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A B S T R A C T   

Eddy covariance serves as one the most effective techniques for long-term monitoring of ecosystem fluxes, 
however long-term data integrations rely on complete timeseries, meaning that any gaps due to missing data 
must be reliably filled. To date, many gap-filling approaches have been proposed and extensively evaluated for 
mature and/or less actively managed ecosystems. Random forest regression (RFR) has been shown to be stable 
and perform better in these systems than alternative approaches, particularly when filling longer gaps. However, 
the performance of RFR gap filling remains less certain in more challenging ecosystems, e.g., actively managed 
agri-ecosystems and following recent land-use change due to management disturbances, ecosystems with rela
tively low fluxes due to low signal to noise ratios, or for trace gases other than carbon dioxide (e.g., methane). 

In an extension to earlier work on gap filling global carbon dioxide, water, and energy fluxes, we assess the 
RFR approach for gap filling methane fluxes globally. We then investigate a range of gap-filling methodologies 
for carbon dioxide, water, energy, and methane fluxes in challenging ecosystems, including European managed 
pastures, Southeast Asian converted peatlands, and North American drylands. 

Our findings indicate that RFR is a competent alternative to existing research standard gap-filling algorithms. 
The marginal distribution sampling (MDS) is still suggested for filling short (< 12 days) gaps in carbon dioxide 
fluxes, but RFR is better for filling longer (> 30 days) gaps in carbon dioxide fluxes and also for gap filling other 
fluxes (e.g. sensible heat, latent energy and methane). In addition, using RFR with globally available reanalysis 
environmental drivers is effective when measured drivers are unavailable. Crucially, RFR was able to reliably fill 
cumulative fluxes for gaps > 3 moths and, unlike other common approaches, key environment-flux responses 
were preserved in the gap-filled data.   

1. Introduction 

The eddy covariance (EC) technique measures the net exchange of 
mass and energy between the land surface and the atmosphere, and eddy 
covariance observational networks (e.g., FLUXNET) have expanded 
monitoring efforts of carbon, water and energy cycles and helped stan
dardise and distribute flux data, (Baldocchi 2020). In recent years, eddy 
covariance applications have been extended to measure fluxes of other 
greenhouse gases [e.g., methane] (Eugster and Plüss 2010; Saunois 
et al., 2016). However, just as with CO2, the completeness of these flux 

time series is limited by instrumental failures and data quality issues that 
result in missing data ‘gaps’. 

Many ‘gap-filling’ approaches have been applied to model missing 
values based on the existing data (Reichstein et al., 2005; Moffat et al., 
2007; Kim et al., 2020; Zhu et al., 2022). These gap-filling techniques 
range from process-based models, e.g., biosphere energy-transfer hy
drology model (Knorr and Kattge 2005), to empirical models such as 
non-linear regression and artificial neural networks [ANN] (Braswell 
et al., 2005; Noormets et al., 2007) after the pioneering studies (Papale 
and Valentini 2003; Reichstein et al., 2005). Marginal distribution 
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sampling [MDS] (Reichstein et al., 2005; Moffat et al., 2007) and ANN 
(Delwiche et al., 2021; Mahabbati et al., 2021) are widely adopted as 
research-standard gap-filling approaches and remain the benchmark for 
comparison of novel approaches. Recently proposed machine 
learning-based methods – e.g., random forest regression (RFR) – 
exhibited close or even better gap-filling performance than MDS and 
ANN (Kim et al., 2020; Zhu et al., 2022). However, an understanding of 
the reliability of eddy covariance gap-filling algorithms is still incom
plete. For example, Moffat et al. (2010) and Albert et al. (2017) sepa
rately analysed the net carbon flux responses to photosynthetic radiation 
and air temperature. It remains unknown if these gap-filling approaches 
can preserve other flux-environment responses – e.g., the carbon flux to 
water table depth response in McCalmont et al. (2021) – that are also 
crucial to investigating the biosphere-atmosphere interactions. 

First, the flux of primary interest in most cases is carbon dioxide 
(CO2), which has seen research effort concentrated more on this gas than 
other fluxes. For example, studies on filling methane flux gaps (> two 
months particularly) are still uncommon (Delwiche et al., 2021) as 
methane flux-measuring instruments only became more practical in the 
2010s (McDermitt et al., 2011). Methane flux gap-filling is typically 
more challenging than CO2 fluxes, due to high variability and responses 
to multiple environmental controls: soil temperature and seasonality 
were the most important drivers for wetlands (Irvin et al., 2021) but 
water table depth is also important in cases where water table fluctua
tions were substantial (Kim et al., 2020). Previous studies mainly 
focused on the local scale (Hommeltenberg et al., 2014; Morin et al., 
2014) or a certain types of ecosystem (Dengel et al., 2013; Irvin et al., 
2021). Considering the recently released global methane flux database 
(Delwiche et al., 2021), a global multi-ecosystem study is thereby 
possible and will benefit our understanding of methane 
flux-environment interactions. 

Second, most early eddy covariance towers were installed in pro
ductive and/or less-disturbed natural ecosystems, and this sampling 
distribution poses challenges to the development of gap-filling (Moffat 
et al., 2007; Irvin et al., 2021; Zhu et al., 2022). Flux gap-filling for other 
types of ecosystems can be challenging, these include managed ecosys
tems and ecosystems with flux rates close to zero (Lucas-Moffat et al., 
2018; McKenzie et al., 2021; Yao et al., 2021a). In managed ecosystems, 
for example, agricultural activities, can substantially alter flux temporal 
dynamics (McCalmont et al., 2021; Cardenas et al., 2022), quantifying 
the frequency and intensity of management activities can be challenging 
for training a machine learning model to gap-fill these timeseries. For 
low-flux ecosystems – e.g., drylands that comprise around 40% of the 
global land surface (Huang et al., 2016; Cunliffe et al., 2022) – the low 
signal-to-noise ratio makes gap filling challenging. 

In addition, it is valuable to consider the possibility of gap-filling 
only with drivers derived from publicly available meteorology rean
alyses datasets. The high financial cost of an eddy covariance system and 
the cost of redundant meteorological measurements are a significant 
limiting factor in the extension of flux monitoring networks (Hill et al., 
2017), resulting in an incomplete picture of global scale ecosystem 
carbon cycling (Schimel et al., 2015). In this case, gap-filling with open 
meteorological reanalysis data could help promote the application of 
eddy covariance globally. Furthermore, the use of meteorological 
reanalysis data may help improve flux estimates in regions where 
redundancy in flux and meteorological measurements is not available or 
is very sparse (Xiao et al., 2012). 

In this study we explore the effectiveness of gap-filling techniques for 
net ecosystem exchange (NEE, i.e., CO2 flux), sensible heat (H), latent 
energy (LE), and methane flux (FCH4) in challenging ecosystems. To 
achieve this, we first globally evaluate gap-filling techniques for long 
FCH4 gaps. We then, for the first time, investigate impacts of machine 
learning algorithms, environmental drivers, and gap lengths on the gap- 
filling performance in seven challenging ecosystems, including three 
managed European grassland pasture sites, two Southeast Asian peat
land conversion sites and two North American dryland sites. The aim of 

this study is to inter-compare and validate gap-filling approaches and 
determine factors that impact gap-filling performance in challenging 
ecosystems. 

2. Methodology 

2.1. Study designs 

This study comprises two parts (A & B). In part A, we test our gap- 
filling algorithm at 77 sites of a global methane flux database (FLUX
NET-CH4). Following the routines proposed in Zhu et al. (2022), we first 
tested the effectiveness of random forest (RFR) for filling FCH4 globally 
as RFR has been repeatedly suggested particularly for gap-filling long 
gaps (Kim et al., 2020; Irvin et al., 2021; Zhu et al., 2022). In part B, we 
evaluated gap-filling performance for NEE, H, LE, and/or FCH4 across 
machine learning algorithms to separate out the leading performance 
limitations in seven challenging ecosystems. The two parts will be 
referred to as ‘Part A’ and ‘Part B’ as study designs, analyses, and pre
sentations in between are different. 

2.2. Sites description 

For this study we used eddy covariance measurements from 1) a 
global open-access FCH4 dataset (FLUXNET-CH4) for Part A and 2) sites 
we maintained in three challenging ecosystems for Part B. 

2.2.1. FLUXNET-CH4 sites (Part A) 
The FLUXNET-CH4 Version 1.0 Community Product released in 2021 

is the first global FCH4 dataset (Delwiche et al., 2021). We used all the 
77 open-access eddy covariance sites (across 204 site years) on a wide 
range of soil types [see Table S1 for details] (Delwiche et al., 2021). The 
mean and median gap ratio (gap half-hours / total half-hours) of the 77 
sites are both 70%. In this study, incoming shortwave radiation 
(SW_IN_F), air temperature (TA_F), and vapour pressure deficit (VPD_F), 
provided the key three environmental drivers set (driver3); in addition to 
these, incoming longwave radiation (LW_IN_F), precipitation (P), soil 
temperature (TS_1), friction velocity (USTAR), wind speed (WS_F), 
water table depth (WTD_F), and all other available drivers were added to 
form the extended multiple drivers set (driverm) (https://fluxnet.org/d 
ata/fluxnet-ch4-community-product/data-variables/). 

2.2.2. Challenging sites (Part B) 
We also evaluated gap-filling techniques for three types of chal

lenging ecosystems: 

1) Three temperate grasslands as managed pasture (ROTH_HS, 
ROTH_PP, and ROTH_HSC) affected by grazing and other agricul
tural activities. These sites are from the Rothamsted North Wyke 
Farm Platform in the United Kingdom, (NWFP, established in 2010, 
see more at https://nwfp.rothamsted.ac.uk/) which provides a 
platform to research ecosystem responses to livestock grazing under 
different management practices in lowlands of southwest England. 
Rainfall in the area is averages around 1000 mm yr− 1 with a mean air 
temperature of ca. 10 ◦C. The three pastures were typically grazed 
from April to October with cattle (ca. 4 ha− 1), lamb (ca. 17 ha− 1), 
and sheep (ca 10 ha− 1). ROTH_PP, the Permanent Pasture, is 
considered as a control; it retains the original sown species (pre
dominantly perennial ryegrass, Lolium perenne) and has not been 
ploughed for the previous 10 years (Orr et al., 2016). ROTH_HS (i.e., 
High sugar grass) and ROTH_HSC (i.e., White clover/High sugar 
grass mix) were separately ploughed and re-seeded in 2013 
(ROTH_HS) and 2014 (ROTH_HSC) with the Lolium perenne grass 
variety AberMagic and the combination of AberMagic and the white 
clover variety AberHerald (more details can be found in Orr et al. 
(2016) and Cardenas et al. (2022)). 
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2) Two oil palm (Elaeis guineensis) plantations established into 
tropical peatland in Sarawak, Northern Malaysian Borneo, which 
provide datasets capturing both a developing plantation ecosystem 
and the mature phase under tropical conditions. The converted sites 
(Sabaju (SAB) and Sebungan (SEB)) were established into land 

Table 1 
Site background information and gap ratio for NEE, H, LE, and FCH4. 10 Hz data were processed into half-hourly mean fluxes rates using EddyPro software (v6.2.2 LI- 
COR Environmental, Lincoln, Nebraska, USA).   

Managed pastures Converted peatlands Drylands 
Tower ROTH_HS ROTH_PP ROTH_HSC SAB SEB SEG SES 

Coordinates 50.77◦N, 3.91◦W 50.77◦N, 3.91◦W 50.77◦N, 3.90◦W 3.16◦N, 113.42◦E 3.17◦N, 
113.35◦E 

34.34◦N, 
106.74◦W 

34.36◦N, 
106.70◦W 

Data time 01/01/2017–04/ 
06/2019 (31 
months) 

01/01/2017–10/ 
07/2019 (31 
months) 

01/01/2017–04/ 
07/2019 (31 
months) 

12/12/2016–31/ 
01/2020 (38 
months) 

16/04/ 
2017–10/02/ 
2020 
(34 months) 

03/10/2018–31/ 
12/2020 
(34 months) 

03/10/2018–31/ 
12/2020 (34 
months) 

Plant type High Sugar grass Permanent Pasture High sugar grass/ 
white clover mix 

Early converted 
peatland 

Mature 
converted 
peatland 

Bouteloua- 
dominated 
grassland 

Larrea tridentata 
shrubland 

Canopy height (m) 0.05 0.05 0.05 2.6 8 0.3 0.75 
Measurement 

height (m) 
1.59 1.57 1.59 6 20 3 2.5 

Sonic anemometer Windmaster Pro1 Windmaster Pro1 Windmaster Pro1 R3–501 R3–501 CSAT-32 CSAT-32 

Infra-red gas 
analyser (IRGA) 

LI-7200/(LI-7700 
for FCH4)3 

LI-7200/(LI-7700 
for FCH4) 3 

LI-72003 LI-7200/75503 LI-7200/75503 LI-75003 LI-7200/LI-75003  

Existing gap ratio 
NEE 69% 64% 63% 68% 80% 12% 11% 
H 65% 64% 63% 70% 73% 7% 6% 
LE 80% 75% 74% 70% 73% 11% 10% 
FCH4 83% 83% / / / / /  

1 Gill Instruments Ltd, Lymington, Hampshire, UK. 
2 Campbell Scientific, Logan, Utah, USA. 
3 LI-COR Environmental, Lincoln, Nebraska, USA. 

Table 2 
Driver sets for the seven sites at three challenging ecosystems. Sites within the same ecosystem use the same driver sets. SW is shortwave solar radiation (W m − 2), TA is 
air temperature ( ◦C), VPD is vapour pressure deficit (kPa), PPFD is photosynthetic photon flux density (µmol m − 2 s − 1), USTAR is friction velocity (m s − 1), WS is wind 
speed (m s − 1), NETRAD is net radiation (W m − 2), P is precipitation (mm), TS is soil temperature ( ◦C), SWC is soil water content (m3m− 3), and SHF is soil heat flux (W 
m − 2). The subscript ‘era’ indicates the corresponding drivers are re-analysed ones.  

Managed pastures Converted peatlands Drylands 
driver3 driverm driverera driver3 driverm driverera driver3 driverm driverera 

SW SW SWera SW SW SWera SW SW SWera 

TA TA TAera TA TA TAera TA TA TAera 

VPD VPD VPDera VPD VPD VPDera VPD VPD VPDera  

PPFD   USTAR   PPFD   
USTAR   WS   USTAR   
WS   WTD   WS   
NETRAD   /   P   
P   /   NETRAD   
TS   /   /   
SWC   /   /   
SHF   /   /   

Fig. 1. Locations and site years of 77 FLUXNET-CH4 sites (circles) and 7 sites 
(squares) in the challenging ecosystems. Fig. 2. Overview of gap-filling performance (R2: circle colours, MBE: circle 

sizes) at the FLUXNET-CH4 sites. The performance measures are averages of 
gap-filling techniques and different artificial gap lengths. The unit for MBE is 
nmol CH4 m − 2 s − 1. 
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previously cleared of peat swamp forest with forest residues 
remaining on site, unburnt and compacted into rows, with soil 
drainage carried out through a regular grid system of drainage canals 
cut into the peat. The SAB dataset captures the early conversion 
period immediately following conversion (years 1–3), starting at 
bare soil with palms developing rapidly over the three years, while 
the SEB dataset covers the mature, cropping phase (years 10–12). 
Rainfall in the area is typically high at ca. 3000 mm yr-1 with a mean 
air temperature of ca. 26 ◦C. Full details of the study site area, 
experimental set up, data collection, processing and quality control 
can be found in McCalmont et al. (2021). 
3) Two dryland sites, located in the Northern Chihuahuan Desert, 
New Mexico, USA, to evaluate the gap-filing performance under the 
low signal-to-noise conditions. These are AmeriFlux core sites (US- 
Seg and US-Ses, separately referred to as SEG and SES hereafter) 
(Anderson-Teixeira et al., 2011; Litvak 2016a, b; Boschetti et al., 
2021). Rainfall in the area is ca. 230 mm yr− 1 with a mean air 
temperature of ca. 15 ◦C. US-Seg experienced a severe wildfire in 
2009 (https://ameriflux.lbl.gov/sites/siteinfo/US-Seg). Instrumen
tation and more background information of these seven sites can be 
found in Table 1. The data filtering and other data processing steps 

followed Reichstein et al. (2005), Papale et al. (2006), and referred 
to the FLUXNET processing standards Pastorello et al. (2020). 

2.3. Gap-filling pipeline 

2.3.1. Environmental drivers 
Gap-filling approaches were driven by environmental variables, we 

investigate the influence of three different driver sets: 

1) three typically measured key drivers (driver3) – shortwave solar 
radiation (SW), air temperature (TA), and vapour pressure deficit 
(VPD) 
2) three measured key drivers along with additional in-situ measured 
drivers (driverm) 
3) three modelled key drivers from re-analysed public records 
(driverera) 

In Part A, the driver sets for gap-filling FLUXNET-CH4 sites were 
introduced above. For the challenging sites in Part B, measured half- 
hourly drivers (driver3 and driverm) and reanalysis drivers (driverera) 
derived from a publicly available database (European Centre for 
Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) 
(Hersbach et al., 2018) are given in  It is noteworthy that reanalysis data 
may not represent the exact tower-level meteorological conditions 
(Vuichard and Papale 2015; Lipson et al., 2022). We used driverera 
directly aims to test flux estimation when or where measurement data 
are unavailable. 

In addition to environmental drivers, we also used auxiliary drivers 
(denoted as AUX) – i.e., hour, day of year, and year information for each 
half-hourly data point. 

Table 2. Gaps in measured drivers were filled with ERA5 data 
following Vuichard and Papale (2015). ERA5 provides global hourly 
meteorology at 0.25◦ × 0.25◦ since 1979, and we used air and dew point 
temperature at 2 m above the ground and downward solar radiation at 

Table 3 
Statistics of gap-filling performance for three approaches: MDS, RFR3, and 
RFRm. MDS and RFR3 use driver3 set and RFRm uses driverm site. Q1 and Q3 are 
the first quartile and the third quartile, respectively. The unit for RMSE and MBE 
are nmol CH4 m − 2 s − 1.   

R2 Slope RMSE MBE  
MDS 

Min 0.00 0.00 1.84 − 5.14 
Q1 0.08 0.13 15.95 − 0.59 
Median 0.34 0.43 33.78 0.05 
Mean 0.37 0.42 60.78 0.99 
Q3 0.66 0.66 63.17 0.92 
Max 0.89 0.92 346.88 21.24  

RFR3 
Min 0.00 0.01 1.80 − 14.40 
Q1 0.16 0.25 13.12 − 0.45 
Median 0.44 0.47 28.73 0.05 
Mean 0.47 0.48 52.29 0.59 
Q3 0.77 0.79 52.82 1.21 
Max 0.93 0.97 298.48 17.89  

RFRm 
Min 0.00 0.01 1.76 − 13.05 
Q1 0.30 0.31 12.63 − 0.23 
Median 0.52 0.50 27.86 0.13 
Mean 0.53 0.53 48.54 0.54 
Q3 0.79 0.79 52.18 0.71 
Max 0.94 0.94 253.92 20.12  

Fig. 3. Gap-filling R2 boxplots for the three approaches grouped by the Inter
national Geosphere-Biosphere Programme classification (IGBP). Triangles in 
the boxes are mean values. CRO: Croplands, EBF: Evergreen Broadleaf Forests, 
ENF: Evergreen Needleleaf Forests, GRA: Grasslands, URB: Urban and Built-Up 
Lands, WAT: Water Bodies, WET: Permanent Wetlands, and WSA: Woody Sa
vannas (https://fluxnet.org/data/badm-data-templates/igbp-classification/). 

Fig. 4. Methane flux gap-filling performance in terms of R2 and MBE for 1-day, 
7-day, and 30-day long gaps. The horizontal lines and triangles within the boxes 
indicate medians and means, respectively. The lower and higher whiskers 
separately are first and third quartiles. 
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the ground surface. ERA5 gridded time-series were interpolated into 
coordinates of the seven EC towers, respectively. It is noteworthy that 
reanalysis data may not represent the exact tower-level meteorological 
conditions (Vuichard and Papale 2015; Lipson et al., 2022). We used 
driverera directly aims to test flux estimation when or where measure
ment data are unavailable. 

In addition to environmental drivers, we also used auxiliary drivers 
(denoted as AUX) – i.e., hour, day of year, and year information for each 
half-hourly data point. 

2.3.2. Artificial gap scenarios 
In Part A, gap-filling validation compared the filled artificial gaps 

with corresponding measured fluxes. The validation of RFR gap-filling 
for FCH4 took the same machine-learning algorithm implementation 
and artificial gap scenario as Zhu et al. (2022). In this scenario, 25% of 
half-hours were randomly removed from FCH4 time series to create 
artificial gaps with three gap-lengths: 20% were 24-hour long gaps, 30% 
were 7-day long gaps, and the last 50% were 30-day long gaps. 

In Part B, to fully evaluate the gap-filling performance on various 
gap-lengths based on Moffat et al. (2007) and Zhu et al. (2022), we used 
ten gap scenarios:  

a) Very-short gaps (vs) of single half-hour  
b) Short gaps (s) of eight consecutive half-hours  
c) Medium gaps (m) of 64 consecutive half-hours (≈ 1.5 days)  

d) Long gaps (l) of 12 consecutive days  
e) Mixed-length gaps (M1) of combining scenarios a to d  
f) Very-long gaps (vl1) of 30 consecutive days  
g) Very-long gaps (vl2) of 60 consecutive days (≈ 2 months)  
h) Very-long gaps (vl3) of 90 consecutive days (≈ 3 months)  
i) Very-long gaps (vl4) by making the whole last 1/3 time series as 

artificial gaps  
j) Mixed-length gaps (M2) of combining 1-day, 7-day, and 30-day long 

gaps, see (Zhu et al., 2022). 

Scenarios a – e, identical to Moffat et al. (2007), were used to 
represent typical length gaps caused by de-spiking, data quality control, 
or system failure. Scenarios f – j were used to assess the capability of 
gap-filling techniques to deal with very long gaps. Note that the 
non-artificial gaps – i.e., the ‘real’ missing half-hours in original mea
surements – were removed in evaluating gap-filling performance. All the 
evaluations and validations were carried out on artificial gaps. 

2.3.3. Gap-filling approaches 
Gap-filling techniques in this study include MDS and six machine- 

learning algorithms. In both Part A, we used MDS and the random for
est (RFR) algorithms. In and Part B, we used all seven algorithms. The 
MDS method was implemented via the widely used REddyProc (v. 1.2.2) 
open source R package (Wutzler et al., 2018). The implementation of the 
six machine-learning algorithms followed the workflow in Zhu et al. 

Fig. 5. Panel (a) shows the normalised FCH4 very-long gap (vl4) filling errors. The values are sums of normalised errors at FLUXNET-CH4 sites and are grouped by 
gap-filling approaches. The term ‘error’ here means the cumulative difference between filled artificial gaps and measurements in the vl4 scenario. The term ‘nor
malised’ means, at each site, the error was divided by the FCH4 sum. Panel (b) and (c) show the performance at two FLUXNET-CH4 sites DE-Zrk (c) and US-Bi1 (d) in 
the very-long gap (vl4) scenario where the first two-thirds of time series (i.e., the grey area left to the solid black vertical line) to train the gap-filling models while the 
last one-third of time series (i.e., the area right to the solid black vertical line) were used as the artificial gap to evaluate the gap-filling performance. The fluxes are 
presented in the cumulative manner to evaluate the aggregated errors. Gaps originally existed in measurements (i.e., blue lines) were removed beforehand to test the 
gap-filling performance. 
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(2022). Full description of all the seven approaches can be found below. 
The effectiveness of each gap-filling approach was assessed by 
comparing gap-filled to original values using the coefficient of deter
mination (R2) and slope of the ordinary least squares regression, root 
mean squared error (RMSE) and the mean bias error (MBE). The sta
tistical comparisons were calculated using the Python SciPy (V1.7.1) 
package (Virtanen et al., 2020). We applied the following methods, in 
addition to our statistical metrics, to further evaluate the gap-filling 
performance: 1) the cumulative errors to evaluate the accuracy in 
calculating annual sums particularly for the long gap length scenarios 
(vl1 – vl4) and 2) the ‘(permutation) feature importance’, which suits all 
the algorithms here (Altmann et al., 2010), to measure the contribution 
of drivers to the machine learning algorithms. Furthermore, we also 
investigate the capability of reproducing already known relationships 
between fluxes and environmental variables – e.g., the 2nd order poly
nomial fit of ecosystem respiration to water table depth (WTD) 
(McCalmont et al., 2021). 

2.3.3.1. Gap-filling workflow. The whole gap-filling workflow included 
approach validation and application. We first applied this workflow to 
all the FLUXNET-CH4 towers in Part A. Then in Part B, we applied it to 
the challenging towers to separately test the seven gap-filling 

approaches for the flux of interests (i.e., NEE, H, LE, or FCH4) in various 
artificial gap scenarios described in Section 2.3.2 – i.e., in every work
flow implementation, we tested one approach in one scenario for one 
flux at one tower. Specifically, in the validation step, we randomly 
masked out flux measurements to create artificial gaps. As the artificial 
gaps may overlap with existing ‘real’ gaps, we applied a criterion which 
required at least 50% original measured data be present (Zhu et al., 
2022). Otherwise, we would randomly recreate gaps unless the criterion 
was met. Then we filled the artificial gaps to compare with corre
sponding measurements. In the application step, we applied the vali
dated approach to fill the ‘real’ gaps. See the algorithm paper for more 
technical details (Zhu et al., 2022). 

2.3.3.2. Marginal distribution sampling (MDS). For MDS, a standard gap- 
filling approach, gaps were filled by considering the covariance of fluxes 
with meteorological drivers (global radiation, air temperature and 
vapour pressure deficit) and the temporal autocorrelation of the flux 
values. Where only flux data are missing, but meteorological data are 
present, the missing flux value was filled with the mean value of fluxes 
under similar meteorological conditions within a seven-day window. If 
no meteorological data are available in the time window, the value was 
filled with a mean value from the same time of day (the mean diurnal 

Fig. 6. Gap-filling R2 against MBE grouped by approaches for NEE (a), H (b), LE (c), and FCH4 (d). The dots represent mean R2 and MBE across ecosystems, driver 
sets, and gap-lengths a – e. 
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course), initially ± 1 hour either side of the missing value or from 
increasingly widening windows (i.e., linear interpolation of data either 
side of the missing value). Standard deviations of these mean values 
used in gap-filling are recorded along with a categorical classification of 
the confidence level of the filled value based on approach and window 
size (Reichstein et al., 2005). 

2.3.3.3. Machine-learning algorithms. Here, we tested three commonly 
used gap-filling algorithms [(1) – (3)] and three additional algorithms 
[(4) – (6)] to assess their potential for improving the gap-filling 
performance:  

1) Multiple layer perceptron (MLP) (Hinton 1989);  
2) Support vector regressor (SVR) (Platt 1999);  
3) Random forest regressor (RFR) (Breiman 2001);  
4) Xgboost (XGB) (Chen and Guestrin 2016);  
5) Ada boost regressor (ABR) (Freund and Schapire 1997);  
6) Gradient boosting regressor (GBR) (Friedman 2001). 

Algorithm (1) is an artificial neural network (ANN) but we use the 
specific label, multiple layer perceptron (MLP) to avoid ambiguity 
because the term ANN now encapsulates various kinds of neural net
works (Abiodun et al., 2018). It is also a standard gap-filling approach 

particularly for gaps longer than one month (Delwiche et al., 2021; 
Mahabbati et al., 2021). The SVR was also an established gap-filling 
algorithm, it converts non-linear regressions into higher-dimensional 
linear regression by a predefined kernel function (Khan et al., 2021; 
Yao et al., 2021b). 

Decision tree-based algorithms, especially the RFR, were reported to 
be superior to the standard gap-filling approaches (Kim et al., 2020; 
Mahabbati et al., 2021; Zhu et al., 2022). Hence, we also used other 
mainstream decision tree-based algorithms [algorithm (4) – (6)] to 
further test the effectiveness of tree-based algorithms in gap-filling. In 
addition, information redundancy – i.e., the correlation between drivers 
– can be detrimental to the gap-filling performance (Kim et al., 2020). 
Therefore, we also adopted the RFR with principal component analysis 
(RFRpca) to reduce redundant information as in Kim et al. (2020). 

We used the Scikit-Learn package (v 0.23.1) (Pedregosa et al., 2011) 
within Python (v 3.6) to provide interfaces to all machine-learning al
gorithms except XGB which was provided independently (v 1.1.1, htt 
ps://xgboost.readthedocs.io/en/latest/index.html) (Chen and Guestrin 
2016). Hyperparameters of all the machine learning algorithms were set 
as default (see the links after algorithm names). Details of the six 
machine-learning algorithms can be found in the Supplementary 
materials. 

Fig. 7. Gap-filling R2 and MBE grouped by driver sets for NEE (a), H (b), LE (c), and FCH4 (d) on average of ecosystems and gap-length scenarios.  
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3. Results 

3.1. Gap-filling evaluation for FLUXNET-CH4 sites (Part A) 

3.1.1. Global validation of RFR gap-filling for methane fluxes 
The performance for filling long methane gaps exhibited large spatial 

variability but no regional patterns (Fig. 2). The gap-filling performance 
was the best in wet tundra and fen ecosystems in north Europe and 
northwest America as well as rice and bog ecosystems in northeast Asia 
and North America (indicated by higher R2 and smaller bias, see https: 
//fluxnet.org/data/fluxnet-ch4-community-product/ for the types and 
distribution of ecosystems). As for the methane flux gap-filling ap
proaches per se (Figure S2), three-driver random forest (RFR3) per
formed better than marginal distribution sampling (MDS), as indicated 
by a 29% higher R2 median; Furthermore multiple-driver random forest 
(RFRm) performed better than RFR3 by 19% (Table 3). Regarding the 
gap-filling error in terms of RMSE and uncertainty in terms of the 
interquartile range of bias, three-driver random forest was better than 
marginal distribution sample due to a 10% smaller RMSE median and a 
smaller uncertainty (1.51 vs. 1.66 nmol CH4 m − 2 s − 1). Using multiple 
drivers further reduced the error of random forest gap-filling by 3% and 
with a smaller uncertainty of 0.94 nmol CH4m− 2 s − 1 (Table 3). 

Following the International Geosphere-Biosphere Programme (IGBP) 
classification, gap-filling R2 of RFRm was higher than RFR3 and further 
higher than MDS in nearly all classes (Fig. 3), alongside with the 
opposite pattern of error – i.e., error of RFRm was smaller than RFR3 and 
further smaller than MDS (Figure S5). Details for gap-filling perfor
mance in terms of site classification in Delwiche et al. (2021) can be 
found in Figure S5 too. The R2 distribution was in relation to types of 
ecosystems, fen and marsh ecosystems had higher R2 than other site 
classes. 

Considering both IGBP and site (Delwiche et al., 2021) classifica
tions, taking gap-filling results of RFRm (Fig. 3b) as an example, higher 
R2 values were observed in classes with higher fluxes. Meanwhile, 
classes with higher fluxes were also seen with relatively larger 
gap-filling errors, and these characteristic were seen for the other two 
gap-filling methods. Flux values and R2 exhibited a positive 
second-order polynomial relationship (Figure S5) and this positive 
relationship was more obvious for the site classification (Fig. 3b). In 
other words, IGBP classes (of the same site class) with higher fluxes 
showed higher R2. For example, in the bog class, evergreen broadleaf 

forests (EBF) had higher averaged flux value and R2 than permanent 
wetlands (WET) and further higher than evergreen needleleaf forests 
(ENF). However, this pattern was not seen obviously for site classes. 

When filling longer gaps, R2 of all three gap-filling approaches 
decreased while the bias increased, particularly for filling the 30-day 
gaps (Fig. 4). For filling all three gap-lengths, multiple-driver random 
forest still performed better than three-driver random forest and further 
performed better than marginal distribution sampling. Comparing 
filling 1-day long gaps and 7-day long gaps, the gap-filling performance 
of all three approaches were relatively stable (R2 medians decreased by 
less than 30% while the uncertainty difference was approximately 2 
nmol CH4 m − 2 s − 1). However, as gap-length increased further from 7- 
day to 30-day, the gap-filling performance of all three approaches 
declined greatly (R2 medians dropped by nearly 90% while the uncer
tainty increased to nearly 40 nmol CH4 m − 2 s − 1). 

3.1.2. Intercomparisons between machine learning algorithms 
As regards the cumulative gap-filling errors at global FLUXNET-CH4 

sites (Fig. 5a), the random forest regressor (RFR) had smaller error 
compared to the other machine learning algorithms. Here, we show the 
results of Xgboost (XGB) as an example of other decision tree-based al
gorithms. The marginal distribution sampling was not employed 
because it cannot fill very long gaps (Zhu et al., 2022). Comparing the 
number of drivers, the cumulative error of using multiple drivers (e.g., 
RFRm) was higher than using the three essential drivers (RFR3). As an 
example, Fig. 5b and c show the typical gap-filling performance at two 
FLUXNET-CH4 sites – DE-Zrk with strong seasonality and US-Bi1 with 
low seasonality. Gap-filling approaches at the two sites exhibited con
trasting performance. Cumulative fluxes filled by all approaches at site 
DE-Zrk were in good agreement with corresponding measurements 
(Fig. 5b). Whilst large disagreement was observed at site US-Bi1 
(Fig. 5c). As regards performance difference between algorithms, the 
RFR and XGB estimated cumulative methane flux (FCH4) much closer to 
measurements (Fig. 5e) than the research-standard multiple layer per
ceptron (MLP) algorithm. 

3.2. Gap-filling evaluation in challenging ecosystems (Part B) 

3.2.1. Comparison between methods, drivers, and gap-lengths 
Averaged across scenarios a – e, i.e., scenarios in Moffat et al. (2007), 

random forest (RFR) performance was best for most fluxes (indicated by 

Fig. 8. NEE gap-filling R2 (dots) and MBE (bars) for various gap-lengths.  
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higher R2 and smaller bias, Fig. 6). For net ecosystem exchange (NEE), 
gap-filling performance of marginal distribution sampling (MDS) was 
the best due to the highest R2 and a relatively small bias. Random forest 
regression (RFR) and gradient boosting regression (GBR) also exhibited 
relatively good gap-filling performance (R2 > 0.8); the bias difference 
between approaches was smaller than 0.05 g C m − 2 d-1 (Fig. 6a). In 
contrast, the gap-filling performance was the worst by using support 
vector regression (SVR, R2 < 0.6) and Ada boost regression (ABR, bias >
0.1 g C m − 2 d − 1). For sensible heat (H) and latent energy (LE), random 
forest regression (RFR), gradient boosting regression (GBR), and mar
ginal distribution sampling (MDS) still showed the best gap-filling per
formance (R2 > 0.5 and bias < 5 W m − 2); in this case, Xgboost (XGB) 
also exhibited an equivalent R2 and bias (Fig. 6b and c). Again, support 
vector regression (SVR) and Ada boost regression (ABR) showed the 
worst performance. For methane fluxes (FCH4), random forest regres
sion (RFR) showed relatively better performance but the gap-filling 

performance of all approaches were bad (R2 < 0.1, Fig. 6d). Bias of 
Ada boost regression (ABR) exceeded 40 nmol CH4 m − 2 s − 1 while it 
was smaller than 20 nmol CH4 m − 2 s − 1 for all other approaches. 

Generally, for net ecosystem exchange (NEE), sensible heat (H), and 
latent energy (LE), the gap-filling R2 of using multiple drivers (driverm, 
m > 3) was higher than using three drivers (driver3) and modelled 
drivers (driverera) for all the approaches (Fig. 7a –c). In contrast, for 
methane fluxes (FCH4), the R2 for modelled drivers (driverera) was the 
highest for most of the approaches (Fig. 7d). Gap-filling bias showed no 
uniform characteristics in comparisons between driver sets; for example, 
multiple layer perceptron (MLP) bias in filling net ecosystem exchange 
gaps for using modelled drivers (driverera) was close to zero, but bias for 
using three drivers (driver3) was 0.17 g C m − 2 d-1 and bias for using 
multiple drivers (driverm) was even larger, reaching 0.28 g C m − 2 d − 1 

(Fig. 7a). However, bias of random forest regression (RFR) for using 
driverm was close or smaller than driver3 and smaller than driverera for 

Fig. 9. Gap-filling performance in terms of R2 of various approaches at seven towers in the three challenging ecosystems for NEE (a), H (b), and LE (c). This figure is 
based on the aritificial gap-lengths a – e. 
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net ecosystem exchange, sensible heat, and latent energy but not for 
methane (Fig. 7). 

The gap-filling R2 consistently decreased as the gap-length increased 
from very-short (vs) to long (l) gaps in the ‘standard’ artificial gap sce
nario (Moffat et al., 2007) for all the approaches (Fig. 8). Similar results 
for other fluxes can be found in Figure S4. In comparison between 
marginal distribution sampling (MDS), random forest regression (RFR) 
and gradient boosting regression (GBR), MDS R2 decreased by the 
largest amount as gap-length increased from medium (m) to long (l), 
nearly 25%. In the meantime, MDS showed the largest and continuous 
absolute bias increase as the gap-length increased from very-short (vs) to 
long (s); but the bias variations of random forest and gradient boosting 
were smaller. For very-long gaps (v1 – v4), R2 also decreased as the 
gap-length increased. R2 decreased to a much lower ratio (~ 25%) for 
machine-learning approaches than for MDS. In particular, MDS failed to 
fill gaps when the gap-length reached 3-month (vl3). random forest 
regression (RFR), gradient boosting regression (GBR), and Xgboost 
(XGB) had relatively small absolute bias amongst gap lengths; and 
random forest bias variations were smaller compared to other 
approaches. 

Gap-filling R2 for the standard artificial gap scenario (Moffat et al., 
2007) showed relatively obvious ecosystem-level patterns (Fig. 9). 
Gap-filling R2 for the control permanent pasture (ROTH_PP) was higher 
and with narrower interquartile range (IQR) than managed pastures 
(ROTH_HS and ROTH_HSC). R2 for the mature converted tropical 
peatland (SEB) was higher and with narrower IQR than the plantation 
establishment phase peatland (SAB). Dryland sites (SEG and SES) were 
seen with the lowest R2 and/or the widest IQR compared with other 
ecosystems. These phenomena were particularly obvious for net 
ecosystem exchange (Fig. 9a). 

3.2.2. Further evaluations 
Filled gaps by most approaches were in line with the corresponding 

measurements (Fig. 10). For grazing events (i.e., chromatic blocks) that 
affected biomass amount and fluxes relatively slowly, no obvious 
increasing difference between filled gaps and measurements was seen 
during grazing periods when other management activities did not take 
place. These management activities include spraying herbicides and 

grass cutting (full details of management practices at the Rothamsted 
sites can be found here: https://nwfp.rothamsted.ac.uk/). In contrast, 
the upheaval in flux was mainly observed around management activities 
(e.g., around day 250 in ROTH_HSC). 

Regarding machine learning algorithms, the research-standard 
multiple layer perceptron (MLP) exhibited very unstable cumulative 
flux compared with corresponding measurements. The Xgboost [XGB] 
(Fig. 10a), support vector regressor [SVR] (Fig. 10b), and Ada boost 
regressor [ABR] (Fig. 10c) showed relatively larger cumulative differ
ence against measurements than other machine learning algorithms. In 
ROTH_HS and ROTH_HSC, the difference between filled gaps and mea
surements were larger for using multiple drivers (driverm) than for using 
three essential drivers (driver3). 

In site SAB, a previous study observed 2nd order polynomial re
sponses of night-time net ecosystem exchange (NEE) to water table 
depth (WTD). As shown in Fig. 11, the reproduced 2nd order polynomial 
fits of WTD against filled gaps using the multiple layer perceptron 
(MLP), support vector regressor (SVR), and Ada boost regressor (ABR) 
were barely in agreement with the fit for measurements. In contrast to 
Xgboost (XGB), for random forest regressor (RFR) and gradient boosting 
regressor (GBR), the reproduced fit of using multiple drivers (driverm) 
was more in line with the fit for measurements than using three drivers 
(driver3). Overall, the RFRm reproduced 2nd order polynomial fit was 
the closest to the fit for measurements. Flux responses to other envi
ronmental variables for all challenging sites can be seen in Figure S6. 

The shortwave radiation (SW) contributed the most information 
(importance > 50%) for gap-filling net ecosystem exchange (NEE) and 
latent energy (LE) in managed pasture sites [ROTH_HS, ROTH_PP, 
ROTH_HSC] and Malaysian converted sites [SAB and SEB] (Fig. 12). SW 
and the net radiation (RN) were the dominant driver (importance close 
to 90%) for gap-filling sensible heat (H) at all the seven challenging 
sites. The SW and RN contributed nearly 50% for gap-filling LE at the 
dryland sites [SEG and SES]. However, no clearly dominant environ
mental drivers were seen for gap-filling methane flux (FCH4) at 
ROTH_HS & ROTH_PP and for gap-filling NEE at SEG & SES (Fig. 12). 
Wind speed and direction (WIND) contributed the most information for 
gap-filling FCH4 at ROTH_HS and ROTH_PP. For gap-filling NEE at SAB 
and SEB, the sum importance of the three essential drivers (i.e., solar 
radiation, vapour pressure deficit, and air temperature) was smaller 
than 40%. 

4. Discussion 

4.1. Global methane flux gap-filling feasibility and limitations 

In in this study, filling long methane gaps with random forest at 
global FLUXNET-CH4 sites exhibited inferior performance. In contrast, 
random forest demonstrated great performance for filling short methane 
gaps in Kim et al. (2020) and for filling long net ecosystem exchange, 
sensible heat, and latent energy fluxes in Zhu et al. (2022). In compar
ison with MDS, the advantages of using random forest were sound 
(Fig. 3) and this is in line with Irvin et al. (2021). However, filling long 
methane flux gaps is still challenging. The gap-filling performance var
ied largely by sites (Figure S2). This discrepancy in R2 between sites 
could relate to the strength of methane flux (Fig. 3) and variability in 
methane flux time series. For example, at sites BR-Npw and US-Tw4 
(Figure S2) that were also in Kim et al. (2020), the gap-filling perfor
mance was good (R2 > 0.8) and methane time series at both sites 
exhibited very strong seasonality. On the contrary, at sites with poor 
gap-filling performance (e.g., AT-Neu and CH-Dav where R2 < 0.05, 
Figure S2), the temporal variations of methane time series were more 
irregular. In agreement with Irvin et al. (2021), the correlation between 
gap-filing performance and seasonality/periodicity in methane time 
series was broadly seen, sites with good gap-filling performance showed 
strong periodicity and vice versa (Figure S2). This suggested that filling 
methane gaps heavily depended on the periodicity of drivers to 

Fig. 10. Gap-filled fluxes against measurements in the very-long gap (vl4) 
scenario where the first two-thirds of time series (i.e., the grey area left to the 
solid black vertical line) to train the gap-filling models while the last one-third 
of time series (i.e., the area right to the solid black vertical line) were used as 
the artificial gap to evaluate the gap-filling performance. The fluxes are pre
sented in the cumulative manner to evaluate the aggregated errors. The blue, 
orange, and green blocks represent the grazing period for cattle, lamb, and 
sheep, respectively. The grey dashed vertical lines are the occurrence of man
agement activities. 
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reproduce the temporal dynamics in methane fluxes. 
Where gap filling failed to replicate this periodicity may simply be 

due to a lack of data at specific sites [e.g., data for FI-Hyy only covered 
four months, see Table S1 and Figure S2] or local ecosystem type and 
climate [e.g., CH–Hgu where the dominant vegetation was alpine 
meadow and the methane time series showed no periodicity] (Delwiche 
et al., 2021). According to Fig. 5, despite the low R2, the cumulative 
gap-filling error can be relatively small for machine learning algorithms 
excluding the artificial neural network (i.e., MLP). This suggests that 
filling very long methane flux gaps can be feasible if the goal is to es
timate annual sums. 

Further improvements in the gap-filling performance will benefit 
from understanding the ecosystems. As we tested both classic and state- 
of-art machine learning algorithms (Fig. 5), further technical advances 
may not enhance the gap-filling performance for methane fluxes. The 
dependence of gap-filling performance on methane periodicity is a sig
nificant challenge. Machine learning approaches can exploit the tem
poral structure information and achieved good gap-filling performance 
at sites with strong periodicity, therefore it infers that the dominant 
environmental drivers of methane fluxes are complex and may vary 
largely by ecosystem type (Figure S3). Hence, understanding the study 
ecosystem and identifying the dominant driver (Knox et al., 2021) can 
be very helpful to the challenging sites with poor gap-filling 

Fig. 11. Reproduced night-time NEE (y-axes) responses to water table depth (WTD, x-axes) below the surface binned to 0.01 m increments in site SAB. Data were 
from the very-long gap (vl4) scenario. The solid curves are the responses for measured fluxes while the dashed curves are for filled gaps using different machine 
learning algorithms and driver sets. 

Fig. 12. Feature importance to gap-filling for fluxes in challenging ecosystems. 
The sum of drivers in every ecosystem equals to 100%. SW: shortwave radia
tion, RN: net radiation, TA: air temperature, WIND: wind speed and wind di
rection, SOIL: soil temperature, soil water content, and soil heat flux if possible; 
OEF: other environmental features like precipitation; AUX: auxiliary drivers 
like season and day of year. 
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performance for methane and other fluxes. 

4.2. Selection of machine-learning algorithms and driver sets 

In agreement with previous studies (Falge et al., 2001; Reichstein 
et al., 2005; Moffat et al., 2007), marginal distribution sampling (MDS) 
was effective in filling net ecosystem exchange (NEE) gaps ≤ 12 days 
(Fig. 6a). As gaps shorter than 12 days cover most typical gap-lengths 
caused by data quality control or short-term system failure, MDS is 
therefore still recommended to be the standard gap-filling approach 
(Pastorello et al., 2020). For longer gaps, support vector regression 
(SVR) and Ada boosting regression (ABR) approaches are not recom
mended due to their lower R2 and larger absolute MBE (Fig. 6). In 
contrast, both random forest regression (RFR) and gradient boosting 
regression (GBR) showed similar performance (Fig. 6), but RFR may be 
preferred due to its relatively smaller bias and smaller bias variations 
with increasing gap-length (Fig. 8). Multiple layer perceptron (MLP) (i. 
e., shallow layered neural networks) was the most stable approach to 
gap-length (Fig. 8). The deep learning techniques that have been broadly 
applied in other environmental sciences (Reichstein et al., 2019; Zhu 
et al., 2021) might show potential in further improving the gap-filling 
performance for very long gaps. 

For net ecosystem exchange (NEE), sensible heat (H), and latent 
energy (LE) fluxes, the selection of driver set affected gap-filling R2 by ~ 
10% (Fig. 7). In general, using multiple drivers (i.e., driverm) improves 
the fraction of flux variance explained by the machine learning gap- 
filling model. In line with our findings presented in Zhu et al. (2022), 
we have shown that using three drivers (driver3) can achieve compa
rable gap-filling performance to using driverm even in the more chal
lenging ecosystems. Averaged R2 of using modelled drivers (driverera) 
was higher than 0.7 while the bias was less than 0.05 g C m − 2 d − 1 for 
NEE and less than 0.5 W m − 2 for H and LE (Fig. 7). This suggests that 
reanalysis data can be effective in estimating fluxes when or in regions 
where measured flux and meteorological data are unavailable. 

4.3. Shortcomings and advantages of machine-learning approaches for 
the challenging ecosystems 

Machine-learning approaches may fail in gap-filling when the flux 
environmental driving mechanism was unclear (Fig. 12 and Figure S3) 
unless strong flux periodicity was present. This was particular the case 
for gap-filling methane when flux periodicity was extremely low in the 
time series. For example, methane was typically low at sites ROTH_HS 
and ROTH_PP, but in the summer of 2018, the ecosystem experienced 
short-term rapid methane increases which could be in relation to the 
presence of livestock in the field (Figure S1). Identifying the ‘right’ 
drivers was also crucial to gap-filling fluxes in the dryland sites SEG and 
SEG. Fluxes in dryland ecosystems are dependant on water availability 
(Barnes et al., 2021), but according to Table 2, we did not have the soil 
water supply data. This could be one major reason limiting the 
gap-filling performance in dryland sites. Besides, sudden biomass or flux 
changes were not captured (e.g., management activities in Fig. 10) by 
the machine learning algorithms. It was difficult to quantify the man
agement activities as algorithm drivers (Orr et al., 2016) and this may 
cause the failed capture. Therefore, determining the drivers directly and 
explicitly correlating with flux variations in these challenging ecosys
tems may be the way to improve the gap-filling performance for these 
machine-learning approaches. 

In contrast, machine learning algorithms can well extrapolate the 
impacts of slow biomass changes from the past into the future – e.g., 
grazing events at sites ROTH_HS, ROTH_PP, and ROTH_HSC (Fig. 10) 
and plant growth at site SAB (Figure S1) – even though such change 
information was not directly used as drivers. For example, random forest 
regression (RFR) successfully reproduced cumulative net ecosystem 
exchange (NEE) for both early-stage and mature converted peatlands 
(Figure S1b). This was assessed by removing the last 30% of the flux time 

series (scenario vl4) and gap-filling it. The reproduced sums matched 
well with the removed measurements for the mature ecosystem but 
showed slight overestimation for the early-stage ecosystem (Figure S1b). 

In agreement with the literature (Kim et al., 2020; Mahabbati et al., 
2021; Irvin et al., 2021; Zhu et al., 2022), there was no single algorithm 
that stood out clearly as the best in our range of options (Fig. 6), but the 
random forest (RFR) was found to be a very competitive alternative to 
the existing standard gap-filling algorithms. Decision tree-based algo
rithms, e.g., RFR, were shown to be more resilient to short-term dis
turbances, such as management events (Fig. 10), than the 
research-standard multiple layer perceptron (MLP). In comparison with 
other decision tree-based algorithms, RFR was also advantageous in 
reproducing the flux responses to environmental drivers [e.g., water 
table depth in SAB] (Fig. 11). Furthermore, the use of RFR approaches 
can improve the explained variance by 20% to 25% (Fig. 9) in dryland 
ecosystems where all gap-filling approaches struggled. Further eddy 
covariance towers and studies are in need in drylands because they 
cover ~40% of the global land area (Huang et al., 2016) but are 
under-sampled with eddy covariance towers (Boschetti et al., 2019). For 
filling very long gaps (vl4), the performance of RFR was particularly 
promising on timescales ranging from multi-hour to multi-day. Hence, 
RFR is recommended to use in future eddy covariance studies. 

Spatiotemporal scaling remains a challenge – i.e., for how long or for 
how far can flux data be extrapolated in time and space dimensions. In 
the spatial dimension, extrapolating eddy covariance fluxes typically 
uses satellite remote sensing and gridded meteorology data, and this 
study field is referred to as flux upscaling (Jung et al., 2020). However, 
satellites cannot provide both the high spatial and high temporal reso
lution observations needed to directly compare with eddy covariance 
fluxes at half-hourly and tower-level scales. In the temporal dimension, 
machine learning algorithms exhibited promise in predicting fluxes in 
the coming year. Predictions of fluxes in the more distant future may be 
possible in the absence of environmental (e.g., vegetation species and/or 
temperature) changes outside the measurement range. However for both 
spatial and temporal scalability more work is required. 

5. Conclusion 

The accuracy of gap-filling techniques is critically important to the 
continuous flux measurements from eddy covariance. For the first time, 
we comprehensively evaluated what factors affect the gap-filling per
formance and by how much, particularly in challenging ecosystems. We 
have shown that while increasing the number of in-situ driver mea
surements improves gap filling performance, utilisation of publicly 
available regional datasets, when combined with machine learning 
techniques, particularly random forest regression (RFR), can still pro
vide good results. RFR also showed superior performance when 
considering more challenging ecosystems with high levels of manage
ment interventions, in this case grazed pasture or tropical peatland 
converted to agriculture. While marginal distribution sampling (MDS) 
still performed well with gaps up to the medium range, for much longer 
gaps, RFR was a clear improvement. Gains in performance were also 
seen for RFR in gap filling methane datasets, but more limited and 
inconsistent at the site-specific level. Critically, the environment-flux 
responses emerged in RFR but not in MLP gap-filled data. The use of 
RFR for future gap-filling is thereby further recommended. Despite 
being a significant global climate impact, ecosystem scale datasets for 
methane flux are only very recently becoming available and much work 
remains to improve our understanding of ecosystem drivers, and the 
relationships between them, for this important greenhouse gas Fig. 1. 
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