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Abstract
The fish embryo acute toxicity (FET) test with the zebrafish (Danio rerio) embryo according to OECD TG 236 was originally
developed as an alternative test method for acute fish toxicity testing according to, e.g., OECD TG 203. Given the versatility of
the protocol, however, the FET test has found application beyond acute toxicity testing as a common tool in environmental hazard
and risk assessment. Whereas the standard OECD guideline is restricted to four core endpoints (coagulation as well as lack of
somite formation, heartbeat, and tail detachment) for simple, rapid assessment of acute toxicity, further endpoints can easily be
integrated into the FET test protocol. This has led to the hypothesis that an extended FET test might allow for the identification of
different classes of toxicants via a “fingerprint” of morphological observations. To test this hypothesis, the present study
investigated a set of 18 compounds with highly diverse modes of action with respect to acute and sublethal endpoints.
Especially at higher concentrations, most observations proved toxicant-unspecific. With decreasing concentrations, however,
observations declined in number, but gained in specificity. Specific observations may at best be made at test concentrations ≤
EC10. The existence of a “fingerprint” based on morphological observations in the FET is, therefore, highly unlikely in the range
of acute toxicity, but cannot be excluded for experiments at sublethal concentrations.
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Introduction

In 2019, the European Union produced 277.8 million tons of
hazardous chemicals (Eurostat 2020), and, according to CEFIC
(2021) and Statista (https://www.statista.com/), the 2018 global

chemical revenue amounted to approximately US $ 4100 billion.
Together with a multitude of metabolites, most anthropogenic
substances finally end up in the environment through
unintended or incorrect use, uncontrolled disposal, incomplete
elimination during wastewater treatment, and surface run-off
(Andreozzi et al. 2003; Schock et al. 2012), thus leading to an
unmanageable variety of contaminants in surface, ground, and
drinking waters (Küster and Adler 2014). As a consequence,
more recent legislation such as Registration, Evaluation,
Authorization and Restriction of Chemicals (REACH; EU
2007) and novel testing programs such as the U.S.
Environmental Protection Agency (EPA) ToxCast (Dix et al.
2007; Sipes et al. 2011; Padilla et al. 2012; Volz et al. 2015)
prompted a massive increase of toxicity testing (EC 2020) and
culminated in the quest for high-throughput assays (Rovida
2009, 2015; Hartung and Rovida 2009).

Since tests with vertebrates are an integral part of environ-
mental hazard identification and risk assessment of chemicals,
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plant protection products, pharmaceuticals, biocides, feed ad-
ditives, and effluents (Scholz et al. 2013), this increase in
testing requirements has raised increasing concern about ani-
mal welfare (Braunbeck et al. 2005, 2015; Paparella et al.
2020; von Hellfeld et al. 2020). In order to meet these con-
cerns, in 2003, Germany replaced whole effluent acute fish
toxicity (AFT) testing according to OECD TG 203 (OECD
1992, 2019) with the zebrafish (Danio rerio) fish egg test
(Bundesgesetzblatt 2005; ISO 2007), and, in 2013, the
OECD adopted the fish embryo acute toxicity (FET) test
(TG 236; (OECD 2013)) as an alternative method for the
AFT test. According to current EU Animal Welfare
Regulation (EU 2010), zebrafish embryos are not regarded
protected according to current EU animal welfare legislation
(Strähle et al. 2012).

In order to provide equivalent sensitivity to the AFT test
(OECD 1992, 2019), the original FET test protocol (OECD
2013) was designed to use only 4 morphological core endpoints:
coagulation of the embryo, lack of somite formation, lack of
heartbeat, and non-detachment of the tail (OECD 2013). These
endpoints were selected for (1) their direct or indirect association
with mortality, (2) their practicality for screening by well-trained
technical staff, and (3) their ease for recording and reporting. Over
the last two decades, however, the zebrafish embryo has also been
developed further into one of the most promisingmodels not only
in ecotoxicity testing (Braunbeck et al. 2015), but also in mam-
malian toxicology (Nagel 2002; Ton et al. 2006; Braunbeck 2009;
Brannen et al. 2010; Sipes et al. 2011; Sukardi et al. 2011; Ali
et al. 2011; De Esch et al. 2012; Driessen et al. 2013; Scholz et al.
2013; Nishimura et al. 2015; Guo et al. 2015; Bambino and Chu
2017; Fernandes et al. 2018). The versatility of the FET test has
thus prompted a massive expansion of the scope of the FET test,
which, in turn, led to the integration of numerous further end-
points into the original FET protocol and resulted in a rapidly
growing list of not only morphological observations, but also
physiological, biochemical, and molecular endpoints.

In fact, exposure of aquatic biota to environmental pollutants
can lead to a multitude of specific or unspecific adverse effects,
which may easily become relevant for the performance of pop-
ulations via, e.g., feminization due to exposure to estrogenic
compounds (Matthiessen et al. 2018; Wolf and Wheeler 2018;
Dang and Kienzler 2019), or via behavioral changes due to neu-
rotoxicity by heavy metals, organochlorine compounds, or pes-
ticides (De Esch et al. 2012; Dhillon et al. 2015; Yueh and Tukey
2016; Nishimura et al. 2016; Green and Planchart 2018)).
Whereas estrogen-receptor-mediated feminization is—by defini-
tion—a specific process, behavioral changes are likely to be
unspecific (Tilton et al. 2011), unless target-specific molecular
interactions like inhibition of enzymes such as acetyl choline
esterase inhibition by phosphate ester pesticides and carbamates
are concerned (Fulton and Key 2001; Behra 2004; Yen et al.
2011; Russom et al. 2014; Kais et al. 2015). The distinction
between specific and unspecific endpoints may deepen the

current understanding of adverse effects on populations and in
risk assessment.

While most apical endpoints of acute toxicity are per se non-
specific, tests addressing more specific endpoints such as endo-
crine disruption, genotoxicity, neurotoxicity, or immunotoxicity
hold greater potential to yield specific reactions (Nendza and
Wenzel 2006; Singh et al. 2019; Li et al. 2019). Especially with
the advent of molecular techniques in (eco-)toxicology, the hy-
pothesis developed that specific changes of a combination thereof
might serve as a “fingerprint” of the contaminant or contaminant
class (Peterson and Bain 2004; Yang et al. 2009; Gagné et al.
2013; Zhang et al. 2015; Neale et al. 2017). The massive diversi-
fication of FET test protocols has thus also led to the hypothesis
that an extended FET test might allow for the identification of
different classes of toxicants via a “fingerprint” of morphological-
ly detectable observations. To test this hypothesis, the present
study investigated 18 compounds with highly diverse modes of
action with respect to acute and sublethal morphological end-
points in the FET test. In order to characterize the specificity of
themorphological observations, data were analyzed not only with
respect to their assignment to specific substances or substance
classes, but also with regard to their time- and dose-dependence.

Materials and methods

Chemicals and test substances

Test compounds were selected for the diversity of their modes
of action. Primary mode(s) of action as well as detailed infor-
mation on the preparation of test solutions are summarized in
Table 1. All compounds tested were purchased at a minimum
purity of 98%. Paraquat, carbaryl, colchicine, rifampicin, clo-
fibrate, sulfisoxazole, and taxol were obtained from
Carbosynth (Compton, UK); rotenone, tebuconazole, and ibu-
profen were obtained from TCI (Eschborn, Germany); and
acrylamide, hexachlorophene, 1-methyl-4-phenyl-pyridinium
iodide (MPP+), paracetamol, PCB 180, tolbutamide,
triphenylphosphate, and valproic acid were purchased from
Sigma-Aldrich (Deisenhofen, Germany). Dimethyl sulfoxide
(DMSO) was ordered from Honeywell International
(Offenbach, Germany). All test solutions were freshly pre-
pared immediately prior to use in standardized water (ISO
1996); in cases of limited water solubility, DMSO was used
as a solvent: clofibrate, hexachlorophene, rotenone,
tebuconazole, tolbutamide, and valproic acid were dissolved
in 0.1% DMSO, whereas carbaryl and ibuprofen were dis-
solved in 0.5% DMSO, which has been determined as an
acceptable concentration for FET test experiments in previous
studies (Maes et al. 2012; Christou et al. 2020). PCB 180,
rifampicin, sulfisoxazole, and taxol were dissolved in 1%
DMSO, since no adverse effects were observed at the highest
test concentrations, when dissolved in 0.5% DMSO. When
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the DMSO concentration was even further increased to 1%
and no effect was seen at the highest test concentration, these
compounds were not tested further to avoid interference of
DMSO toxicity with the observations (Table 1). Additional
information on log KOW, solubility, and stability as well as
application profiles and biological effects is provided in
Supplemental materials Tables 1 and 2.

Fish maintenance

Adult wild-type zebrafish of the Westaquarium strain were
obtained from breeding facilities at the Aquatic Ecology and
Toxicology Group within the Centre for Organismal Studies
(University of Heidelberg; licensed under no. 35-9185.64/
BH). Fish maintenance, breeding conditions, and egg
production were described in detail by Lammer et al. (2009)
and are in accordance with internationally accepted standards.

Fish embryo acute toxicity test (OECD TG 236)

The acute toxicity of the test substances was determined ac-
cording to OECD TG 236 (OECD 2013). In brief, freshly
spawned eggs (< 1 h post-fertilization (hpf)) were transferred

to 50-ml crystallizing dishes filled with the respective test
solutions. After control of the fertilization success, eggs were
individually transferred to 24-well plates (TPP, Trasadingen,
Switzerland) filled with 2 ml of test solution per well (1 em-
bryo per well). All test vessels had been pre-incubated
(saturated) with the test solutions for at least 24 h.
Subsequently, well plates were sealed with self-adhesive foil
(SealPlate® by EXCEL Scientific, Dunn, Asbach, Germany)
and were placed in a Binder KT incubator (Tuttlingen,
Germany) at 26.0 ± 1.0 °C under a 10/14-h dark/light regime.
The test medium was renewed each day (semi-static expo-
sure), and all developmental alterations of the embryos were
documented at 24, 48, 72, and 96 hpf, according to OECD TG
236 (OECD 2013) and Nagel (2002), respectively. FET tests
with a minimum mortality rate of 30% in the positive control
(4 mg/L 3.4-dichloroaniline (DCA)) and a maximum effect
rate of 10% in the negative control (dilution water) at 96 hpf
were classified as valid.

In addition to the endpoints specified by OECD TG 236,
namely (1) coagulation of fertilized eggs, (2) lack of somite
formation, (3) non-detachment of tail bud, and (4) lack of
heartbeat (OECD 2013), any other observation was recorded
as further lethal or sublethal morphological endpoints:

Table 1 Test compounds used in the acute fish embryo toxicity tests with the zebrafish (Danio rerio) embryo: media and exposure concentrations as
well as primary mode(s) of action according to literature data

Compound Solution medium Test concentrations (mg/L) Mode(s) of action References

Acrylamide H2O 43.75, 87.5, 175, 350 ED, MCI Tyl and Friedman (2003), Faria et al. (2018)

Carbaryl 0.5% DMSO 1.89, 3.75, 7.5, 15 AI, CYP Slaninova et al. (2009), Schock et al. (2012)

Clofibrate 0.1% DMSO 62.5, 125, 250, 500, 1000 PM, OX Laville et al. (2004), Den Broeder et al. (2015)

Colchicine H2O 10, 20, 40, 80 MT Jesús et al. (1987)

Hexachlorophene 0.1% DMSO 2, 4, 8, 16, 32 MCI Zheng et al. (2012)

Ibuprofen 0.5% DMSO 2.50, 5, 10, 20, 40, 80 PM, CI David and Pancharatna (2009a), Puhl et al. (2015)

MPP+ 0.1% DMSO 100, 200, 400, 800, 1600 HDAC Pinho et al. (2016)

Paracetamol H2O 125, 250, 500, 1000, 2000 OX, CI David and Pancharatna (2009b), Du et al. (2016)

Paraquat H2O 125, 250, 500, 1000 OX Slaninova et al. (2009), Lushchak (2016)

PCB 180 1.0% DMSO 3.13, 6.25, 12.50, 25 cGMP Llansola et al. (2009)

Rifampicin 1.0% DMSO 50, 100, 200, 400, 800 CYP Mahatthanatrakul et al. (2007)

Rotenone 0.1% DMSO 2, 4, 8, 16, 32 MCI, OX Cheng and Farrell (2007), Slaninova et al. (2009),
Pinho et al. (2013), Wang et al. (2017)

Sulfisoxazole 1.0% DMSO 50, 175, 250, 500, 1000 BAC, CYP Hong et al. (1995)

Taxol 1.0 % DMSO 6.25, 12.50, 25, 50 OX, MT Brito et al. (2008), Lisse et al. (2016)

Tebuconazole 0.1% DMSO 1.88, 3.75, 7.50, 15, 30 ED, CYP, OX Sancho et al. (2010), Yang et al. (2018)

Tolbutamide* 0.1% DMSO 57.34, 71.60, 89.60, 112, 140 MCI Zhou et al. (2009)

Triphenylphosphate 0.1% DMSO 0.19, 0.38, 0.75, 1.50, 3 ED, CYP, PM Isales et al. (2015), Du et al. (2016), Liu et al. (2016)

Valproic acid 0.1% DMSO 3, 7, 14, 29, 58, 115 HDAC, MCI Chateauvieux et al. (2010), Godhe-Puranik et al. (2013)

Abbreviations: AI acetylcholine esterase inhibition, BAC bacterial inhibition, cGMP glutamate-NO-cGMP pathway inhibition, CI COX inhibition, CYP
CYP450 inhibition, ED endocrine disruption, HDAC HDAC inhibition, MCI membrane channel inhibition, MT microtubule binding, OX oxidative
stress, PM PPAR modulation

*pH of the final solutions had to be adjusted
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Common examples were reduced heartbeat or reduced blood
flow, inhibited or missing pigmentation, delayed or altered
development, modified movement(s), distortion of the spine,
craniofacial deformations, eye development, delayed hatching
and fin formation, and formation of various types of edema
(von Hellfeld et al. 2020). In the case of evidence for delayed
toxicity, the standard exposure duration of 96 h specified by
OECD TG 236 (OECD 2013) was extended to 120 h. In any
case, the developmental stage at the end of the experiments
never exceeded the limits for unprotected developmental
stages set by the current EU animal welfare legislation (EU
2010; Strähle et al. 2012). In case 2 range-finding experiments
already provided conclusive results, only two replicates of the
definitive FET test with 5 test concentrations spaced by a
factor not larger than 2 were conducted for each compound.
Otherwise, 4 replicates of the full FET test were conducted.
The embryos were analyzed individually under an Olympus
CKX41 inverted microscope (Olympus, Hamburg,
Germany), and images were captured using an Olympus
C5040 AUD camera.

Data analysis and statistics

Lethal concentrations (LC) for the 4 core endpoints listed in
OECD TG 236 (OECD 2013) as well sublethal effect concen-
trations (EC) based on the 4 core endpoints plus any other
effect were calculated at levels of 10 and 50% based on probit
analysis using linear maximum likelihood regression with
ToxRat® (ver. 2.10.06; ToxRatTM Solutions, Alsdorf,
Germany), with both lethal and sublethal effects included into
the calculation of EC values (Hrovat et al. 2009). The relative
frequencies of morphological observations were calculated as
follows: The percentage of coagulated embryos was calculat-
ed based on the total number of individuals of the given con-
centration, whereas the percentage of the other 3 lethal end-
points (lack of somite formation, tail detachment, and heart-
beat) was computed based on the number of non-coagulated
individuals. Relative percentages for sublethal effects were
calculated on the basis of surviving embryos. Data were also
analyzed for time-dependent changes in LC values for 72-h-
old embryos via ANOVA-on-ranks (Kruskal-Wallis) follow-
ed by Dunn’s post hoc test, as included in SigmaPlot Version
13.0.0.83 (Systat-Jandel, Erkrath, Germany).

Results and discussion

Formal lethal and sublethal toxicity data from the
standard fish embryo acute toxicity test (OECD TG
236)

Out of the 18 compounds tested, 13 expressed morphological-
ly observable effects in the FET test (Table 2). Although tested

with a maximum final DMSO concentration of 1%, PCB 180,
rifampicin, sulfisoxazole, and taxol did not produce any effect
up to the highest concentrations tested (cf. Table 1). Likewise,
MPP+ was tested to a final concentration of 1.6 g/L, but failed
to induce any morphological sign of toxicity and was, there-
fore, excluded from further analysis.

The two most toxic compounds were rotenone and hexa-
chlorophene, both with EC10 values of 4 μg/L (± 0.3 and ± 0.1
μg/L, respectively). Apart from paraquat, the remaining pes-
ticides also produced sublethal effects at very low concentra-
tions, whereas the pharmaceuticals caused toxic effects at
highly variable concentration levels. The EC10 of valproic
acid, e.g., was found to be 5.0 ± 0.7 mg/L, while EC10 values
for paracetamol and clofibrate were > 200 mg/L (± 2.9 and ±
36.7 mg/L, respectively); trends for lethal toxicity (LC) values
were similar. As a rule, toxicity data for pharmaceuticals also
spanned a larger range (flat slope of the concentration-
response relationship): For instance, ibuprofen had an EC10

value of 4.7 ± 1.47mg/L and an LC50 value of 37.3 ± 3.48mg/
L, and valproic acid ranged from 5.0 ± 0.73 mg/L (EC10) to
37.4 ± 2.91 mg/L (LC50). In contrast, the concentration-
response relationship of the insecticide carbaryl displayed a
much steeper slope, i.e., sublethal and lethal toxicity data were
much closer (EC10, 2.2 ± 0.26 mg/L, and LC50, 12.2 ± 0.72
mg/L). For further details and analyses of LC and EC data in
zebrafish embryos, see von Hellfeld et al. (2020), where FET
observations were discussed in the context of a catalog of FET
endpoints.

Further FET test observations and their potential for
substance specificity

Morphological observations recorded throughout the 96 h of
exposure were categorized into (1) a group of clearly “suble-
thal effects” (occurring at concentrations < EC50, Table 3) and
(2) a group of endpoints recorded at a concentration between
EC50 and LC50 values (“lethal effects,” Table 4). Given that
the 4 core endpoints listed by OECD TG 236 had been select-
ed as a clear indicator of mortality, these could only rarely be
recorded at exposure concentrations < EC50; in fact, only co-
agulation and missing heartbeat could be identified at concen-
trations (< 10% of individuals) belowwhich no other endpoint
was positive (Table 3); in such cases, acute lethality drives the
lowest observed effect concentration (LOEC).

In the present study, by definition, observations recorded
after exposure to more than 4 of the separately tested sub-
stances (> 30% of the toxic substances) were classified as
“unspecific,” if this observation was true at lethal concentra-
tions. Here, all non-OECD endpoints observed at concentra-
tions < EC50 were either induced by exposure to at least 4 of
the tested compounds or represented different aspects of the
same impaired system (e.g., missing heartbeat and reduced
heartbeat). They were thus all classified as unspecific and
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occurred at low frequencies. As could be expected, the num-
ber of effects increased with the transition from effects < EC50

(Table 3) to effects between EC50 and LC50 (Table 4), i.e.,
with increasing concentration (positive concentration-
response relationship). In parallel, the number of individuals
affected (frequencies of occurrence) increased.

The most frequent observations recorded at sublethal con-
centrations (Table 3) were craniofacial deformation and lack
of hatching (8 compounds), followed by coagulation (7 com-
pounds) and formation of pericardial edemata (6 compounds).
The endpoints observed with the lowest number of test com-
pounds were impaired pigmentation and impaired fin devel-
opment (1 compound each). Further endpoints observed less
frequently were effects in the circulatory system such as im-
paired heartbeat and blood flow (2 compounds), as well as
lack of heartbeat, reduced yolk resorption, and tremor (3 com-
pounds). Overall, more adverse endpoints such as lack of
blood flow, blood congestion, lordosis, and the OECD TG
236 core endpoints were less frequently observed.

As a rule, both numbers and frequencies of positively re-
corded endpoints decline with test concentrations. A remark-
able exception is paracetamol (Table 3): At only ≤ EC50 con-
centrations, coagulation (in 3 and 10% of the exposure
groups) and reduced yolk resorption (3%) could be observed.
A high number of individuals also displayed impaired pig-
mentation (up to 100%, which declined to 94% at concentra-
tions between EC50 and LC10). For most other endpoints, the
frequencies of observations were limited to ≤ 20%, (excep-
tion: 27% lordosis with acrylamide). Overall, given the in-
creasing lack of systemic responses at concentration levels
well below EC50 values, the number of potentially more spe-
cific effects increases, an aspect that will be discussed further,
when the time dependence of effects will be considered
(Tables 5, 6, 7, and 8).

At concentrations between EC50 and LC50, some observa-
tions were encountered at higher frequencies (Table 4). The
most commonly observed endpoint was lordosis (12 com-
pounds), followed by impaired heartbeat, pericardial edemata,
and lack of hatching (10 compounds). Further, common end-
points include impaired heartbeat (9 compounds) and coagu-
lation, lack of heartbeat, and craniofacial deformation (8 com-
pounds). In contrast, endpoints termed “more specific” in
Table 4 were caused by a maximum of 2 compounds. Yolk
edemata and impaired pigmentation were induced by 3 com-
pounds, followed by impaired fin development (4
compounds).

Overall, frequencies of effects recorded between EC50 and
LC50 are more diverse (3–100 %) than frequencies of obser-
vation ≤ EC50. As a rule, the number of effects between EC50

and LC50 is higher than at concentrations ≤ EC50. Among the
core OECD TG 236 endpoints, lack of heartbeat was most
frequent (acrylamide, 50%). For commonly observed non-
OECD endpoints, few compounds exceeded 50% of individ-
uals; again, paracetamol and valproic acid are exceptions (100
%) for impaired/missing blood flow and reduced yolk resorp-
tion, respectively. Relatively high prevalence of changes in
the circulatory system and edema indicate that these effects
lose specificity with increasing test concentrations.

Time and severity dependence of observations in the
FET

In contrast to a previous communication, which aimed at com-
piling a comprehensive and standardized catalog of observa-
tions in the FET test (von Hellfeld et al. 2020), the present
study was designed to also analyze the onset and frequency
(severity) of observations. Table 5 summarizes observations
made at test concentrations ≤ EC10. The “more specific

Table 2 Subletal and acute
toxicity of selected test
compounds (EC and LC values at
10 and 50% effect levels) in
embryos of the zebrafish (Danio
rerio) at 96 hpf

EC10 EC50 LC10 LC50

Acrylamide (mg/L) 75.5 ± 13.09 94.3 ± 7.8 154.6 ± 53.2 205.7 ± 3.1

Carbaryl (mg/L) 2.2 ± 0.3 2.4 ± 0.2 6.6 ± 1.6 12.2 ± 0.7

Clofibrate (mg/L) 213.3 ± 36.7 342.5 ± 53.9 602.7 ± 36.1 1113.2 ± 23.6

Colchicine (mg/L) 23.1 ± 3.9 32.4 ± 2.9 32.5 ± 8.4 41.4 ± 6.5

Hexachlorophene (μg/L) 4.0 ± 0.1 5.0 ± 0.1 7.0 ± 0.3 8.0 ± 0.3

Ibuprofen (mg/L) 4.7 ± 1.5 10.8 ± 2.9 31.7 ± 2.1 37.3 ± 3.5

Paracetamol (mg/L) 219.8 ± 2.9 262.6 ± 2.4 1000 ± 0.1 1167.5 ± 3.1

Paraquat (mg/L)* 384.7 ± 64.3 545.9 ± 7.2 721.1 ± 8.1 855.0 ± 4.8

Rotenone (μg/L) 4.0 ± 0.1 7.1 ± 1.0 6.0 ± 1.2 10.0 ± 2.3

Tebuconazole (mg/L) 2.3 ± 0.1 5.3 ± 0.2 15.0 ± 0.1 17.3 ± 0.1

Tolbutamide (mg/L) 54.3 ± 12.3 116.9 ± 14.1 223.2 ± 6.9 278.6 ± 8.4

Triphenylphosphate (mg/L) 0.3 ± 0.1 0.5 ± 0.1 1.4 ± 0.1 1.6 ± 0.1

Valproic acid (mg/L)* 5.0 ± 0.8 7.8 ± 1.0 33.7 ± 7.8 37.4 ± 2.9

*Exposure duration extended to 120 hpf
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endpoints” found with only a low number of test compounds
were considered as candidates for a fingerprint of toxicity,
since these effects were indicative of the onset of
compound-specific pathologies and were only rarely observed
throughout the experiment. In fact, only 3 out of 7 “more
specific” endpoints proved positive—all at very low frequen-
cies and only showing up late (96–120 hpf). Likewise (and
expectedly), OECD TG 236 core endpoints were also seen
only rarely and at low frequencies. As a remarkable exception,
colchicine exposure induced coagulation not only at the usual
time point of 24 hpf, but also at later developmental stages
(color code, 24–120 hpf).

The only endpoints induced at moderate frequency/
severity were craniofacial deformation and lordosis after
exposure to hexachlorophene. All other observations
were made at low frequencies, with colchicine and
hexachlorophene inducing the highest number of effects
(11 each). With respect to the developmental phase, the
majority of endpoints positive at ≤ EC10 was recorded
at ≥ 48 hpf, and their partially transient nature was
indicated by 80 % of the observations only being pres-
ent for one specific time point.

Table 6 compiles all observations recorded at ≤ EC50 con-
centrations, including those listed in Table 5. With clofibrate-
induced craniofacial deformation, the first observation with
high severity/frequency (+++) is listed in Table 6. Out of the
84 observations recorded throughout this study, only 6 could
be classified as moderately severe/frequent (++). Again, the
majority of observations were made at ≥ 48 hpf, with only 30
listed for more than 1 time point.

Early developmental effects seen at ≤ EC50 concentrations
were coagulation (colchicine), lack of spontaneous movement
(hexachlorophene, ibuprofen), and delayed development
(hexachlorophene). At concentrations between EC10 and
EC50 values, the number of effects by acrylamide increased
by 9. Valproic acid–exposed individuals were listed with 13
endpoints, as compared to 9 noted at ≤ EC10 (Table 5).
Ibuprofen exposure induced another 3 effects (one of which
was considered more specific), followed by paracetamol,
paraquat, and tolbutamide (+ 2).

In contrast, only 3 out of the 6 endpoints listed for clofi-
brate ≤ EC10 were seen between EC10 and EC50, with a gen-
eral delay of development as a new endpoint. For carbaryl,
clofibrate, hexachlorophene, and triphenylphosphate, no
changes were seen with respect to the type and number of
endpoints from ≤ EC10 to ≤ EC50. Since for rotenone both
EC10 (Table 5) and EC50 values (Table 6) were extrapolated,
no observations are listed in either table.

Table 7 lists all observations recorded up to LC10 con-
centrations. If compared to Table 6 and, even more so,
Table 5, the number of and time span for observations
increase signficantly. In fact, except for lack of spontane-
ous movement, which is, almost by definition, restricted toTa
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24 hpf, most endpoints proved positive (i.e., persistent)
over extended periods of development. Thus, with increas-
ing concentration, endpoints of diverse nature gradually
accumulate, making these endpoints less specific of the test
substance. On the other hand, the number of “more specific
endpoints” (seen with < 4 substances) also increases. A
conspicuous example of such “uncommon” observations
is head tremor, which could only be seen after exposure
to ibuprofen and tebuconazole. This endpoint has been
speculated to be an indicator of reduced oxygen availabil-
ity and has frequently been described as “gulping for air”
(Huang et al. 2014). Usually, e.g., with paracetamol, but
not necessarily, the severity of expression increases in par-
allel to test substance concentration and frequency of
observations.

The trends seen in Table 7 find their continuation in Table 8:
Most observations listed for test concentrations up to LC50

levels eventually lose all specificity. None of the test substances
induced less than 8 endpoints, which was seen after expsoure to
paraquat. In fact, hexachlorophene and valproic acid produced
up to 18 different morphological effects in the extended FET
test protocol; most interestingly, valproic acid also induced a
total of 4 “more specific” endpoints, which was not expected at
lethal concentrations close to LC50.

Examples of substance-related effect
profiles/specificity

The most effect-specific compounds from the present com-
pound list are seemingly carbaryl and triphenylphosphate, as

they induced the same few endpoints at EC10 and EC50. While
neither of these endpoints, at sublethal concentrations, were
considered specific, the fact that even ≤ EC50 for each of the
compounds, no new endpoints became evident, this allows for
the hypothesis that such endpoints are relatively compound-
specific and should be assessed in light of the compound’s
functioning and mechanisms of action.

Cabaryl The endpoints which can be observed at sublethal
concentrations were delayed development, pericardial
edemata, and reduced yolk resorption. Previous research
showed that carbaryl competitively binds to melatonin recep-
tors (Popovska-Gorevski et al. 2017), negatively affecting the
overall metabolism as well as the circadian clock. Reduced
yolk resorption was hypothesized to be caused by alterations
in lipid metabolism and PPARα expression levels (Weston
et al. 2009; Coimbra et al. 2015; Kamstra et al. 2015). While
in zebrafish embryos the liver is not fully formed (but active)
before 72 hpf (de Esch et al. 2012), endpoints relating to the
yolk sac are nonetheless correlated to the hepatic system and
thus hold the potential to indicate hepatotoxic compounds.
Thus, the observation of both reduced yolk resorption and
delayed development can be deemed to be indicators of the
compound’s effect on melatonin receptors. The development
of pericardial edemata (with edemata being generally defined
as a swelling of any body part due to fluid build-up; IQWiG
2016) is not fully understood. However, edemata observed in
hexachlorophene-exposed mice proved to be only short-term
effects and vanished after cessation of the treatment (Powell
et al. 1973). It could thus be assumed that edemata, also

Table 5 Semi-quantitative evaluation of all effects in zebrafish (Danio
rerio) embryos observed at ≤ EC10 concentrations, grouped into lethal
effects specified by OECD TG 236 (OECD 2013), unspecific alterations

observed with most substances as well as “more specific” endpoints seen
with < 4 substances. Compounds organized alphabetically (observations
from n = 2 independent replicates)
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Acrylamide 75.4

Carbaryl 2.2

Clofibrate 200

Colchicine 23.1

Hexachlorophene 0.004

Ibuprofen 4.7

Paracetamol 200

Paraquat * 400

Rotenone 0.004

Tebuconazole 2.3

Tolbutamide 54.3

Triphenylphosphate 0.3

VPA * 5.1

Effect intensity: +, rarely present and/or not severe; ++, frequently present and/or moderately severe; +++, strong presence and/or high severity. Color
codes: single-colored signatures indicate effects present from the time point indicated until the end of the experiment. Striped signatures indicate effects
observed only between the two time points indicated by the colors
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observed to be induced by the exposure to 6 other compounds
≤ EC10, is an easily elicited response by the organisms which
indicates an overall state of stress without being specifically
linked to an underlying mechanism.

Triphenylphosphate The only endpoint that could be recorded
at ≤ EC50 for triphenylphosphate in the present study was the
observation that embryos failed to hatch by 96 hpf (controls,
72 hpf; Kimmel et al. 1995), which might be linked to the
following two general pathologies: (1) First, the inability to
hatch might be based on physical developmental delay, which
already becomes evident in, e.g., the lack or delay of tail
detachment at 24 hpf (Kimmel et al. 1995). (2) Second, early
spontaneous movement is thought to be an essential
precoursor of hatching behavior (Xia et al. 2017).
Embryonic behavioral endpoints such as coiling and swim-
ming behavior have frequently been utilized to determine the
developmental neurotoxic potential of compounds (Schmitt
and Dowling 1999; Selderslaghs et al. 2010, 2013; Velki
et al. 2017; Vliet et al. 2017; Ramlan et al. 2017; Basnet
et al. 2019; Zindler et al. 2019b, a) and have successfully
revealed alterations at sublethal concentrations. In the case
of elevated (lethal) concentrations of triphenylphosphate
(Tables 7 and 8), a multitude of unspecific endpoints includ-
ing “tail non-detached,” “delayed development,” and “no
spontaneous movement” could be listed and might be linked
to either possible pathway of pathology. However, since the
exposure failed to induce “tremor” as a further indicator of

neurotoxicity (von Hellfeld et al. 2020), the observed lack of
hatching at lower concentration was more likely due to devel-
opmental delays, which only become macroscopically visible
at higher toxicant concentrations.

Acrylamide Acrylamide-exposed zebrafish expressed an in-
ability to hatch at ≤ EC10 as well as various circulatory defects
(reduced heartbeat and impacted blood flow along with blood
congestion) at sublethal concentrations, as well as delayed
development and reduced hatching success. Previous studies
found that acrylamide reduces the number of cardiomyocytes
and their proliferative capacity, leading to morphological
changes of the heart (Huang et al. 2018), thus impacting the
general circulation and thus overall development. Whereas
reduced heartbeat rates per se may not indicate direct pathol-
ogy, considering it in correlation with endpoints such as re-
duced heart size or lack of heart looping, it may indicate a
reduced proliferative capacity of the heart (Schock et al.
2012; Isales et al. 2015; Huang et al. 2018).

Colchicine Exposure to the mitosis inhibitor colchicine pro-
duced pronounced lordosis in zebrafish embryos. Colchicine
generally affects cell division, which may easily explain the
incorrect cell formation associated with lordosis and finally
coagulation of the embryo (even at time points later than 24
hpf) at ≤ EC10, as well as the impairment observed for tailfin
development. In general, lordosis is also thought to be caused
by alterations in the expression of the fibroblast growth factor,

Table 6 Semi-quantitative evaluation of all effects in zebrafish (Danio
rerio) embryos observed at ≤ EC50 concentrations, grouped into lethal
effects specified by OECD TG 236 (OECD 2013), unspecific alterations

observed with most substances, and “more specific” endpoints seen with
< 4 substances. Compounds organized alphabetically (observations from
n = 2 independent replicates)

OECD 236 endpoints Unspecific endpoints More specific endpoints
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Acrylamide 94.0

Carbaryl 2.4

Clofibrate 300

Colchicine 32.4

Hexachlorophene 0.005

Ibuprofen 10.8

Paracetamol 300

Paraquat * 500

Rotenone 0.007

Tebuconazole 5.3

Tolbutamide 116.9

Triphenylphosphate 0.5

VPA * 7.8

Effect intensity: +, rarely present and/or not severe; ++, frequently present and/or moderately severe; +++, strong presence and/or high severity. Color
codes: single-colored signatures indicate effects present from the time point indicated until the end of the experiment. Striped signatures indicate effects
observed only between the two time points indicated by the colors
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sonic hedgehog and bone morphogenetic protein, as well as
Wnt and Notch genes (Lin 2002). The early onset of lordosis
and coagulation at later developmental stages may thus seem
specific of colchicine in the present study due to a combina-
tion of early pathways of developmental pathology.

Hexachlorophene Even at ≤ EC10, hexachlorophene exposure
induced kyphosis in the zebrafish embryos, along with various
“unspecific” effects pertaining to the circulatory system, cra-
niofacial formation, and lordosis. In contrast to lordosis as an
inward concave curving of the cervical and lumbar regions of
the spine, kyphosis is an abnormally excessive convex curva-
ture of the spine especially in the thoracic and sacral regions.
Kyphosis is thought to relate to myocyte degeneration and
neural cell apoptosis (Kim et al. 2009). Hexachlorophene is
a membrane channel inhibitor (Zheng et al. 2012), and it has
been shown that the disruption of ion channel functionality
plays a vital role in apoptosis (Kondratskyi et al. 2015), thus
supporting the feasibility of kyphosis being more specific pro-
cesses present in only certain cases. While the underlying
pathways of spinal deformations such as lordosis, kyphosis,
and scoliosis are yet to be fully elucidated, the differential
observation of kyphosis, lordosis, and scoliosis (sideways cur-
vature of the spine) offers an insight into potential pathways,
which highlight the importance of correct identification and
terminology of these endpoints due to their specificity (von
Hellfeld et al. 2020).

Ibuprofen and tebuconazole Both of these compounds in-
duced the “head tremor” endpoints, which have previously

been linked to a “gulping for air”-like behavior (Huang et al.
2014). Ibuprofen is a PPARα modulator and COX inhibitor
(David and Pancharatna 2009a; Puhl et al. 2015) and induced
the endpoint at ≤ EC50, whereas tebuconazole, an inducer of
oxidative stress, endocrine disruptor, and CYP450 inhibitor
(Sancho et al. 2010; Yang et al. 2018) only did so at LC10

concentrations. Oxidative stress has previously been identified
as both a cause for and a consequence of reduced oxygen
availability in fish, leading to the increased gill movement or
“gulping” observed in the present study. Studies have shown
that nonsteroidal anti-inflammatory drugs (NSAIDs) such as
ibuprofen increase the cardiac output in fish (Zhang et al.
2020), thus leading to an increased need for oxygen to sustain
this behavior. Thus, although “head tremor” endpoint is not a
frequent observation, it may well have two distinct underlying
mechanisms.

Paracetamol The increased eye size following paracetamol
exposure has been speculated to be caused by alterations in
the retinoic acid pathway (Drummond and Davidson 2016),
which is known to also induce heart deformations and damage
to the retina (Isales et al. 2015). This led to the assumption that
eye deformation, especially when observed along with heart
deformation, indicates disruption of the retinoic pathway.

Valproic acid Exposure to valproic acid induced a total of
four “more specific” endpoints: otolith deformation, scoli-
osis, impaired tailfin development, and the lack of pectoral
f in movement. Valproic acid is a known histone
deacetylase (HDAC) inhibitor, which is required for the

Table 7 Semi-quantitative evaluation of all effects in zebrafish (Danio
rerio) embryos observed at ≤ LC10 concentrations, grouped into lethal
effects specified by OECD TG 236 (OECD 2013), unspecific alterations

observed with most substances, and “more specific” endpoints seen with
< 4 substances. Compounds organized alphabetically (observations from
n = 2 independent replicates)

OECD 236 endpoints Unspecific endpoints More specific endpoints
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Acrylamide 166.6

Carbaryl 6.6

Clofibrate 600

Colchicine 32.5

Hexachlorophene 0.007

Ibuprofen 31.7

Paracetamol 1000

Paraquat * 700

Rotenone 0.006

Tebuconazole 15.0

Tolbutamide 223.2

Triphenylphosphate 1.4

VPA * 22.8

Effect intensity: +, rarely present and/or not severe; ++, frequently present and/or moderately severe; +++, strong presence and/or high severity. Color
codes: single-colored signatures indicate effects present from the time point indicated until the end of the experiment. Striped signatures indicate effects
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formation of the inner ear and other craniofacial structures
(He et al. 2016), thus providing an explanation for the ob-
servation of otolith deformation. HDAC inhibition has fur-
ther been linked to alterations in skeletal development in
general and bone strength in mammals in particular. The
inhibition of sirtuins (Bradley et al. 2015), a sub-group of
HDAC enzymes, and HDAC2 (Tassano et al. 2015) in par-
ticular are known for inducing spinal curvature defects such
as scoliosis. Further studies revealed that HDAC8 inhibi-
tion leads to smaller hands and feet in humans (Deardorff
et al. 2012; Kaiser et al. 2014), while HDAC4 inhibition
induced shortened metatarsals and metacarpals (Williams
et al. 2010; Villavicencio-Lorini et al. 2013). While all
these findings are based on humans and other terrestrial
mammals, the genetic homology of zebrafish allows for
the consideration that these underlying functions of the dif-
ferent HDACs are comparable to at least a certain degree,
thus possibly explaining the unique tail and pectoral fin
alterations observed in the present study.

Time-dependent toxicity profile

Out of the compounds tested in the present study, only acryl-
amide and colchicine expressed a statistically significant mod-
ulation of LC values over exposure time (Fig. 1). The LC50 of
acrylamide significantly decreased between 48 and 96 hpf,
with significant differences between each of the three time
points tested (ρ = 0.034). In contrast, LC10 values for either
substance did not show any significant impact over time, al-
though there was a clear trend for colchicine: For individuals

exposed to colchicine, the LC50 also varied significantly be-
tween 48 and 96 hpf (ρ = 0.019), yet without a significant
difference between 48 and 72 hpf or 72 and 96 hpf.

The fish embryo test with the zebrafish embryo is conduct-
ed during a period of rapid development and, thus, massive
time-dependent changes (Kimmel et al. 1995). Chemical com-
pounds may affect mechanisms or organs, which have not
fully developed: Hepatotoxic compounds, e.g., can only ex-
press their impact after 72 h of exposure, when the liver be-
comes functional. The full toxic potential on the zebrafish
embryo, however, will likely unfold after 120 hpf, when the
liver has reached full functionality and a certain volume (de
Esch et al. 2012). This may, in part, provide an explanation
why the toxicity of, e.g., valproic acid shows an increase over
the entire exposure duration (Dai et al. 2015).

Another important consideration with respect to the time
dependence of both morphological and functional effects is
the potential barrier function of the chorion in combination
with limited absorption rate and poor membrane permeability
for certain compounds such as colchicine (Brox et al. 2016).
As a consequence, a delay in the expression of toxicity may
develop, which, however, can rapidly be compensated upon
hatching (Roche et al. 1994; Henn and Braunbeck 2011).
However, it should be noted that the barrier function of the
chorion plays a less important role (Zhang and Rawsom 1996;
Kais et al. 2013; Braunbeck et al. 2020) than originally pos-
tulated (Hagedorn et al. 1997, 1998; Adams et al. 2005). In
line with the developmental time line, the nervous system is
assumed to be fully developed only by 10 days post-
fertilization (de Esch et al. 2012). This implies that in case

Table 8 Semi-quantitative evaluation of all effects in zebrafish (Danio
rerio) embryos observed at ≤ LC50 concentrations, grouped into lethal
effects specified by OECD TG 236 (OECD 2013), unspecific alterations

observed with most substances as well as “more specific” endpoints seen
with < 4 substances. Compounds organized alphabetically (observations
from n = 2 independent replicates)
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compounds tested in the FET test are likely to induce severe
neurodevelopmental effects, only part of the endpoints of neu-
rotoxicity may be observable in 96-h-old embryos (Zindler
et al. 2019a, b, 2020a, b). For some endpoints (such as swim-
ming assays and anxiety tests), specific test setups might be
required (Selderslaghs et al. 2009, 2012, 2013; Zindler et al.
2019a, 2020a, b).

Conclusions

The present study aimed to differentiate between endpoints
indicative of general or more specific pathologies. In any case,
the present analysis of endpoints provides clear evidence that
the fish embryo acute toxicity (FET) test can provide signifi-
cantly more detailed information about the test compounds
than originally planned for the OECD guideline 236. By the
addition of an open list of further endpoints to the core obser-
vations specified by the original OECD guideline, the present
communication was able to develop different endpoint pro-
files for the test compounds, even though the final “adverse
outcome” of various pathways might ultimately be the same.
Although a quite rudimentary type of “toxicity fingerprint-
ing”, the syndrome originating from the collection of a full
set of observations may well be of interest for regulatory pur-
poses in terms of defining environmentally relevant threshold
values. In combination with in-depth literature analysis, the
present study also documents the usefulness of the FET for the
development adverse outcome pathways (AOPs) for specific
(classes of) test compounds. Based on the numerous advan-
tages of the zebrafish as a test organism, and given its simplic-
ity, versatility, reproducibility, and complementarity with oth-
er systems, the FET test has received increasing attention over
many years and will continue to do so. However, future

research would benefit greatly from the creation of a FET test
endpoint database, allowing the comparison of effects, and
from the use of a unified scoring system. An established,
comprehensive nomenclature for different endpoints would
make results obtained from different laboratories more com-
parable and allow for not only a more conclusive interpreta-
tion, but also a more in-depth understanding of observations.
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