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Abstract: While Malaysia produces about half of the world’s palm oil and is the largest producer and
exporter worldwide, oil palm industries generate large amounts of lignocellulosic biomass waste as a
sub-product with no economic market value other than feedstock for energy valorisation. With the
aim to increase the sustainability of the sector, in this work we prepare new materials for CO2 capture
from palm oil residues (empty fruit bunches and kernels). The biochar is obtained through the
carbonisation of the residues and is physically and chemically activated to produce porous materials.
The resulting microporous samples have similar properties to other commercial activated carbons,
with BET surfaces in the 320–880 m2/g range and pore volumes of 0.1–0.3 cm3·g−1. The CO2 uptake
at room temperature for physically activated biochar (AC) was 2.4–3.6 mmolCO2/gAC, whereas the
average CO2 uptake for chemically activated biochar was 3.36–3.80 mmolCO2/gAC. The amount
of CO2 adsorbed decreased at the highest temperature, as expected due to the exothermic nature
of adsorption. These findings confirm the high potential of palm oil tree residues as sustainable
materials for CO2 capture.

Keywords: palm oil waste; CO2 uptake; adsorption; chemical and physical activation; biochar

1. Introduction

Over 76 million tons of palm oil were produced worldwide in 2020 [1], of which 40%
were solid wastes. As a result, the palm oil industry generates one of the most abundant
biomass residues with a generation of circa 30 million tons. Malaysia dedicates 45.2%
of its total land plantation to palm oil and is the world’s largest producer and exporter,
contributing to about half of the total production [2,3]. Oil palm industries produce,
together with oil palm as the main product, a great quantity of lignocellulosic biomass,
considered as waste, including oil palm trunks (OPT), oil palm fronds (OPF), empty fruit
bunches (EFB), palm oil fibres (POF), palm kernel shells (PKS) and palm oil mill effluent
palm (POME). These large-scale industrial activities generate large amounts of waste with
low or no economic value other than, in some cases, energy generation. Such disposal
emergency has been recently aggravated after the Department of Environment in Malaysia
banned open burning [4].

In addition to waste generation, the palm oil industry is responsible for a high amount
of Greenhouse Gases (GHGs) that are generated at various stages (transportation of raw
material, combustion of fuel in boilers or main oil production steps) [5]. Carbon, Capture
and Storage (CCS) continues to develop as a central strategy to mitigate GHGs emissions.
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The main existing CCS technologies include adsorption using activated carbons (ACs), zeo-
lites, and new materials such as metal−organic frameworks (MOFs), polymers, and metal
oxides, designed to improve CO2 adsorption efficiencies [6]. ACs are promising adsorbents
for carbon capture due to their (i) abundant availability; (ii) low-cost and sustainability; (iii)
high surface area and (iv) high adsorptive and high selectivity characteristics tailored by the
number and size of pores generated during the activation process. The adsorptive capacity
of ACs is induced when the structure of the raw biomass is modified by dehydration and
carbonisation, followed by a chemical or physical activation step [7]. These preparation
steps define the morphology of the ACs (i.e., surface area, micropore volume and size)
which ultimately determines CO2 uptake [8]. Khandaker et al. [8] stated that the control
of micropores had greater importance for adsorbing high CO2 compared to surface area
and total pore volume and Deng et al. [9] reported that a pore size of 0.33–0.63 nm played
an important role in maximizing the CO2 uptake. It is also noteworthy, in any case, that
temperature and pressure also affect gas adsorption to a great extent.

Production of activated carbon (AC) from agricultural byproducts has gained in-
creased interest in recent years because of their abundance, high carbon content and cheap
availability. Many agricultural residues have been tested as AC precursors, such as wheat,
corn straw, olive stones, bagasse, birch wood, sunflower shell, almond shells, peach stones,
straw, or rice husks, among others [10]. The production of ACs usually involves a first
carbonisation step followed by an activation method: physical activation, with carbon
dioxide, steam, or air at elevated temperatures [11], and chemical activation with chemical
activating agents, such as dehydrating agents and oxidants. The most common chemical
agents are ZnCl2, KOH, H3PO4 or K2CO3 [12]. The selection of the activation method will
result in different physicochemical properties of the activated carbon, such as surface area,
micropore and mesopore distribution, total pore volume or surface functionality, which
will define their adequacy and efficiency as adsorbent materials.

Several activated carbons obtained from agricultural waste have been postulated for
CO2 adsorption in pure and mixed streams, [13,14] and more specifically, palm oil residues
have been used in gas and water treatment. Promraksa et al., for example, pyrolyzed PKS,
EFB and POF obtaining a biochar with 0.46 mmol/g capacity for CO2 adsorption [15].
Ibrahim et al. carbonised oil palm biomass, which was further functionalized with nitric
acid, facilitating the adsorption of various pollutants from aqueous solutions, such as dyes
and heavy metals [16]. Lawal et al. produced activated biochar from palm oil biomass that
was then used for water treatment in the palm oil effluents, making the wastewater suitable
for reuse in palm oil mills and safe for discharge into the aquatic environment [17]. The
same authors also predicted uptake yields and selectivity at varying conditions through
molecular dynamic simulations [18].

In this work, we report the preparation and activation of carbons from palm oil
residues (Section 3) that have been then used as CO2 adsorbents for an equimolar mixture
of CO2/N2. To do so, we have designed and assembled an experimental set-up to obtain
breakthrough curves of CO2 uptake in carbon-based materials (Section 3). In Section 3, we
discuss our results and compare them with other adsorbent materials in terms of suitability
and efficiency. The outcomes highlight that our strategy can be a sustainable alternative to
the disposal and open-burning of palm oil residues, simultaneously giving added value to
residues, and ultimately promoting circular economies.

2. Materials and Methods
2.1. Materials

Palm oil residues (empty fruit bunches and kernels, Figure 1a) were obtained from
Paloh Oil Palm Mill, Kelantan, Malaysia. Samples were first washed in distilled water
several times and then dried in an oven at 100 ◦C for one day to remove moisture. After
drying, samples were manually crushed in a mortar and sieved to obtain particles with
diameters between 1.5 mm and 3.5 mm. The resulting feedstock was stored for further
use and analyses (Figure 1b). A 0.5M sodium hydroxide solution was prepared from solid
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granules (Acrōs Organics®, Geelm Belgium) and used for the chemical activation step (see
Section 2.3).
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2.3. Carbon Activation Procedure 

Figure 1. Palm oil residues, POR, as received (a) and after pre-treatment (b).

2.2. Preparation of Porous Carbons

Figure 2 shows the bench scale experimental set-up employed for carbonisation.
Samples were prepared in a purpose-designed quartz reactor sat within a Nabertherm
tubular furnace (RT 50-250/11). The quartz reactor was connected to a flow-controlled N2
stream (in the range of 0–250 mL·min−1), controlled through a gas flowmeter (Omega®,
Aberdeen, UK). The exit gas went through a Drechsel glass bottle filled with cold water,
where the produced bio-oil was trapped. The part of the vessel that remained outside the
furnace was covered with an insulating material to avoid heat loss.
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Figure 2. Experimental set-up for carbon-based materials synthesis (a) and electric tubular furnace
containing the quartz vessel (b).

Samples were initially weighed (20 ± 0.1 g) and heated in an electric tubular furnace
at around 100 ◦C for 30 min to remove moisture and were further heated at a rate of
10 ◦C·min−1 to the carbonisation temperature, 650 ◦C, which was held for an hour. The
set-up was then allowed to cool down to room temperature to avoid thermal shock and
finally, the carbonised sample was removed. The carbon-based material was weighed again
to evaluate the initial burn-off percentage (B, %) promoted by carbonisation and calculated
as [19]:

B(%) =
m0 −m f

m0
100 , (1)

with m0 and m f the initial and final mass of the samples, respectively.
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2.3. Carbon Activation Procedure

Activated carbons were prepared via either physical or chemical activation in the same
electric furnace used for carbonisation, see Figure 3. An additional inner vessel, namely the
activation vessel, was inserted into the external vessel’s top hole. The activation vessel’s
top hole was closed using a rubber stopper, and the outlet gas was directed to a bottle with
cold water before being exited into the atmosphere.
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Figure 3. Experimental set-up for carbon-based materials physical activation.

Physical activation was carried out using CO2 as an activating agent using a flow equal
to 12 mL·min−1. The system was heated at a rate of 10 ◦C·min−1 from 100 ◦C to 900 ◦C,
and the temperature was then maintained for the duration of different times (390–1130 min)
to yield a series of activated carbon with various degrees of burn-off. Sodium hydroxide
(NaOH 0.5M) was used as the chemical activating agent at different wet impregnation
ratios (1:1, 1:2 and 1:3) with respect to the carbonous substrate. The impregnated samples
were heated at 700 ◦C, held for an hour and then left overnight at room temperature while
stirring, to remove the residual NaOH [20,21]. Samples were then cleaned with distilled
water, filtered, dried in an oven at 100 ◦C overnight and weighed.

The resulting activated carbon samples were labelled as POR-AC, where A and S refer
to the type of activation (P, physical and C, chemical) and settings (burn-off percentage for
physical activation and C:NaOH ratio for chemical activation). For example, POR-C11 will
be a palm oil residue activated chemically with a ratio C:NaOH equal to 1:1.

The surface area and porosity of all activated carbons were calculated from the N2
adsorption–desorption isotherms measured at −196 ◦C with a Micrometrics TriStar 3000
analyser. The specific surface area (SBET) was estimated by using the Brunauer–Emmet–
Teller (BET) equation. The total pore volume was calculated using Gurvich’s law. The
Horvath–Kawazoe (HK) method was used to calculate the micropore size distribution.
Following the IUPAC classification, pore sizes of 2 and 50 nm represent the boundary of
micropores–mesopores and mesopores–macropores, respectively.

2.4. CO2 Uptake

All the CO2/N2 adsorption experiments were carried out in a home-made system
at the School of Engineering (University of Aberdeen, Scotland), shown schematically in
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Figure 4. The set-up consisted of the following elements: CO2 (UN1013, Linde®, Aberdeen,
UK) and N2 (UN1066-OFN of Linde®) pressure bottles; CO2 and N2 manual flowmeters
(Omega®); pressure transducer (Omega®) connected to one computer; brass adsorption cell;
digital flowmeter (Agilent Technologies®, Cheadle, UK) and CO2 analyzer (G110 Geotech®,
Aberdeen, UK).
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Figure 4. Graphical flow diagram of the experimental system (a) and lab adsorption system (b) (oper-
ating at room temperature).

A gas adsorption cell was designed and built to carry out both adsorption and per-
meability tests, with one or two outputs, respectively (Figure 5a). The gas went through
the cell from the bottom side and passed through the sample holder (Figure 5b) where the
carbonaceous material under test was placed. The bottom side had a second outlet for the
collection of retentate when necessary (and was closed and sealed for adsorption tests to
avoid leaks). The cell was covered with rock wool to avoid heat dissipation (Figure 5b).
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Figure 5. Gas adsorption brass cell (a) and sampler holder/isolation of the cell (b).

Activated carbons obtained as described previously were pelletised using ashes from
palm oil as the binding agent, in a mass ratio of 3:2. Corresponding amounts of ACs
and ashes (around 0.25 g of ACs and 0.17 g of ashes) were ground in a mortar and two
droplets of distilled water were added to create a paste that was placed inside a pellet die
set (Figure 6a). The resulting pellets (diameter of 16 mm, Figure 6b) were then obtained
using a mould by pressuring at 100 bar for 1 min.
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The feed gas for the CO2 uptake tests was an equimolar mixture of nitrogen and
carbon dioxide at a total flow rate of 100 mL·min−1. All the CO2 breakthrough curves were
obtained at atmospheric pressure and varying temperatures (25 ◦C, 125 ◦C and 225 ◦C). An
electrical heater (Omega®) and a Taisuo® temperature controller (STP-321, Nigbo, China)
with a thermocouple type J were introduced in the system for tests at higher temperatures.

3. Results and Discussion
3.1. Production and Characterisation of Activated Carbons

Initially, 20 g of the pre-treated palm oil residues were carbonised following the
procedure described in Section 2.1. An average of 70% (weight %) of the initial mass was
removed during carbonisation in all samples. The remaining 30% (wt.) of the carbon-based
materials was physically or chemically activated, resulting in the samples described in the
following paragraphs.

3.1.1. Physical Activation

Physical activation of the carbonised samples (~2.5 g) was carried out using CO2.
Different burn-off percentages were reached after multiple activation cycles (Table 1), with
the total time shown as the sum of the duration of each individual cycle. As shown in
the table, the longer the activation time, the further development of SBET and VTOTAL is
found. Hence, ACs with higher burn-off showed increased CO2 uptakes compared with
their analogous half-burn-off values (20% vs. 40%).

Table 1. Physically activated samples.

Sample Activation Time (min) Burn-Off (%)

POR-P20 390 23.13
POR-P40 1130 39.57

3.1.2. Chemical Activation

Chemical activation of carbonised samples (~1.5 g) was carried out using NaOH, as
described in Section 2. The resulting burn-off percentages are gathered in Table 2.

Table 2. Chemically activated samples.

Sample C:NaOH Mass Ratio Burn-off (-)

POR-C11 1:1 4.34
POR-C12 1:2 4.90
POR-C13 1:3 3.39
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The average pore diameter, surface area and total pore volume of all the ACs were
obtained from the isotherms, as described above, and the main results are shown in Table 3.
A representative example of N2-adsorption curves is reported in Appendix A.

Table 3. BET results for all the produced ACs (correlation coefficient = 0.99) 1.

Sample
Average Pore
Diameter, dp

(nm) *

BET Surface Area,
SBET

(m2·g−1) **

Total Pore Volume,
VTOTAL

(cm3·g−1) ***

POR-P20 0.67 653.5 0.22
POR-P40 0.68 881.5 0.30
POR-C11 0.80 319.0 0.11
POR-C12 0.77 356.0 0.22

1 POR-C13 not available, * average error: 0.01 nm, ** average error: 32 m2·g−1, *** average error: 0.031 cm3·g−1.

Table 4 gathers the average CO2 uptake for both physically and chemically activated
samples at 25 ◦C. The increasing activation time in the physically activated biochars (higher
burn-off percentages) resulted in an increase in the adsorption capacity. This is due to
the further developed textural properties (i.e., SBET, VTotal, see Table 3) exhibited by the
activated carbons with higher burn-off values. Even though chemical activation was carried
out in a single heating step (with lower burn-off percentages), the corresponding ACs had
higher adsorption capacity [6] than that showed by the physically activated ones. It is
worth noting that the samples with higher NaOH impregnation ratios also show a slightly
higher CO2 uptake. This is consistent with the higher surface areas and lower average pore
diameters promoted at higher NaOH percentages.

Moreover, especially if the subsequent activation process is carried out at high temper-
atures and for long periods of time, with greater activation times, the adsorption capacity
of the activated carbon increases, obtaining good adsorption results even with samples
carbonised at low temperatures [22,23]. It can be deduced then that the process that dis-
tinguishes the adsorption capacity of ACs is the activation step, with CO2 uptake values
independent of the carbonisation process. Remarkably, previous studies on palm empty
fruit bunch showed similar CO2 uptake values compared with this work [24–26]. Commer-
cial AC is also included in the table for comparison.

Table 4. CO2 uptake results of the physical and chemical activated samples tested at 25 ◦C.

Sample CO2 Uptake (mmol/g)

POR-P20 2.41
POR-P40 3.58
POR-C11 3.36
POR-C12 3.75
POR-C13 3.81

Commercial AC [27] 3.84

3.2. Influence of Temperature on CO2 Uptake

Table 5 gathers the CO2 uptake associated with the breakthrough curves of the two
samples with the best performance (chemically activated at ratio 1:2 and 1:3) at two temper-
atures (125 ◦C–225 ◦C). The amount of CO2 adsorbed decreased at the highest temperature,
as expected due to the exothermic nature of adsorption (favoured at low temperatures). In-
terestingly, at higher temperatures, samples with the lowest impregnation ratio performed
better, as also observed in other works [28].

The average CO2 uptake value obtained for physically activated carbons in this work
was 3.1 mmolCO2/gAC and the average CO2 uptake value for chemically activated carbons
was 3.6 mmolCO2/gAC. Figure 7 shows a comparison of the CO2 uptakes obtained in
this study with other porous carbons reported in the literature. The capacities of CO2
uptake of our materials are among the best performing in carbon-based adsorbents, studied
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under similar operating conditions. It is important to highlight that the key advantages of
AC materials are their low cost, their insensitivity to moisture and the possibility of their
production/synthesis from numerous carbon-based naturally existing or spent materials.

Table 5. CO2 uptake results of the samples tested at 125 ◦C and 225 ◦C.

Sample CO2 Uptake (mmol/g)

125 ◦C 225 ◦C

POR-C12 1.20 0.32
POR-C13 0.78 0.10
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Mg2(dobdc) [30], Mg-MOF-74 [31], MOF Mg2(dobdc)(N2H4)1.8 (Mg2(dobdc)] (Amine-functionalized
MOF H4dobdc = 2,5-dihydroxyl-1,4-benzenedicarboxylic acid) [29,32], Zeolite 13X [14,33], Amine-
functionalized MOF (Zn2(C2O4)(C2N4H3)2-(H2O)0.5) [34], Commercial AC [27], AC from EFB [35],
Zeolite 4A [36], AC from spent coffee [14], AC from olive stones [37], Na-MOR zeolite [33], AC from
coconut fibre [38], SIFSIX-3-Zn140 [29,39].

Finally, it is worth noting that, even though not carried out in this work, activated car-
bons can be completely regenerated (i.e., adsorption is reversible) due to the establishment
of weak interactions between CO2 molecules and the sorbent surface active sites [40]. This
feature is highly desirable for potential industrial-scale applications and would help in
promoting further circular economy strategies.

4. Conclusions

We have successfully activated biochars obtained from palm oil residues (empty fruit
bunches and kernels), using physical and chemical processes. The resulting activated
carbons are suitable for CO2 adsorption, in equimolar mixtures with N2, and show gas
uptakes competitive to other existing carbonaceous materials. The utilisation of NaOH as a
chemical activator increased the CO2 adsorption, with respect to the physically activated
materials, attributed to an increased selectivity towards CO2 adsorption. The CO2 adsorp-
tion capacity decreases with increasing temperature in accordance with the exothermicity
of the process.

Our results suggest that the activated carbons obtained from oil palm residues can
be used as efficient adsorbents for CO2, with potential in carbon capture applications.
Our experimental process can promote circular economy strategies by alleviating the
accumulation of palm oil wastes. To close the cycle, the captured CO2 could be re-used in
the process of physical activation.
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