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Abstract 17 

The monitoring, reporting and verification (MRV) of soil organic carbon (SOC) 18 

sequestration following management changes is complex due to the multitude of 19 

influencing factors related to ecosystem processes but also due to (socio-)economic 20 

or legal requirements. Several protocols for MRV applications have been published. 21 

In this chapter we will provide an overview about available systems and their 22 

advantages and limitations. There is a wide range of options to quantify SOC changes, 23 

but most of these options have limitations. Field measurements, including periodic on 24 

site measurements, short-term experiments and long-term monitoring are time 25 

consuming, cost and labour intensive. On the other hand modelling, and/or remote 26 

sensing approaches are associated with uncertainty, and/or data demand. Therefore, 27 



an effective MRV application should be a combination of different approaches. This 28 

chapter will discuss the different aspects, which will be picked up in the other chapters 29 

of this section that will present more details on quantification options. 30 

 31 

1 Introduction 32 

Soils have recently received attention in the context of climate change, because they 33 

are the largest terrestrial carbon pool (Batjes, 1996, Lal, 2004) and small changes of 34 

this large reservoir may affect atmospheric CO2 concentrations. To preserve current 35 

atmospheric CO2 levels and to limit climate change impacts it is thus important to 36 

protect the carbon stored in soils and prevent its release to the atmosphere. Carbon 37 

may be stored in soils at long timescales and soil carbon sequestration may therefore 38 

have a large potential as negative emission technology (Paustian et al., 2016, Minasny 39 

et al., 2017, Paustian et al., 2019). Such technologies need to be employed to meet 40 

the climate targets of the Paris Agreement or the different national net zero targets 41 

(Climate Ambition Alliance: Net Zero 2050). Increasing soil organic carbon (SOC) 42 

sequestration will remove atmospheric carbon and store it in the soil. This process can 43 

have a range of positive side effects (Smith, Pete et al., 2021). Rumpel et al. (2018) 44 

describes eight steps to make soil more resilient, more productive and improve the 45 

storage of carbon. One central part for awarding land managers for improving soils 46 

and for the application of SOC storage as a large-scale climate mitigation strategy, is 47 

the availability of a system for measuring, reporting and verification (MRV) of the effect 48 

of land management practice. This includes the quantification of SOC changes over 49 

time. However, SOC sequestration is a complex and slow process affected by a wide 50 

range of factors (see Chapters 3, 4, 5). This makes the measurement and monitoring 51 

of SOC challenging. While point measurements are associated with errors and 52 

uncertainties, large-scale quantification presents even more challenges, as it requires 53 

either large amounts of samples, which is costly and labour intensive, or upscaling 54 

methods based on assumptions.  55 

Soils are used for different purposes and often managed by a variety of users with 56 

their own interests. Activities to increase SOC are not necessarily the main interest of 57 

the users and/or landowners.  Farmers, for example need to rely on constant harvest 58 

to provide food and make a living. Incentives or legal obligations are required to 59 



introduce changes to maintain and/or increase SOC (see Chapters 26, 27 and 29), 60 

and their implementation depends on a functional monitoring system. This system will 61 

be based on available and future development of tools and approaches to quantify 62 

SOC changes (measurements, modelling, etc.). Available tools show a wide range of 63 

complexity and accuracy, with a general trend towards application of of simpler options 64 

with easy, cheap and rapid methods.  65 

To account for varying complexity of methodologies, the IPCC introduced a three-step 66 

tier-system, with Tier 1 indicating a basic method with an equation and default 67 

emission factors, Tier 2 using the same equation but country / region-specific emission 68 

factors and Tier 3 any more complex method, ranging from alternative equations to 69 

process-based models.. The equation and default factor for Tier 1 describe a linear 70 

relation between an activity (e.g. fertilizer application on the field) and the related 71 

estimated GHG emissions. Scientific data build the basis for this relation, which is a 72 

simplified, but effective and standardised approach to estimate GHG emissions. While 73 

the used values in Tier 1 are more generic (based on global data), the Tier 2 approach 74 

is similar to Tier 1, but uses country specific values that provide a more accurate 75 

estimate for the target country. Available emission factors are summarised in the 76 

emission factor database (EFDB; https://www.ipcc-nggip.iges.or.jp/EFDB/main.php).  77 

There is an increasing interest in the economics of carbon sequestration. While there 78 

is already an interest in an investment in more sustainable companies (Kareiva et al., 79 

2015), carbon accounting and trading of carbon units generated by SOC sequestration 80 

has started already. However, all of these different interests rely on a functional and 81 

applicable MRV system. Recent research focussed focused on MRV applications and 82 

has developed suitable frameworks (Paustian et al., 2019, Smith et al., 2020, FAO, 83 

2020). In this chapter we will present available systems and discuss their advantages 84 

and limitations 85 

 86 

2 Measurement/monitoring, reporting and verification (MRV) 87 

In this chapter we distinguish MRV frameworks from MRV applications. While a 88 

framework provides a more theoretical description of an optimum MRV system, the 89 

application describes an applied MRV system, using protocols that include concrete 90 

definitions of used models, measurement approaches and other required details (e.g. 91 

https://www.ipcc-nggip.iges.or.jp/EFDB/main.php


responsibilities for the different actions). Smith et al. (2020) outlined a generic concept 92 

for an MRV framework as a combination of different approaches to quantify SOC 93 

change over time. Generally, management changes are applied on a field or farm 94 

level. The farm level is the scale for the beneficiaries of subsidies or carbon trading. 95 

Therefore, field and farm scale are most relevant to an MRV scheme. A central part of 96 

quantifying SOC changes on this scale are field measurements, but these are costly 97 

and labour intensive. Additionally, MRV protocols often lack clear measurement 98 

standards (Bispo et al., 2017). While some aspects are clarified (depth of the top 30 99 

cm, 1 m if possible (FAO, 2020)), other specifications are missing (number of samples, 100 

date of sampling relative to the management practices, spatial distribution of sampling, 101 

etc.). Therefore, alternative approaches to measurements need to be considered. 102 

Modelling is a very attractive alternative, as all problems and limitations of the 103 

measurements are resolved by using a model. But the quality of the simulation result 104 

needs to be considered, especially in comparison to measurements. Models include 105 

errors and uncertainty based on the assumptions used and the underlying concepts 106 

and they require data for calibration and validation, in addition to those needed for 107 

running the models. MRV frameworks as outlined by the FAO (2020) and Smith et al. 108 

(2020) specify that only calibrated models can contribute to SOC quantification, but 109 

further specification of the models is not provided. A combination of both 110 

(measurement and modelling) will compensate the disadvantages of each other and 111 

improve the result (Smith et al., 2020). Overall, a combination of different approaches 112 

secures the optimum quantification of SOC changes over time.  Smith et al. (2020) list 113 

seven components of an MRV framework: long-term experimental sites, field 114 

experiments (short-term), field specific modelling, spatial data analysis combined with 115 

modelling, collection and aggregation of activity data (e.g. conventional and 116 

intervention management), remote sensing and spatial re-sampling. The different 117 

components complement each other to allow an optimum framework for measuring 118 

and verifying SOC changes over time. There are advantages and disadvantages of all 119 

different components and all show some limitations. Only a combination of all, or at 120 

least several of these methods, will provide good MRV outcomes.  121 

 122 

2.1 Measurements 123 



Direct measurements of SOC content involves quantifying the fine earth and coarse 124 

earth fraction, the organic carbon concentration and soil bulk density or fine earth 125 

mass (FAO, 2019). Estimating the rock content of sample soils can be a challenge but 126 

will significantly affect soil bulk density (Poeplau et al., 2017, Throop et al., 2012). 127 

Another challenge is that a change in management (whole practice as well as depth 128 

at which that practice is applied), will not only impact on the bulk density of the soil but 129 

also on the amount of soil in a soil sample at a certain depth (Haynes, 1998). 130 

Therefore, corrections and use of the equivalent mass approach may be necessary 131 

(Chapter 11). As soils are characterised by a high spatial variability, direct 132 

measurements rely on appropriate study designs and sampling protocols (Minasny et 133 

al., 2017, Chapter 11). At the field scale, large number of soil samples is usually 134 

required to give reliable SOC stock estimates with an acceptable error margin (Garten 135 

& Wullschleger, 1999, Vanguelova et al., 2016).  136 

IPCC recommends a sample depth of 30 cm, but several methods for increasing SOC 137 

content require deeper sampling for confirming the expected effect (Smith et al. 2020). 138 

For example, the effect of a no tillage practice on the SOC content may be 139 

overestimated if the measuring depth is insufficient (Angers & Eriksen-Hamel, 2008, 140 

Blanco-Canqui, Lal, 2008). 141 

A change in SOC stocks can also be estimated through indirect measurements and 142 

by presenting the full carbon budget. This approach uses the net balance of carbon 143 

fluxes measured through chamber measurements or the eddy covariance (EC) 144 

method (Baldocchi, 2003). From the carbon fluxes, the initial uptake of carbon through 145 

photosynthesis and its subsequent partial loss through respiration (from soil, plant and 146 

litter) are estimated to give net ecosystem exchange or net ecosystem production and 147 

further C inputs (organic fertilization) and outputs (harvest) to and from the system 148 

(Smith et al., 2010, Soussana et al., , 2010). Through this complied carbon budget, a 149 

change in SOC can be estimated. This approach indirectly measures the change in 150 

SOC for larger landscapes but can only be used under horizontal homogeneity of the 151 

footprint area and under sufficient air turbulences (Aubinet et al., 1999). The 152 

maintenance of most measurement systems is costly and time consuming. The post 153 

processing of the measured data is also needs time and expert knowledge about flux 154 

corrections for density and gap filling (Falge et al., 2001, Reichstein et al., 2005). In 155 



an MRV application EC provides landscape specific data, which can be used as 156 

baseline data or for model optimisation purposes (calibration and validation).  157 

 158 

Long-term study sites are crucial for the implementation of MRV framework (Smith  et 159 

al., 2020). Study sites for different management combinations allow a long-term 160 

observation and quantification of all relevant parameters and variables that affect the 161 

SOC sequestration. ‘Long-term’ is relative and not defined as a fixed duration. The 162 

IPCC suggests 20 years as the default period to observe SOC changes, because SOC 163 

sequestration rates are fast at the beginning, but slow down over time until they 164 

approach zero (Sommer & Bossio, 2014). Measurements are impractical for a generic 165 

implementation of an MRV process (too costly and labour intensive) and other 166 

solutions that replace or at least reduce the sampling intensity in the field are required. 167 

Besides modelling and remote sensing, long-term study sites in combination with 168 

short-term field experiments can complement field measurements. These study sites 169 

provide data for re-assessment of potential impacts, reference for expected changes 170 

or baseline for a particular management practice. Additionally, these data will be the 171 

basis for development, calibration and validation of models and remote sensing 172 

approaches. Ideally, land cover, soil, climate, management and environmental 173 

conditions are represented by available study sites or at least a reasonable number of 174 

combinations (good representation of all climate zones, soil types, crop species, etc.). 175 

A standard protocol for the acquisition of these data would be beneficial, because 176 

differences in the set-up of the measurement approaches could introduce uncertainty.  177 

Organizing and providing these data on accessible platforms is the best way for an 178 

open and tranparent handling of the data. Two platforms for long-term experimental 179 

sites were initiated by the SOMNET (Smith et al., 2002) and the EuroSOMNET 180 

(https://www.ufz.de/somnet/,(Franko et al., 2002)) platforms. The SOMNET platform 181 

evolved later to an online, real-time inventory project including a webpage with Long‐182 

Term Soil‐Ecosystems Experiments. The database contains meta-data of more than 183 

200 long-term experiments and is hosted by the International Soil Carbon Network 184 

(http://iscn.fluxdata.org/network/partner-networks/ltse/). More than 80 % of the long-185 

term experimental sites concern agricultural systems (Smith et al., 2012). However, 186 

the majority of the sites are in the temperate climate zone with focus on Europe and 187 

North America, under-representing tropical and sub-tropical regions and the Southern 188 

https://www.ufz.de/somnet/
http://iscn.fluxdata.org/network/partner-networks/ltse/


hemisphere (Smith et al., 2012). For good coverage of the variability of global 189 

agricultural systems, more long-term sites in other parts of the world need to be 190 

established. The better the representation of different management options, soil and 191 

climate zones by experimental sites, the better the data basis for MRV application. 192 

This requires immediate action, as study sites that are established today, will be able 193 

to be used to assess long-term effects on SOC in 20 years (Smith et al., 2012). Special 194 

funding is required to initiate long-term monitoring sites, as project funding for 3 to 5 195 

years duration is insufficient. 196 

 197 

2.2 Remote sensing 198 

Beside in-situ measurements, remote sensing can support the monitoring of SOC 199 

changes and/or provide data for the verification of measured SOC changes. This 200 

technology allows non-invasive measurements, including at large scale. Remote 201 

sensing can be applied in the lab or on the field by handheld or transportable systems, 202 

or by airborne or satellite device devices (Chabrillat et al., 2019). As part of an MRV 203 

application the latter two options are more useful, as these systems allow a wider 204 

coverage and delivery of large-scale data globally. Considering the wide application 205 

and availability of the data, this would reduce costs for monitoring SOC changes 206 

(Nocita et al., 2015), once the approach is established. There are different approaches 207 

used for SOC estimation and two of them are highlighted below.  208 

 209 

One established remote sensing approach is the reflectance spectroscopy. It uses 210 

characteristic spectra that are reflected from the soil surface for quantitative and 211 

quantitative analysis of soil properties. The recommended wavelength range for these 212 

measurements is the visible near infrared–shortwave infrared (700-2500nm), as it 213 

shows a good signal to noise ratio and is a cost and time effective option for 214 

spectroscopy (Mohamed et al., 2018). The characteristic spectra are reflected by the 215 

bonds in the SOC molecules (O-H, N-H, C-H), which allow a qualitative and 216 

quantitative analysis of SOC. This method provides soil-type-specific quantitative SOC 217 

estimates (Grinand et al., 2012). To secure a wider application without site specific 218 

measurements, spectral libraries are required that contain several thousand soil types 219 

with varying soil properties, as a reference. This is a cost- and time-effective 220 



alternative to other traditional measurement options in the laboratory, such as wet 221 

digestion or dry combustion (Nayak et al., 2019). 222 

 223 

The introduced high spectroscopy measures for fixed wavelength using multispectral 224 

sensors, which is associated with some limitations, especially for quantitative 225 

measurements on SOC (Ben-Dor et al., 2018). Therefore, recent developments on 226 

hyperspectral sensors show an improved approach with higher capability for 227 

quantitative data over large areas. Hyperspectral remote sensing (also called image 228 

spectroscopy) provides a continuous spectrum for each pixel, using 100 or more 229 

contiguous spectral bands. However, Ben-Dor et al. (2018) also list a wide range of 230 

drawbacks with the signal to noise ratio as a major problem (caused e.g. by non-231 

transparent atmosphere, problems with sensor calibration) and more problems with 232 

changing conditions (e.g. changes in soil particle size). Further developments are 233 

required to improve the approach. For large scale application, there is again a demand 234 

for developing new libraries for the new approach.  235 

 236 

The advantage of large scale remote sensing using airborne devices and/or satellites 237 

is that it can provide additional information, e.g. land use change (Winkler et al., 2021), 238 

primary production (Zhao et al., 2005) or different soil properties (Viscarra Rossel et 239 

al., 2006). Nevertheless, remote sensing has limitations. The availability of images is 240 

affected by cloud cover, measurements are affected by plant cover on the ground and 241 

only the top centimetre can be measured (Smith et al., 2020). Despite good results in 242 

different studies and the availability of spectral libraries, the measurement is still 243 

uncertain, which renders remote sensing as the sole MRV method unsuitable. In 244 

contrast, it is an excellent additional approach to complement other methods, and 245 

should therefore be used only in combination.  246 

 247 

The latest developments in multi-spectral systems to quantify SOC have shown great 248 

progress (Aldana-Jague et al., 2016). These kind of measurements have the potential 249 

to reduce uncertainty (Chabrillat et al., 2019), new libraries have to be built for the new 250 

approach. Chabrillat et al. (2019) refers also to studies using hyperspectral systems 251 

(Gomez et al., 2008, Lu et al., 2013), but rates the performance as moderate. Similar 252 

to the other approaches, remote sensing shows a good potential to complement 253 



measurements and reduced costs but is not able to replace field measurements 254 

completely. 255 

 256 

2.3 Modelling  257 

As there are limitations to field measurements and remote sensing,,modelling 258 

becomes the most prominent supplement to provide data for MRV application. Models 259 

can contribute in different ways to MRV: 1) provide baseline information, 2) interpolate 260 

measurements (temporally and spatially), 3) extrapolate measurements for projections 261 

or for an ex-ante assessment, 4) estimate SOC changes, and 5) provide information 262 

for an optimised measurement plan. Different models with different complexity and 263 

accuracy can be used in MRV application. However, there are no standards defining 264 

the quality of a model used in an MRV application. Choosing the right model depends 265 

on the objective, data availability and modelling skills of the user (Table 1), as different 266 

models vary in their characteristics, complexity and accuracy (Table 1).  267 

 268 

Table 1: Specifications for different model categories. The category emission factors 269 

also include simple empirical equations (Tier 2 approaches). The categories SOC and 270 

biogeochemical models (Tier 3 approaches) are separated to indicate if a model only 271 

includes SOC dynamics or also addresses processes (e.g. N cycle, plant growth). The 272 

category decision support includes tools that are designed to provide information on 273 

GHG emissions, SOC changes or both (these tools use mainly Tier 1 and Tier 2 274 

approaches but can also include Tier 3 routines).  275 

 Emission 

factors 

Decision 

support 

tools 

SOC models Biogeochemical 

models (Tier 3) 

Data requirement low high (farm 

specific 

data) 

high 

(environmental 

data) 

high 

(environmental 

data) 

Calibration 

requirement 

low low high high 

Required expertise low medium high high 



Management options medium 

(categories) 

medium-

high 

no-high high 

Targeted scale country and 

larger 

field -farm point/site point/site 

Uncertainty/expected 

error for field scale 

high medium-

high 

low low 

Example models UNFCCC 

models, 

Tier 1, Tier 

2 

Cool Farm 

Tool, 

Comet 

Farm Tool 

RothC EPIC, 

DAYCENT, 

DNDC 

 276 

Biogeochemical models seem to be most suitable for MRV approaches, as they are 277 

able to simulate SOC with the highest accuracy and provide additionally information 278 

about impacts on yield and GHG emissions (Camino-Serrano et al., 2018, Campbell 279 

and Paustian, 2015). However, these models are sometimes impractical, as they 280 

require a large amount of data and expert knowledge to use them. Emission factors 281 

and simple equations are often used by carbon trading platforms, but these models 282 

are developed for large scale (country scale) application and might show large errors 283 

on the field scale. Most suitable seems to be decision support tools for carbon 284 

accounting, like the Cool Farm Tool (https://coolfarmtool.org/, (Hillier et al., 2011)) or 285 

COMET-Farm (http://comet-farm.com/, (Paustian et al., 2017)), as they address or 286 

show the potential to address the aforementioned problems of the emission factors 287 

and process based models (Whittaker et al., 2013). These tools use different routines 288 

of different complexities (Tier 1 to Tier 3, depending on the tool). Unfortunately, the 289 

most popular options also show limitations, as the SOC component of the Cool Farm 290 

Tool (CFT) uses the Tier 1 approach of the IPCC 2006 guidelines (although this is 291 

under review in the moment) and the COMET-Farm Tool uses a Tier 3 approach in 292 

combination with a data base that only covers the USA. Further developments of both 293 

tools are ongoing, and in the future, these may be reasonable options. Both tools are 294 

developed for stakeholders with an easy-to-use interface. The CFT was developed 295 

with an interface usable by farmers and the input information they have at hand. The 296 

CFT calculates the GHG emissions on a farm level for a specific site and specific 297 

management. The methods used within CFT range from emission factors to a model 298 

https://coolfarmtool.org/
http://comet-farm.com/


approach considering region specific parameters and farm level data (e.g. 299 

management, soil, climate) on an annual basis. Therefore, the CFT can be seen as a 300 

Tier2 or simple Tier 3 model. COMET-Farm calculates the carbon footprint of a farm. 301 

The tool provides the opportunity to test different management interventions and 302 

explore their mitigation potential, i.e. the potential reduction of GHG emissions. GHG 303 

estimates for crops are calculated using the DayCent dynamic model (Del Grosso et 304 

al., 2010, Parton et al., 1998)– a process-based model - and follows the official USDA 305 

GHG inventory guidelines for entity-scale reporting (Eve et al., 2014). Both tools 306 

consider soil carbon sequestration and calculate the SOC change for a land use 307 

change or change in soil management.  308 

 309 



 310 

Figure 1: The MRV framework of (FAO, 2020) follows a 6-stage approach to set up a 311 

MRV protocol. 312 

 313 

3 Existing MRV protocols 314 

FAO (2020) published a protocol that provides concrete guidelines about the structure 315 

and steps to apply an MRV application (Figure 1). The FAO protocol differentiates 316 



reporting into four different categories: 1) pre-implementation report, 2) initial report, 317 

3) biannual report and 4) final report. These reports describe the different stages of 318 

MRV frameworks as outlined in Figure 1. The protocol also provides suggestions and 319 

guidelines for the responsibilities for MRV framework. It is suggested that the reporting 320 

can be organised by the farmer but needs to be done in consultation with a relevant 321 

expert. An independent person or entity must verify the reports. The monitoring and 322 

verification require expert knowledge, which can be secured by accreditation of 323 

independent experts specialised in these activities and by external expert reviews, 324 

respectively. The accreditation and certification can be organised by governmental 325 

institutions (e.g. for subsidies), other large organisations (e.g. FAO or entities). Certain 326 

specifications are not included (e.g. measurements approaches, suitable models) as 327 

the protocol is a blueprint for a global use and might require local adaptation.  328 

 329 

In addition to FAO’s standardised framework, two other examples of MRV protocols in 330 

Alberta, Canada and Australia are already in place. The Government of Alberta 331 

published an MRV protocol to quantify impacts of tillage management on GHG 332 

emissions and SOC. It differs from the FAO protocol by specifying the target area and 333 

the management to be applied, which allows some aspects to be considered in more 334 

detail. For example, some reversal events are allowed for natural farms. Conventional 335 

tillage is allowed in less than 10% of the farm area for weed control. Another protocol 336 

has been published by the Australian Government (Australian Government., 2018), 337 

which includes bare land and pastures alongside croplands for baseline conditions. 338 

This protocol has a similar structure and content as the FAO framework, but it is more 339 

specific on defining in some detail the management options that are allowed but differs 340 

in some other details (e.g. review every 5 years).  341 

 342 

Carbon accounting platforms have also started to trade carbon based on SOC gains. 343 

The good standards of the protocols are undermined by their implementation. One 344 

example for the actual protocols is the Verified Carbon Standard (Shoch, Swails et al. 345 

2020). Measurements are very limited (one measurement suggested), SOC changes 346 

are quantified by Tier 1 models and the project time is restricted to a short period (e.g. 347 

10 years). The implementation of a simple MRV application by businesses is 348 



economically motivated. Even though, there is a demand for cost reduction, the 349 

methods applied need to be improved, to provide an adequate data for carbon trading. 350 

Nevertheless, improvements in this sector would provide a business solution that will 351 

improve mitigation actions once a functional system is established.  352 

 353 

4 Outlook of the use of MRV applications 354 

MRV applications are essential to the implementation of strategies to mitigate climate 355 

change (Smith, Pete, Soussana et al. 2020). It is also a requirement for subsidies from 356 

governmental institutions, carbon trading or for the initiatives of companies with net 357 

zero targets (FAO 2020, Kareiva, McNally et al. 2015, Paustian, Collier et al. 2019). In 358 

contrast to MRV applications for other processes or variables, monitoring of SOC stock 359 

changes has additional challenges; (1) the slow rate of change in soil carbon against 360 

the large background stock, (2) the heterogeneous distribution in space and depth, (3) 361 

the complexity of measurements and the reversibility of the gains, which make the 362 

requirements of MRV complex. MRV protocols overcome these problems by applying 363 

a combination of different methods, to compensate for limitations of individual 364 

quantification methods. The implementation of MRV applications require an integrated 365 

approach but barriers exist. The combined approach can be costly, labour intensive 366 

and/or requires a wider skill set (or even expert knowledge). In summary, current MRV 367 

methods are often impractical for stakeholders.  368 

 369 

In the near future, the challenge for science is to reduce complexity and to remove 370 

these barriers in order to provide practical solutions. One relatively easy target could 371 

be the development or improvement of models, that are easily applicable by 372 

stakeholders, but that provide robust results at the field and farm scale. More 373 

challenging and more time intensive will be the further development of remote sensing 374 

approaches. Remote sensing will never be able to replace the field measurements, 375 

but it will improve the quality of the measurements and might allow for a reduction of 376 

the number of samples to save labour time and lower costs.  377 

 378 



Other approaches like digital mapping will also contribute to an improved 379 

understanding and to quantification of SOC changes. Such developments have the 380 

potential to improve the measurements in MRV applications.  381 

The following chapters will further detail some aspects of MRV approaches. Chapter 382 

11 will give an overview on methods for quantifying SOC stocks and characterising its 383 

turnover times at the profile scale. Chapter 12 will introduce the digital soil mapping as 384 

an additional option to quantify SOC on a farm level (De Gruijter et al., 2015). The 385 

chapter will indicate the advantages and limitations of this approach, including the 386 

measurement demand and the associated uncertainty. Chapter 13 will give a detailed 387 

overview on SOC modelling approaches with special focus on its permanency. Finally, 388 

Chapter 14 will outline digital stock taking, with the focus on the field scale. This will 389 

include an analysis of knowledge gaps in field-specific digital stock taking and new 390 

approaches, such as application of smartphones to quantify SOC stocks. These 391 

methods will be discussed in the context of an application in MRV applications, which 392 

would bring down measurement costs and potentially improve accuracy.  393 

 394 

5 Summary 395 

Sequestering atmospheric carbon through increases SOC stocks requires a functional 396 

MRV application to monitor impacts of management practices on the soil. A single 397 

quantification approach is not sufficient; instead a combination of different methods is 398 

necessary to monitor SOC changes over time and to provide appropriate verification 399 

methods. For simplified MRV applications, there is a risk for errors and uncertainty. 400 

Developments of the available tools do not all meet the demands for an MRV 401 

applications applied for different purposes. There is an imbalance between complexity 402 

and accuracy (for modelling) as well as in costs and accuracy (measurements). The 403 

chapters in this section describe currently available approaches and future 404 

developments that might provide effective solutions to be applied in MRV applications. 405 

The approaches presented do not target the implementation in MRV applications, but 406 

they are measurement tools, which can be used in MRV applications.  407 

 408 
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