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Abstract—Systems with colocated sensor-actuator pairs exhibit
the interesting property of pole-zero interlacing. Integral Reso-
nance Control (IRC) exploits this property by changing the pole-
zero interlacing to zero-pole interlacing. The unique phase re-
sponse of this class of systems enables a simple integral feedback
controller to add substantial damping. Over the past few years,
IRC has proven to be extremely versatile and has been appliedto
a wide variety of systems whose dominating dynamics of interest
can be accurately modeled by second-order transfer functions.
To date, a manual approach has been employed to determine the
parameters of the IRC scheme, namely the feed-through term
and the integral gain. In this article, the relationship between
the feed-through term, integral gain and achievable damping is
derived analytically for undamped/lightly-damped second-order
systems. The relationship between damping controller and an
outer servo loop is also derived. These results add to the
current understanding of colocated systems and automate the
design of IRC controllers with a specified damping and tracking
bandwidth. The presented results are applied to design and
implement a damping and tracking controller for a piezoelectric
nanopositioning stage.

Index Terms—Nanopositioning, Vibration damping, Integral
Resonance Control

I. I NTRODUCTION

UNWANTED excitation of system resonances can produce
vibration that can substantially degrade the performance

and life time of many mechatronic systems [1]. Both passive
and active damping techniques have been widely reported in
the literature. Passive damping techniques have the advantage
of needing no sensing or supervisory control but can be limited
in performance and may be sensitive to changes in system res-
onance frequency. Active techniques may be more complicated
but have the potential to overcome the performance limitations
of passive systems [2].

Active vibration control is commonly used to damp systems
where bandwidth, precision, or life time are key performance
requirements, for example, robotic manipulators [3]–[5],disk-
drives [6], aircraft wings [7], nanopositioning stages [8], [9],
Scanning Probe Microscopes [10], and high-density memory
storage devices [11].

A number of well-performing damping controllers such
as the Integral Force Feedback (IFF) [1], Shunt Damping
(SD) [12], Positive Position Feedback (PPF) [13], Positive
Velocity and Position Feedback (PVPF) [14], resonant control
[15], and robust control [16] have been proposed earlier.
Apart from the IFF technique, a drawback of other controller
designs is that they result in high-order controllers for multi-
mode resonant systems. This makes them suitable only for

damping systems where generally the first resonance mode
is highly dominant over all the others. To overcome this
issue, Integral Resonance Control (IRC) was proposed as a
simple, low-order scheme capable of damping multiple modes
while retaining high stability margins [17]. It should be noted
that due to the choice of user-selected feed-through term, the
IRC incorporates more design flexibility than the IFF scheme,
which requires additional sensor and instrumentation.

The general concept of IRC design is to change the pole-
zero interlacing of a colocated systemG(s) to zero-pole
interlacing. This is achieved by adding a constant feed-through
term d to the system. An integral controllerC(s) = kd/s is
then applied to the modified system̂G(s) = G(s) + d. As the
integral gainkd is increased, the poles of the system move
away from the imaginary axis into the left-half complex plane
and eventually move to the open loop zero locations.

Due to the intuitive approach, simplicity and robust per-
formance, IRC has been successfully employed to damp a
variety of systems such as cantilever beams [17], flexible
robotic manipulators [18], nanopositioning platforms [19],
commercial atomic force microscopes [10], flexible civil struc-
tures [20] and walking-induced floor vibrations [21]. It was
further shown in [22] that the IRC was a negative imaginary
system. This result provided further insight into the structure
and stability of IRC implementations [23]. However, the IRC
design procedure still requires a trial-and-error approach to
determine the necessary feed-through term and integrator gain.

High-precision micro and nanopositioning systems have
garnered a substantial amount of research interest in recent
years [24]. These precision positioners form an integral part
of many specialized technological systems (such as atomic
force microscopes) where nanopositioning is a key enabling
technology [25]. The frequency response of such systems
typically shows their first resonant mode being dominant over
all the subsequent higher frequency modes. Consequently,
they have traditionally been modeled as simple second-order
systems with a low damping coefficient [26], [27]. This is the
motivation for focusing this work on the analytical treatment
of similar second order systems.

This work starts by quantifying the impact of the selection
of the feed-through termd on the location of the introduced
zeros. An analytic expression is derived that relates the feed-
through termd and the integral gainkd to the modal damping
ζ. As many applications also require a servo control loop the
relationship between the damping gainkd and the integral
tracking gainkt is also considered. A limit is identified for
the product of the two gains beyond which the overall system
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Fig. 1. Plot off(d) = ω2
p + γ2/d versusd.

is unstable. Experimental results on a piezoelectric-stack actu-
ated nanopositioner (modeled as a second-order system witha
low damping coefficient) are presented to validate the theory.

II. FEED-THROUGH FOR ASECOND-ORDER COLOCATED

SYSTEM

Second-order systems with a lightly damped resonance
mode and colocated (or approximately colocated) sensors and
actuators are commonly seen in many technological systems.
Nanopositioning systems are an example where the presence
of a lightly damped resonance mode severely limits the per-
formance. Various damping controllers have been proposed
to alleviate this problem [9]. Assuming that the system is
decoupled, the dynamics of each axis can be approximated
as a second-order system, that is,

G(s) =
γ2

s2 + 2ζωps+ ω2
p

+ df , (1)

whereζ is the damping coefficient,ωp is the natural frequency
and df is a feed-through term introduced to improve the
prediction of zero-locations of a truncated model, and to
approximate the stiffness of the system at high-frequencies
[28]. A common assumptions is thatζ has a small value and
can be neglected during the mathematical analysis.

Theorem 1:If a feed-through termd is added to a
resonant second-order system transfer function given by
G(s) = γ2/(s2+ω2

p), then the relationship between the feed-
through term and the location of the feed-through-induced
zerosz1 andz2 is as follows

1) If d < dc, then the zeros are imaginary and conjugate,
z1, z2 = ±jωz, andω2

z < ω2
p, wheredc = −γ2/ω2

p.
2) If d > 0, then the zeros are imaginary and conjugate,

z1, z2 = ±jωz, andω2
z > ω2

p.
3) If d ∈ [dc, 0), then the zeros are real.

Proof:

Ĝ(s) =
γ2

s2 + ω2
p

+ d =
γ2 + d(s2 + ω2

p)

s2 + ω2
p

=
d(s2 + ω2

z)

s2 + ω2
p

. (2)

Zeros inĜ(s), are introduced by the feed-through term.

Equation (2) leads to the introduced zeros to be located at

z1, z2 = ±j

√

(

ω2
p +

γ2

d

)

= ±j
√

f(d). (3)

When (3) is evaluated in order to find the location of zeros, it
shows that the zeros introduced by the feed-through termd are
not always imaginary for any arbitrary choice ofd. Plotting
f(d) shows that for a critical value ofd given bydc = −γ2/ω2

p

wheref(dc) = 0, results in two zeros at the origin. In the
range of[dc, 0), f(d) is negative, resulting in two real zeros ,
see Fig. 1.
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Remarks: Note that implementing an IRC scheme on a
system manipulated to have zeros as Case 3 will lead to
instability since it will be non-minimum phase. Similarly,for
d corresponding to Case 2 zeros are introduced at a frequency
higher than the system poles, leading to an unstable closed-
loop since the departure angle for the pole in the origin will
be 0 degrees. Consequently, a choice ofd corresponding to
Case 1 is appropriate for implementing the IRC scheme. This
ensures zero-pole interlacing.

Lemma 1:Consider a second-order systemG(s) with two
purely imaginary poles at± jωp, to which a feed-through
term d which satisfies−∞ < d < dc < 0 is added to
introduce a pair of purely imaginary zeros at± jωz. If an
integrator,C(s) = kd/s, is implemented in positive feedback
with Ĝ(s) = G(s) + d, then

1) For all d ∈ (−∞, 1.125dc) whereωz > ωp/3, the root-
locus behaves such that as the integral gain increases, the
system pole traverses a curve and reaches the introduced
zero without intersecting the real axis. The pole at the
origin (introduced by the integrator) gradually goes to
−∞ as the integral gainkd tends to∞ (Fig. 2a).

2) When ωz ≤ ωp/3, d ∈ [1.125dc, dc), the root-loci
starting from the system poles intersect the real axis.
In this case the root locus plot could have one (Fig. 2b)
or two (Fig. 2c) breakaway points on the negative real
axis.

Proof: To find the breakaway points, the characteristic
equation should be rearranged such that the gain term,kd,
can be isolated [29],

1− Ĝ(s)C(s) = 0

kd −
s(s2 + ω2

p)

d(s2 + ω2
z)

= 0

kd − P (s) = 0. (4)

The breakaway points are the roots ofd
dsP (s). Therefore

d

ds
P (s) =

s4 + s2(3ω2
z − ω2

p) + ω2
pω

2
z

d(s2 + ω2
z)

2
= 0.

Definex ≡ s2, reduce the order of equation to two.

x2 + x(3ω2
z − ω2

p) + ω2
pω

2
z = 0. (5)
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(a) (b) (c)

Fig. 2. In case ofωz < ωp root locus of the system with IRC could follow different trajectories. Ifωz ≤ ωp/3, root locus plot will have one (b) or two
(c) breakaway points on negative real axis while ifωz > ωp/3 root locus has no breakaway points (a) andζmax < 1.

Since the breakaway points lie on the real axis, conditions that
give real roots for (5) need to be found. So

(3ω2
z − ω2

p)
2 − 4ω2

pω
2
z ≥ 0 ⇒ ω2

p − 5ω2
z ≥ 4ω2

z ⇒ ωp ≥ 3ωz.

For the special case whenωz = ωp/3, at a certain controller
gain, all three poles converge to the same point on the real
axis. This breakaway point occurs ats = −ωp/

√
3. It can

also be shown that the feed-through term isd = 1.125dc.
Fig. 2 shows, forωz > ωp/3, the maximum damping

ζmax < 1, which results in an under-damped complex con-
jugate pair wheres = −ζωp ± jωp

√

1− ζ2.
Forωz ∈ (0, ωp/3] which is related to the selection ofd in the
range[1.125dc, dc] results in a pair of imaginary zeros where
the root locus intersects with the negative real axis. In this
caseζmax > 1 is achievable for some selection ofkd, and
results in an over-damped system.
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III. R ELATIONSHIP BETWEEN FEED-THROUGH, DAMPING

AND IRC GAIN

In this Section, the relationship between the maximum
damping, feed-through term and controller gain is explored.
A similar result for systems that are zero-pole interlaced to
begin with has been presented in [30]. Fig. 3, illustrates the
root locus behavior for such system.

Theorem 2:Consider a colocated system with a pair of
imaginary poles at±jωp and feed-through-induced imaginary
zeros whereωz > ωp/3. If the IRC strategy is implemented
the maximum damping achievable is given by

ζmax =
1

2





ωp
√

ω2
p + γ2/d

− 1



 . (6)

The controller gain required to reach this maximum damping
is given by

kd =
1

|d|






ωp

√

√

√

√

ωp
√

ω2
p + γ2/d






, (7)

whereωz =
√

ω2
p + γ2/d with respect to feed-through term

d.

Proof: The closed-loop poles of the system must satisfy

1− Ĝ(s)C(s) = 0,

which can be expressed as angle criterion (8) and magnitude
criterion (9),

∠Ĝ(s)C(s) = 2kπ (k ∈ Z) (8)

|Ĝ(s)C(s)| = 1. (9)

whereĜ =
d(s2+ω2

z)
s2+ω2

p
andC(s) = kd

s
.

As s = σ + jω,

arctan

(

Im(L(s))

Re(L(s))

)

= 2kπ, (10)

whereL(s) = d(s2 + ω2
z)/(s(s

2 + ω2
p)).

Applying thetan function to both sides of (10) and rearranging
results in

ω4 − ω2(ω2
z + ω2

p − 2σ2)

+ σ4 + σ2(3ω2
z − ω2

p) + ω2
pω

2
z = 0. (11)

Equation (11), is the equation for the root locus, where
closed-loop complex-valued poles traverse askd changes from
0 to +∞. The equation of a line passing through the origin
is,

ω = −mσ. (12)

Substitutingω from (12) into (11), results in an equation based
on the unknownsσ andm. Rearranging in the ascending order
of σ,

(m4 + 2m2 + 1)σ4 + (−m2(ω2
z + ω2

p)3ω
2
z − ω2

p)σ
2

+ ω2
zω

2
p = 0. (13)

At the point where maximum damping occurs, the line has one
unique point-of-contact with the root-locus. For this point, the
discriminant of (13) should be zero and therefore it will have
two identical roots. Thus,
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(−m2(ω2
z + ω2

p) + (3ω2
z − ω2

p))
2

− 4(m4 + 2m2 + 1)(ω2
zω

2
p) = 0. (14)

Expanding and rearranging (14) for ascending order ofm gives

(ω2
z − ω2

p)
2m4 − 2m2(3ω4

z − ω4
p + 6ω2

zω
2
p)

+ 9ω4
z + ω2

p − 10ω2
zω

2
p = 0.

Solving the above expression form2 gives

m2 =
3ω4

z − ω4
p + 6ω2

zω
2
p ± 8ω3

zωp

(ω2
p − ω2

z)
2

m2 + 1 =
4ω2

z(ωz ± ωp)
2

(ωp − ωz)2(ωp + ωz)2
. (15)

Note that the damping factor,ζ, of any complex poles =
σ + jω based on the slope of the line passing through the
origin is

σ = −ζωn

ω = ωn

√

1− ζ2

ζ =
1√

m2 + 1
, (16)

whereωn =
√
σ2 + ω2.

Positive and negative sign in (15) can be analyzed separately
considering damping factorζ should be positive and less than
one for an under-damped system.

Case 1:Positive sign in (15),(ωz + ωp)
2

m2 + 1 =
4ω2

z(ωz + ωp)
2

(ωp − ωz)2(ωp + ωz)2
=

4ω2
z

(ωp − ωz)2
.

Substituting the above expression into (16) yields,

ζ =
ωp − ωz

2ωz

. (17)

Since0 < ωp < 3ωz, 0 < ωp − ωz < 2ωz thus,

0 <
ωp − ωz

2ωz

< 1 ⇒ 0 < ζ < 1.

This value forζ is valid.

Case 2:Negative sign in (15),(ωz − ωp)
2

Following the same procedure as Case 1 results in

ζ =
ωp + ωz

2ωz

. (18)

Simplifying (18) gives ζ > 1 which contradicts with
0 < ζ < 1.

As the derivations are based on having only one point-of-
contact between the locus and the line, this damping factor is
the maximum value achievable for a certain selection ofωp and
ωz and is given by (17). To find out the gain where maximum
damping occurs, the magnitude criterion (9) is used. Real and
imaginary coordinates of the point where maximum damping
occurs are found using (12), (13), and (15). This gives

(σ|ζmax
)2 =

ωp(ωp − ωz)
2

4ωz

(19)

Fig. 3. Forωz ∈ (ωp/3, ωp), the root locus will not have a break-away
point and exhibit a unique point at whichζmax as given in (6) is less than
1. The corresponding integrator gain is given by (7).

and

(ω|ζmax
)2 =

−ωp(ωp + ωz)(ωp − 3ωz)

4ωz

. (20)

Substituting (19) and (20) into (9), will result in an expression
for integrator gain at maximum damping,kd|ζmax

∣

∣

∣

∣

(σmax + jωmax)
2 + ω2

z

(σmax + jωmax)((σmax + jωmax)2 + ω2
p)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

kd|ζmax

∣

∣

∣

∣

kd|ζmax
=

1

d

(

ωp

√

ωp

ωz

)

. (21)
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Note that (19) could theoretically result inσ > 0. As this
would imply unstable pole locations, this case is omitted from
the analysis.

A. Trajectory ofζmax

Proposition 1: Consider a colocated system with poles at
± jωp. For all feed-through-term induced zero combinations
whereωp > ωz > ωp/3, the locus of possible pole locations
corresponding to maximum damping for a specific value of
ωp is determined by

ω2 = σ2 ± 2σ
√

σ2 + ω2
p + ω2

p. (22)

Proof: To find an expression in terms of the real valueσ,
the imaginary valueω, andωp, one can start by putting (12)
on the form

ω2

σ2
= m2 =

1− ζ2max

ζ2max

,

by using the expression in (16). Using (17) , the above
expression can be put on the form

ω2

σ2
=

ωzωp − σ2

σ2
. (23)

The expression in (19) can be rearranged as

ωp (ωp − ωz)
2
= 4σ2ωz

ωpω
2
z − 2

(

ω2
p + 2σ2

)

ωz + ω3
p = 0 ,
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Fig. 4. Block diagram for the IRC damping controller in addition to integral
tracking controller scheme whered is the feed-through term,kd is the IRC
damping gain andkt is the integral tracking gain.

which can be solved forωz, which yields

ωz =
ω2
p + 2σ2 ±

√

(

ω2
p + 2σ2

)2 − ω4
p

ωp

. (24)

Substituting (24) into (23) yields the expression in (22).

2

The expression in (22) describes the location of the poles
that yield the maximum achievable damping coefficientζ for a
specificωp when varying the feed-through termd, and can be
used to find value for the feed-through termd that maximizes
damping.

IV. T RACKING CONTROLLER

The IRC algorithm has been applied to damp the reso-
nances of various precision positioning systems, especially
nanopositioners [10], [18]–[21]. Nanopositioning systemgen-
erally employ piezoelectric actuators that tend to introduce
nonlinear effects such as hysteresis and creep. To minimizethe
positioning errors introduced by these phenomena, a damping
controller such as IRC, PPF, PVPF, and resonant control is
used in conjunction with a simple integral tracking scheme
[9], [10], [31]. A block diagram of the typical control scheme
incorporating both IRC damping and integral tracking is shown
in Fig. 4.

In earlier experiments it was observed that the tracking
and damping controller gains could not be arbitrarily tuned
independent of each other. In several experiments, it was seen
that increasing the tracking gain beyond a certain limit reduced
the damping of the system. In Fig. 4, the transfer functions
of interest for performance arey(s)/r(s) and y(s)/di(s).
The transfer functionỹ(s)/do(s) is also of interest when
considering the sensitivity to sensor noise. The characteristic
equation for all of the transfer functions mentioned above is
given by the numerator of:

1−
(

− ktkdγ
2

s2(s2 + ω2
p)

+
kd(d(s

2 + ω2
p) + γ2)

s(s2 + ω2
p)

)

= 1−
−ktkdγ

2 + kdds
3 + kd(dω

2
p + γ2)s

s2(s2 + ω2
p)

=
s4 − kdds

3 + ω2
ps

2 − kd(dω
2
p + γ2)s+ ktkdγ

2

s2(s2 + ω2
p)

(25)

Proposition 2: Let kd and kt be the IRC damping and
integral tracking gains respectively. For a closed-loop system

as implemented in Fig. 4 to be stable, the gains must obey the
following inequality

ktkd < −
γ2 + dω2

p

d2
(26)

Proof: To check the stability of the closed loop transfer
function of the system given in Fig. 4, the zeros of (25) should
be evaluated. The system is stable if all the zeros have negative
real parts. All necessary and sufficient conditions for stability
are met if 1) all the coefficients of (25) are positive, and 2) all
elements of the first column of the Routh-Hurwitz table are
positive. Askt, kd, γ andωp are all positive andd < dc < 0,
the condition for stability can be given by:

dω2
p + γ2 + ktkdd

2 < 0 (27)

Rearranging (27) forktkd results in the expression (26).

2

This theorem formally proves the earlier finding that damp-
ing and tracking gains are related in the IRC scheme and
cannot be tuned independent of each other. This theorem
shows that if one gain is increased, the limit for the other is
reduced and also gives a limit for the two gains beyond which
the overall closed-loop system will become unstable. It must
be noted that due to several structural similarities between the
IRC, IFF, and resistive shunt damping techniques, the stability
criteria proved above will hold for the IFF and shunt damping
control designs (with minor modifications).

Lemma 2:For a given second order system controlled using
the scheme shown in Fig. 4, there exists an absolute maximum
value forktkd. The corresponding maximum value is related
to d by

d = −2
γ2

ω2
p

= 2dc (28)

max {ktkd} =
ω4
p

4γ2
(29)

Proof: Define g(d) = −(γ2 + dω2
p)/d

2. The maximum of
g(d) is the absolute maximum of achievable value for product
of kt andkd. The corresponding value of feed-through termd
which maximizes this product can be computed by equating
the first derivative ofg(d) with respect tod to zero.

d

dd
g(d) =

dω2
p + 2γ2

d3
= 0

⇒ d = −2
γ2

ω2
p

= 2dc (30)

The maximum value forktkd is given by

max {ktkd} = g(d)|d=−2dc
=

ω4
p

4γ2

Fig. 5 shows this relationship graphically.

2

V. EXPERIMENTS

In this Section the control scheme depicted in Fig. 4 is
implemented on a nanopositioning stage.
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Fig. 5. g(d) = −(γ2 + dω2
p)/d

2 is the upper limit forktkd. Maximum of
this function occurs atd = 2dc and the corresponding value for this product is
ω4
p/(4γ

2). Selection ofd > dc is not valid choice asktkd becomes negative
which contradicts the preconditionkt > 0 andkd > 0.

A. Experimental Setup

The performance of each controller will be evaluated on a
two-axis serial kinematic nanopositioner, pictured in Fig. 6a.
The nanopositioner was designed and constructed at the
EasyLab, University of Nevada, Reno. The stage is driven by
two 10 mm 200 V piezoelectric stack actuators which provide
a range of 40µm in each axis. The position is measured by a
Microsense 6810 capacitive sensor and 6504-01 probe with a
sensitivity of 0.4 V/µm. The stage is driven by two PiezoDrive
PDL200 voltage amplifiers with a gain of 20 V/V.

A second-order model of the system was procured by
frequency domain least squares fit. The frequency response
of the x-axis is compared to the model response in Fig. 6b.
The model parameters are

G(s) =
2.025× 107

s2 + 48.63s+ 1.042× 107
. (31)

B. Results

Using Lemma 2, a feed-through termd = −3.88 was
deemed suitable as it introduced a zero at 363 Hz (below the
natural frequency of 514 Hz). Also, the maximum product of
tracking and damping gains that resulted in a stable closed-
loop system wasktk < 1.341268× 106. As seen from Fig. 7,
the combination of the two gains given by a generic point
(kt, kd) must lie in the region below the solid red line to
ensure stability. Furthermore, to maintain the magnitude of the
damped peak of the overall closed-loop (damped + tracking) to
be less than the damped system (with no tracking), the choice
of selectable gain combinations must be restricted to points
below the solid black line. Note that the normalized bandwidth
plotted in Fig. 7 is computed by dividing the bandwidth values
obtained for eachkd - kt combination (within the chosen
range) by the resulting overall maximum bandwidth. A similar
strategy is utilized to normalize the maximum peak values.
Three gain combinations were selected and experimentally
implemented. The three cases experimentally tested were:

• Case 1:Gain corresponding to best achievable damping
kd = 987 and remaining gain (fromktkd) for tracking,

(a)

(b)

Fig. 6. (a) A two-axis 40µm serial kinematic nanopositioner designed at the
EasyLab, University of Nevada, Reno. (b) The open-loop frequency response
of the nanopositioner measured from the voltage amplifier input to the sensor
output, scaled toµm/V.

kt = 1357. It can be clearly seen from Fig. 7 that this
point lies beyond the minimum resonance magnitude of
the damped system contour (solid black line). This results
in some high frequency ripples being manifested in the
time domain plots shown in Fig. 9.

• Case 2:Gain corresponding to best achievable damping
kd = 987 and tracking gain ofkt = 630 (found
via simulations) which results in maximum scan range
achievable with respect to±1% error allowed. As clearly
seen from Fig. 7 this point lies within the minimum
resonant magnitude of damped system contour. As a
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Fig. 7. The figure charts the evolution of three parameters with respect to
tracking gainkt and damping gainkd. The first parameter is plotted as a solid
contour of the overall normalized bandwidth. The second parameter plotted as
the solid black line is the maximum normalized peak of the damped system
with no tracking controller. The third parameter plotted asthe solid red line
is the evolution of the stability limit criteriaktkd < 1.341268 × 106.

Fig. 8. The open- and closed-loop frequency responses of thesystem,
measured from the reference input to the displacement inµm.

result almost no high frequency ripples are visible in the
time domain plots Fig. 9.

• Case 3:A suitable gain distribution that results in max-
imum overall bandwidth is extracted from the contour
plot given in Fig. 7 (any point in the dark red region):
kd = 890 andkt = 810..

For this particular application (nanopositioning), maximiz-
ing the typical -3 dB bandwidth would result in substantial
positioning errors (insufficiently damped system resonance
could potentially amplify the higher-frequency input compo-
nents). Therefore, a more restrictive bandwidth criteria has
been applied and is defined as a range of frequencies where
the closed-loop magnitude response of the overall system lies
between± 1 dB. The closed-loop frequency responses for

(a)

(b)

Fig. 9. (a) The closed-loop response to a 20-Hz 2-µm triangular reference
signal. For clarity, the waveforms are offset from each other by 0.3µm. (b)
The closed-loop response to a 20-Hz 2-µm step change in the reference signal.
For clarity, the waveforms are offset from each other by 3µm.

Case 1, Case 2and Case 3are plotted in Fig. 8. The time-
domain responses to a triangular and square-wave reference
input are plotted in Fig. 9. In Fig. 8, it can be observed that
Case 1results in a substantial damping but is still capable of
amplifying higher frequency components of the input triangle
wave. Selecting gains as prescribed inCase 2clearly improves
the damping but the tracking bandwidth is reduced. Selection
of gains as specified inCase 3 results in the maximum
positioning bandwidth of 400 Hz. The system responds well
to both triangle wave and square wave inputs.
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VI. CONCLUSIONS

In this work, analytical expressions are derived that relate
the parameters of an Integral Resonance Controller (IRC) to
the closed-loop pole locations, for second-order systems.As
many practical applications also require a servo controller,
the relationship between the damping and tracking controller
gains (kd and kt) and the closed-loop stability was also
found. These relationships were experimentally verified ona
nanopositioning stage. The relationships derived in this paper
form a basis for further optimization of the popular IRC
damping scheme and will lead to the development of improved
control strategies that combine damping as well as tracking.
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