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Abstract—Systems with colocated sensor-actuator pairs exhibit damping systems where generally the first resonance mode
the interesting property of pole-zero interlacing. Integral Reso- js highly dominant over all the others. To overcome this
nance Control (IRC) exploits this property by changing the ple- issue, Integral Resonance Control (IRC) was proposed as a

zero interlacing to zero-pole interlacing. The unique phas re- . le | d h ble of d : ltio| d
sponse of this class of systems enables a simple integraldback ~S'MP'€, IOW-order scheme capable of damping mulliple modes

controller to add substantial damping. Over the past few yess, While retaining high stability margins [17]. It should betad
IRC has proven to be extremely versatile and has been applied  that due to the choice of user-selected feed-through tdren, t

a wide variety of systems whose dominating dynamics of intest |RC incorporates more design flexibility than the IFF scheme
can be accurately modeled by second-order transfer functius. which requires additional sensor and instrumentation.

To date, a manual approach has been employed to determine the L
parameters of the IRC scheme, namely the feed-through term The general concept of IRC design is to change the pole-

and the integral gain. In this article, the relationship betveen Z2€ro interlacing of a colocated syste@i(s) to zero-pole
the feed-through term, integral gain and achievable dampig is interlacing. This is achieved by adding a constant feedtthh
derived analytically for undamped/lightly-damped secondorder  term d to the system. An integral controll&f(s) = kq/s is
systems. The relationship between damping controller and ra then applied to the modified Systafi‘(s) = G(s) +d. As the

outer servo loop is also derived. These results add to the intearal aaink, is increased. the poles of the tem move
current understanding of colocated systems and automate th integral gainzg 1S 1 Sed, poles SYys v

design of IRC controllers with a specified damping and trackng ~away from the imaginary axis into the left-half complex man
bandwidth. The presented results are applied to design and and eventually move to the open loop zero locations.
implement a damping and tracking controller for a piezoeledric Due to the intuitive approach, simplicity and robust per-
nanopositioning stage. formance, IRC has been successfully employed to damp a

Index Terms—Nanopositioning, Vibration damping, Integral variety of systems such as cantilever beams [17], flexible
Resonance Control robotic manipulators [18], nanopositioning platforms J[19
commercial atomic force microscopes [10], flexible civilst
tures [20] and walking-induced floor vibrations [21]. It was
further shown in [22] that the IRC was a negative imaginary

NWANTED excitation of system resonances can produggstem. This result provided further insight into the stuve

vibration that can substantially degrade the performanaad stability of IRC implementations [23]. However, the IRC
and life time of many mechatronic systems [1]. Both passidesign procedure still requires a trial-and-error appnotac
and active damping techniques have been widely reporteddigtermine the necessary feed-through term and integratior g
the literature. Passive damping techniques have the aalyant High-precision micro and nanopositioning systems have
of needing no sensing or supervisory control but can bedithitgarnered a substantial amount of research interest in trecen
in performance and may be sensitive to changes in system igsars [24]. These precision positioners form an integral pa
onance frequency. Active techniques may be more compticatsf many specialized technological systems (such as atomic
but have the potential to overcome the performance linoitsti force microscopes) where nanopositioning is a key enabling
of passive systems [2]. technology [25]. The frequency response of such systems

Active vibration control is commonly used to damp systemgpically shows their first resonant mode being dominant ove
where bandwidth, precision, or life time are key performanall the subsequent higher frequency modes. Consequently,
requirements, for example, robotic manipulators [3]-{B$k- they have traditionally been modeled as simple secondrorde
drives [6], aircraft wings [7], nanopositioning stages, [[], systems with a low damping coefficient [26], [27]. This is the
Scanning Probe Microscopes [10], and high-density memamptivation for focusing this work on the analytical treatthe
storage devices [11]. of similar second order systems.

A number of well-performing damping controllers such This work starts by quantifying the impact of the selection
as the Integral Force Feedback (IFF) [1], Shunt Dampirgf the feed-through termd on the location of the introduced
(SD) [12], Positive Position Feedback (PPF) [13], Positiveeros. An analytic expression is derived that relates thd-fe
Velocity and Position Feedback (PVPF) [14], resonant adntrthrough termd and the integral gai, to the modal damping
[15], and robust control [16] have been proposed earligr. As many applications also require a servo control loop the
Apart from the IFF technique, a drawback of other controlleelationship between the damping gaip and the integral
designs is that they result in high-order controllers foltinu tracking gaink, is also considered. A limit is identified for
mode resonant systems. This makes them suitable only fbe product of the two gains beyond which the overall system

|. INTRODUCTION



Equation (2) leads to the introduced zeros to be located at

2
21,20 = +§ <w5+%> — +j/F(d). 3)
=
= When (3) is evaluated in order to find the location of zeros, it

shows that the zeros introduced by the feed-through teame
not always imaginary for any arbitrary choice @f Plotting
f(d) shows that for a critical value afgiven byd. = —?/w?
where f(d.) = 0, results in two zeros at the origin. In the
range of[d.,0), f(d) is negative, resulting in two real zeros ,
see Fig. 1.

d O
Fig. 1. Plot off(d) = wj +~?/d versusd. Remarks Note that implementing an IRC scheme on a
system manipulated to have zeros as Case 3 will lead to
_ _ i i instability since it will be non-minimum phase. Similarfgr
is unstable. Experimental results on a piezoelectricksi@u-  ; corresponding to Case 2 zeros are introduced at a frequency
ated nanopositioner (modeled as a second-order systemawifljgher than the system poles, leading to an unstable closed-
low damping coefficient) are presented to validate the §1€0[oq since the departure angle for the pole in the origin will

be 0 degrees. Consequently, a choicedtorresponding to

Il. FEED-THROUGH FOR ASECOND-ORDERCOLOCATED  Case 1 is appropriate for implementing the IRC scheme. This
SYSTEM ensures zero-pole interlacing.

Second-order systems with a lightly damped resonance-€émma 1:Consider a second-order systefits) with two
mode and colocated (or approximately colocated) sensats &yrely imaginary poles ai- jw,, to which a feed-through
actuators are commonly seen in many technological systeff§m d which satisfies—co < d < d. < 0 is added to
Nanopositioning systems are an example where the presefiggoduce a pair of purely imaginary zeros 4t jw.. If an
of a lightly damped resonance mode severely limits the pdpiegrator.C(s) = ka/s, is implemented in positive feedback
formance. Various damping controllers have been proposdiih G(s) = G(s) + d, then
to alleviate this problem [9]. Assuming that the system is

decoupled, the dynamics of each axis can be approximate&) For alld € (—o0,1.125d.) wherng > wp/g_' t_he root-
as a second-order system, that is locus behaves such that as the integral gain increases, the

) system pole traverses a curve and reaches the introduced
() = 2l +dy L zero without intersecting the real axis. The pole at the
52 + 20wps + w2 ’ origin (introduced by the integrator) gradually goes to
—oo as the integral gait,; tends toco (Fig. 2a).
2) Whenw, < w,/3, d € [1.125d,,d.), the root-loci
starting from the system poles intersect the real axis.
In this case the root locus plot could have one (Fig. 2b)
or two (Fig. 2c¢) breakaway points on the negative real
axis.

where( is the damping coefficient;,, is the natural frequency
and d; is a feed-through term introduced to improve the
prediction of zero-locations of a truncated model, and to
approximate the stiffness of the system at high-frequencie
[28]. A common assumptions is thathas a small value and
can be neglected during the mathematical analysis.

Theorem L:If a feed-through termd is adc_jed tp & Proof: To find the breakaway points, the characteristic
resonant second-order system transfer function given b

G(s) = 7%/(s>+w2), then the relationship between the feedg}ﬁuatlon should be rearranged such that the gain tépm,

through term and the location of the feed-through-inducecéln be isolated [29],

zerosz; andz; is as follows 1-G(s)C(s) =0

1) If d < d., then the zeros are imaginary and conjugate, . s(s? +w§)

21,22 = +jw,, andw? < wﬁ, whered, = 772/%2,. d— d(s? + w?) =
2) If d > 0, then the zeros are imaginary and conjugate, kq — P(s) = 0. ()

21,29 = Hjw., andw? > w?.
3) If d € [d.,0), then the zeros are real. The breakaway points are the roots;éfP(s). Therefore
Proof: d (s) st 4 52 (Bw? — w2) + wiw?

—_— S) = =
Gs) = 7 P+ twy) d(s? 4 w?) 2 ds d(s? + w?)?
52 + w2 52 + w2 s +w? Definez = 52, reduce the order of equation to two.

Zeros inG(s), are introduced by the feed-through term. 2? + 2(3w? —wl) + wiw? = 0. 5)
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Fig. 2. In case ofv, < wy, root locus of the system with IRC could follow different eejories. Ifw. < wj;, /3, root locus plot will have one (b) or two
(c) breakaway points on negative real axis whilevif > w; /3 root locus has no breakaway points (a) ahgh. < 1.

Since the breakaway points lie on the real axis, conditibas t wherew, = /w2 +~2/d with respect to feed-through term

give real roots for (5) need to be found. So d.
(Bw? —w2)? —dwiw? > 0 = wi — bw? > 4w? = w, > 3w.. Proof: The closed-loop poles of the system must satisfy
For the special case when, = w,/3, at a certain controller 1— G(s)C(s) =0,

gain, all three poles converge to the same point on the real L )
axis. This breakaway point occurs at= —w,/+/3. It can which can be expressed as angle criterion (8) and magnitude
) = » .

also be shown that the feed-through termiis: 1.125d.. criterion (9),

Fig. 2 shows, forw, > w,/3, the maximum damping 4@(5)0(5) =2kr (k€ Z) (8)
Cmaz < 1, which results in an under-damped complex con- Ci(s)C -1 9
jugate pair wheres = —(w, £ jwpy/1 — (2. .. IG(5)C ()] ©)
Forw, € (0,w,/3] which is related to the selection dfin the where( = d(;j:;) and C(s) = k.
range[1.125d., d.] results in a pair of imaginary zeros where v
the root locus intersects with the negative real axis. I thi ]
case(maqr > 1 is achievable for some selection bf, and AS s =0+ jw,
results in an over-damped system. Im(L(s))

t — | =2k 10
arctan (Re(L(s)) , (20)

O
where L(s) = d(s* +w?)/(s(s* + w})).

I1l. RELATIONSHIP BETWEEN FEEBTHROUGH, DAMPING  Applying thetan function to both sides of (10) and rearranging

AND IRC GAIN results in
In this Section, the relationship between the maximum wh - WQ(WngW;Q)*?UQ)
damping, feed-through term and controller gain is explored +o'+0*(3w? —wl) +wiw?=0. (11)

A similar result for systems that are zero-pole interlaced tE . 11) is th ion for th | h
begin with has been presented in [30]. Fig. 3, illustrates th quation (11), is the equation for the root locus, where
root locus behavior for such system. closed-loop complex-valued poles traverséashanges from

Theorem 2:Consider a colocated system with a pair oi?S to +oc. The equation of a line passing through the origin
imaginary poles ai-jw, and feed-through-induced imaginary™
zeros wherev, > w,/3. If the IRC strategy is implemented w = —mo. (12)

the maximum damping achievable is given by o . . )
Substitutingo from (12) into (11), results in an equation based

1 w on the unknowng andm. Rearranging in the ascending order
p

Cma:c =z|—/—-1]. (6) of g,
2 /WIQ) +72/d ,

_ . _ . _ (m4 +2m? + 1)t + (—m2(w§ + w§)3w§ — wp)02
The controller gain required to reach this maximum damping 9 9
L +wiw; =0. (13)
is given by P
At the point where maximum damping occurs, the line has one
1 wp unique point-of-contact with the root-locus. For this gpthe

d P 5 p ) discriminant of (13) should be zero and therefore it will @av
d \V +72/d two identical roots. Thus,

kq



Trajectory A Jw

Of Cm,ar for g'm,amg . C'rnaml )
2/, 2 2 2 2112 i ) } Jwp
(—m?(w? + w?) + (3w? — w?)) N
—4(m* +2m® + 1)(wlwy) = 0. (14) > 4
JWzy
Expanding and rearranging (14) for ascending order. giives Jwe ‘
_ dwp
(@2 — w2)?m* — 2m>(3w? — Wl + 6wlw?) T
+ 9w} 4 w2 — 10ww? = 0. o
< o - >
Solving the above expression fer? gives V3 e
9 ?M;1 — wé + 6w§w§ + Swg’wp Fig. 3. Forw. € (wp/3,wp), the root locus will not have a break-away
m- = B BV point and exhibit a unique point at whiafh, . as given in (6) is less than
(Wp - Wz) 1. The corresponding integrator gain is given by (7).
4 2 . + 2
m? 1= st w)” (15)
(wp — wz)?(wp + w2)?
Note that the damping factot, of any complex poles = and
o + jw based on the slope of the line passing through the (w 2 = —wp(wp + w2 (wp — 3w) (20)
origin is Cmaz 4, '
o = —Cwp Substituting (19) and (20) into (9), will result in an exsEs
w o= wn/1-C2 for integrator gain at maximum dampink|c,.....
C _ 1 (16) (Umaw + jwmaw)Q + wz _ 1
vV m2 + 1 ’ (Umaz + jwmaz)((gmaz + jwmaz)Q + w?)) kd Cmaz
wherew,, = Vo2 + w?. )
Positive and negative sign in (15) can be analyzed sepgratel kalcpwe = = <wp /ﬂ) ) (21)
considering damping factar should be positive and less than d Wz
one for an under-damped system. O
Case 1:Positive sign in (15)(w. + w,)? Note that (19) could theoretically result in > 0. As this
) A (ws + wp)? Aoo? would imply unstable pole locations, this case is omittexirfr
m”+1= = 5 = —. the analysis.
(wp — w2)*(wp + w:) (wp — w:z)
Substituting the above expression into (16) yields,
Wy — Wy .
(= p2w . (17) A. Trajectory of¢inas
Sincel < wp < 3w, 0 < wp —w, < 2w, thus, Proposition 1: Consider a colocated system with poles at
wy — W, + jw,. For all feed-through-term induced zero combinations
U< —-—<1=0< ¢<L wherew, > w, > w,/3, the locus of possible pole locations

z

corresponding to maximum damping for a specific value of
wp is determined by

Case 2:Negative sign in (15)(w, — w;)? ) ) 5 S
Following the same procedure as Case 1 results in wo =07+ 20\/ o twp T Wy (22)

This value for¢ is valid.

_ Wt ws Proof: To find an expression in terms of the real value
(= : (18) .. .
2w, the imaginary valuev, andw,, one can start by putting (12)
Simplifying (18) gives ¢ > 1 which contradicts with on the form ) )
wo 9 1- Cmax
0< (<1 — =m? = e
g

max

As the derivations are based on havmg_ only one pomt-qtfly using the expression in (16). Using (17) , the above

contact between the locus and the line, this damping fastor | ]
. ; . ; expression can be put on the form

the maximum value achievable for a certain selection,oénd
w, and is given by (17). To find out the gain where maximum w_2 | Wap — o? (23)
damping occurs, the magnitude criterion (9) is used. Redl an o2 o2 ’
imaginary coordinates of the pOint where maximum damplngqe expression in (19) can be rearranged as
occurs are found using (12), (13), and (15). This gives

(o

274 2
(w0 — w2)? wp (wp —wy)” =40 w,
PP TR (19) wpw? — 2 (wi +202) wz+w2 =0,

2 _
Cman)” = 1o




as implemented in Fig. 4 to be stable, the gains must obey the

+ od + . . .
r ke E {l) B y Y following inequality
- s + s ~v2 4 duw?
I P — kikq < —T" (26)
Y Proof: To check the stability of the closed loop transfer

function of the system given in Fig. 4, the zeros of (25) stoul
Fig. 4. Block diagram for the IRC damping controller in adttfitto integral  be evaluated. The system is stable if all the zeros haveimegat
tracking controller scheme whergis the feed-through termik,; is the IRC real parts All necessary and sufficient conditions for iﬁt&b
dampi in and:; is the integral tracki in. o e -

amping gain and 1S fe infegral fracking gain are met if 1) all the coefficients of (25) are positive, and IR) a
elements of the first column of the Routh-Hurwitz table are
positive. Ask;, kq, v andw, are all positive and! < d. < 0,
the condition for stability can be given by:

w2+202j:\/w,2+20227w,4 2, .2 2

w, = -2 ( P ) P (24) dwy +7° + kikad® <0 (27)

Wp

which can be solved faw,, which yields

Rearranging (27) fok;k4 results in the expression (26).
Substituting (24) into (23) yields the expression in (22).

O
This theorem formally proves the earlier finding that damp-
The expression in (22) describes the location of the polesy and tracking gains are related in the IRC scheme and
that yield the maximum achievable damping coefficiefdr a cannot be tuned independent of each other. This theorem
specificw,, when varying the feed-through terd) and can be shows that if one gain is increased, the limit for the other is
used to find value for the feed-through tedhthat maximizes reduced and also gives a limit for the two gains beyond which
damping. the overall closed-loop system will become unstable. Ittmus
be noted that due to several structural similarities betvibe
IRC, IFF, and resistive shunt damping techniques, thelgtabi
criteria proved above will hold for the IFF and shunt damping
The IRC algorithm has been applied to damp the resgontrol designs (with minor modifications).
nances of various precision positioning systems, espgcial Lemma 2:For a given second order system controlled using
nanopositioners [10], [18]-{21]. Nanopositioning systgan- the scheme shown in Fig. 4, there exists an absolute maximum

erally employ piezoelectric actuators that tend to intaeluvalue for k; k4. The corresponding maximum value is related
nonlinear effects such as hysteresis and creep. To minitéze to d by

IV. TRACKING CONTROLLER

positioning errors introduced by these phenomena, a dampin 9

controller such as IRC, PPF, PVPF, and resonant control is d= _2l2 = 2d, (28)
used in conjunction with a simple integral tracking scheme Wp

[9], [10], [31]. A block diagram of the typical control schem wf,

incorporating both IRC damping and integral tracking isveho max {ktka} = 42 (29)
in Fig. 4.

Proof: Define g(d) = —(v* 4 dw?)/d?*. The maximum of
. ) e d) is the absolute maximum of achievable value for product
and damping controller gains could not be arbitrarily tun

. i . k; andk,4. The corresponding value of feed-through tetm
independent of each other. In several experiments, it wars S€ hich maximizes this product can be computed by equatin
that increasing the tracking gain beyond a certain limiticsa b P y €d 9

the damping of the system. In Fig. 4, the transfer functiortge first derivative ofy(d) with respect tal to zero.

In earlier experiments it was observed that the trackigg

. 2 2

of interest for perforrpance arg(_s)/r(s) anq y(s)/di(s). d o(d) = dpr(rh 0

The transfer functionj(s)/d,(s) is also of interest when dd d3

considering the sensitivity to sensor noise. The chariatiter ~2

equation for all of the transfer functions mentioned abave i =d= _QE = 2d. (30)

given by the numerator of: i

- (_ kikay® | Ka(d(s® + wp) +72)>
s2(s? + w3) 5(s? +w2)
—kikay® + kads® + ka(dw? 4+ ~*)s
(5% + w2)
_ s* — kads® + w2s® — kq(dw? +~v)s + kikavy? (25)
s2(s? + w3) V. EXPERIMENTS

Proposition 2: Let k; and k; be the IRC damping and In this Section the control scheme depicted in Fig. 4 is
integral tracking gains respectively. For a closed-loogtesyn implemented on a nanopositioning stage.

The maximum value fok;k, is given by

wp
4~2
Fig. 5 shows this relationship graphically.

max {kikq} = g(d)|a=—24, =

=1-




d

Fig. 5. g(d) = —(y? + dw?)/d? is the upper limit fork,kq. Maximum of
th|s function occurs af = 2d. and the corresponding value for this product is
w?/(4~?). Selection ofd > d. is not valid choice a%:k, becomes negative

WﬁlCh contradlcts the preconditioky > 0 andkg > 0.

A. Experimental Setup

The performance of each controller will be evaluated on
two-axis serial kinematic nanopositioner, pictured in.Fég.
The nanopositioner was designed and constructed at
EasyLab, University of Nevada, Reno. The stage is driven |
two 10 mm 200 V piezoelectric stack actuators which provic
a range of 4Qum in each axis. The position is measured by
Microsense 6810 capacitive sensor and 6504-01 probe witl
sensitivity of 0.4 Vium. The stage is driven by two PiezoDrive
PDL200 voltage amplifiers with a gain of 20 V/V.

A second-order model of the system was procured |
frequency domain least squares fit. The frequency respoil_—
of the x-axis is compared to the model response in Fig. Eo.)
The model parameters are

2.025 x 107
G(s) = — =
52 4 48.63s + 1.042 x 10

Mag (dB)

Phase (

(31)

=300

B. Results

Using Lemma 2, a feed-through tersh = —3.88 was
deemed suitable as it introduced a zero at 363 Hz (below the
natural frequency of 514 Hz). Also, the maximum product of
tracking and damping gains that resulted in a stable closed-

—40 N . L . N ‘ZIZZZ;“

—100p

=200}

@)

0_,

=201

Data | : = - ::o0
= = =Model

1 2 3

10 10 10
Freq (Hz)

(b)

loop system wag;k < 1.341268 x 108. As seen from Fig. 7, Fig. 6. (a) A two-axis 4Qum serial kinematic nanopositioner designed at the

the combination of the two gains given by a generic ponlﬁasyLab University of Nevada, Reno. (b) The open-loopuesgy response
he nanopositioner measured from the voltage amplifigutino the sensor

(kt, kq) must lie in the region below the solid red line tooutput scaled tumV.

ensure stability. Furthermore, to maintain the magnitude®
damped peak of the overall closed-loop (damped + trackng) t
be less than the damped system (with no tracking), the choice
of selectable gain combinations must be restricted to point
below the solid black line. Note that the normalized bandiwid
plotted in Fig. 7 is computed by dividing the bandwidth value
obtained for eachk,; - k; combination (within the chosen
range) by the resulting overall maximum bandwidth. A simila
strategy is utilized to normalize the maximum peak values.
Three gain combinations were selected and experimentally
implemented. The three cases experimentally tested were:

« Case 1:Gain corresponding to best achievable damping
kq = 987 and remaining gain (fronk;k,) for tracking,

k; = 1357. It can be clearly seen from Fig. 7 that this
point lies beyond the minimum resonance magnitude of
the damped system contour (solid black line). This results
in some high frequency ripples being manifested in the
time domain plots shown in Fig. 9.

Case 2:Gain corresponding to best achievable damping
kq = 987 and tracking gain ofk; = 630 (found
via simulations) which results in maximum scan range
achievable with respect th1% error allowed. As clearly
seen from Fig. 7 this point lies within the minimum
resonant magnitude of damped system contour. As a
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Fig. 7. The figure charts the evolution of three parameteth véspect to
tracking gaink; and damping gairt,;. The first parameter is plotted as a solid
contour of the overall normalized bandwidth. The secondupater plotted as
the solid black line is the maximum normalized peak of the pldnsystem
with no tracking controller. The third parameter plottedtlas solid red line
is the evolution of the stability limit criterid:kq < 1.341268 x 106.
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result almost no high frequency ripples are visible in th

800

1000 1200

Tracking gain (k)

«€=>>Combined bandwidth
Damping controller alone
maximum peak

Stability limit

1400

1600

10°
Freq (Hz)

time domain plots Fig. 9.

The open- and closed-loop frequency responses ofsyseem,
measured from the reference input to the displacemepimn

Position pm
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Ref
-1 Open
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Fig. 9. (a) The closed-loop response to a 20-Hzn2-triangular reference
Sgnal. For clarity, the waveforms are offset from each otne 0.3 um. (b)
The closed-loop response to a 20-Hz2r step change in the reference signal.

« Case 3:A suitable gain distribution that results in maxJor clarity, the waveforms are offset from each other byr8.
imum overall bandwidth is extracted from the contour
plot given in Fig. 7 (any point in the dark red region)case 1 Case 2and Case 3are plotted in Fig. 8. The time-
kq = 890 and k; = 810..

For this particular application (nanopositioning), maim input are plotted in Fig. 9. In Fig. 8, it can be observed that

ing the typical -3 dB bandwidth would result in substantiaCase 1results in a substantial damping but is still capable of
positioning errors (insufficiently damped system resoeanamplifying higher frequency components of the input trigng
could potentially amplify the higher-frequency input cooap wave. Selecting gains as prescribeiase 2clearly improves

nents). Therefore, a more restrictive bandwidth criterégs hthe damping but the tracking bandwidth is reduced. Selectio
been applied and is defined as a range of frequencies whefegains as specified irCase 3results in the maximum
the closed-loop magnitude response of the overall systesn Ipositioning bandwidth of 400 Hz. The system responds well
between+ 1 dB. The closed-loop frequency responses fao both triangle wave and square wave inputs.

domain responses to a triangular and square-wave reference



VI. CONCLUSIONS [19]

In this work, analytical expressions are derived that eelat
the parameters of an Integral Resonance Controller (IRC) to
the closed-loop pole locations, for second-order systekas. [20]
many practical applications also require a servo conirolle
the relationship between the damping and tracking coetroll
gains &y and k;) and the closed-loop stability was alsd?!l
found. These relationships were experimentally verifiedaon
nanopositioning stage. The relationships derived in thisep
form a basis for further optimization of the popular IRG22
damping scheme and will lead to the development of improved
control strategies that combine damping as well as trackinge3]
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