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A B S T R A C T   

Introduction: Asthma is one of the commonest chronic conditions in the world. Subtypes of asthma have been 
defined, typically from clinical datasets on small, well-characterised subpopulations of asthma patients. We 
sought to define asthma subtypes from large longitudinal primary care electronic health records (EHRs) using 
cluster analysis. 
Methods: In this retrospective cohort study, we extracted asthma subpopulations from the Optimum Patient Care 
Research Database (OPCRD) to robustly train and test algorithms, and externally validated findings in the Secure 
Anonymised Information Linkage (SAIL) Databank. In both databases, we identified adults with an asthma 
diagnosis code recorded in the three years prior to an index date. Train and test datasets were selected from 
OPCRD using an index date of Jan 1, 2016. Two internal validation datasets were selected from OPCRD using 
index dates of Jan 1, 2017 and 2018. Three external validation datasets were selected from SAIL using index 
dates of Jan 1, 2016, 2017 and 2018. Each dataset comprised 50,000 randomly selected non-overlapping pa
tients. Subtypes were defined by applying multiple correspondence analysis and k-means cluster analysis to the 
train dataset, and were validated in the internal and external validation datasets. 
Results: We defined six asthma subtypes with clear clinical interpretability: low inhaled corticosteroid (ICS) use 
and low healthcare utilisation (30% of patients); low-to-medium ICS use (36%); low-to-medium ICS use and 
comorbidities (12%); varied ICS use and comorbid chronic obstructive pulmonary disease (4%); high (10%) and 
very high ICS use (7%). The subtypes were replicated with high accuracy in internal (91–92%) and external 
(84–86%) datasets. 
Conclusion: Asthma subtypes derived and validated in large independent EHR databases were primarily defined 
by level of ICS use, level of healthcare use, and presence of comorbidities. This has important clinical implica
tions towards defining asthma subtypes, facilitating patient stratification, and developing more personalised 
monitoring and treatment strategies.   
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1. Introduction 

Asthma is a chronic condition characterised by reversible airway 
obstruction and has an estimated global prevalence of 262 million [1]. 
People diagnosed with asthma exhibit diverse symptoms, likely arising 
from different underlying mechanisms [2]. The Global Initiative for 
Asthma (GINA) guidelines provide a characterisation of asthma symp
tom severity as “mild”, “moderate” or “severe” based on the current 
level of treatment required to control symptoms [3]. However, the 2022 
update to these guidelines presents limitations of this characterisation: 
e.g. that it can only be applied retrospectively, that these terms may be 
used informally without full assessment, and that the term “mild 
asthma” may encourage complacency [3]. Of 155 deaths included in the 
National Review of Asthma Deaths, 58% had occurred in people who 
were being treated for “mild” or “moderate” asthma [4]. 

More recently, the task of asthma categorisation has been tackled 
using data analytics methods. “Cluster analysis” is an increasingly 
popular method for identifying homogeneous patient subgroups based 
on patterns in clinical characteristics, both in asthma [5,6] and other 
disease areas [7–9]. Our recent review identified 63 studies that applied 
cluster analysis with the aim of defining asthma subtypes, and high
lighted several practical and methodological limitations that were 
common across most of the studies reviewed (in particular, small sample 
sizes, inappropriate feature encoding, lack of stability testing, and lack 
of formal validation exercises) [10]. The subtypes that have been 
consistently identified across these studies are primarily defined by the 
age of disease onset, the presence of allergies and level of eosinophilic 
inflammation [6]. 

The aim of this study was to: (1) develop and validate a data analytics 
framework for identifying asthma subtypes among adults using elec
tronic health records (EHRs), and (2) gain new insights into this het
erogeneous patient population. The framework was designed to be 
generalisable for use with large datasets comprising categorical features, 
which are key characteristics of datasets derived from longitudinal, 
coded EHRs. 

2. Methods 

2.1. Study design and population 

The primary datasets were obtained from the Optimum Patient Care 
Research Database (OPCRD; https://opcrd.co.uk/). The OPCRD dataset 
comprises medical records of >13.7 million patients from over 800 
general practices across the UK (approximately 10 % of the total UK 
population), drawn from all UK clinical systems (EMIS, TPP SystmOne, 
InPS Vision, Microtest Evolution). It benefits from a long retrospective 
period (median time in the database is 7 years, going back to birth for 
summary diagnostic data in many cases), and contains linked patient- 
completed respiratory questionnaires. Respiratory-related outcome 
measures within the OPCRD have been validated using patient reported 
outcomes [11]. 

The findings derived from the OPCRD datasets were validated using 
datasets obtained from the Secure Anonymised Information Linkage 
(SAIL; https://saildatabank.com) Databank [12–16]. Within the SAIL 
Databank, the Welsh Longitudinal General Practice dataset comprises 
the primary care EHR data on >4 million patients from over 76 % of 
general practices in Wales [17]. 

The NHS Health Research Authority has approved OPCRD for clin
ical research purposes (REC reference: 20/EM/0148). Approval for the 
analysis of OPCRD data in the current study was granted by the Anon
ymous Data Ethics Protocols and Transparency committee 
(ADEPT0619). The Secure Anonymised Information Linkage (SAIL) 

Databank independent Information Governance Review Panel approved 
the study as part of the Wales Asthma Observatory project (0317). No 
additional research ethics approval was need as only anonymised data 
were used. 

For each of OPCRD and SAIL, three cohorts were derived corre
sponding to three index dates (Jan 1, 2016, 2017, and 2018). This was to 
assess the generalisability for the clusters to future time-points. Inclu
sion criteria were as follows: (1) the patient had a Read code corre
sponding to asthma in the three years prior to the index date; and (2) the 
patient was registered at a general practice located in England for the 
OPCRD cohorts and Wales for the SAIL cohorts. The exclusion criteria 
are described in Appendix A.1.1. 

To reduce computation time, samples of 50,000 non-overlapping 
patients were randomly selected from the eligible patients for each 
index date and data source (except for the 2016 OPCRD cohort, from 
which 100,000 patients were randomly selected and split into train and 
test sets). The purpose of each of these samples is outlined in Fig. 1. Two 
independent EHR databases and three separate datasets (corresponding 
to three time-periods) from each database were used to assess the extent 
to which findings were biased to a certain database or time-period. 

2.2. Feature derivation 

Forty-five categorical features were derived from the primary care 
EHR data (Table 1). These features were chosen based on previous 
studies of asthma patients using primary care EHRs [18,19], clinical 
relevance to asthma subtypes [6], and the availability of data across 
both the OPCRD and SAIL Databank. We chose to include a wide range 
of features that were linked to asthma both directly (e.g. medications for 
asthma) and indirectly (e.g. presence of comorbidities). Multiple cor
respondence analysis (MCA) was used to detect underlying structures in 
the dataset and represent them in fewer dimensions prior to the appli
cation of k-means cluster analysis (Table 2). 

2.3. Identifying subtypes 

Table 2 describes the methods that were applied to the 2016 OPCRD 
data to identify the subtypes. The data were split randomly into non- 
overlapping train and test datasets, each of 50,000 samples (Fig. 1). 

2.4. Validation 

To validate the subtypes internally, the RF was used to predict cluster 
labels for the 2017 and 2018 OPCRD datasets. The ground truth cluster 
labels were derived in these datasets by applying MCA and k-means 
cluster analysis using the number of MCA-derived features and number 
of clusters determined from the train dataset. The subtypes were vali
dated externally using three datasets derived from SAIL Databank 
(Fig. 1). 

For both the internal and external validations, comparisons between 
the RF-assigned subtypes and the cluster labels determined using the 
cluster analysis methodology were reported as confusion matrices, 
balanced accuracies and Jaccard similarity coefficients. Bar plots of the 
features with the 10 highest RF feature importance values for each 
subtype were used to compare characteristics of the clusters across the 
2016 OPCRD and 2016 SAIL datasets. 

2.5. Interpretation 

The subtypes were interpreted through a combination of summary 
statistics, RF feature importance values and scatter plots of the data 
projected to two-dimensional space using t-distributed stochastic 
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neighbour embedding (t-SNE; see Section A.1.2) [25]. 

2.6. Reporting guidelines and availability of code 

This study was reported in line with the STROBE and RECORD 
statements [26,27]. The completed checklist is provided as Appendix B. 
Analysis code is publicly available at https://github. 
com/elsie-h/asthma-subtypes. All statistical analysis was performed 
with R (version 4.0.3). 

2.7. Role of the funders 

The funder of the study had no role in study design, data collection, 
data analysis, data interpretation, or writing of the report. 

3. Results 

3.1. Study design and population 

The flow of eligible patients into the study is illustrated in Fig. A.2. 

3.2. Feature derivation 

Summary statistics for all features derived from OPCRD and SAIL 
stratified by year are given in Table A.2. 

3.3. Identifying subtypes 

Based on the scree plot (Fig. A.3), MCA solutions with 4–14 di
mensions were used as input for the k-means cluster analysis. For all 
MCA solutions, the average silhouette width was greatest for the 2- 
cluster solution (Fig. A.5). In all cases this was driven by one large, well- 
defined cluster, while the other cluster was poorly defined, but small. 
See Fig. A.6 for silhouettes plots for all stable cluster solutions for the 12- 
dimensional MCA solution. For the 4- and 5-dimension MCA solutions, 
the 5-cluster solution had the next greatest average silhouette width, 
and for 6- to 14-dimension MCA solutions, the 6-cluster solution had the 

next greatest average silhouette width. These solutions were taken for
ward to the classification step, along with the 6-dimension 7-cluster 
solution that was favoured by the gap statistic (Fig. A.7). 

The 6-cluster solution derived from the 12-dimension MCA solution 
had the highest mean Jaccard coefficient when compared with the labels 
assigned by the RF model, so was selected as the final solution (Fig. A.9). 

3.4. Interpretation 

The datasets were partitioned into groups according to the cluster 
labels as predicted by the RF, we refer to these groups as “subtypes”. 
Table 3 provides summary statistics for key features across the subtypes. 
Table A.4 summarises all 45 categorical features across the subtypes. 
Fig. 2 (plot A) illustrates the six subtypes in two-dimensional space 
projected by t-SNE. Fig. 2 (plot B) illustrates that the feature that best 
separates the clusters is the number of inhaled corticosteroid (ICS) 
prescriptions. The number of asthma reviews (plot C), a COPD diagnosis 
(plot D) and the Charlson Comorbidity Index (CCI; plot E) also separate 
the clusters, albeit to a lesser extent than ICS. Additional t-SNE plots are 
provided in Fig. A.13. 

3.5. Validation 

The subtypes were replicated with 91–92 % balanced accuracy in the 
internal validation (datasets extracted from OPCRD; Fig. 3) and 84–86 % 
in the external validation (datasets extracted from SAIL; Fig. 4). 

4. Discussion 

4.1. Summary 

We defined the following six subtypes of adult asthma from primary 
care EHR data (percentage of patients in the 2016 OPCRD test dataset 
assigned to each subtype in parentheses): “low ICS use and low 
healthcare utilisation” (30 %); “low-to-medium ICS use” (36 %); “low- 
to-medium ICS use and comorbidities” (12 %); “varied ICS use and co
morbid COPD” (4 %); “high ICS use” (10 %); and “very high ICS” (7 %) 

Fig. 1. Illustration of the model selection and validation framework. Each square represents a non-overlapping sample of 50,000 patients. The OPCRD 2016 train 
data is the main ‘train dataset’ used in the study. The selected model was chosen based on performance in the OPCRD 2016 test data. 
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Table 1 
Description of the input features.  

Feature Description Categories Read codes5 

Sex As recorded in primary care record F; M; – 
Index age Age in years on index date split into quintiles 18–33; 34–45; 46–56; 

57–68; 69–100;1 
– 

Smoking status Smoking status recorded Current; ex; non;2 smoking.csv 
Age of diagnosis Age in years at recording of first asthma diagnosis code in 

primary care record 
<18; ≥18; 2 asthma_diagnosis.csv 

Body mass index (BMI) Most recent BMI code recorded in the two-year pre-index 
period (kg/m2) 

<20; 20–24; 25–29; 
30–39; ≥40; missing; 2 

BMI.csv 

Blood eosinophil count Most recent blood eosinophil count recorded in the two-year 
pre-index period (cells per microlitre) 

≤400; >400; missing;2 blood_eosinophils.csv 

Emergency events Number of asthma-related A&E attendances or hospital 
admission codes recorded in the pre-index year (codes 
recorded within 14 days of each other treated as one 
occurrence) 

0; ≥1; 1 emergency.csv 

Exacerbations Number of asthma exacerbation codes recorded in the pre- 
index year (codes recorded within 14 days of each other 
treated as one occurrence) 

0; ≥1; 1 exacerbation.csv 

Asthma reviews Number of distinct dates on which asthma review codes were 
recorded in the two-year pre-index period 

0; 1; 2; ≥3; a asthma_review.csv 

Upper respiratory tract 
infection (URTI) 

Number of codes recorded in pre-index year (codes recorded 
within 14 days of each other treated as one occurrence) 

0; 1; ≥2; 1 infections.csv 

Lower respiratory tract 
infection (LRTI; includes 
influenza) 

Influenza vaccination Influenza vaccination code recorded in pre-index year No; yes; influenza_vaccination.csv 
Percent of predicted peak 

expiratory flow (ppPEF) 
Most recent ppPEF recorded in the two-year pre-index 
period 

<60 %; 60–80 %; >80 
%; not valid; missing; 2,3 

PEFR.csv 

Percent of predicted forced 
expiratory volume in 1 
second (ppFEV1) 

Most recent ppFEV1 recorded in the two-year pre-index 
period 

<60 %; 60–80 %; 
80–100 %; >100 %; not 
valid; missing; 2,3 

spirometry.csv 

Asthma action plan Asthma action plan code recorded in two-year pre-index 
period 

No; yes; asthma_plan.csv 

Peak expiratory flow (PEF) 
home monitoring 

PEF home monitoring code recorded in two-year pre-index 
period 

No; yes; PEFR_home.csv 

Royal College of Physicians 
Three Questions (RCP3Q) 

Most recent RCP3Q score recorded in the two-year pre-index 
period 

0; 1; 2; 3; missing; RCP3Q.csv 

Anaphylaxis Anaphylaxis code ever recorded (active if “adrenaline pen 
prescribed” code recorded in the two-year pre-index period) 

Absent; ever; active; allergic_conditions.csv & allergy_prescriptions.csv 

Angioedema or urticaria Angioedema or urticaria code ever recorded Absent; ever; 
Allergic conjunctivitis Allergic conjunctivitis code ever recorded (active if 

prescription for “medication for eye allergy” also recorded in 
pre-index year) 

Absent; ever; active; 

Eczema Eczema code ever recorded (active if prescription for 
“topical preparation for eczema” also recorded in pre-index 
year) 

Absent; ever; active; 

Rhinitis Rhinitis code ever recorded (active if prescription for 
“medication for nasal allergy” also recorded in pre-index 
year) 

Absent; ever; active; 

Drug allergy Drug allergy code ever recorded Absent; ever; 
Food allergy Food allergy code ever recorded Absent; ever; 
Other allergy Other allergy code ever recorded Absent; ever; 
Oral antihistamine Active if oral antihistamine prescription code recorded in 

pre-index year 
Absent; ever; 

Anxiety Anxiety code ever recorded (active if prescription of 
“medication for anxiety” also recorded in pre-index year) 

Absent; ever; active; comorbidities.csv & comorbidity_prescriptions.csv 

Chronic cardiac disease (CCD) CCD code ever recorded (active if prescription of 
“medication for anxiety” also recorded in pre-index year) 

Absent; ever; 

Chronic obstructive 
pulmonary disease (COPD) 

COPD code ever recorded Absent; ever; 

Depression Depression code ever recorded (active if prescription of 
“medication for depression” also recorded in pre-index year) 

Absent; ever; active; 

Diabetes Diabetes code ever recorded Absent; ever; 
Gastro-oesophageal reflux 

disease (GORD) 
GORD code ever recorded (active if prescription of 
“medication for GORD” also recorded in pre-index year) 

Absent; ever; active; 

Nasal polyps Nasal polyps code ever recorded Absent; ever; 
Beta-blocker Number of beta-blocker prescription codes in the pre-index 

year 
0; ≥1; 1 comedications.csv 

Non-steroidal anti- 
inflammatory drug (NSAID) 

Number of NSAID prescription codes in the pre-index year 0; ≥1; 1 

Paracetamol Number of paracetamol prescription codes in pre-index year 0; ≥1; 1 

Statin Number of statin prescription codes in pre-index year 0; ≥1; 1 

Inhaled corticosteroids (ICS) Number of ICS prescription codes in pre-index year 0; 1–4; 5–8; ≥9; 1 asthma_prescriptions.csv 
Short-acting beta-agonist 

(SABA) 
Number of SABA prescription codes in pre-index year 0; 1–4; 5–8; ≥9; 1 

(continued on next page) 
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use. 
The “low ICS use and low healthcare utilisation” subtype was 

labelled as such because 89 % and 84 % of patients had received no ICS 
or short-acting beta-agonist (SABA) prescriptions respectively in the pre- 
index year, and 87 % had no record of an asthma review in the two-year 
pre-index period. Patients assigned to the “low-to-medium ICS use” 
subtype had a median of 1 (IQR 3) ICS and 1 (IQR 2) SABA prescriptions 
in the pre-index year, 93 % had records of ≥ 1 asthma reviews in the 
two-year pre-index period, and 11 % had CCI > 2 (the lowest across the 
six subtypes). The numbers of ICS and SABA prescriptions had a similar 
distribution in the “low-to-medium ICS use and comorbidities”, which 
had the highest prevalence of comorbidity across the six subtypes (68 % 
had CCI > 2). The variation in the number of ICS and SABA prescriptions 
was greatest in the “varied ICS use and comorbid COPD”, and 98 % of 
patients in this subtype had a record of COPD. The “high” and “very high 
ICS use” subtypes were principally defined by the number of ICS pre
scriptions in the pre-index year: 98 % of patients in the “high ICS use” 
had 5–8 ICS prescriptions in the pre-index year, and 99 % of patients in 
the “very high ICS use” had ≥ 9. These subtypes had varied SABA use, 
and the highest number of exacerbations across the six subtypes (14 % 
and 15 % respectively). 

These subtypes generalised well at two future time-points (Fig. 3), 
and in an additional EHR database from a different UK nation (the SAIL 
Databank; Fig. 4). The characteristics of the subtypes were consistent 
across OPCRD and SAIL (Figs. A.14-A.19). This finding was reassuring, 
given the differences in the distribution of certain features in the data
sets extracted from OPCRD and SAIL (e.g., there were typically more 
missing data, lower prevalence of comorbidities and fewer prescriptions 
for asthma medications in the datasets extracted from OPCRD compared 
to SAIL; Table A.2). 

4.2. Findings in context 

Asthma subtypes that have been consistently defined in previous 
studies were characterised by the age of disease onset, the presence of 
allergy and level of eosinophilic inflammation [5,6]. It was unsurprising 
that none of the subtypes identified in this study were characterised by 
these features, given the nature of primary care EHR data. Arguably the 

best approximation for age of asthma onset considered herein was the 
first date on which an asthma Read code was recorded, which does not 
necessarily correspond to true disease onset [28]. A full discussion of the 
limitations of EHR data for deriving features relating to age of disease 
onset, presence of allergy and the level of eosinophilic inflammation is 
given in Appendix A.3.1. 

As the subtypes identified in this study were largely defined by the 
number of prescriptions for asthma medication, it is tempting to align 
these subtypes with the GINA treatment-based categorisation of severity 
[3]. We refrain from doing this for three reasons. First, our datasets did 
not include information on asthma medication dose. While the number 
of prescriptions could be used as a proxy for the dose, this is not vali
dated. It would therefore be challenging to reliably infer the GINA 
category from a practical perspective. Second, EHRs do not accurately 
capture control of asthma symptoms. While SABA prescriptions, exac
erbations, and the Royal College of Physicians three questions score may 
capture control to some extent, this gives an incomplete view. If we did 
consider these proxies to sufficiently capture asthma control, a sub
stantial proportion of patients in each subtype would be considered to 
have uncontrolled symptoms, in whom the GINA characterisation 
should not be assessed. Third, the 2022 update of the GINA guidelines 
raises limitations of this severity characterisation, as described in our 
Introduction. In particular, the guidelines state that “the term ‘mild 
asthma’ should generally be avoided in clinical practice” and “for 
population-level observational studies, if clinical details are not avail
able, describe the prescribed (or dispensed) treatment, without imputing 
severity” [3]. 

The emerging “treatable traits” model of care for airways diseases 
proposes that treatment for airways diseases goes beyond diagnostic 
labels such as asthma or COPD, taking a more complete view of the 
patient that considers pulmonary, extrapulmonary and lifestyle/ 
behavioural traits [2,29]. While subtypes could help to facilitate the 
treatable traits model of care, it is clear from the limitations discussed in 
the following subsection and in Appendix A.3.1 that primary care EHRs 
would not provide a sufficient data source for deriving such subtypes. 
Future studies could extend the analytical framework proposed in this 
study to incorporate additional linked datasets. 

Table 1 (continued ) 

Feature Description Categories Read codes5 

Long-acting beta-agonist 
(LABA) 

Number of LABA prescription codes in pre-index year 0; 1–4; 5–8; ≥9; 1 

Short-acting muscarinic- 
agonist (SAMA) 

Number of SAMA prescription codes in pre-index year 0; ≥1; 1 

Long-acting muscarinic- 
agonist (LAMA) 

Number of LAMA prescription codes in pre-index year 0; ≥1; 1 

Leukotriene receptor 
antagonist (LTRA) 

Number of LTRA prescription codes in pre-index year 0; ≥1; 1 

Methylxanthine Number of methylxanthine prescription codes in pre-index 
year 

0; ≥1; 1 

Oral corticosteroids (OCS) Number of OCS prescription codes recorded on the same 
date as an asthma-related code in pre-index year 

0; 1; 2; ≥3; 1 asthma_prescriptions.csv, asthma_qof.csv, 
asthma_review.csv, asthma_plan.csv, emergency.csv, 
exacerbation.csv, RCP3Q.csv 

Charlson comorbidity index 
(CCI)4 

Number of CCI categories with a code recorded ever 0–1; 2; ≥3; 1 CCI.csv  

1 Categorisation based on feature distribution. 
2 Established categorisation. 
3 Samples for which data had been recorded, but were not valid were categorised as “not valid”, while samples in which no data had been recorded were categorised 

as “missing”. This was to distinguish between samples for which the data had been recorded, but were not usable (e.g. the patient’s ppPEF had been measured but 
incorrectly recorded), and samples for which no data had been recorded (e.g. the patient’s ppPEF had not been measured). 

4 Used to summarise subtypes but not used as an input feature for multiple correspondence analysis. 
5 Files can be found in https://github.com/elsie-h/asthma-subtypes/tree/main/read_codes. 
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4.3. Strengths 

We used an analytical framework that comprised MCA to transform 
the categorical EHR-derived features into a more compact form, k-means 
to identify the clusters, and RF prediction models to investigate cluster 
label replication. This analytical framework addressed many limitations 
of previous asthma subtyping studies, identified in our recent review 
[10]. The use of EHR databases as the data source allowed for a large 
sample size (we used a training dataset of 50,000 patients from OPCRD, 
compared to the median sample size of 195 in the reviewed studies) 
[10]. We tested and validated our findings in a further three internal and 
three external datasets, each comprising 50,000 patients. 

4.4. Limitations 

Identifying a clinical cohort from EHR data is typically a trade-off 
between sensitivity and specificity. This is especially true for condi
tions such as asthma, for which diagnosis is challenging, error-prone, 
and can take months or years [30,31]. Our cohort comprised people 
with an asthma Read code in the previous three years, based on a pre
viously validated method (although some alterations were made due to 
differences in coding systems) [32]. This method prioritises sensitivity 
(avoids erroneously excluding people with asthma), but as a result may 
include some people without asthma. The positive predictive value from 
the validation study on which this method was based was 86 % [32]. As 
in the validation study [32], we did not exclude people with COPD to 
avoid erroneously excluding people with co-existing asthma and COPD 
[33]. 

Difficulties in representing clinical features are limitations of using 
EHR data in research. We took various steps to mitigate biases associated 
with these limitations. To avoid misclassification bias, we used validated 
EHR phenotyping algorithms where available, and otherwise derived 
our own algorithms with input from clinical collaborators. We have 
provided our codelists in a public GitHub repository. As omitting pa
tients with missing data could introduce selection bias (data are typi
cally “missing not at random” in primary care EHRs [34]), we instead 
included this information as a feature category. 

Despite steps to mitigate the limitations of EHR data, there remains 
the challenge that EHR data alone give an incomplete view of a patient’s 
condition. E.g., the features related to medication use were derived from 
counts of Read codes, and did not incorporate dosing instructions, 
whether the prescription was dispensed, the patient’s adherence to their 
medication nor their inhaler technique, as such information was un
available in one or both databases. Additionally, information relating to 
signs and symptoms experienced by the patient are not reliably coded in 
EHRs. Finally, insights derived from EHRs are intrinsically biased ac
cording to diagnostic labels and clinician/patient behaviours during the 
period of data collection. 

Table 2 
Statistical methods used to identify subtypes.  

Method Description 

Multiple correspondence 
analysis (MCA) 

MCA was applied to project the 45 categorical 
features to a lower-dimensional continuous feature 
space [20]. All 45 features were assigned equal 
weight in the MCA.To  
ensure that the projection was stable, four subsets, 

each of size 10,000 samples, were randomly selected 
from the training dataset without replacement. MCA 
was carried out on the training dataset, and 
independently on each of the four subsets. The scree 
plots [21] of the MCA results from the full dataset 
and each of the subsets were plotted and stability was 
subjectively assessed by the degree of overlap 
between the plots. 
Using the scree plot corresponding to MCA on the full 
dataset, a region was identified of acceptable 
dimensions to retain. Fig. A.1 (A) shows an 
illustration of this region, highlighted in yellow. The 
MCA scores were computed for up to the maximum 
number of dimensions in the identified region (the 
right-most yellow column in Fig. A.1 (B)). The 
correlation ratios for each of the original 45 features 
and each of the MCA scores were plotted. The 
distributions of the resulting scores were visualised 
using frequency polygons. 

k-means K-means cluster analysis was applied to the 
computed MCA scores. This was repeated for a range 
of MCA scores, as illustrated in Fig. A.1 (B). 
The stability of solutions for k = 2, …, 10 were 
assessed using the framework outlined by Hennig 
et al. [22] This framework was implemented using 
the "clusterboot" function of the "fpc" R package1, 
drawing 100 subsets each of size 10,000. Cluster 
solutions were considered stable if the average 
Jaccard coefficient was >0.85 (this cut-off is 
proposed by Hennig in the documentation for the 
"clusterboot" function of the "fpc" R package). 
The gap statistic, proposed by Tibshirani et al., [23] 
were calculated for all k. To speed up computation, 
the gap statistic was calculated for subsamples of size 
10,000 (selected randomly without replacement). 
This was repeated over four different subsamples to 
assess whether findings were consistent across 
subsamples. The silhouette widths were calculated 
for all k for which the cluster solution was stable. 
The gap statistic and silhouette widths were used to 
select the best value of k (for each number of MCA 
dimensions) using the following rules of thumb: 
Based on the gap statistic, the best value of k was 
selected using the criterion outlined by Tibshirani 
et al. [23] If the solution corresponding to k was not 
stable based on the Jaccard coefficients calculated in 
the stability framework, the next best value of k was 
selected. 
Based on the silhouette widths, the value of k with 
the greatest average silhouette width was selected. 
Plots of the silhouette widths were also inspected to 
give a visual impression of cluster validity. 
This resulted in a value of k being selected for each 
number of MCA dimensions. Each of these solutions 
were taken forward to the classification step. If the 
Gap statistic and silhouette widths indicated 
different values of k, 
multiple solutions were taken forward. 

Random forest (RF) We trained a RF presenting the 45 categorical 
features as inputs and using the cluster labels as the 
output. We developed different RF models, using the 
cluster labels computed from the different possible 
cluster solutions as a function of the MCA features 
fed into k-means. The RF hyper-parameters (number 
of trees and number of features over which to 
optimize each split) were determined using the 
"tuneRF" function of the "randomForest" R package. 
[24] 
Each of the RF models were used to replicate the  

Table 2 (continued ) 

Method Description 

cluster labels in the test dataset. The ground truth 
cluster labels were derived in the test dataset by 
applying the clustering process described above, 
using the hyper-parameters determined from the 
train dataset. Jaccard coefficients were calculated 
between each of the replicated clusters and the 
ground truth cluster labels in the test dataset. The 
performance of the model was summarized by the 
average Jaccard coefficient. The final model (i.e. the 
selected dimensionality and number of clusters)  
was the model that maximised the average Jaccard 

coefficient between the replicated clusters and the 
true clusters. From here on, the outputs of the final 
model are referred to as subtypes.  

1 https://cran.r-project.org/web/packages/fpc/index.html. 
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4.5. Clinical implications 

This study provides evidence that subtypes of asthma are identifiable 
from primary care EHRs, and that they generalise across time-points and 
EHR databases. The identified subtypes have clear clinical in
terpretations, but there remains heterogeneity within the subtypes that 
requires further information to unpick. The clinical value of the subtypes 
at this stage is that they point to the information required to enable 
clinically meaningful actions, as illustrated by the following two 
examples. 

The “low ICS use and low healthcare utilisation” is characterised by 
lack of data, due to the patient having little interaction with primary 
care. For some patients, this may reflect well-controlled asthma or a 
misdiagnosis of asthma. However, 3 % of patients in this subtype had an 
exacerbation recorded in the pre-index year, and 3 % had five or more 
SABA prescriptions recorded in the pre-index year, suggesting uncon
trolled asthma in a small number of patients. This subtype could also be 
indicative of wider issues such as the fragmentation of healthcare re
cords, with separate records for out of hours care, accident and emer
gency, and hospital care. Although the data collected when patients visit 
these different services should be captured in the primary care EHR, the 
frequency and accuracy of this record transfer is variable [19,35]. 
Therefore, the identification of this subtype has the potential to flag 
barriers to care, misdiagnoses, and data transfer issues. 

At the other end of the spectrum, the “very high ICS use” subtype 
could flag a different range of issues. Patients assigned this subtype with 
low SABA use could be considered for stepping down treatment, in line 
with the GINA strategy of finding the patient’s minimum effective level 
of treatment to minimise potential side-effects of medication and reduce 
medication costs [36,37]. High SABA use in this subtype (a proxy for 
poor symptom control) suggests that the patient may benefit from a 
medication review to assess inhaler technique, consider alterative 
controller options, and/or refer to a specialist asthma clinic. This 
medication pattern may indicate that the patient’s asthma diagnosis 

requires re-evaluation, as dysfunctional breathing could be a symptom 
of another undiagnosed condition [38]. Consequently, identifying this 
subtype could facilitate better prioritisation and targeting of services to 
those with the greatest need and therefore inform service planning. 

Using these subtypes to summarise asthma populations could help 
with management and resource planning at the practice level, and could 
be useful for understanding regional differences in the asthma popula
tion. E.g., although the same subtypes were identified in the OPCRD and 
SAIL datasets (samples from England and Wales respectively), in SAIL a 
higher proportion were assigned to the “very high ICS use” subtype 
(19.0 % compared to 7.4 % in OPCRD, Fig. A.19). 

4.6. Conclusions 

We have developed and validated a generalisable data-driven 
framework to define stable, reproducible, and clinically meaningful 
subtypes of adult asthma from datasets derived from two independent 
primary care EHR databases. This has important clinical implications 
towards assigning asthma subtypes, facilitating patient stratification, 
and developing more personalised monitoring and treatment regimens. 

Summary table 
What is already known on this topic?  

• Asthma is an umbrella term for an unknown number of disease 
subtypes.  

• Clinically relevant subtypes of asthma can be identified through the 
application of cluster analysis, and previous studies reported on 
small cohorts. 

What this study added to our knowledge?  

• This is the first study to demonstrate the application of cluster 
analysis to datasets derived from large longitudinal electronic health 
record (EHR) databases to identify subtypes of asthma. 

Table 3 
Summary statistics for subtypes across key features.  

Subtype % of 
dataset1 

Age2 ICS2 SABA2 Asthma 
review3 

RCP3Q ≥
14 

Exacerbation5 COPD6 CCI >
27 

Obese8 

1. Low medication use and low healthcare 
utilisation 

30 % 44 
(26) 

0 (0) 0 (0) 13 % 11 % 3 % 5 % 16 % 35 % 

2. Low-to-medium medication use 36 % 45 
(23) 

1 (3) 1 (2) 93 % 58 % 7 % 3 % 11 % 31 % 

3. Low-to-medium medication use and 
comorbidities 

12 % 69 
(16) 

2 (4) 1 (3) 83 % 51 % 8 % 12 % 68 % 46 % 

4. Varied medication use and comorbid COPD 4 % 70 
(17) 

7 (8) 5 (9) 73 % 63 % 9 % 98 % 52 % 33 % 

5. High medication use 10 % 56 
(24) 

6 (2) 4 (5) 88 % 61 % 14 % 9 % 27 % 40 % 

6. Very high medication use 7 % 60 
(24) 

12 
(3) 

8 (10) 89 % 69 % 15 % 13 % 37 % 43 %  

1 OPCRD 2016 test dataset. 
2 Median (interquartile rage) for Age and the number of inhaled corticosteroids (ICS) and short-acting beta-agonist (SABA) prescriptions recorded in pre-index year. 
3 Percentage of patients with one of more asthma reviews in the two-year pre-index period. 
4 Percent of patients with a Royal College of Physicians three questions (RCP3Q) score ≥ 1 (missing RCP3Q score grouped with RCP3Q score = 0 for percent 

calculation). 
5 Percentage of patients with an exacerbation recorded in the two-year pre-index period. 
6 Percentage of patients with a recording of chronic obstructive pulmonary disease (COPD) and chronic cardiac disease (CCD) ever. 
7 Percentage of patients with Charlson Comorbidity Index (CCI) > 2. Note that CCI was not included as a feature in the identification of the subtypes but is used here 

to succinctly summarise comorbidity across the clusters. See Table A.1 for the full list of comorbidity features used to identify subtypes. 
8 Percentage of patients with body mass index (BMI) ≥ 30 kg/m2 (patients with missing BMI excluded from percentage calculation). 
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Fig. 2. t-SNE plots labelled by subtype (A), and EHR-derived features (B – E). CCI: Charlson comorbidity index; COPD: chronic obstructive pulmonary disease; ICS: 
inhaled corticosteroids. Note that CCI was not included as a feature in the identification of the subtypes but is used here to succinctly summarise comorbidity across 
the clusters. See Table A.1 for the full list of comorbidity features used to identify subtypes. 
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• Patient clusters based on information in primary care EHRs were 
characterised by level of healthcare utilisation, level of inhaled 
corticosteroid use and comorbidity. 
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