = 0° and |θt | are shown in Fig. 7(b), 7(d) and 7(f). As a contrast, the simulated results of this
metasurface generating an OAM beam with l = +4 and θt = 0◦ in corresponding planes are also
depicted in Fig. 7(a), 7(c) and 7(e). In Fig. 7(a), 7(c) and 7(e), because of |θt | = 0◦, we can see that
there is no deflection at the yoz plane, and the amplitude and phase distributions of the OAM vortex
beam at the plane with θ = 0° is better than the plane with θ = 6.47°, 13.58° and 44.77° respectively.
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Fig. 7. OAM beams with reconfigurable refraction angle are generated by the metasurface. The
simulated amplitude and phase distributions of the transmitted cross-polarized wave at the yoz plane
and planes with θ = 0° and |θt |. (a) M = 36, l = 4 and |θt | = 0◦. (b) M = 36, l = 4 and |θt | = 6.47◦.
(c) M = 18, l = 4 and |θt | = 0◦. (d) M = 18, l = 4 and |θt | = 13.58◦. (e) M = 6, l = 4 and |θt | = 0◦.
(f) M = 6, l = 4 and |θt | = 44.77◦.

Fig. 8. A non-diffractive OAM beam with l = +4 and β = 20° propagating along the +y direction
with θt = 13.58◦ is generated by the metasurface. Simulated amplitude and phase distributions of the
transmitted cross-polarized wave at the yoz plane and planes with θ = 0° and |θt |.
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Similarly, in Fig. 7(b), 7(d) and 7(f), because of |θt | = 6.47°, 13.58° and 44.77° respectively, the
beam is deflected, and the amplitude and phase distributions of the OAM vortex beam at the plane
with θ = 6.47°, 13.58° and 44.77°, respectively, is better than the plane with θ = 0°.

4.4 Generating a Non-Diffractive OAM Beam With a Specified l, Beam Radius and
Deflection Angle

Finally, we combine the results from 4.1, 4.2 and 4.3 to generate a fully reconfigurable beam. We
model a non-diffractive OAM beam with l = +4 and β = 20° propagating along the +y direction
with θt = 13.58◦ making use of Equation (8). Simulated amplitude and phase distributions of the
transmitted cross-polarized wave at the yoz plane and planes with θ = 0° and |θt | are shown in
Fig. 8.

5. Conclusion
In conclusion, we have proposed and demonstrated that a reconfigurable metasurface based on
VO2 is a viable component for the generation of fully tunable THz beams ranging from 0.69 THz to
0.79 THz in terms of their OAM content, coupled with non-diffractive and beam steering capabilities.
This is achieved without the need to alter the physical metasurface, but via a tuning mechanism
that depends on the VO2 state via its thermal properties. The proposed metasurface holds great
potential for capacity enhancement of high-speed wireless communication systems. This study can
be extended to software-defined wideband reconfigurable metasurface at terahertz frequencies.

Future works will focus on experimentally verifying the performance of the designed metasur-
face. The photolithography and micro-fabrication process can be used to fabricate the proposed
metasurface. The challenge is how to locally control the desired heating. We suggest that this is
achievable, making use of a resistive heater or for finer control via exposure to a continuous wave
(CW) laser, making use of a beam steering element to target the desired heating points. We note
that all-optical control of VO2 devices is also emerging [49], and our work feeds into a developing
field that will further fuse optical and THz control for next-generation communication systems.
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