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Abstract In this paper the elastic dynamic load factor in structural dynamic is revisited. The 

existing literature in which the response exists only for isosceles triangular pulse and shock 

load pulse is criticized.  

A new pulse shape parameter is introduced by which both isosceles triangle impulse and shock 

load impulse and other unsymmetrical pulses can be expressed. This enables the elastic 

Dynamic Load Factor (DLF) to be computed versus the pulse shape parameter.  

Thereafter a surrogate model is found by which the load factor can be computed via pulse 

duration, natural period and pulse parameter. The conservative values of the load factor 

extracted from the surrogate model and can be used for structural dynamic aspect of the design.  

In numerical examples the Single Degree Of Freedom  (SDOF )model subjected to blast 

loading is investigated. It is shown that numerical scheme for elastic dynamic load factor in this 

paper is very accurate. The accuracy is demonstrated in case when isosceles triangular pulse 

blast load is applied.  Moreover, by introducing the  pulse shape index  parameter, any 

unsymmetrical pulse can be expressed and their response can be determined. 

Two types of surrogate functions are introduced to substitute the elastic DLF data. It is 

concluded that nonlinear low order surrogate functions are not accurate enough to predict 

elastic DLF. However, higher order surrogate polynomials are very accurate and  can be used in 

computational design of protective structures.   
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1  Introduction  

 
Dynamic load factor (DLF) is a key parameter in damage evaluation in the struc-

tures subjected to dynamic loads like impact earthquake, etc.  and is still a field 

of research [1]. The recent research in blast resistance structures also highly relies 

on determination of DLF via numerical methods [2] that sometimes are associat-

ed with experiments [3] .  

The key step on the design of blast resistance structures, is determining  the DLF 

via blast overpressure and the ratio of blast duration to  the natural period  (Td/T) 

[4]. It originates from Single Degree of Freedom (SDOF) method. This SDOF is 

still used in preliminary design calculations [5]. It relies on design charts and 

graphs known as Bigg’s charts [5].  
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To computerize the design procedure, an alternative surrogate formula, for Bigg’s 

chart is required. A low fidelity expression exists in [5] that is erroneous because 

it is used for all types of pulses and this cannot be true and  relied upon. This arti-

cle is aimed at accurate determination of elastic DLF to be sued for design pur-

pose.   

This article initially highlights the two types of DLF, elastic (related to structure) 

and plastic (related to loading)  . Such explicit statement is missed in [4] and [5]. 

The plastic DLF is straightforward and is known to the designer via the ratio of 

elastic resistance to maximum blast load. Comparison of the plastic DLF with 

elastic DLF determines if the structure is in elastic or elastic region.   

The Bigg’s chart [4,5] includes both elastic and plastic region and is available on-

ly for symmetrical triangular explosion pulse. Moreover, there is not an expres-

sion for elastic DLF in it to be used by designers.  This article analyses the elastic 

and plastic response resulted by unsymmetrical blast pulses, aiming at accurate 

determination of elastic DLF.  

Using optimisation techniques, a four parameters nonlinear surrogate function is 

found for elastic DLF expression. Since there is noticeable error in this function, 

an alternative linear polynomial (order 17)  is developed that results very accurate 

formula for elastic DLF. It is concluded that nonlinear surrogacy is successful on-

ly if initial function suggestion is appropriate.  Otherwise higher order polynomi-

als are preferred. Therefore a very accurate polynomial type surrogate expression 

is developed , by which the elastic DLF can be computed and relied upon.  

2  Elastic and plastic dynamic load factor 

The elastic dynamic load factor depends on maxx  maximum deflection, is defined by: 

max

E

st

x
DLF

x
=            (1) 

In (1) the stx is the static deflection of the system which is given by: 

             max

st

F
x

k
=            (2) 

By substituting (2) into (1) we have: 

max

max

E

k x
DLF

F
=          (3) 

In (3) 
max

F  and k  are the maximum force and the stiffness per unit length of the pro-

tective structure, respectively . Therefore, 
max

F  can be expressed by  
max max E

F p L= , 
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where 
max

p is the maximum pressure and 
E

L  is the equivalent length. The plastic dy-

namic load factor depends on maximum resistance   
m

R  and is defined by: 

max

m

R

R
DLF

F
=          (4) 

In (4) 
m

R depends on maximum elastic deflection 
el

x and is given by this equation: 

m elR k x=         (5) 

The structure remains in elastic status if the following inequality is true: 

maxel
x x           (6) 

The inequality (6) can be expanded as follows: 

max

max

max max

el

el

k x k x
k x k x

F F
          (7) 

Substituting (5) into (4) and the result into (7) , also using (3) and (1) in right side of 

(7) yields to: 

R E
DLF DLF           (8) 

By numerical simulation we can find the maximum deflection and we can check if (6) 

or (8) holds, then we can find if the structure is in elastic or plastic status.  

3  SDOF response to unsymmetrical pulse force 

When an unsymmetrical triangular pulse ( figure 1 left ) is applied to a mechanical 

system with mass M and the stiffness k (figure 1 right) the equations of motion in 

SDOF approach :  

 

 

 

 

 

Fig. 1. Unsymmetrical triangular pulse shape (left) system (right) 
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max

d

d

F t
M x k x t t

t



+ =          (9) 

( )

( )
max

1

d

d d

d

t t F
M x k x t t t

t




−
+ =  

−
 

The equations in (9) can be changed to: 

max

st d

d d

FM t t
x x x t t

k k t t


 
+ =  =      (10) 

( )

( )

( )

( )
max

1 1

d d

st d d

d d

t t t tFM
x x x t t t

k k t t


 

− −
+ =  =   

− −
 

However , 
M

k
 can be expressed in terms of T natural period of structure  as follows: 

2

2
4

M T

k 
=            (11) 

Substituting (11) into (10) changes it to: 

            
2

2
4

st d

d

T t
x x x t t

t


 
+ =        (12) 

( )

( )

2

2
4 1

d

st d d

d

t tT
x x x t t t

t


 

−
+ =   

−
 

Considering dimensionless parameter 

st

x
x

x
= , the equations (12) can be changed to: 

2 2

2 2
4

d

d

T d x t
x t t

dt t


 
 + =           (13) 
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( )

( )

2 2

2 2
4 1

d

d d

d

t tT d x
x t t t

dt t


 

−
 + =  

−
 

Further dimensionless parameters  
t

T
 =  and d

d

t

T
 =  introduced which yields to: 

2 2 2t
dt T d dt T d

T
  =  =  =    (14) 

Considering (14) the equations (13) will change to: 

2

2 2

1

4
d

d

d x
x

d


  

   
 + =       (15) 

( )

( )

2

2 2

1

4 1

d

d d

d

d x
x

d

 
   

   

−
 + =  

−
 

Via numerical simulation of equations (15) the history of x  versus   can be found 

and 
max

x  can be picked up easily. If we look at (3) it is obvious that we have: 

maxE
DLF x=            (16) 

For the symmetrical pulse shape (isosceles triangular). There is analytical solution for  

history of x ,  in [5-6] that can be expressed in notation used in this paper as follows:  

2 sin 2
2 0 0.5

2
d

d

x
 

 
 

−
=  

 
 
 

 

( )sin 22 2 sin 2
2 0.5

2

dd

d d

d d

x
     

  
   

−− −
= +  

 
 
 

 

( )2
sin 2

2 2 sin
2

d

d d

d

x
  

  
 

−
= 

 
 
 

          (17) 

In figure 2, the elastic DLF is determined by using x from both (16) and (17). It 

shows that the numerical method is verifiable and there is not any error.   
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Fig. 2. Elastic DLF using Numerical and analytical method  

4 Linear and nonlinear surrogate models  

Through the shape of the shock spectra in figure 2, we can suggest that the following 

form seems suitable for the elastic DLF. 

-b

1 cos

d
t

dT

E

t
DLF a c d

T
 − +
  

  
    

Using direct search nonlinear optimisation method, the parameters a , b , c and d is 

found and the surrogate formula for Elastic DLF can be found via this: 

-0.5301

1 5.7286 cos 2.4901 0.4854

d
t

dT

E

t
DLF

T
 − +
  

  
          (18) 

In figure 3, it is shown that the suggested surrogate formula in (18) is not accurate, 

since substantial error (up to 17%) can be observed through. Therefore, an alternative 

polynomial form is suggested to represent the elastic DLF.  Using the curve fitting 

tools in MATLAB,  it is found that a 17th degree polynomial in terms of the ratio td/T 

via (19) and (20) summarized in table 1,  is an accurate surrogate expression: 
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Fig. 3. Elastic DLF via  numerical and  nonlinear surrogate function  

18
18

1

i

d

E i

i

t
DLF a

T

−

=


 
 
 

          (19) 

Coefficient  Value Coefficient  Value Coefficient Value 

a1 -10
-5.3453 10  

a7 -0.1284  a13 -134.6187  

a2 -8
5.2161 10  

a8 0.8806  a14 127.3124  

a3 6
-2.3092 10

−
  

a9 -4.5012  a15 -75.3144  

a4 5
6.1438 10

−
  

a10 17.0873  a16 22.739  

a5 -0.0011  a11 -47.6367  a17 -0.1595  

a6 0.0139  a12 95.6827  a18 0.1548  

Table 1. Numerical values of the coefficients in (19)        

                     (20) 
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In figure 4, it is shown that the suggested surrogate polynomial in (19) is accurate 

enough. Since when we examine  figure 4 the  error level is below 2% . 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Elastic DLF via  numerical and  polynomial  surrogate function  

5 Conclusions 

The elastic DLF is a key factor in computational design of protective structures. 

Surrogate models are required to fulfil this objective. The nonlinear surrogate 

functions that seem suitable are not accurate enough. However, the higher order 

surrogate polynomials are very accurate in determination of the elastic DLF.  
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