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Abstract: Salient object detection has achieved great improvements by using the Fully Convolutional
Networks (FCNs). However, the FCN-based U-shape architecture may cause dilution problems
in the high-level semantic information during the up-sample operations in the top-down pathway.
Thus, it can weaken the ability of salient object localization and produce degraded boundaries.
To this end, in order to overcome this limitation, we propose a novel pyramid self-attention module
(PSAM) and the adoption of an independent feature-complementing strategy. In PSAM, self-attention
layers are equipped after multi-scale pyramid features to capture richer high-level features and
bring larger receptive fields to the model. In addition, a channel-wise attention module is also
employed to reduce the redundant features of the FPN and provide refined results. Experimental
analysis demonstrates that the proposed PSAM effectively contributes to the whole model so that it
outperforms state-of-the-art results over five challenging datasets. Finally, quantitative results show
that PSAM generates accurate predictions and integral salient maps, which can provide further help
to other computer vision tasks, such as object detection and semantic segmentation.

Keywords: salient object detection; pyramid self-attention module; fully convolution network;
feature pyramid network

1. Introduction

Salient object detection or segmentation aims at identifying visually distinctive parts of a natural
scene. With the capacity to provide high-level information, saliency detection problems are widely
employed in various computer vision applications, such as object detection [1-3] and tracking [4],
visual robotic manipulations [5,6], image segmentation [7,8] and video summarization [9,10].
In early studies, salient object detection was formulated as a binary segmentation problem.
However, the connections between the salient object detection and other computer vision tasks
was ambiguous. Nowadays, convolutional neural networks (CNNs) attract more attention in the
research community. Compared with the classic hand-crafted feature descriptors [11,12], CNNs have
robust feature representation ability. Specifically, CNN kernels with small receptive fields can
provide local information, and the kernels with large receptive fields can provide global information.
This characteristic enables CNN-based approaches to detect salient areas with refined boundaries [13].
Thus, CNN-based approaches have, in previous years, become the major research approach for salient
object detection problems.

Furthermore, the so-called Fully Convolutional Networks (FCNs) have recently become the
fundamental framework for the above-mentioned problems [14-16], as FCNs can achieve fewer
parameters and smaller flexible input size compared to the fully connected layer. However,
although these works have achieved great improvements in performance, they are still restricted
by some limitations. FCN-based approaches utilize multiple convolution layers and pooling layers
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to extract high-level semantic features. These features facilitate the location of objects, however,
during pooling operations, important information might be lost. This can lead to degraded boundaries
of detected objects being generated. Besides, when the high-level features are upsampled to generate
the score prediction for each pixel, the features will also be diluted, which could decrease the ability of
object localization.

In this paper, we propose a novel pyramid self-attention module (PSAM) to overcome the
limitation of feature dilution in the previous FCN-based approaches. Figure 1c shows the inherent
problems of Feature Pyramid Networks (FPNs) [17]. Through incorporating a self-attention module
with multi-scale feature maps of FPNs, the model will focus on the high-level features. This leads
to the extraction of features with richer high-level semantic information and larger receptive fields.
In addition, a channel-wise attention module is employed to eliminate the redundancy in the FPN,
which can refine the final results. Experimental results show that the proposed PSAM can improve
the performance of salient object detection and achieve superior to state-of-the-art results in five
challenging datasets. To summarise, the contributions of this work can be concluded as: (1) We
propose a novel pyramid self-attention structure, which can make the model focus more on high-level
features and reduce feature dilation in top-down pathways. (2) We adopt a channel-wise attention
to reduce the redundant information in the lateral connections of the FPN to refine the final results.
The code can be found in Supplementary Materials.
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Figure 1. Qualitative visual results of ablation studies. (a) original images, (b) ground truth, (c) baseline:
a Feature Pyramid Network (FPN) with ResNet-50 as backbone (d) baseline+ Pyramid self-attention
Module (PSAM): an FPN structure and a proposed pyramid self-attention module (e) ours: the final
model which contains both a PSAM and channel-wise attention modules.

2. Related Works

2.1. Salient Object Detection

Different from the object detection, which is used to detect object instances with a specific category
(e.g., car, bike, people.) [18], salient object detection is used to detect and segment the salient objects
in natural images [13]. Due to the outstanding feature representation ability of CNNs, the handcraft
feature-based methods have been replaced by the CNN models. In the work of [19], Li and Yu used
fully connected layers on the top CNN layers to extract different scale features of a single region.
Then, multi-scale features were used to predict the scores for each region. Reference [20] utilized two
independent CNNSs to extract both the global context of the entire image and the detailed context of
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the local area under consideration to train the model jointly. However, the spatial information was lost
in these CNN-based methods, because of the fully connected layers.

Recently, FCN-based methods have raised more interest in the salient object detection.
Reference [15] proposed a boundary-aware salient object detection network which incorporates a
prediction module and a residual refinement module (RRM). The prediction module was used to
estimate the salient map from the raw images and the RRM was used to refine the results from the
prediction module which was trained between the salient map and the ground truth. Reference [14]
introduced a so-called PoolNet structure with two pooling modules: a global guidance module
(GGM) and a feature aggregation module (FAM). The GGM was designed to acquire more high-level
information around the inputs, which tackles the feature dilation problem in the U-shape network
structure. Furthermore, the FAM merges the multi-scale features of the FPN, leading it in reducing
the problem of aliasing caused by the up-sampling and enlarging the receptive fields. From the
experiments, it is demonstrated that PoolNet can make a more accurate localization of the sharpened
salient objects compared to other baseline approaches. In the work of [21], a Cascaded Partial Decoder
(CPD) structure that contains two prime branches was proposed. The first branch contributes to the
computation speed improvement by dropping features in the shallow layers. The second branch uses
the salient map from the first branch to refine the features in the deeper layers, which ensures the
speed and accuracy of the framework.

2.2. Attention Mechanism

Attention mechanism, an approach to solve the problem of the loss of relevant information,
is extensively used in the area of Natural Language Processing (NLP). Reference [22] introduced a
framework called a transformer, a new encoder—decoder architecture that uses only the attention
mechanism instead of recurrent layers to encode each position to capture global dependencies
between input and output. This framework also allows parallel computing, which leads to a faster
computational speed compared to recurrent networks. Except for the sequence models, this kind of
attention mechanism is also needed in CNN models. Different from the attention mechanism in the
sequence models, the self-attention mechanism pays more attention to a single datum. Reference [23]
proposed the Attention Augmented Convolutional Network, which produces attentional feature maps
via a self-attention module and concatenates these with CNN feature maps to capture the spatial
dependencies of the input, and it achieves a huge improvement in the tasks of object classification
and detection. The stand-alone self-attention layer was introduced in the work of [24]. It can be
used to set up a fully self-attentional model through replacing all spatial convolution layers with
self-attention layers. The previous works proves that it can be used as an effective stand-alone
layer which can replace the spatial convolution layer easily. Reference [25] proposed a residual
attention network combined with multiple attention modules to deal with the classification task.
Instead of stacking attention modules directly in the network, a residual attention mechanism is
employed to train the neural network with hundreds of layers. With an increasing number of layers,
the attention features adjust adaptively and the proposed network achieves a better performance and
lower computational complexity.

3. The Proposed Method

In this section, we describe the proposed novel architecture that integrates the two attention
modules. More specifically, as shown in Figure 2, we use a pyramid self-attention module which
aims to enhance the high-level semantic features and transmit the enhanced semantic information
to different feature levels. In addition, when feature maps are merged in the top-down pathway,
a simple channel-wise attention [26-28] module is added in each lateral connection to focus on the
salient objects in feature maps.
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Figure 2. Overall pipeline of the proposed model: a pyramid self-attention module (PSAM) is built

on the basic FPN structure and four channel-wise attention (CAM) modules are added in lateral
connections.

3.1. Pyramid Self-Attention Module

In this subsection, we describe the proposed module framework in detail and demonstrate the
differences from previous works. Reference [29] has demonstrated that high-level semantic features
are more representative and discriminative, leading to the position of salient objects being located
more accurately. Figure 1c shows that, without any additional attention modules, the FPN baseline
can generate rough saliency maps which have incomplete salient objects. Meanwhile, there are also
some non-salient objects present, which should not be detected in the saliency maps. These error
predictions are caused by two main challenges which cannot be avoided in the FPN architecture.
The first problem is that the high-level information is diluted progressively when it is integrated
in different feature levels in the top-down pathway. Another problem of the FPN baseline is that
this architecture can be impacted by other non-essential information, which may reduce the final
performance of the model. In other words, the FPN architecture detects not only incomplete salient
objects but also irrelevant objects. To overcome these two intrinsic problems of the baseline, we propose
a novel pyramid self-attention module (PSAM) which contains stand-alone self-attention layers [24] in
different scales, further focusing on important regions and enlarging the receptive field of the model.
Specifically, as shown in Figure 3, PSAM firstly transforms the feature map which is produced by a
bottom-up pathway into multi-scale feature regions, and then each self-attention layer learns to pay
more attention on important semantic information. After being processed by self-attention layers,
these multi-scale representations, which contain effective semantic information, are concatenated
together to complement high-level semantic information in the top-down pathway. More technically,
let X" denote the feature map, which is produced by the top-most layer. We downsample the feature
map xin c RHXx WxC
the height, width and channels of the feature map, respectively. Given a pixel x;; € {X1, X, X3},

into three different scales, denoted as {Xj, X5, X3}, where H, W and C represent

a corresponding local memory block ”;(j is extracted from the same feature map X; € {Xj, Xp, X3}.

This r;cj is a k x k region which surrounds x;;. There are three crucial learnable parameters in this



Electronics 2020, 9, 1702 50f 13

self-attention algorithm, namely, queries, keys and values. We use W, Wk and Wy to represent their
learnable weights respectively. The final attention output pixel is computed as follows

sij= 3 softmax(q/ku)0m, 1)
a,hENk

where q;; = Woxij, kop = WiXap, v = Wy, denote the three crucial parameters, s;; denotes
the output pixel of a self-attention layer, Ny = {(a,b) :a = {—k%l, v k%l}, b= {—I"Tl, veer k’Tl}}
defines the coordinates x,, of r;(] and we use {Y1, Y1, Y3} to denote the final feature map, which further
represents an upsampling operation after each self-attention layer. Then, we concatenate them with
the original X to generate the final output of the PSAM.

yout _ COnCat{Yll Y1, Ys, Xin} (2)
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Figure 3. The structure of Pyramid Self-attention Module: red, green and yellow denote 1 x 1,
3 x 3and 5 x 5 size, respectively. All feature maps in different size have 512 channels and finally
concatenate together.

3.2. Channel-Wise Attention

To enhance the contextual and structural information, the lateral connection has been used
in the top-down pathway, leading to a state-of-the-art performance of detection tasks. However,
this operation also introduces some non-meaningful information, which can reduce the performance
and impact the final prediction. From Figure 1c, it is observed that feature redundancy could cause two
problems. The first problem is that there are extra regions which should not be detected in the saliency
map. Another problem is that the edges of salient objects are ambiguous. Both problems indicate that
a further refinement should be applied. Reference [27] has pointed out that different channels have
different semantic features and channel-wise attention can capture channel-wise dependencies. In other
words, channel-wise attention can emphasize the salient objects and alleviate the inaccuracy which is
caused by redundant features in channels. Therefore, we add this simple channel-wise attention [26-28]
to each later connection to achieve a refinement task. The structure of channel-wise attention is shown
in Figure 4. It consists of one pooling layer and two fully connected layers, which are followed by
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a ReLU [30] and a sigmoid function, respectively. First, an operation of squeezing global spatial
information is applied to each channel. This step can be easily implemented by an average pooling

1 &y .

where c refers to the channel number and H x W refers to the spatial dimensions of the i-th element of
X,. After the pooling operation, the generated channel descriptor is fed into the fully connected layers
to fully capture channel-wise dependencies

s¢ = Fpe(pe, W) = o (fea(8(fer(pe, Wi)), Wa)) )

where ¢ refers to the sigmoid function, § refers to the Rectified Linear Unit (ReLU) function and fc
denotes the fully connected layers. Finally, this generated scalar s, multiplies the feature map X, to
generate a weighted feature map X.:

X, =s.- X, 5)

® Element-wise mul

Figure 4. The structure of Channel-wise attention Module: feature maps experience an average pooling
operation and squeeze to 128 channels to pass the first fully connected layer and retrieve to original
channels in the second fully connected layer.

4. Experiment

4.1. Datasets and Evaluation Metrics

For the evaluation of the proposed methodology, we carry out a series of experiments using
five popular saliency detection benchmarks, namely, ECSSD [31], DUT-OMRON [32], DUT-TE [33],
HKU-IS [19] and SOD [34]. These five datasets consist of a variety of objects and structures which
are challenging for salient object detection algorithms to locate and detect precisely. For the training
of our model, we use the large-scale dataset DUTS [33], which contains 10,533 training images and
5019 testing images. To evaluate the performance of the model, we estimate three representative
evaluation metrics, namely, precision-recall (PR) curves, F-score and mean absolute error (MAE).
The PR curve is calculated by saliency prediction and ground truth:

TP

Recall - m

Precision =

TP
TP + FP’ ©

where TP, FP and EN represent true-positive, false-positive and false-negative rates, respectively.
Thresholds are set from 0 to 255 to binarize the prediction. These thresholds produce corresponding
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precision-recall values to form a PR curve to represent the overall performance of the model.
The F-score indicates the standard overall performance, which is computed by precision and recall

(1+ B?) - precision - recall

Fs = 7

P pB? - precision + recall @)
where f? is set to 0.3 as default. Precision and recall are obtained by using different thresholds to
compare prediction and ground truth. The MAE indicates the deviations between the binary saliency
map and the ground truth. In other words, this metric quantifies the similarity between the prediction

map and the ground truth mask as follows

1 W H
MAE = G L LIP@) =Gl ®)

where W denotes the width and H denotes the height of prediction, P denotes the prediction map,
which is the output of the model, and G represents the ground truth map.

4.2. Impelmentation Details

Our model is implemented in Pytorch. We use ResNet-50 [35] as a backbone which has been
pre-trained on an ImageNet [36]. Specifically, the final stage exploits atrous convolution with dilated
ratio 2 in order to obtain larger receptive fields. ImageNet contains 1.28 M images for training and 50 K
for validation from 1000 classes. It is believed that pre-training on ImageNet could set reasonable initial
parameters and accelerate the convergence of training in other tasks. The proposed architecture is
trained on a GTX TITAN X GPU for 24 epochs. As suggested in [14], the initial learning rate is set equal
to 5 x 107 for the first 15 epochs, and then reduces to 5 x 10~ for the last nine epochs. We adopt
a 0.0005 weight decay for the Adam [37] optimizer and binary cross entropy loss function in the
proposed framework. Finally, to increase the robustness of the model, we perform data augmentation
through the application of random horizontal flipping.

4.3. Comparisons with State-of-the-Arts

We perform our proposed method on five datasets to compare with 11 previous state-of-the-art
methods, which include LEGS [38], UCF [39], DSS [29], Amulet [40], R3Net [41], DGRL [42],
PiCANet [43], BMPM [44], MLMSNet [45], AFNet [46], PAGE-Net [16] and PoolNet [14]. For fair
comparisons, we use the results which are generated by their original work with default parameters
and released by the authors. Furthermore, all results are evaluated by the same evaluation method
without any other processing tools.

4.3.1. Quantitative Comparisons

Figure 5 and Table 1 show the evaluation results of the proposed framework in comparison
with eleven state-of-the-art methods on five challenging salient object datasets, as already mentioned
above. More specifically, in Figure 5, it is clearly demonstrated from the PR curve that the proposed
methodology represented by the red line outperforms the state-of-the-art methods. This result means
that our method has better robustness than other previous methods. Furthermore, the quantitative
results are listed in Table 1. The proposed method achieves a higher F-score and lower error scores than
other methods, demonstrating that our novel model outperforms almost all previous state-of-the-art
models on the different testing datasets. However, although it is noted that PoolNet has similar
state-of-the-art results, our model has 23% less parameters.
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Figure 5. Results with PR curves on five benchmark datasets: DUTS-TE, ECSSD, HKU-IS, SOD and
DUT-OMRON. x-axis represents the recall rate and y-axis represents the precision.

4.3.2. Qualitative Comparisons

Figure 6 illustrates the visual comparisons to further show the advantages of the proposed
method. More precisely, compared to other approaches, the proposed method demonstrates the best
performance on different challenging scenarios, with the results being closer to the corresponding
ground truths compared to previous methods. For instance, in the first row, DGRL [42] and
PiCANet [43] only detect the main body of the bird. LEGS [38], UCF [39], DSS [29] and Amulet [40]
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detect irrelevant parts. Although R3Net [41] achieve a similar prediction to ours, the tail part still has
low scores.

Table 1. Quantitative results with F-score and MAE on five challenging datasets: DUTS-TE, ECSSD,
HKU-IS, SOD and DUT-OMRON. Our method is compared with 11 competitive baseline methods.

Method DUTS-TE ECSSD HKU-IS SOD DUT-OMRON
etho
F-Score MAE F-Score MAE F-Score MAE F-Score MAE F-Score MAE
LEGS [38] 0.654 0.138 0.827 0.118 0.770 0.118 0.733 0.196 0.669 0.133
UCEF [39] 0.771 0.117 0.910 0.078 0.888 0.074 0.803 0.164 0.734 0.132
DSS [29] 0.813 0.064 0.907 0.062 0.900 0.050 0.837 0.126 0.760 0.074
Amulet [40] 0.778 0.085 0.914 0.059 0.897 0.051 0.806 0.141 0.743 0.098
R3Net [41] 0.824 0.066 0.924 0.056 0.910 0.047 0.840 0.136 0.788 0.071
PiCANet [43] 0.851 0.054 0.931 0.046 0.922 0.042 0.853 0.102 0.794 0.068
DGRL [42] 0.828 0.050 0.922 0.041 0.910 0.036 0.845 0.104 0.774 0.062

BMPM [44] 0.851 0.048 0.928 0.045 0.920 0.039 0.855 0.107 0.774 0.064
PAGE-Net [16] 0.838 0.051 0.931 0.042 0.920 0.036 0.841 0.111 0.791 0.062
MLMSNet [45] 0.852 0.048 0.928 0.045 0.920 0.039 0.855 0.107 0.774 0.064

AFNet [46] 0.863 0.045 0.935 0.042 0.925 0.036 0.856 0.109 0.797 0.057
PoolNet [45] 0.880 0.040 0.944 0.039 0.933 0.032 0.870 0.101 0.803 0.056
Ours 0.879 0.040 0.944 0.038 0.931 0.034 0.874 0.104 0.813 0.056

Image GT Ours LEGS UCF DSS Amulet R3Net PiCANet DGRL

Figure 6. Overall comparison of qualitative visual results between our method and selected
baseline methods. It shows that our method is able to provide a more complete salient map and
smooth boundaries.

4.4. Ablation Study

In this subsection, we conduct a series of experiments on five different datasets to investigate the
effectiveness of two modules. The ablation experiments are trained on the DUTS [33] training dataset
in the same environment. From Table 2, the model which contains PSAM and channel-wise attention
module achieves the best performance, demonstrating that the proposed modules can effectively assist
the baseline’s salient object detection performance. More specifically, we initially conduct the baseline
experiments on the FPN baseline with ResNet-50 as a backbone. This basic model can generate rough
saliency maps, such as, for example, the ones depicted in Figure 1c. Furthermore, we add a pyramid
self-attention module (PSAM) on the baseline and the F-score increases significantly on all benchmark
datasets, an observation which is more prominent for DUTS-TE [33] and SOD [34]. On this basis,
we add channel-wise attention on the model to compose the proposed framework. The final results
show that the channel-wise attention modules can further increase the performance and alleviate error
predictions. To this end, Figure 1d,e demonstrate the effectiveness of two modules, respectively.
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Table 2. Quantitative results with F-score and MAE on five challenging datasets: DUTS-TE, ECSSD,
HKU-IS, SOD and DUT-OMRON for the ablation studies.

DUTS-TE ECSSD HKU-IS SOD DUT-OMRON

Method
F-Score MAE F-Score MAE F-Score MAE F-Score MAE F-Score MAE
Baseline 0.856 0.045 0.933 0.045 0.921 0.037 0.848 0.116 0.785 0.059
Baseline+PSAM 0.876 0.041 0.940 0.042 0.928 0.034 0.857 0.121 0.803 0.056

Baseline+PSAM+CA 0.879 0.040 0.944 0.038 0.931 0.034 0.874 0.104 0.813 0.056

5. Discussion and Conclusions

As shown in Figure 1d,e and Table 2, it is observed that the proposed PSAM could enhance the
semantic features and help the model focus on the useful objects. We believe that this attention module
could provide further help to other computer vision tasks, such as object detection and segmentation,
especially for semantic segmentation, which could facilitate multi-object saliency detection.

In this paper, we propose a novel end-to-end salient object detection method. Considering the
intrinsic problems of the FPN architecture, a pyramid self-attention module (PSAM) is designed.
This module contains different self-attention layers at multiple scales, leading in efficiently capturing
multi-scale, high-level features, producing a model which focuses on the high-level semantic
information and further enlarges the receptive field. Furthermore, we employ the channel-wise
attention in lateral connections to reduce the feature redundancy and refine prediction results.
Experimental results on five challenging datasets demonstrate that our proposed model surpasses 11
state-of-the-art methods. The ablation experiments further demonstrate the effectiveness of the two
proposed modules.

Supplementary Materials: The code can be found in https://github.com/ic-gialanqian/PSAMNet.
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