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ABSTRACT System logs are the first source of information available to system designers to analyze and
troubleshoot their cluster systems. For example, High-Performance Computing (HPC) systems generate a
large volume of heterogeneous data frommultiple sub-systems, so the idea of using a single source of data to
achieve a given goal, such as identification of failures, is losing its validity. System log-analysis tools assist
system designers gain understanding into a large volume of system logs. They enable system designers to
perform various analyses (e.g., diagnosing node failures or predicting node failures). Current system log-
analysis tools vary significantly in their function and design. We conduct a systematic review of literature on
system log-analysis tools and select 46 representative articles out of 3,758 initial articles. To the best of our
knowledge, there is no work that studied the characteristics of log-correlation tools (LogCTs) with respect
to four quality attributes including (a) spurious correlations, (b) correlation threshold settings, (c) outliers
in the data and (d) missing data. In this paper, we (a) propose a quality model to evaluate LogCTs and
(b) use this quality model to evaluate and recommend current LogCTs. Through our review, we (a) identify
papers on LogCTs, (b) build a quality model consisting of the four quality attributes and (c) discuss
several open challenges for future research. Our study highlights the advantages and limitations of existing
LogCTs and identifies research opportunities that could facilitate better failure handling in large cluster
systems.

INDEX TERMS System log-analysis, log-correlation tools, systematic literature review, quality model,
failure diagnosis, failure prediction, cluster systems.

I. INTRODUCTION
System logs provide a wealth of valuable information that
can help system designers understand the behaviour of large
cluster systems. Syslog is the standard logging protocol
used by large cluster systems to record events generated
by system software or hardware devices [1]. Syslog was
conceptualized over four decades ago as an event record
store for software applications or devices that allowed
computer system designers to analyze the generated data.
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Using the Syslog protocol standard, standardized logging
allowed system designers to consolidate logging data from
a wide variety of devices and software applications over
the network. While Syslog is currently extensively used
by many devices (routers, printers, filesystems, etc.) and
various implementations of the standard system logging
protocol exist for several operating systems, more recently,
the changes in usage patterns and increased data volumes are
highlighting its limitations. For example, HPC systems allow
users to run complex simulation jobs and machine learning
algorithms, and parallel applications have become the main
consumer of resources on these systems. These systems
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generate a large volume of data and different types of data,
which makes it difficult to reduce the volume of data to
process [2].

To address this issue, a wide variety of log-analysis tools
have been developed for reducing the amount of system
logs. These tools implement different filtering techniques,
statistical techniques, data mining methods or machine
learning algorithms. They are also designed for different
goals, e.g, diagnosing node failures [3], predicting node
failures [4], detecting anomalies [5] and analyzing system
resource use [6]. However, there is a gap between the
needs of system designers and researchers. System designers
are not aware of the quality attributes of LogCTs. System
designers do not have time to search through the large body
of literature to identify a LogCT which can meet their needs
and they do not have the time or the resources to review
the characteristics of each LogCT. Furthermore, researchers
focus on developing new log-analysis techniques whereas
system designers are also interested in comparing LogCTs
based on other useful aspects.

To bridge this gap, our paper makes the following
contributions:
• We conduct a systematic review of literature in state-of-
the-art LogCTs.

• We identify and integrate quality attributes of LogCTs.
We identify quality attributes of LogCTs through our
systematic literature review, use these attributes to build
a quality model and apply our quality model to compare
several LogCTs.

• We discuss the advantages and limitations of current
LogCTs, and recommend LogCTs for use cases.

• We also present directions for future research.
We conduct our literature review using guidelines given by

Khan et al. [7]. Their approach for conducting a systematic
literature review consists of five steps: (a) frame the research
question, (b) identify the relevant work, (c) assess the
quality of the studies, (d) summarize the evidence and
(e) interpret the findings. We use this literature review
approach and define our research questions, identify the
relevant LogCT articles, evaluate the quality of the LogCTs,
collate the LogCT articles and discuss our results. We search
for articles on system log-analysis in multiple databases,
including but not limited to the digital libraries of IEEE,
ACM, Springer and Elsevier, and obtained an initial set
of 3,758 articles. We identify a set of seed papers and
perform forward snowballing to obtain all the articles that
cite those seed papers, and backwards snowballing to obtain
all the references in those seed papers. We apply a list
of general criteria, inclusion criteria, exclusion criteria and
quality assessment criteria and obtained 46 representative
articles, from which 14 unique LogCTs are identified.

The effectiveness in diagnosing the cause of a system
failure or predicting a system failure rely upon the LogCT
ability to detect spurious correlations, determine the optimal
threshold settings, identify outliers in the data and handle
missing values in the data. A spurious correlation is

a mathematical relationship in which two or more log-
messages are associated but are not causally related. The
threshold settings remove redundant log-messages which can
reduce the amount of log-messages for analysis. Outliers in
the data can reduce or increase the value of the correlation
coefficient which has an impact on the standard measure
of correlation. Missing values in the data can decrease a
statistical test’s ability to identify relationships between log-
messages. If a LogCT did not take into account spurious
correlations, threshold settings, outliers in the data and
missing values in the data, it can produce a wrong diagnosis
or a wrong prediction of a system failure. Thus, LogCTs must
detect spurious correlations, determine the optimal threshold
settings, identify outliers in the data and handle missing
values in the data.

We compared these LogCTs and showed that (a) there is
not one LogCT that can meet all the four quality attributes
of spurious correlation, threshold settings, outliers in the
data and missing data, (b) researchers have been working to
improve failure diagnosis or failure prediction accuracy by
implementing different approaches using multiple methods
from statistics and data mining, but few have considered
spurious correlations which can lead to a wrong diagnosis or
false prediction and needs to be investigated so that the risk
of making a wrong diagnosis or false prediction is reduced,
(c) selecting the optimal correlation threshold settings is
challenging and requires significant manual effort due to the
different range of values used by each approach, so studying
how these parameters can be tuned to improve diagnostics or
prediction accuracy is important, and (d) few LogCTs have
investigated the impact of outliers or missing log-events on
the diagnostics or prediction accuracy, so designing novel
correlation approaches which are robust against outliers and
missing log-events is important.

Recent survey papers have provided valuable knowledge
on state-of-the-art log-analysis tools [8], failure diagno-
sis approaches [9] and failure prediction methods [10].
He et al. [8] reviewed several automated event-log process-
ing methods, event-log processing tools and open-sourced
datasets and showed the value of these methods, tools
and datasets for reliability engineering. Kavulya et al. [9]
reviewed several automated failure diagnosis approaches.
Salfner et al. [10] developed a taxonomy that captured
the wide range of online failure prediction techniques and
explained the different techniques in detail. Differently to
He et al. [8], Kavulya et al. [9], and Salfner et al. [10],
we review current LogCTs and propose a quality model
for evaluating state-of-the-art LogCTs. El-Masri et al. [11]
reviewed automatic log-abstraction techniques and built a
quality model consisting of seven quality attributes. Their
quality attributes are mode, coverage, independence of
delimiters, efficiency, scalability, independence of system
knowledge and effort in tuning parameters. They applied
their quality model and evaluated 17 log-abstraction tools.
In contrast, our quality model contains four different quality
attributes. The quality attributes are spurious correlations,
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TABLE 1. Distinct functions of LogCTs. ‘‘MI’’ means there is no information on this function.

FIGURE 1. Log-correlation pipeline.

correlation threshold settings, outliers in the data and missing
data. We apply our quality model to evaluate 14 LogCTs. The
results presented in this paper are based on a thorough review
of current LogCTs. We summarize their functions in Table 1
and describe the approach implemented by these LogCTs in
Section V.
The remainder of this paper is organized as follows.

We give a background on the log-correlation process in
Section II. We motivate the use of LogCTs in Section III.
Then, we describe the design of our study in Section IV.
We organize and summarize the approaches implemented
by the 14 LogCTs in Section V, identified through our
systematic review of literature on LogCTs. We present our
LogCT quality model in Section VI, evaluate the 14 LogCTs
and present our results and observations in Section VII.
We discuss the threats to the validity of our results in
Section VIII and conclude with a summary and future work
in Section IX.

II. LOG-CORRELATION PROCESS
A typical log-correlation process is shown in Figure 1.
It consists of three phases: (a) log-message formatting, (b) a
log-correlation tool and (c) log-analysis applications. Next,
we describe each phase of the log-correlation process.

A. PHASE 1: LOG-MESSAGE FORMATTING
Most system log-messages contain a time stamp, source and
message [1]. An example of a Rationalized message log [24]
and a Syslog message [1] are shown in Figure 2 and Figure 3
respectively.

FIGURE 2. Rationalized log-message.

FIGURE 3. Syslog message.

From Figure 2, we observed that the Rationalized
log-message contains the following features and feature
values: (a) time stamp (time:1293552419), (b) host id
(host:i101-403), (c) job-id (jobid:1743653), (d)
program (prog:kernel), (e) error message (0:<3>BUG:
soft lockup detected on CPU\ldots ) and (f)
additional variables associated with this log-message
(1:14, 2:5656, 3:0, 4:ldlm_bl_04). From Figure 3,
we observed that a sequence of feature values is contained in
the Syslog message.

The Rationalized log-message and Syslogmessage contain
features such as a time stamp, a host identifier, a program
identifier and an error message string. However, the features
in the Syslog message and Rationalized log-message are
organized differently. In the Rationalized log-message, each
feature and its value is organized in one row. In the Syslog
message, the feature values are represented in a sequence
where each feature value is separated from another feature
value by a single space. There is also no job identifier in
the Syslog message. The format of system logs generated on
one cluster system may be different to the format of system
logs generated on another cluster system, which makes it
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difficult to parse the data because a different parser has to be
developed for each type of system log. However, most system
logs contain three basic features: (a) a time stamp, (b) a host
identifier and (c) an error message string. Thus, the system
logs can be converted into a standard format. For example,
a standard formatted system log may contain the following
features:

job id, month, day, hour, minute,
second, node id, program name, message

Most data analysis methods use a data matrix as its
input [25], [26]. Once the raw system logs are converted into
the standard formatted log, the logs are then converted into
a data matrix. A data matrix is a two-dimensional structure
where each column represents a feature, each row represents
a sample, and each cell represents a count for a feature
sample. The occurrences of Constants in the system log can
be represented in a data matrix where each column represents
a constant, each row represents a sample such as time or node
or job, and each cell contains the count for a constant sample.
A Constant is a sequence of English-only words contained in
the message part of a system log.

B. PHASE 2: LOG-CORRELATION TOOLS
LogCTs reduce the number of events in the system logs on
which further analysis can be applied. The objective of log-
correlation is to identify relationships between log-events,
to group log-events that are correlated, and to separate log-
events that are uncorrelated. System designers may look
through the list of correlated events to determine the likely
cause of a system problem [27]. For example, if a system
designer wants to determine whether a compute node soft
lockup is caused by a crashed program, they can use the
list of correlated events to see if it contains ‘‘soft lockup’’
and ‘‘segmentation fault’’ events. If the list of correlated
events contains strongly positive correlated ‘‘soft lockup’’
and ‘‘segmentation fault’’ events, it shows that a crashed
program is a likely cause of compute node soft lockups [21].

In general, LogCTs are composed of two components: (a) a
method and (b) a test. The method component receives a
data matrix and applies a correlation algorithm to produce
correlation coefficients for all pairs of log-events. When the
correlation coefficients are produced, the test component uses
statistical significance tests to identify log-events which are
uncorrelated and log-events which are strongly correlated.

Correlating log-messages requires LogCTs to address four
challenges. These challenges are described as follows:

1) SPURIOUS CORRELATIONS
A spurious correlation is a measure in which two or
more events are strongly correlated, but they are in fact
not causally linked, usually because of the presence of a
third or confounding event [28]. System designers must
manually infer a likely cause of a system problem from the
list of correlated events, which is difficult because some
events can be strongly correlated purely by chance without

one event actually causing the other event to occur. Such
spurious correlations can lead to a wrong diagnosis or wrong
prediction of a failure [27].

2) THRESHOLD VALUE
System designers must manually choose a threshold value
and use this value to remove redundant log-events and
identify the correlated log-events or clusters of log-events
for further analysis, which is tedious because choosing the
optimal threshold value in LogCTs is time consuming. Some
system designers may decide to use a small range of values
and determine a threshold value when the same number of
correlated events or well-separated clusters of log-events are
obtained.

3) OUTLIERS IN THE DATA
An outlier in the dataset is the value of a data point
that falls outside the range of values of the remaining
data points. Depending on where the outlier lies in the
dataset, the outlier may increase or decrease the value of the
correlation coefficient in relation to the other data points,
which is challenging because it can have an impact on the
standard measure of correlation [29] or influence the final
cluster configuration [30]. Some LogCTs have addressed
this issue by using alternative robust measures such as rank-
correlation [31].

4) MISSING DATA
Missing values in a dataset occur when no data value is stored
for that event. Missing data causes two problems [32]: (a) a
decrease in a statistical test ability to identify relationships
in the data and (b) it may bias correlation coefficients
downwards.

C. PHASE 3: LOG-ANALYSIS APPLICATIONS AND
DATASETS
Log-analysis is used by many applications e.g., detecting
web attacks [33], characterizing usability of interactive
applications [34], diagnosing system problems [3] and
predicting node failures [31]. Next, we describe some of
these applications, their influence on log-correlation tools and
publicly available datasets.

1) FAILURE DIAGNOSIS
Failure diagnosis is an approach for tracing a fault through
the identification of its symptoms [35]. Failure diagnostics
tools typically use correlation methods such as Pearson
correlation [3], [19], [36] to analyze system failures. Thus,
LogCTs are a prerequisite for failure diagnostics tools to
provide the list of correlated events needed for inferring the
likely cause of a system problem.

2) FAILURE PREDICTION
Failure prediction is an approach for determining the
probability that a system will fail [37]. In general, failure
prediction tools select a subset of features for training
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a prediction model by using feature selection techniques
such as correlation-based feature selection. Thus, LogCTs
are a prerequisite for failure prediction tools to generate a
prediction model needed to determine the probability that a
failure event will occur accurately.

3) MODEL TRAINING
Correlation-based Feature Selection (CFS) uses a correlation
measure and a heuristic search strategy to select a subset
of the relevant features [38]. These features are then used
to train data mining models to predict node failures. For
example, Di et al. [39] used a correlation algorithm to
remove highly correlated log-events prior to training their
modified K-Means clustering technique. Alharti et al. [40]
also removed the highly correlated log-events prior to training
their sentiment analysis model. Therefore, LogCTs are a
prerequisite for model training to (a) shorten the training
time and (b) increase the prediction power of the prediction
model by selecting only the relevant features for training the
model [39], [40].

4) PUBLICLY AVAILABLE SYSTEM-LOGS DATASETS
To facilitate research in system log-analysis, failure logs,
accounting logs, lists of software libraries used by HPC jobs
and resource usage data are available on the public domain.
The Computer Failure Data Repository (CFDR) contain nine
years worth of failure data that were collected on HPC
systems operated by Los Alamos National Laboratory [41].
The FRESCO job failure and performance data repository
contain jobs performance data and accounting logs that were
collected on the Conte and Stampede-1 supercomputers,
as well as software libraries usage data, downtime, sched-
uled and unscheduled outage logs that were collected on
Conte [42].

III. MOTIVATION
Data centers operate several large cluster systems. These
cluster systems generate a large volume of system logs
that contain valuable information for diagnosing system
problems or predicting system failures. Off-the-shelf log-
analysis frameworks (e.g., Splunk, SolarWinds, Graylog
or Stackify) provide data integration, real-time monitoring
and workflow development pipelines. However, these log-
analysis frameworks provide only basic analytics and thus,
system designers have to develop their own tools to search
through vast amount of system logs in order to identify
the sequence of events which lead to a system failure [43].
Furthermore, these cluster systems generate different types
of system logs such as resource use data, accounting logs
and scheduler logs and millions of log-messages are recorded
each day. Therefore, system designers require LogCTs that
can offer advanced diagnostics or prediction of system
failures.

There are many LogCTs presented in the literature. Thus,
system designers have at their disposal a wide variety of
LogCTs to choose from. However, they need to select a

LogCT with quality attributes that best suits their particular
use case. For example, in failure diagnosis, a LogCT must
not identify correlated events which do not represent a causal
relationship [27]. The LogCT should also be robust against
noise or missing log-events. Furthermore, the correlation
threshold settings in LogCTs are used to create a fault
model or a prediction model. Therefore, LogCTs must enable
system designers to tune the threshold settings so that an
accurate diagnosis or prediction can be obtained [44].

IV. STUDY DESIGN
We studied the guidelines for conducting a literature
review [7]. Based on these guidelines, we review cur-
rent LogCTs as follows: (a) frame the research question,
(b) identify related works, (c) assess the quality of papers,
(d) summarize the methodology and (e) compare similarities
and differences between LogCTs.

A. RESEARCH QUESTIONS
To review state-of-the-art LogCTs along with their chal-
lenges, we use answers to the following research questions
to propose a quality model. Then, we use the quality model
to evaluate current LogCTs. The research questions are given
as follows:
Q1 What are the state-of-the-art log-correlation tools?
Q2 What are the quality attributes of these log-correlation

tools?

B. SEARCH APPROACH
We studied papers that are published in journals and con-
ferences. These papers are written in English and published
between January 19931 and June 2022. We conducted
our literature search using Google Scholar which provides
access to multiple digital libraries, which include the
IEEE, ACM, Springer and Elsevier among many others.
We combined seed papers from Google Scholar and papers
snowballed from Scopus. We used the following queries
to search for the seed papers: ‘‘log correlation’’
or ‘‘log analysis’’ or ‘‘failure prediction’’ or
‘‘failure diagnosis’’.

C. SELECTION APPROACH
We screened the articles using three screening stages
(a) general criteria (type of paper, publication time frame
and subject area), (b) criteria for inclusion and exclusion and
(c) quality of the paper. Our general criteria are given as
follows:
• The article shall be published between January 1993 and
June 2022.

• The article shall be published in a conference or journal.
• The article shall pertain to system log-analysis tools for
cluster systems and cloud computing systems. These
systems generate a large volume of heterogeneous data

1We decided to start at 1993 because SWATCH is one of the first system
logs monitoring and analysis tool [45].
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FIGURE 4. Search and selection workflow.

from multiple subsystems and system log-analysis tools
enable system designers to perform various analyses
such as diagnosing node failures or predicting node
failures. Thus, we focused on articles on system log-
analysis tools for cluster systems and cloud computing
systems.

Our inclusion criteria are given as follows:
• The article shall be written in English.
• The article shall present, propose, develop or implement
a log-correlation technique.

Our exclusion criteria are given as follows:
• When two or more articles present, propose, develop
or implement the same or a similar script, statistical
technique, data mining method or machine learning
algorithm, at least one article shall be excluded from the
final set of articles.

• Articles that are not peer-reviewed.
• Articles that describe how to write system logs.
• Articles that require access to source code.
• Articles that present message logging pipelines or
message logging architectures.

Our quality assessment criteria are given as follows:
• Is the research problem clearly described in the article?
• Is the proposed method clearly described in the article?

• Does the article describe how the proposed method is
evaluated?

• Does the proposed method address the research problem
set by the researchers?

Our search and selection workflow is shown in Figure 4.
It consists of three steps (a) identify seed articles, (b) identify
candidate articles and (c) identify the final set of articles.

1) SEED ARTICLES
We conducted our search by executing our search queries
on Google Scholar. We retrieved 3,758 articles. Then,
we filtered these articles using our general criteria, inclusion
and exclusion criteria and retained 58 articles. We reviewed
the title and abstract in these articles and divide them into
two groups: (a) include the article or (b) exclude the article.
We obtained 22 seed articles.

2) CANDIDATE ARTICLES
We searched in Scopus for (a) all articles that cite the
22 seed articles (forward snowballing) and (b) all references
in the seed articles (backward snowballing). We obtained
1,578 articles. Then, we filtered these articles using our
general criteria, inclusion and exclusion criteria and retained
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FIGURE 5. Categories of log-correlation tools.

51 articles. We combined the 51 articles and 22 seed articles
into a set of 73 candidate papers.

3) SELECTED PAPERS
Each candidate article is reviewed by two authors
independently. We read the details in all 73 candidate
papers and evaluated each article according to our inclusion
criteria, exclusion criteria and quality assessment criteria.
Both authors compared the data and resolved disagree-
ments by consensus. Then, we collated the decisions
from the two authors and obtained the final set of
46 articles.

D. DATA EXTRACTION
We reviewed all 46 articles in detail and obtained data about
the following:
• Methods, algorithms and approaches in state-of-the-art
LogCTs.

• Desired features of a LogCT, their definitions and their
classification criteria.

We collated and compared the data obtained on the
characteristics of LogCTs into several quality attributes.
We use these quality attributes to build our quality model, and
obtain the results and evaluations of LogCTs with respect to
these quality attributes.

E. DATA SYNTHESIS
We combined and summarized the extracted data. The
catalogue of state-of-the-art LogCTs is given in Section V.
Their evaluations with respect to the identified quality
attributes is given in Section VII.

F. STUDY SCOPE
Our study considered open-source LogCTs and LogCTs
where their source code is not available due to the distribution
policy of the data center. We did not consider log-correlation
tools for security nor check the source code or implement
the approach to assess its correctness as they would require
access to all the source code and substantial resources beyond
the scope of this paper.

V. LOG-CORRELATION TOOLS
In this section, we describe the LogCTs identified from our
systematic literature review.We organize these LogCTs based
on the category of algorithms implemented by the LogCT.
The categories of algorithms and their LogCTs are shown in
Figure 5.

A. APPROACHES THAT USE STATISTICAL METHODS
The following LogCTs developed approaches that use statis-
tical methods and analyzed large quantities of unstructured
system logs generated on cluster systems. Next, we describe
the approach implemented by these LogCTs.

1) SIMPLE EVENT CORRELATOR
The Simple Event Correlator (SEC) is a log-analysis tool that
analyzes log-events with respect to the time log-events are
received [12], [46]. It uses static rules and provides explicit
matching of events, counting operations and aggregation
of events. SEC receives input events from a file stream
and produces output events by executing a user-specified
shell command. The input events are comprised of regular
expressions and rules that are contained and stored in
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configuration files. Nine different types of rules are supported
by SEC. The rules range from matching a pair of events
to matching multiple events within a given time-window or
threshold. The list of actions includes log a message, write a
line into a file, execute an external shell script or program and
generate a new input event which can be matched by other
rules. To handle missing log-events, SEC can generate log-
events periodically to check for a missing log-event.

2) MINING CLUSTERS OF LOG-MESSAGES FOR FAILURE
DIAGNOSIS
Baler is a system logs-mining tool that extracts message
patterns from a large volume of unstructured system logs [18].
Differently to SEC, Baler did not use rules to match log-
messages. Instead, Baler implements a novel log-message
clustering engine. Their clustering engine consists of two
steps (a) parsing log-messages and (b) clustering log-
messages. In the first step, the system logs are parsed
by a regular expression that uses alpha-numeric words,
white space, colon, bracket and other symbols. In the
second step, the Levenshtein distance measure is used to
assign log-messages into clusters where each cluster contains
log-messages that are similar. The Levenshtein distance
measure calculates the similarity between two log-messages
by counting the number of insert, delete or replace operations
that are required to change one log-message to the other.
To determine if two log-messages are similar, the authors
specified two criteria. The first criterion specify that two
log-messages are similar if the number of insert, delete or
replace operations is less than a given threshold. The second
criterion specifies that two log-messages are similar if the
ratio of change counts and message length is less than a given
threshold.

3) STRUCTURE-OF-INFLUENCE GRAPHS
Oliner et al. [3] proposed Structure-of-Influence Graphs
(SIGs) to diagnose problems in complex production systems.
Their process consists of four steps for constructing a
SIG: (a) decide what information is to be used from each
component, (b) use anomaly signals to measure system
behaviour, (c) compute the strength of the pairwise cor-
relation between anomaly signals and (d) build a graph
where system components are represented as nodes and
the strength and delay between system components are
represented by edges. In the first step, information produced
by system components is used to develop two models. The
first model uses message timings and the second model uses
information content of the message terms. In the second
step, anomaly signals are computed using the Kullback-
Leibler (KL) divergence, which is a statistical technique
that measures how one probability distribution is different
from another probability distribution. In the third step, the
Pearson correlation algorithm is used to obtain a correlation
coefficient for two anomaly signals. In the fourth step, a SIG
is constructed for a system with n components. However,
constructing a SIG for n components requires a quadratic time

complexity. To address this problem, a subset of the SIG is
constructed. They evaluated their method under the influence
of measurement noise, message loss and tainted training data,
and showed that SIGs are robust against uniform message
loss, degrade gracefully when timing measurements contain
noise and that its ability to detect influence did not depend
on clean training data. Oliner and Aiken [47] enhanced SIGs
with Principal Component Analysis (PCA) and performed
online detection of interactions between system components
of large supercomputers.

4) DIAGNOSING LUSTRE FILE-SYSTEM FAILURES
FDiag is a log-analysis tool that filters streams of interleaved
log-events to identify events that are relevant to the diagnosis
of a given failure [17]. Differently to SIGs, FDiag did
not correlate anomaly signals. Instead, FDiag identifies
message templates which are strongly positive correlated.
FDiag consists of three components (a) a message template
extractor, (b) a statistical event correlator and (c) an episode
constructor. Themessage template extractor extracts message
templates from unstructured system logs and produces a
standard data format which adds structure to the unstructured
logs. A message template contains a sequence of Constants,
which consists of a sequence of English-only words. Con-
stants are extracted by specifying a regular expression and
applying it to log-messages in the system logs. The statistical
event correlator uses the Pearson correlation algorithm to
identify strongly positive correlated message templates for
a given symptom event, and a correlation threshold value
of 0.75 is used. If the correlation strength between two log-
messages range between 0.75 and 1, these log-messages are
extracted and stored in a list of strongly positive correlated
log-messages. The episode constructor uses two different
heuristics to construct sequences of correlated log-messages
which lead to a node failure. FDiagV3 enhanced FDiag
with PCA and Independent Component Analysis (ICA)
feature extraction algorithms and uncovered five previously
unknown causes of node failures [48].

5) IDENTIFYING ERROR PROPAGATION AND RECOVERY
PATTERNS IN CLUSTER SYSTEMS
CORRMEXT (CORrelating Resource use andMEssage logs
and eX tracting T imes) is a new diagnostics framework that
analyzes patterns of system errors and generates reports on
the success and failure of error recovery protocols [21].
FDiag, ANCOR (see Section V-B8) and CORRMEXT
assume that when two message types are strongly positive
correlated, these correlated messages can be used to deter-
mine the likely cause of a given system failure. Similar
to FDiag and ANCOR, CORRMEXT identifies correlations
of message types. But differently to FDiag and ANCOR,
CORRMEXT identifies the earliest time of occurrence of
a system problem. While FDiag and ANCOR focused on
failure diagnosis, CORRMEXT focused on identifying error
propagation patterns. It processes Rationalized message
logs [24], Syslogs [1], and resource usage data [49].
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CORRMEXT consists of three modules (a) a data types
extractor module, (b) a correlation module and (c) a time-
bins extraction module. The data types extractor module
is composed of two data type extractors. A resource use
extractor extracts resource use counters from resource usage
data and organizes counters of resource use counters by time-
bins into a resource use data matrix. The authors defined
a time-bin as a time window of one fixed time interval.
A message types extractor extracts message types from
Rationalized message logs and Syslogs and organizes counts
of message types by time-bins into a message types data
matrix. The correlation module uses Pearson correlation and
Spearman-Rank correlation algorithms to obtain correlation
coefficients for the resource use counters and correlation
coefficients for the message types. It uses a correlation
threshold value of 0.8. If the correlation strength of two
message types or two resource use counters is greater than
or equals to 0.8, then the message types or resource use
counters are stored in a list of strongly positive correlated
message types or strongly positive correlated resource use
counters. It uses Fisher’s z-transform to test the significance
of all correlation coefficients and Bonferroni Correction
to identify false positives. A fixed threshold value is
used to identify strongly positive correlated resource use
counters and strongly positive correlated message types.
The time-bins extraction module obtains differences between
the variance of two adjacent time-bins for the strongly
correlated resource use counters, and separately for the
strongly positive correlated message types. EXERMEST
(EX tracting fEatures and coRrelating resource use counters
and MESsage Types) enhanced CORRMEXT with several
feature extraction methods and linked significant resource
use counters and message types with node failures and error
recovery protocols [50].

B. HYBRID APPROACHES THAT INTEGRATE STATISTICAL
METHODS AND MACHINE LEARNING ALGORITHMS
The following LogCTs developed approaches that integrate
statistical methods and machine learning algorithms, and
analyzed large volumes of system logs generated on cluster
systems or cloud computing systems. Next, we describe the
approach implemented by these LogCTs.

1) 3-DIMENSIONAL ROOT-CAUSE DIAGNOSIS
Zheng et al. [19] presented a novel root-cause diagnostics
mechanism to diagnose failures in large cluster systems.
Their diagnostics method identifies HPC application, system
software and hardware failures. Their process for identifying
the failure layer, time and location of a fatal event consists
of four steps: (a) preprocess data, (b) integrate information
across three types of logs, (c) identify the failure layer and
(d) identify the location and time of events which caused
a given failure. In the first step, wavelet transformation is
used to remove noise in environmental logs, RAS (Reliability,
Availability and Serviceability) logs and job logs. Then,
temporal-spatial filtering is used to identify and remove

redundant events in RAS logs. To group jobs that are
contained in job logs, the Density-Based spatial Clustering
of Applications with Noise (DBSCAN) algorithm is used to
identify jobs that share similar characteristics automatically.
In the second step, environmental features (e.g., power con-
sumption, heat generated) closely related to fatal events are
extracted. In the third step, a job similarity score is computed
and used to identify jobs that were interrupted by a specific
type of fatal event. Different threshold values were used
to distinguish HPC application failures, hardware failures
or system software failures. In the fourth step, a dynamic
time window generation technique and probabilistic causality
pruning technique is used to identify the location and time of
the cause of a given fatal event.

2) MINING CORRELATIONS OF LOG-EVENTS
Fu et al. [13] proposed an approach called LogMaster to mine
correlations of log-events. LogMaster consists of several
innovative algorithms that perform log-preprocessing and
filtering, mine event correlations, construct event correlation
graphs and predict failure events. In the log-preprocessing
and filtering algorithm, two types of events are filtered
(a) repeated events and (b) periodic events. Repeated events
are events that occur repeatedly in a short window of
time. A predefined threshold is used to determine if the
time interval between two events is less than the threshold.
If the time interval falls below the threshold, the event is
removed. Periodic events are events that occur periodically
with a fixed time interval. A predefined threshold is used
to determine if the count and percentage of all events in the
same time interval is higher than the threshold. If the count
and percentage are higher, then only one event is retained.
The event correlation algorithm uses a modified Apriori-LIS
algorithm. The modified algorithm apply an event filtering
policy that specifies that only correlated events that occur
on the same node, the same application or the same event
type are analyzed. Event rules are represented in a directed
acyclic graph (ECG). Each ECG contains correlated events
for one node or correlated events for multiple nodes. The
event prediction algorithm is based on event correlation
graphs. It uses a prediction probability threshold to warn if
the probability of predicted events exceeds this threshold.

3) DIGGING DEEPER INTO CLUSTER LOGS FOR FAILURE
DIAGNOSIS AND PREDICTION
Fu et al. [16] proposed an approach to diagnose and predict
failures from cluster system logs. Similar to LogMaster, their
approach uses event correlation mining and event correlation
graphs. Moreover, they analyze relationships between non-
fatal events and fatal events and use fine grained information
such as the type of failure and location of a node to provide a
deeper and more accurate diagnosis. Their approach consists
of three steps: (a) mine event causal dependency graphs
(CDGs), (b) extract failure rules and (c) deduce new failure
rules. In the first step, frequent event sequences are clustered
to form correlated groups of events. In the second step, failure
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rules are extracted from CDGs. They identify a failure rule
by matching event IDs from the first precursor event to each
successor event upto a given failure event. To determine
candidate failure rules, the authors use twometrics to obtain a
confidence value, which is then assigned to each failure rule.
The metrics are rule false positive and rule false negative.
If the confidence value of a candidate failure rule falls below
a predefined threshold, the failure rule is removed. In the
third step, failure rules extracted during the second step are
used to identify failure event generating processes and new
failure rules are deduced from these failure event generating
processes.

4) A NOVEL METHOD FOR FAULTS CLASSIFICATION AND
DIAGNOSIS
In [20], the authors proposed a novel classification method
for fault logs and implemented a fault analysis and diagnosis
system called UiLog. UiLog consists of three components:
(a) a fault log-collection module, (b) a fault log-analysis
module and (c) a fault log-correlation module. The fault
log-collection module stores system and software event
logs in a log-information database. The fault log-analysis
module implements a new fault classification method, which
preprocesses the logs, extracts invariants, filters message
templates, generates a fault matrix and classifies faults. The
fault log-correlation analysis module uses different time
window sizes to handle truncation and collision errors caused
by overlapping fault sequences.

5) FAULT PREDICTION UNDER THE MICROSCOPE
Gainaru et al. [4] presented an approach that merged
signal processing techniques with the Event Log Signal
Analyzer (ELSA) toolkit and provided a detailed analysis
on their prediction method. Their approach and FDiag
extract message templates from system message logs and
apply correlation analysis to obtain correlated log-messages.
However, their goals are different. FDiag focused on HPC
system failure diagnosis while the approach in [4] focused
on predicting HPC system failures. In [4], the authors
described the details of their approach. It consists of four
modules: (a) event log-preprocessing, (b) outlier detection,
(c) signal correlation and (d) location correlation. In the
event log-preprocessing module, the Hierarchical Event Log
Organizer (HELO) is used to extract message templates
from event logs. Message templates correspond to different
system events and they are represented as regular expressions,
which describe a set of syntactically related messages. In the
outlier detection module, a data mining algorithm based on
a moving time window is used to identify erroneous data
points. It compares an observed data point with the median
of past data points to obtain the distance between these data
points. If the distance exceeds a specified threshold, the
observed data point is marked as an outlier. In the signal
correlation module, a gradual itemset mining algorithm is
used to discover frequent covariations between signals. In the
location correlation module, a heuristics algorithm based on

offline correlation chains is used to extract a list of possible
locations for each chain.

6) DYNAMIC META-LEARNING FOR FAILURE PREDICTION
Lan et al. [14] presented a dynamic meta-learning framework
to predict failures in large scale systems. Their framework
consists of two parts: (a) preprocessing system events in
system logs and (b) generating failure patterns and triggering
warnings. In the first part, the Facility field contained in
RAS logs is used to divide system events into several high-
level classifications. Then, the Severity and Entity
fields contained in the RAS logs are used to divide the high-
level classifications into 219 low-level event types. Temporal
compression and spatial compression are used to remove
duplicate system events. System events that contain the same
JobID and Location values are coalesced into one entity.
System events that contain the same Entry Date and
JobID values and are close together within a predefined time
window are removed. In the second part, three components
are implemented: (a) a meta-learner, (b) a reviser and (c) a
predictor. The meta-learner uses association rules, statistical
and probability distribution methods to learn and reveal
cause-and-effect relationships between system events. The
reviser receives candidate rules generated by the meta-learner
and uses the Receiver Operating Characteristics (ROC)
technique to select optimal rules and discard suboptimal
rules. The predictor monitors system events and triggers a
failure warning when a rule is observed within a specified
time window.

7) RESOURCE PREDICTION FOR DYNAMIC
WORKLOADS IN CLOUDS
RPTCN is a method for predicting resource usage on cloud
computing systems [15]. It consists of four steps: (a) data
preprocessing, (b) correlation analysis, (c) data expansion
and (d) method design. In the first step, feature scaling is
applied to the data to reduce bias during model training.
To scale the features, the MinMax scaling technique is
used to rescale feature values (e.g., CPU usage, memory
usage, disk I/O usage) so that the feature values range
between 0 and 1. In the second step, correlations between
a dependent feature and independent features are ranked.
Then, the top half of the ranked features are selected as
the input data. In the third step, the selected features are
expanded to create additional features by extending each
feature to three time sequences. In the fourth step, a Temporal
Convolution Network (TCN), fully connection layer and
attention mechanism are integrated. The TCN takes as its
input, a time series sequence and processes the data through
a network of hidden layers. The fully connected layer
combines the features extracted by the previous hidden layer
and activates the output neurons to produce a probability
value. Then, an attention mechanism adjusts the weights
applied at the hidden layer and output layer at different
times.

133496 VOLUME 10, 2022



E. Chuah et al.: Survey of Log-Correlation Tools for Failure Diagnosis and Prediction in Cluster Systems

8) LINKING ANOMALIES IN RESOURCE USE WITH SYSTEM
FAILURES
Chuah et al. [22] presented a failure diagnostics approach
called ANCOR. FDiag (see Section V-A4) and ANCOR use
Pearson correlation to extract a list of correlated log-events.
Differently to FDiag, ANCOR evaluates several feature
extraction algorithms and identifies nodes that exhibited
anomalous behaviour. ANCOR consists of four modules:
(a) an anomaly extractor, (b) a message types extractor, (c) a
time-bin correlator and (d) an event sequence constructor. The
anomaly extractor module uses PCA, ICA and Mahalanobis
Distance algorithms to identify nodes and jobs that exhibited
anomalous workload patterns and outputs two lists containing
the anomalous jobs and nodes. The message types extractor
module receives these lists, obtains their system logs and
extracts message types. The time-bin correlation module uses
Pearson correlation to identify strongly positive correlated
message types and a correlation threshold value of 0.75 is
used. If the correlation strength between two message types
is greater than or equals to 0.75, these message types are
extracted and stored in a list of strongly positive correlated
message types. The event sequence construction module
extracts sequences of correlated log-events.

9) USING PARTIAL CORRELATION TO DIAGNOSE FAILURES
IN CLUSTER SYSTEMS
IFADE is a novel diagnostics framework for identifying
previously unknown causes of cluster system failures [23].
ANCOR and IFADE use feature extraction algorithms.
Differently to ANCOR, FDiag and CORRMEXT, IFADE
uses partial correlation. Partial correlation is a statistical
technique for measuring the relationship strength between
two variables while controlling for the effect that one or
more variables have on the pair of variables. IFADE consists
of three modules: (a) a data preprocessor, (b) a features
extractor and (c) a partial correlator. The data preprocessor
module extracts message types and resource use counters
from system logs and resource use data respectively. Then,
counts of message types and counts of resource use counters
by time are converted into a message types data matrix
and resource use data matrix respectively. The features
extractormodule uses PCA, ICA,Non-linear PCA andKernel
PCA algorithms to identify important messages types and
resource use counters. Important message types or resource
use counters are message types or resource use counters that
were assigned high absolute scores by PCA, ICA, Non-linear
PCA or Kernel PCA. The partial correlation module obtains
correlations of pairs of message types or correlations of pairs
of resource use counters after controlling for a third message
type or resource use counter. It uses a correlation threshold
value of 0.8. If the correlation strength between two message
types or two resource use counters is greater than or equals
to 0.8, these message types or resource use counters are
extracted and stored in a list of strongly positive correlated

message types or strongly positive correlated resource use
counters.

VI. LOG-CORRELATION TOOLS QUALITY MODEL
In this section, we describe our quality model for evaluating
the LogCTs. In our quality model, we define four quality
attributes that we have identified through our systematic liter-
ature review. The quality attributes are spurious correlations,
threshold settings, outliers in the data and missing data. Next,
we present a typical question, a definition and a classification
criterion for each quality attribute.

A. SPURIOUS CORRELATIONS
1) TYPICAL QUESTION
Can the LogCT identify relationships between two or more
log-events that appears to be causal but is not?

2) DEFINITION
In statistics, a spurious relationship or spurious correlation is
defined as a mathematical relationship in which two or more
variables are associated but not causally related, due to either
the presence of one or more confounding variables or purely
by coincidence [28].

3) CLASSIFICATION CRITERIA
We analyzed the approach of each LogCT. If a LogCT did not
identify spurious correlations of log-events, we classify it as
‘‘Likely cause’’. In contrast, if a LogCT considered spurious
correlations of log-events, we classify it as ‘‘Potential true
cause’’.

4) DOMAIN
Likely cause, Potential true cause.

B. CORRELATION THRESHOLD SETTINGS
1) TYPICAL QUESTION
How are the correlation threshold settings determined by the
LogCT?

2) DEFINITION
A threshold value is used for removing redundant log-events,
extracting strongly correlated log-events or identifying sim-
ilarities between log-events. For example, FDiag [17] uses
a predefined correlation coefficient value to extract a list of
strongly correlated log-messages. Conversely, as an example,
Zheng et al. [19] use a temporal-spatial filtering policy to
identify and remove redundant log-events.

3) CLASSIFICATION CRITERIA
We analyzed how each LogCT selects the threshold value. If a
LogCT uses a given, fixed or specified value as the threshold
value, we classify it as ‘‘Predefined’’. If a LogCT uses a
filtering policy to remove redundant log-events, we classify it
as ‘‘Adjustable’’. If a LogCT did not describe how it obtains
the threshold value, we classify it as ‘‘Not specified’’.
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4) DOMAIN
Predefined, Adjustable, Not specified.

C. OUTLIERS IN THE DATA
1) TYPICAL QUESTION
Is the LogCT robust against outliers in the data?

2) DEFINITION
In statistics, an outlier is defined as a data point that differs
significantly from other data points [51]. Kim et al. [29]
showed that when outliers are present in both variables at
the same time, these ‘‘coincidental outliers’’ can cause some
uncorrelated or weakly correlated variables to show up as
strongly correlated variables. If a LogCT did not remove
outliers in the data, it may lead to an incorrect diagnosis or
prediction of a failure.

3) CLASSIFICATION CRITERIA
We analyzed the approach in each LogCT. If a LogCT is
evaluated on noisy data and showed to be robust in the
presence of outliers, we classify it as ‘‘Robust in the presence
of outliers’’. If a LogCT is evaluated on noisy data and
showed to degrade gracefully in the presence of outliers,
we classify it as ‘‘Degrade in the presence of outliers’’. If a
LogCT is not evaluated on noisy data, we classify it as ‘‘Not
robust against outliers’’.

4) DOMAIN
Robust against outliers, degrade in the presence of outliers,
not robust against outliers.

D. MISSING DATA
1) TYPICAL QUESTION
Can the LogCT detect missing log-events?

2) DEFINITION
In statistics, missing data is defined as ‘‘a data value that is
not stored for a variable in the observation of interest’’ [52].
A dataset containing cells that are empty presents two
problems. The first problem is that statistical power is
reduced, which refers to an incorrect rejection of the null
hypothesis when it is false. The second problem is selection
bias, which refers to a subset of data samples that are excluded
from the study due to a flaw in the selection process of the
data samples. For example, Rouillard [12] showed that if the
system log rotation mechanism crashed but failed to report it,
the system logs in the partition fills up over time and leads to
an out-of-disk space error, causing the loss of system logs.

3) CLASSIFICATION CRITERIA
We analyzed the approach in each LogCT. If a LogCT is
evaluated on a dataset which contains empty cells, we classify
it as ‘‘Robust against message loss’’. If a LogCT provides
a mechanism for handling missing log-events but was not
evaluated on a dataset containing empty cells, we classify it

as ‘‘Potential for handling message loss’’. If a LogCT is not
evaluated on a dataset containing empty cells, we classify it
as ‘‘Not robust against message loss’’.

4) DOMAIN
Robust against message loss, potential for handling message
loss, not robust against message loss.

VII. LOG-CORRELATION TOOLS COMPARISON
In this section, we present a comparison of the log-correlation
tools reviewed in Section V. We use the quality attributes
described in Section VI to compare these log-correlation
tools. A summary is given in Table 2. Next, we summarize the
results reported in the LogCTs articles, give our observations
and provide directions for future research.

A. SPURIOUS CORRELATIONS
From Table 2, we observed that SEC [12], LogMaster [13],
RPTCN [15], SIG [3], FDiag [17], Baler [18], UiLog [20],
CORRMEXT [21], ANCOR [22] and the approaches pre-
sented by Gainaru et al. [4], Lan et al. [14], Fu et al. [16],
and Zheng et al. [19] performed direct correlation of log-
events. In contrast, IFADE performed indirect correlation of
log-events [23].

1) RESULTS
Taeret et al. [18] evaluated Baler with four log-clustering
tools and showed that Baler identified several message
patterns associated with out-of-memory conditions and
memory errors. FDiag identified sequences of correlated
messages associated with the Lustre file-system Evict/RPC
protocol [17]. ANCOR detected nodes that exhibited
anomalous behaviour and identified sequences of correlated
messages associated with compute node soft lockups [22].
Oliner et al. [3] showed that SIGs identified bugs that caused
two autonomous vehicles to swerve and identified a non-
performance bug on a large supercomputer. Zheng et al. [19]
identified the cause of hardware and system software failures
on a BlueGene/L supercomputer. CORRMEXT identified
patterns of error messages and obtained the percentage
of success and failure of error recovery protocols [21].
Rouillard [12] showed how SEC can be used to analyze the
normal and abnormal behaviour of the sendmail protocol.
They provided a PERL script and applied it on the system logs
obtained from a cluster system. Zou et al. [20] showed that
(a) their fault log-analysis module achieved high precision
rates for 12 types of faults and (b) the fault log-correlation
analysis module decreased the collision error rates to about
20% and maintained a low truncation rate of less than 20%.
IFADE evaluated partial correlation with direct correlation
algorithms and showed that partial correlation identified two
previously unknown causes of compute node soft lockups,
which are (a) memory data updates and (b) corruptedmemory
pointers [23].

Gainaru et al. [4] evaluated their approach with two
existing prediction methods and showed that their approach
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TABLE 2. Log-Correlation Tools Quality Attributes.

outperformed those prediction methods in terms of the
precision and recall. Lan et al. [14] showed that their dynamic
meta-learning approach outperformed a static meta-learner in
terms of the precision and recall. The authors of RPTCN [15]
compared it with four commonly used time series prediction
algorithms and showed that RPTCN outperformed those
algorithms in terms of the lowest mean squared error and
mean absolute error. Fu et al. [13] showed that LogMaster
achieved a high average precision on the system logs of
three cluster systems and confirmed that correlations between
failure and non-failure events are crucial for predicting
system failures accurately. Subsequently, Fu et al. [16]
enhanced LogMaster and applied it on three real world
system logs and showed that (a) the failure prediction step
achieved high precision and recall rates on all three system
logs and outperformed three existing prediction algorithms
and (b) the failure diagnostics step achieved comparable
precision and recall rates with respect to those prediction
algorithms.

2) OBSERVATION
The reviewed log-correlation tools are effective in identifying
the likely cause of a system failure or predicting system
failures with high accuracy. However, if the correlated log-
events are not causally linked due to the presence of one or
more confounding log-events, then this might lead to a wrong
diagnosis or a wrong prediction [27].

3) PROMISING RESEARCH DIRECTION
There are few works that identify spurious correlations
which may lead to a false diagnosis or false prediction.
In statistics, spurious correlations are used to rule out
correlations that do not represent causal relationships [28].
Spurious correlations can be identified by controlling for
the effect of one or more confounding variables. Partial
correlation is a statistical technique for measuring the
relationship between two variables while controlling for the
effect of one or more other variables [53]. Thus, researchers
could investigate further correlation techniques to reduce
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the probability of making a wrong diagnosis or a wrong
prediction. While current LogCTs are effective in diagnosing
system failures or predicting system failures, tools which
can improve failure diagnosis or failure prediction could
be a valuable addition to contemporary failure management
systems for large supercomputers (e.g., [24]).

B. CORRELATION THRESHOLD SETTINGS
From Table 2, we observed that SEC [12], SIGs [3],
UiLog [20] and the approaches presented by Lan et al. [14]
and Zheng et al. [19] provided adjustable threshold values.
In contrast, LogMaster [13], RPTCN [15], FDiag [17],
Baler [18], CORRMEXT [21], ANCOR [22], IFADE [23]
and the approaches presented by Gainaru et al. [4] and
Fu et al. [16] used a predefined threshold value.

1) RESULTS
Oliner et al. [3] used two parameters for computing a SIG.
These parameters can be adjusted to explore their impact
on a SIG. Rouillard [12] used the counts of unique events
to determine when a rule containing a threshold correlation
value is satisfied. Zou et al. [20] used different time-windows
to identify correlations of log-events and assign these log-
events to a specific fault type. Zheng et al. [19] used different
similarity scores to distinguish application failures from
hardware failures.

Gainaru et al. [4] used predefined threshold values for each
signal obtained from the preprocessing step of their approach.
Each threshold value represents the normal behaviour of
one event type. Taerat et al. [18] used two parameters to
determine the similarity between log-events. They conducted
experiments with different values on several system logs and
showed that a threshold value of 0.3 produced very few
over-grouped clusters. Fu et al. [13] defined a support count
and posterior count for computing a confidence measure
and used a predefined value to determine the support count
for representing a cluster of frequently occurring log-events.
Chen et al. [15] used the top-half of all ranked performance
metrics as input data to the temporal convolution network.
To filter duplicate events, Lan et al. [14] implemented an
iterative approach where each value is tested and increased
until the log-compression rate is stable. They showed that a
threshold value of 300 seconds produced a 98% compression
rate for the IBMBlueGene/L logs. FDiag [17], ANCOR [22],
CORRMEXT [21], and IFADE [23] used a fixed correlation
coefficient value of 0.75 to identify the strongly positive
correlated log-messages, but the strongly positive correlation
coefficient value range from 0.75 to 1.

2) OBSERVATION
Determining the impact that the correlation threshold settings
will have on the LogCTs in diagnosing system failures or
predicting system failures is challenging, especially when
different techniques are implemented and these techniques
require different ranges of values.

3) PROMISING RESEARCH DIRECTION
There are few works that assess the impact of tuning
the correlation threshold settings for diagnosing system
failures [44] or predicting system failures. Serafini et al. [44]
showed that the completeness and correctness of failure
diagnosis is influenced by tuning the parameters in various
fault models during design time. Thus, researchers could
study how the parameters in correlation models can be tuned
to improve failure diagnosis or failure prediction.

C. OUTLIERS IN THE DATA
From Table 2, we observed that SIGs [3], ANCOR [22]
and the approach presented by Gainaru et al. [4] handled
outliers in the system logs. In contrast, SEC [12], UiLog [20],
LogMaster [13], RPTCN [15], FDiag [17], Baler [18],
CORRMEXT [21], IFADE [23] and the approaches presented
by Lan et al. [14], Zheng et al. [19], and Fu et al. [16] assumed
that there are no outliers in the system logs.

1) RESULTS
Gainaru et al. [4] implemented outlier detection in their
analysis modules. They computed the median of past data
points and compared it with the current data point. If the
distance between the median value and the current data
point exceeds a specified threshold, the current data point
is labelled as an outlier. Then, a replacement value for
the data point is proposed. Oliner et al. [3] quantified the
behaviour of system components in terms of the anomaly
signal. They defined an anomaly signal as a signal that takes
a value near to the mean of its distribution, so when the
distance between a data point and the mean of the anomaly
signal increases, an anomaly in the system component’s
behaviour is detected. They used these anomaly signals to
construct a Structure-of-Influence Graph (SIG) and showed
that SIGs are robust against measurement noise. ANCOR
applied feature extraction techniques to identify nodes that
exhibited anomalous behaviour and diagnose the cause of
compute node soft lockups on those anomalous nodes [22].

2) OBSERVATION
Outliers in the system logs have been used to distinguish nor-
mal system behaviour from abnormal system behaviour [4]
and to diagnose the cause of system failures [3], [22].
However, few works have investigated the impact of outliers
on the accuracy of failure diagnosis or failure prediction.

3) PROMISING RESEARCH DIRECTION
Researchers could investigate novel correlation approaches
which are robust against outliers, for example using a rank
correlation algorithm rather than Pearson correlation [31].

D. MISSING DATA
From Table 2, we observed that SEC [12] and SIGs [3]
handled missing log-events. In contrast, LogMaster [13],
RPTCN [15], FDiag [17], Baler [18], CORRMEXT [21],
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ANCOR [22], IFADE [23], UiLog [20] and the approaches
presented by Lan et al. [14], Zheng et al. [19],
Gainaru et al. [4], and Fu et al. [16] assumed that all the
log-events are contained in the system logs.

1) RESULTS
Rouillard [12] showed an example on how to handle the
problem of missing log-events. They wrote a PERL script
that generated cron job log-events regularly and matched
these generated log-events to cron job log-events in the
system logs. If there are no cron job log-events in the system
logs, then it indicates that the cron job process had crashed.
Moreover, they pointed out that it is difficult to determine
when the external log-event generating process had failed.
Oliner et al. [3] treated message loss as another form of
noise. They presented an experiment that produced output
messages at t1, t2 and t3 and showed that SIGs are robust
against uniform message loss.

2) OBSERVATION
There are few articles that investigated the impact of missing
log-events on the accuracy of failure diagnosis or failure
prediction.

3) PROMISING RESEARCH DIRECTION
Researchers could implement novel approaches to test for
the presence of specific log-events, for example generate
Lustre file-system Evict/RPC protocol events and match
those generated log-events to the log-events in the system logs
to determine if the Lustre Evict/RPC protocol had crashed.
Researchers could also investigate novel statistical methods
for handling missing data, for example listwise deletion,
pairwise deletion, mean substitution, regression imputation
or sensitivity analysis [52].

VIII. THREATS TO VALIDITY
We have identified the following threats to validity:
(a) construct validity threat, (b) internal validity threat and
(c) external validity threat.

A construct validity threat is concerned with the obser-
vations with respect to the established theory. We proposed
a quality model that covered the important attributes of
LogCTs. We identified the attributes of spurious correlation,
threshold settings, outliers in the data and missing data
from a detailed review of 46 representative articles that
were obtained through a systematic literature review process.
As the 46 articles are representative of LogCTs, we believe
that there is no threat to the accuracy of our results, apart
from the threat to the design of a systematic literature review.
Wemay have missed some relevant articles, so to address this
issue we followed established guidelines on how to conduct
a systematic literature review [7].

An internal validity threat is concerned with the factors
that might influence the results presented in this paper. These
factors include the selection of articles and the characteristics
of LogCTs. On the selection of articles, we may have

missed relevant articles on LogCTs. To address this issue,
we applied a systematic literature review process [7] and
searched multiple scholarly databases which are the main
sources of research articles. These databases include the
digital libraries of the IEEE, ACM, Springer and Elsevier.
Furthermore, we conducted both forward and backwards
snowballing to mitigate the risk of missed articles. On the
characteristics of LogCTs, our analysis of the characteristics
of LogCTs are based on the approach and results provided in
the selected articles. We did not review LogCTs for security
because they are beyond the scope of this paper, nor check the
source code or implement the reviewed LogCTs as it would
require a significant amount of resources out of the scope of
this paper.

An external validity threat is concerned with the generaliz-
ability of the results. Our conclusions are based on 14 LogCTs
and may not generalize to all LogCTs. As the LogCTs
we reviewed are widely deployed in large cluster systems,
we believe that our results are representative for most
LogCTs. Regardless of the generalizability of our results,
we showed that our quality model can be used to compare
any LogCT.

IX. CONCLUSION AND FUTURE WORK
We presented a systematic review of literature on LogCTs.
From 3,758 initial articles, we reviewed 46 representative
articles in detail and identified the important attributes
associated with the LogCTs. We proposed a quality model
containing four quality attributes comprised of spurious
correlation, threshold settings, outliers in the data and
missing data, and used our quality model to compare and
evaluate 14 LogCTs. We showed that there is not one LogCT
that fulfilled all the four quality attributes.

System designers can use the results in Section VII
to decide which LogCT is relevant to their specific use
case. Researchers can use our quality model to compare
and evaluate state-of-the-art LogCTs and also use our
recommendations to enhance existing LogCTs or develop
new LogCTs. We have made several recommendations
for future research. They are (a) design novel correlation
approaches which identify spurious correlations to reduce the
risk ofmaking awrong diagnosis or false prediction, (b) study
how the parameters of correlation models can be tuned to
improve diagnostics or prediction accuracy, (c) design novel
correlation approaches which are robust against outliers in the
system logs and (d) implement novel approaches for handling
missing log-events in the system logs.
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