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Key Points: 

• A mammography equipment software upgrade resulted in a threefold increase in the 

recall rate of a commercially available breast cancer screening artificial intelligence 

(AI) algorithm. 

• Calibration of the AI decision threshold reduced recall rates from 47.7% to 13.0%. 

• Implementation of AI into clinical practice requires local retrospective evaluation 

and ongoing quality assurance. 

 

 

 

Summary statement:  

 

Artificial intelligence (AI) performance in breast cancer screening was affected by 

mammography equipment and software used, highlighting the importance of local clinical 

settings and technology for effective AI implementation. 

  



Abstract 

Artificial intelligence (AI) tools may assist breast screening mammography programmes, but 

limited evidence supports their generalisability to new settings. This retrospective study used 

a three-year dataset (1/04/2016-31/03/2019) from a UK regional screening programme. The 

performance of a commercially available breast screening AI algorithm was assessed with a 

pre-specified and a site-specific decision threshold to evaluate whether its performance was 

transferable to a new clinical site. The dataset consisted of women who attended routine 

screening (50-70 years), excluding technical recalls, self-referrals, and those with a previous 

mastectomy, complex physical requirements or without the four standard image views. In 

total, 55,916 screening attendees (mean age, 60 ± 6 [SD] years) met the inclusion criteria. 

The pre-specified threshold resulted in high recall rates (48.3%; 21,929/45,444), which 

reduced to 13.0% (5,896/45,444) following threshold calibration, closer to the observed 

service level (5.0%; 2,774/55,916). Recall rates also increased approximately three-fold 

following a software upgrade on the mammography equipment, requiring per-software 

version thresholds. Using software-specific thresholds, the AI algorithm would have recalled 

277/303 (91.4%) screen-detected cancers and 47/138 (34.1%) interval cancers. AI 

performance and thresholds should be validated for new clinical settings before deployment, 

while quality assurance systems should monitor AI performance for consistency.  

 



Introduction 

A recent United Kingdom (UK) National Screening Committee review (3,4) concluded that 

evidence was insufficient to support the implementation of AI in routine breast cancer 

screening. The review identified limited evidence on sources of variability, impact on interval 

cancers detected between screening cycles, and performance of a pre-set threshold to classify 

recall or no recall. In addition, evidence for the transferability of AI models is inconsistent (5-

7).  

We evaluated a commercial AI software (8) using data from a UK Screening Programme to 

determine whether its performance transferred to an external dataset generated with different 

mammography equipment. The AI software is CE-marked (CE: Conformité Européenne), 

indicating compliance with applicable European Union (EU) regulations. This study 

evaluates generalisability of the AI tool using consecutively acquired clinical data, comparing 

stand-alone performance to the dual reporting system in the UK screening service. 

 

Materials and Methods 

Sample 

The Proportionate Review Sub-committee of the London - Bloomsbury Research Ethics 

Committee approved this retrospective study (20/LO/0563). Secondary use of de-identified 

data negated the requirement for individual consent. Public Benefit and Privacy Panel (PBPP) 

approval was obtained (1920-0258).  

National Health Service (NHS) Grampian clinical data and mammograms were collected 

from the Scottish Breast Screening Service (SBSS) (12/02/2016-31/03/2020). Full-field 

digital mammography (FFDM) images were acquired on five mammography X-ray units of 

the same make and model (make: Hologic; model: Selenia Dimensions) with no known 

differences at study commencement. All units conform to NHS breast cancer screening 



quality standards (9). The standard imaging protocol consisted of 2 views per breast 

[craniocaudal (CC) and mediolateral oblique (MLO)]. As part of routine screening, two 

readers interpreted each set of images with a third reader arbitrating in cases of disagreement. 

During the study period, mammograms in the screening centre were routinely read by a pool 

of 11 readers with 1 to 20 years of experience, led by GL.  

The evaluation dataset was limited to a 3-year UK screening cycle (1/04/2016-31/03/2019) of 

women (50-70 years) attending routine screening. Figure 1 shows exclusions.  

Data Processing 

SBSS clinical data were transferred to the Grampian Data Safe Haven (DaSH). 

Mammograms from the breast screening picture archiving and communication system 

(PACS) were transferred to the Safe Haven Artificial Intelligence Platform (SHAIP) 

developed by Canon Medical Research Europe (10). “Hidden in Plain Sight” (11) de-

identification was performed. 

Mia™ (version 2.0.1), developed by Kheiron Medical Technologies (vendor), assessed 

mammograms for potential malignancies in SHAIP. Mia™ was previously trained and tested 

on images acquired on Hologic, GE Healthcare, Siemens and IMS Giotto mammography 

equipment. Mia™, an ensemble of deep learning algorithms, employs the four standard 

image views (FFDM CC and MLO views for each breast) to generate a continuous output 

ranging from 0 to 1 (malignancy prediction value). The malignancy prediction values were 

linked to the clinical data in DaSH. Mia™’s performance was evaluated using a predefined 

threshold (≥0.1117 indicates recall) (8) and site-specific threshold. 

Mia’s™ performance was evaluated by academic health data scientists (CFDV, JAD) in 

DaSH (12), which the vendor could not access. The vendor ran Mia™ within SHAIP with no 



access to the clinical outcomes to provide the Mia™ malignancy prediction values. The 

vendor also provided the Mia™ decision thresholds. 

Threshold Calibration 

Mia™ was not previously evaluated on images from Hologic Selenia Dimensions 

mammography equipment. The initial evaluation identified variability in algorithm 

performance. The vendor was provided with a validation dataset (16,204 screens) to generate 

a site-specific decision threshold. This subset included all screening data from 200 confirmed 

positives (women with histologically confirmed cancer), 4000 confirmed negatives (women 

negative for cancer with a negative 3-year follow-up screening and no interval cancer) and 

8000 unconfirmed negatives (Appendix E1). 

Statistical Analysis 

A receiver operator characteristic (ROC) curve was plotted, and the area under the curve 

(AUC) and confidence interval (CI; DeLong method (13)) were calculated. Positive screens 

were defined as histologically confirmed cancers detected through standard screening.  

Sensitivity, specificity, positive and negative predictive values (PPV and NPV, respectively), 

as well as cancer detection and recall rates of Mia™, with CIs (Clopper-Pearson method 

(14)), were calculated for the pre-specified and site-specific thresholds. Cancer detection rate 

was quantified as the number of screen-detected cancers with a (Mia™) recall opinion 

divided by the total number of screens. The pre-specified threshold was evaluated on the 

entire dataset after exclusions (original dataset) and on the subset not used to calibrate the 

threshold (test dataset). The site-specific threshold was evaluated using the test dataset. 

Furthermore, Mia™’s performance was compared with performance of the first reader 

(Reader 1). Mia™ was not compared with the second reader as, in the UK, they can access 

the first reader’s opinion and therefore do not read independently. 



As an exploratory sub-analysis, the site-specific threshold performance on the test dataset 

was stratified by mammography unit. Differences across units were assessed using Pearson 

Chi-squared (specificity, recall and cancer detection rate) and Fisher exact (sensitivity) tests. 

Additionally, sensitivity was compared between small (<15mm) and large (≥15mm) tumours 

using a Chi-squared test. 

Interval cancers (cancers not detected during routine screening but identified between 

screening rounds) were analysed separately. Following individual review, all readers in the 

clinical team regularly met to form a consensus on cancer visibility on prior screening 

mammograms (15): 1 - no visible lesion; 2 - lesion visible on review in hindsight; 3 - lesion 

clearly visible; and Occult - lesion not visible on screening or subsequent symptomatic 

imaging. The proportion of interval cancer patients Mia™ indicated to recall (with the 

updated threshold) was determined and stratified by consensus opinion. 

 

Statistical analyses were performed in R (version 4.0.3), Appendix E3. ROC curves, AUC 

and CIs were generated using the pROC package (16). Sample size information is available 

in Appendix E2. P<0.05 was considered to indicate a statistically significant difference. 

Data availability 

The statistical output alongside the relevant R code is available in Appendix E3. Access to 

the raw SBSS data and mammograms (de-identified participant data) is subject to the 

required approvals (e.g. PBPP, NHS R&D, REC approval) and data agreements being in 

place. More information can be found on the DaSH website: 

https://www.abdn.ac.uk/iahs/facilities/grampian-data-safe-haven.php. 

 



Results 

Cohort characteristics 

After the application of vendor-recommended exclusions [3.9% (2,293/58,209)] (17), an 

evaluation dataset of 55,916 screens was used (Figure 1). Of these 2,774 (5.0%) were 

recalled. 

The mean age was 60 years (SD, 6.0 years); 450 patients had histologically confirmed 

screen-detected breast cancer, and 156 interval cancers were detected in follow-up (Table 1). 

AI performance pre-threshold calibration 

Figure 2a shows the Mia™ ROC curve. The AUC is 0.95 (95% CI: 0.94-0.96). The Mia™ 

precision-recall curve can be found in Appendix E4. 

For the pre-specified threshold (original dataset: 55,916 screens and 450 cancers), sensitivity 

and specificity were 97.3% and 52.7%, respectively (Table 2). The recall rate was 47.7% and 

the cancer detection rate was 7.8 per thousand. For the test dataset (45,444 screens and 303 

cancers, excluding screens used for threshold calibration), sensitivity and specificity were 

98.3% and 52.1%, respectively; recall rate was 48.3% and cancer detection rate was 6.6 per 

thousand. 

Threshold calibration 

An initial site-specific threshold of 0.2938 was generated. This threshold revealed a step 

change in recall rate at set points for each mammography unit (Figure 2b). Review of image 

headers revealed that the increase in recalls correlated with a mammography unit software 

update. The AI algorithm was not updated during the study. All units had the same software 

before the update (version 1.7). The software running on Units 1 to 4 was upgraded to 



version 1.8 at different time points. The monthly recall rate for software version 1.7 ranged 

from 8.3% [63/760] to 13.2% [183/1,382]; for version 1.8, it ranged from 23.8% [79/332] to 

38.6% [86/223]. In comparison, the Reader 1 monthly recall rate ranged from 3.8% [37/966] 

to 6.9% [84/1,218] pre-software update and from 2.5% [7/282] to 7.9% [13/164] post-

software update. Reader 1 sensitivity and specificity changed from 85.4% [328/384] to 87.9% 

[58/66], and from 95.1% [43,075/45,276] to 95.6% [9,746/10,190], respectively. 

Per-software version thresholds were generated to ensure stability of recall rates (Appendix 

E1). Due to a small number of positive studies in the post-software update subset, the vendor 

was provided with 35 additional positive studies (from Mammography Unit 4, post-software 

upgrade) to reduce the threshold’s susceptibility to noise.  

Two site-specific thresholds were generated across all mammography units: 0.2712 pre-

upgrade and 0.4319 post-upgrade. 

Applying the new thresholds to the test dataset resulted in a sensitivity of 91.4%, specificity 

of 87.6%, recall rate of 13.0% and cancer detection rate of 6.1 per thousand (Table 2). By 

comparison, Reader 1 sensitivity, specificity, recall rate and cancer detection rate were 

86.1%, 95.2%, 5.4%, and 5.7 per thousand. Reader 1 detected 261/303 (86.1%) screening 

diagnosed cancers, while Mia™ would have detected 277/303 (91.4%) cancers. 

AI performance split by mammography X-ray unit and lesion size 

Mia™ performance with the site-specific thresholds was significantly different across 

mammography units for specificity (p<0.001) and recall rate (p<0.001), but not for sensitivity 

(p=0.51) or cancer detection rate (p=0.93), Table 2. We found no evidence of a difference in 

sensitivity of Mia™ between small and large tumours (91.0% [162/178] and 93.7% 

[104/111], respectively; p=0.55). 



Interval cancers 

The test dataset contained 138 interval cancers (ICs). Using the site-specific thresholds, 

Mia™ would have recalled 47 (34.1%) ICs. Mia™ indicated to recall 15 out of 56 category 1 

ICs (no visible lesion); 4 out of 14 category 2 ICs (lesion visible on review in hindsight); 3 

out of 3 category 3 ICs (lesion clearly visible on previous screening mammograms); and 2 

out of 9 Occult ICs. Mia would have recalled a further 24/57 ICs not yet categorised by 

consensus opinion (due to Covid-related delays in interval cancer review). 

Discussion 

AI performance could be affected by different mammography systems, impacting 

deployment in new settings. In this study, local calibration and per-software version 

thresholds were required to reduce recall rates from 47.7% to 13.0%. Mia™ post-threshold 

optimisation had a higher recall rate than Reader 1 (13.0% vs 5.4%) but would have detected 

more cancers (277 vs 261), including those missed by routine dual reporting (47/138). The 

UK acceptable recall rate is <9% in a double reading setting with arbitration (18). The Mia™ 

false positive rate was higher than routine clinical practice, suggesting that Mia™ would be 

best used combined with human reader input, as recommended by the vendor. Economic and 

operational evaluations are required across possible implementation scenarios.  

Our results are supported by previous research observing issues relating to the 

generalisability of radiology AI models (5,7,19). Furthermore, we have established that AI 

performance can be influenced by different mammography systems. The AI had previously 

been calibrated on a range of mammography units, including the Hologic Lorad Selenia, an 

older model of the unit employed (Hologic Selenia Dimensions). The software update applied 

to the mammography units included several enhancements that may affect image 

characteristics. Human reader performance was not adversely affected following the update. 



Independent verification of vendor-reported transferability of thresholds using the same 

mammography unit and software version elsewhere is needed.  

A user-definable threshold could allow centres to perform threshold recalibration themselves. 

However, many centres would struggle to gather enough data and/or will lack the 

technological expertise to adjust the thresholds successfully. A national implementation and 

validation framework for AI in breast cancer screening, alongside representative national 

datasets, could help set AI decision thresholds and quality assurance standards. 

Study strengths include using a retrospective unenriched dataset consecutively acquired in a 

dual reporting screening setting, with sufficient follow-up to capture screen-detected and 

interval cancers. The AI was not trained on the dataset. Exclusions were minimal (3.9%).  

Study limitations include the following: 1) the evaluation of one AI product, 2) single centre 

setting, 3) a predominantly white Caucasian sample, and 4) detailed interval cancer 

information was not available due to Covid-related delays. Post-hoc analyses of performance 

stratified by mammography unit and lesion size were not adequately powered and require 

further evaluation in larger studies. 

Different mammography systems can substantially affect AI performance. AI performance 

and decision thresholds should be validated when applied in new clinical settings. Quality 

assurance systems, including change management, should monitor AI algorithms for 

consistent performance.  
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Figure Legends 

Figure 1: Flow diagram showing the generation and composition of the original, test and 

validation datasets. Exclusions are indicated in the white boxes. The vendor-recommended 

exclusions are indicated in the shaded outer box. Confirmed positives are women with 

histologically confirmed cancer. Confirmed negatives are women negative for cancer with a 

negative 3-year follow-up screening and no interval cancer. DICOM = Digital Imaging and 

Communications in Medicine, UK = United Kingdom 

 

Figure 2. The artificial intelligence required threshold calibration, with software-specific 

thresholds, for optimal performance. a: Mia™ receiver operating characteristic curve on the 

original dataset with pre-specified threshold. The original dataset was not used to establish 

the pre-specified threshold. b: Rise in recall rate after an event for the four mammography X-

ray units. The vertical dashed line indicates the date of a software upgrade. A fifth unit, a 

floating service mobile unit, was not upgraded during the study timeline and is not included 

in this figure. 

  



Tables 

Table 1: Cohort Characteristics – UK Breast Screening Program (01/04/2016-31/03/2019).  

Original dataset N = 55,916 % 

Age (Years) 

50 - 54 

55 - 59 

60 - 64 

65 - 71.5 

 

14,866 

14,328 

12,660 

14,062 

(% of cohort) 

26.6% 

25.6% 

22.6% 

25.1% 

Included Special Requirements 

Learning Difficulties 

Language Needs 

Implant 

Deaf 

Blind 

Special Needs 

Two special requirements 

1,048 (1.9%) 

116 

304 

364 

182 

40 

30 

12 

(% of cohort) 

0.2% 

0.5% 

0.7% 

0.3% 

0.07% 

0.05% 

0.02% 

Screen-detected Breast Cancers 

Type of Cancer 

  Non-breast primary tumour   

  Ductal Carcinoma in situ (DCIS, pre-invasive) 

  Invasive status or grade unknown 

  Invasive breast cancer 

    Grade I 

    Grade II 

    Grade III 

Tumour size  

  <15mm 

  ≥15mm  

  Unknown 

450 (0.8%) 

 

2  

101 

5 

342 

68 

211 

63 

 

259 

169 

22 

(% of all screen-

detected cancers) 

0.4% 

22.4% 

1.1% 

76.0% 

15.1% 

46.9% 

14.0% 

 

57.6% 

37.6% 

4.9% 

Interval Cancers 

Type of Cancer  

  DCIS 

  Invasive breast cancer 

    Grade I 

    Grade II 

    Grade III 

    Grade unknown 

Tumour size  

  <15mm 

  ≥15mm  

  Unknown 

Consensus Opinion* 

  Category 1 

  Category 2 

  Category 3 

  Occult 

  Not yet classified 

156 (0.3%) 

 

11 

145 

5 

72 

67 

1 

 

24 

59 

73 

 

58 

15 

3 

10 

70 

(% of all interval 

cancers) 

7.1% 

92.9% 

3.2% 

46.2% 

42.9% 

0.6% 

 

15.4% 

37.8% 

46.8% 

 

37.2% 

9.6% 

1.9% 

6.4% 

44.9% 

Note.—*Consensus opinion has four categories: 1 – no lesion visible on prior screening mammogram; 

2 – uncertainty regarding whether a possible lesion was visible, 3 – a visible lesion which was missed; 

Occult – no lesion visible on the prior screening mammogram, nor on the follow-up mammogram. 

Occult lesions usually present as palpable masses not discernible or outwith the mammographic image. 

UK = United Kingdom 



Table 2: Mia™ Performance on Screen-detected Cancers 

AI and Reader 1 

performance 

Number of 

datapoints 

Number 

of cancers 
% Sensitivity % Specificity % Positive predictive value % Negative predictive value % Recall rate  

Cancer detection rate per 

thousand  

   Value 95% CI Value 95% CI Value 95% CI Value 95% CI Value 95% CI Value 95% CI 

Mia™ - original dataset 

  Pre-specified threshold  

 

55,916 

 

450 

 

97.3 [438/450]  

 

95.4 to 98.6 

 

52.7 [29,233/55,466]  

 

52.3 to 53.1 

 

1.6 [438/26,671] 

 

1.5 to 1.8 

 

99.96 [29,233/29,245] 

 

99.93 to 99.98 

 

47.7 [26,671/55,916]  

 

47.3 to 48.1 

 

7.8 [438/55,916] 

 

7.1 to 8.6 

Mia™ - test dataset 

  Pre-specified threshold 

  Updated thresholds 

 

45,444 

45,444 

 

303 

303 

 

98.3 [298/303] 

91.4 [277/303]  

 

96.2 to 99.5 

87.7 to 94.3 

 

52.1 [23,510/45,141] 

87.6 [39,522/45,141] 

 

51.6 to 52.5 

87.2 to 87.9 

 

1.4 [298/21,929] 

4.7 [277/5,896] 

 

1.2 to 1.5 

4.2 to 5.3 

 

99.98 [23,510/23,515] 

99.93 [39,522/39,548] 

 

99.95 to 99.99 

99.90 to 99.96 

 

48.3 [21,929/45,444] 

13.0 [5,896/45,444] 

 

47.8 to 48.7 

12.7 to 13.3 

 

6.6 [298/45,444] 

6.1 [277/45,444]  

 

5.8 to 7.3 

5.4 to 6.9 

Reader 1 - test dataset 45,444 303 86.1 [261/303] 81.7 to 89.8 95.2 [42,956/45,141] 95.0 to 95.4 10.7 [261/2,446] 9.5 to 12.0 
99.90 [42,956/42,998] 99.87 to 99.93 

5.4 [2,446/45,444]  5.2 to 6.0 5.7 [261/45,444] 5.1 to 6.5 

AI performance split 

by mammography unit 
   

 
  

    
 

 
 

 

Unit 1 13,104 94 93.6 [88/94] 86.6 to 97.6 87.8 [11,421/13,010]  87.2 to 88.3 5.25 [88/1,677] 4.2 to 6.4 99.95 [11,421/11,427] 99.89 to 99.98 12.8 [1,677/13,104] 12.2 to 13.4 6.7 [88/13,104]  5.4 to 8.3 

Unit 2 9,960 78 92.3 [72/78] 84.0 to 97.1 86.2 [8,514/9,882] 85.5 to 86.8 5.0 [72/1,440] 3.9 to 6.3 99.93 [8,514/8,520] 99.85 to 99.97 14.5 [1,440/9,960] 13.8 to 15.2 7.2 [72/9,960] 5.7 to 9.1 

Unit 3 13,000 95 90.5 [86/95] 82.8 to 95.6 88.7 [11,445/12,905] 88.1 to 89.2 5.6 [86/1,546] 4.5 to 6.8 99.92 [11,445/11,454] 99.85 to 99.96 11.9 [1,546/13,000] 11.3 to 12.5 6.6 [86/13,000] 5.3 to 8.2 

Unit 4 8,541 31 83.9 [26/31] 66.3 to 94.5 87.3 [7,433/8,510] 86.6 to 88 2.4 [26/1,103] 1.6 to 3.4 99.93 [7,433/7,438] 99.84 to 99.98 12.9 [1,103/8,541] 12.2 to 13.6 3.0 [26/8,541] *  2.0 to 4.5 

Unit 5 839 5 100.0 [5/5] 47.8 to 100.0 85 [709/834] 82.4 to 87.4 3.85 [5/130] 1.3 to 8.8 100.00 [709/709] 99.48-100.00 15.5 [130/839] 13.1 to 18.1 6.0 [5/839] 1.9 to 13.9 

Note—Chi-squared tests (or Fisher’s exact tests when there were small counts in the contingency table) were performed to determine whether the pre-set threshold performance was significantly different to the site-specific threshold performance, and whether 

the site-specific threshold performance was significantly different than Reader 1 performance on screen-detected cancers. Sensitivity, specificity, recall and cancer detection rate were significantly different between the pre-set and site-specific thresholds (p < 

0.001). There were significant differences between the site-specific threshold and Reader 1 for specificity, recall and cancer detection rate (p < 0.001), but not for sensitivity (p = 0.067). AI = artificial intelligence. * Unit 4 was excluded from the per-unit 

comparison of cancer detection rate. Since 35 additional positive studies were provided to the vendor from Unit 4 for threshold calibration, the cancer detection rate reported for this unit was artificially low. 



Appendix E1 – Threshold calibration 
 

Studies in the validation dataset were randomly selected following exclusions [non-double 

read, technical recalls, repeated image views, previous breast cancer or malignant operation, 

four standard image views unavailable, and those which could not be definitively linked to 

clinical data]. 

The Mia™ predictions and the clinical outcomes for the confirmed (negative or positive) 

studies were utilised to generate a receiver operating characteristic (ROC) curve. The updated 

threshold jointly maximised sensitivity and specificity, i.e. the true positive rate (TPR) was 

high and the false positive rate (FPR) was low, by choosing the threshold p which satisfies: 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑝

|𝑇𝑃𝑅(𝑝) − 1.0+ 𝐹𝑃𝑅(𝑝)| (1). arg min (argument of the minimum) returns the p 

which minimises the function |𝑇𝑃𝑅(𝑝) − 1.0+ 𝐹𝑃𝑅(𝑝)|. 

For the per-software version thresholds, the validation dataset was split to create one dataset 

before the update and one after the update. Further, the definition for confirmed negative was 

widened to include any non-positive study (without requirement for non-positive follow-up at 

least 3 years later) for the post-software update threshold calibration only, to ensure sufficient 

screens were available. The pre- and post-software update datasets (for threshold calibration) 

consisted of N = 9,672 screens (118 positive) and N = 6,341 screens (97 positive), 

respectively. 
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Appendix E2 - Sample size calculation 

Minimum sample size was calculated by an independent statistician (Quantics, CRO: 

Veristat). The aimed precision of the 95% confidence interval (CI; exact Clopper-Pearson) 

was 5% for sensitivity and specificity, and 1% for recall rate (proportion of screens recalled). 

Assuming sensitivity and specificity at 80%, 264 confirmed positive and 264 confirmed 

negative screens were required. For an estimated 15% recall rate, 85% power was estimated 

with 5,150 screens. No sample sizes were calculated for exploratory endpoints.  



Appendix E3 – Statistical output with 

corresponding R code 
library(tidyverse) 
library(pROC) 
library(lubridate) 

# loads data frame 
data_full <- readRDS("dataset_full.rds") 
 
# 3-year subset 
data <-  filter(data_full, StudyDate >= as.POSIXct("2016/04/01
") & StudyDate <= as.POSIXct("2019/03/31")) 
 

# pre-specified (or out-of-the-box, OOB) threshold 
threshold_OOB <- 0.11169749509569679 
 

# initial site-specific threshold 
new_threshold_overall <- 0.29380058497190475 
 

# pre and post software update thresholds 
threshold_pre <- 0.271178413182497 
threshold_post <- 0.4318937659263611 

1 Custom Functions 

1.1 Calculate sensitivity 

calc_sens = function(recall, cancer){ 
  TP <- recall == 1 & cancer == 1 
  FN <- recall == 0 & cancer == 1 
   
  # sensitivity --> Number of TP/(Number of TP + Number of FN) 
  #Sensitivity <- sum(TP)/(sum(TP) + sum(FN)) 
  binom_test <- binom.test(c(sum(TP), sum(FN))) 
} 

1.2 Calculate specificity 

calc_spec = function(recall, cancer){ 
  TN <- recall == 0 & cancer == 0 
  FP <- recall == 1 & cancer == 0 
   
  # specificity --> Number of TN/(Number of TN + Number of FP) 



  #Specificity <- sum(TN)/(sum(TN) + sum(FP)) 
  binom_test <- binom.test(c(sum(TN), sum(FP))) 
} 

1.3 Calculate positive predictive value (PPV) 

calc_PPV = function(recall, cancer){ 
  TP <- recall == 1 & cancer == 1 
  FP <- recall == 1 & cancer == 0 
   
  # PPV --> Number of TP/(Number of TP + Number of FP) 
  #PPV <- sum(TP)/(sum(TP) + sum(FP)) 
  binom_test <- binom.test(c(sum(TP), sum(FP))) 
} 

1.4 Calculate negative predictive value (PPV) 

calc_NPV = function(recall, cancer){ 
  TN <- recall == 0 & cancer == 0 
  FN <- recall == 0 & cancer == 1 
   
  # NPV --> Number of TN/(Number of TN + Number of FN) 
  #NPV <- sum(TN)/(sum(TN) + sum(FN)) 
  binom_test <- binom.test(c(sum(TN), sum(FN))) 
} 

1.5 Calculate recall rate 

calc_RR = function(recall){ 
  #RR <- sum(recall == 1)/sum(recall == 1 | recall == 0) 
  binom_test <- binom.test(c(sum(recall == 1), sum(recall == 0
))) 
} 

1.6 Calculate cancer detection rate 

calc_CDR = function(recall, cancer){ 
  #CDR <- sum(cancer[recall == 1])/sum(cancer == 1 | cancer == 
0) 
  binom_test_CDR <- binom.test(sum(cancer[recall == 1]), sum(c
ancer == 1 | cancer == 0)) 
} 



1.7 Determine threshold 

determine_threshold <- function(Unit, StudyDate){ 
   
  # pre and post software update decision thresholds 
  threshold_pre <- 0.271178413182497 
  threshold_post <- 0.4318937659263611 
   
  # Estimated dates of software upgrade on the X-ray units (fo
rmat: yyyy/mm/dd) 
  # Unit 5 was not updated during the course of the study 
  unit1_upgrade <- as.Date("2019/02/01") 
  unit2_upgrade <- as.Date("2019/03/01") 
  unit3_upgrade <- as.Date("2019/05/01") 
  unit4_upgrade <- as.Date("2016/09/01") 
   
  Mia_threshold = case_when( 
    Unit == '1' & StudyDate > unit1_upgrade ~ threshold_post, 
    Unit == '2' & StudyDate > unit2_upgrade ~ threshold_post, 
    Unit == '3' & StudyDate > unit3_upgrade ~ threshold_post, 
    Unit == '4' & StudyDate > unit4_upgrade ~ threshold_post, 
    TRUE ~ threshold_pre 
  ) 
} 

2 Original dataset 

Number of datapoints: 55916 

Number of cancers: 450 

2.1 ROC curve 

# ROC plot on all data with pre-specified threshold indicated 
ROC <- roc(response = data$cancer, predictor = data$MIA, perce
nt=T) 

## Setting levels: control = 0, case = 1 

## Setting direction: controls < cases 

plot.roc(ROC, grid.v = c(100,0), grid.h = c(100,0), percent=T, 
type='l', lty = 1, lwd = 1, 
         print.thres = threshold_OOB, 
         print.thres.pattern = "Threshold: \n%.4f (%.2f%%, %.2
f%%)", 



         print.thres.pch = 'X', 
         print.thres.adj = c(0.4,1.5)) 
title(main='ROC and pre-specified threshold', line = 2.5) 

 

print(auc(ROC), digits = 4) 

## Area under the curve: 94.76% 

print(ci.auc(ROC), digits = 4) 

## 95% CI: 93.64%-95.89% (DeLong) 

2.2 Evaluation of pre-specified threshold on screen detected 

cancers 

Pre-specified threshold: 0.111697 

data$Mia_recall_OOB <- ifelse(data$MIA >= threshold_OOB, 1, 0) 
 

RR <- calc_RR(data$Mia_recall_OOB) 



CDR <- calc_CDR(data$Mia_recall_OOB, data$cancer) 
 
sensitivity <- calc_sens(data$Mia_recall_OOB, data$cancer) 
specificity <- calc_spec(data$Mia_recall_OOB, data$cancer) 
 
PPV <- calc_PPV(data$Mia_recall_OOB, data$cancer) 
NPV <- calc_NPV(data$Mia_recall_OOB, data$cancer) 
 

perf_print = function(value, scale){ 
   
  if(missing(scale)){ 
    scale = "percent" 
  } 
   
  if(scale == "percent"){ 
    sprintf("%.2f%% [%i / %i], CI: %.2f-%.2f", 
            round(value$estimate*100, 2), 
            value$statistic, 
            value$parameter, 
            round(value$conf.int[1]*100, 2), 
            round(value$conf.int[2]*100, 2) 
            ) 
  } else if(scale == "permil"){ 
    sprintf("%.2f per thousand [%i / %i], CI: %.2f-%.2f", 
            round(value$estimate*1000, 2), 
            value$statistic, 
            value$parameter, 
            round(value$conf.int[1]*1000, 2), 
            round(value$conf.int[2]*1000, 2) 
            ) 
  } 
} 

Numbers in square brackets indicate the numerator & denominator. CI refers to 
the 95% confidence interval 

• Sensitivity: 97.33% [438 / 450], CI: 95.39-98.61 

• Specificity: 52.70% [29233 / 55466], CI: 52.29-53.12 

• Positive predictive value (PPV): 1.64% [438 / 26671], CI: 1.49-1.80 

• Negative predictive value (NPV): 99.96% [29233 / 29245], CI: 99.93-99.98 

• Recall rate: 47.70% [26671 / 55916], CI: 47.28-48.11 

• Cancer detection rate: 7.83 per thousand [438 / 55916], CI: 7.12-8.60 



3 Test dataset 

# create subset, which excludes data used for optimising the t
hreshold 
subset <- filter(data, dataset != 'validation_v1', dataset != 
'validation_v2') 
 
sensitivity <- calc_sens(subset$Mia_recall_OOB, subset$cancer) 
specificity <- calc_spec(subset$Mia_recall_OOB, subset$cancer) 
 

PPV <- calc_PPV(subset$Mia_recall_OOB, subset$cancer) 
NPV <- calc_NPV(subset$Mia_recall_OOB, subset$cancer) 
 
RR <- calc_RR(subset$Mia_recall_OOB) 
CDR <- calc_CDR(subset$Mia_recall_OOB, subset$cancer) 

Test dataset: subset of data not used for threshold optimisation 

• Number of datapoints: 45444 

• Number of cancers: 303 

3.1 Evaluation of pre-specified threshold on screen detected 

cancers 

Pre-specified threshold: 0.271178 

• Sensitivity: 98.35% [298 / 303], CI: 96.19-99.46 

• Specificity: 52.08% [23510 / 45141], CI: 51.62-52.54 

• Positive predictive value (PPV): 1.36% [298 / 21929], CI: 1.21-1.52 

• Negative predictive value (NPV): 99.98% [23510 / 23515], CI: 99.95-99.99 

• Recall rate: 48.25% [21929 / 45444], CI: 47.79-48.72 

• Cancer detection rate: 6.56 per thousand [298 / 45444], CI: 5.84-7.34 

3.2 Evaluation of optimised thresholds 

Threshold pre-software upgrade: 0.271178 

Threshold post-software upgrade: 0.431894 



3.2.1 Screen detected cancers 

# determine threshold for each case 
subset <- subset %>% 
  mutate(Mia_threshold = determine_threshold(Unit, StudyDate)) 
%>%  
  mutate(Mia_recall_new = ifelse(MIA >= Mia_threshold, 1, 0)) 
 
# calculate Mia performance on subset using optimised threshol
ds 
 
sensitivity <- calc_sens(subset$Mia_recall_new, subset$cancer) 
specificity <- calc_spec(subset$Mia_recall_new, subset$cancer) 
 

PPV <- calc_PPV(subset$Mia_recall_new, subset$cancer) 
NPV <- calc_NPV(subset$Mia_recall_new, subset$cancer) 
 
RR <- calc_RR(subset$Mia_recall_new) 
CDR <- calc_CDR(subset$Mia_recall_new, subset$cancer) 

• Sensitivity: 91.42% [277 / 303], CI: 87.68-94.32 

• Specificity: 87.55% [39522 / 45141], CI: 87.24-87.86 

• Positive predictive value (PPV): 4.70% [277 / 5896], CI: 4.17-5.27 

• Negative predictive value (NPV): 99.93% [39522 / 39548], CI: 99.90-99.96 

• Recall rate: 12.97% [5896 / 45444], CI: 12.67-13.29 

• Cancer detection rate: 6.10 per thousand [277 / 45444], CI: 5.40-6.85 

3.2.2 Interval cancers 

# create interval cancers data frame (IC) by filtering the tes
t dataset (subset) 
IC <- subset %>% 
  filter(IC == 1) 
 

# how many would Mia correctly classify? 
perc_Mia_correct <- sum(IC$Mia_recall_new == 1)/nrow(IC)*100 

Number of interval cancers: 138 

Tumour size: 

size <- IC$NISize + IC$InvSize 
size_cat <- if_else(size >= 15, ">=15mm", "<15mm") 
table(size_cat, useNA = "ifany") 



## size_cat 
##  <15mm >=15mm  
##     81     57 

Invasive? 

table(IC$Invasive, useNA = "ifany") 

##  
##  No Yes  
##  14 124 

Group Opinion [Category 1: could not be detected on mammogram. Category 3: 
should have been detected on mammogram. Occult: could not be detected on 
mammogram or follow-up mammogram]: 

table(IC$GroupOpinion, useNA = "ifany") 

##  
##                      Category 1 - Satisfactory  
##                                             56  
## Category 2 - Satisfactory with learning points  
##                                             14  
##                    Category 3 - Unsatisfactory  
##                                              3  
##                                         Occult  
##                                              9  
##                                           <NA>  
##                                             56 

Invasive Grade (NA indicates DCIS): 

table(IC$InvasiveGrade, useNA = "ifany") 

##  
##    I   II  III <NA>  
##    5   64   58   11 

Number of interval cancers recalled by Mia using new threshold: 47 (34.06%) 

Mia recalls divided by Group Opinion (‘1’ indicates recall, ‘0’ indicates don’t 
recall): 

##                                                  
##                                                   0  1 
##   Category 1 - Satisfactory                      41 15 
##   Category 2 - Satisfactory with learning points 10  4 
##   Category 3 - Unsatisfactory                     0  3 



##   Occult                                          7  2 
##   <NA>                                           33 23 

3.3 Reader 1 performance on screen detected cancers 

# Combine the first reader's opinion on left and right breast 
to determine overall Reader 1 opinion 
subset <- subset %>% 
  mutate(Reader1Opinion = case_when( 
  OpinionLeft_1 == OpinionRight_1 ~ OpinionLeft_1, 
  OpinionLeft_1 == 'Review Required' | OpinionRight_1 == 'Revi
ew Required' ~ 'Review Required', 
  OpinionLeft_1 == 'Review (Symptoms)' | OpinionRight_1 == 'Re
view (Symptoms)' ~ 'Review (Symptoms)', 
  OpinionLeft_1 == 'Routine Recall' | OpinionRight_1 == 'Routi
ne Recall' ~ 'Routine Recall' 
)) 
 

subset$Reader1Opinion[subset$Reader1Opinion == 'Review Require
d' | subset$Reader1Opinion == 'Review (Symptoms)'] <- 1 
subset$Reader1Opinion[subset$Reader1Opinion == 'Routine Recall
'] <- 0 
 

R1_sens <- calc_sens(subset$Reader1Opinion, subset$cancer) 
R1_spec <- calc_spec(subset$Reader1Opinion, subset$cancer) 
R1_PPV <- calc_PPV(subset$Reader1Opinion, subset$cancer) 
R1_NPV <- calc_NPV(subset$Reader1Opinion, subset$cancer) 
R1_RR <- calc_RR(subset$Reader1Opinion) 
R1_CDR <- calc_CDR(subset$Reader1Opinion, subset$cancer) 

• Reader 1 sensitivity: 86.14% [261 / 303], CI: 81.73-89.82 

• Reader 1 specificity: 95.16% [42956 / 45141], CI: 94.96-95.36 

• Reader 1 positive predictive value (PPV): 10.67% [261 / 2446], CI: 9.47-11.96 

• Reader 1 negative predictive value (NPV): 99.90% [42956 / 42998], CI: 99.87-99.93 

• Reader 1 recall rate: 5.38% [2446 / 45444], CI: 5.18-5.59 

• Reader 1 cancer detection rate: 5.74 per thousand [261 / 45444], CI: 5.07-6.48 

Reader 1 missed 42 cancers, while Mia missed 26 cancers 

3.4 Per-machine evaluation on screen detected cancers 

# Calculate performance for each X-ray Unit 
subset %>% 



  group_by(Unit) %>%  
  summarise(N = n(), 
            N_cancers = sum(cancer == 1), 
            sens = perf_print(calc_sens(Mia_recall_new, cancer
)), 
            spec = perf_print(calc_spec(Mia_recall_new, cancer
)), 
            PPV = perf_print(calc_PPV(Mia_recall_new, cancer))
, 
            NPV = perf_print(calc_NPV(Mia_recall_new, cancer))
, 
            RR = perf_print(calc_RR(Mia_recall_new)), 
            CDR = perf_print(calc_CDR(Mia_recall_new, cancer), 
scale = "permil") 
            ) %>%  
  knitr::kable(.) 

Uni
t 

N N_cance
rs 

sens spec PPV NPV RR CDR 

1 1310
4 

94 93.62% 
[88 / 
94], CI: 
86.62-
97.62 

87.79
% 
[1142
1 / 
13010
], CI: 
87.21-
88.34 

5.25
% 
[88 / 
1677
], CI: 
4.23-
6.43 

99.95% 
[11421 
/ 
11427], 
CI: 
99.89-
99.98 

12.80
% 
[1677 
/ 
13104
], CI: 
12.23-
13.38 

6.72 
per 
thousan
d [88 / 
13104], 
CI: 
5.39-
8.27 

2 9960 78 92.31% 
[72 / 
78], CI: 
84.01-
97.12 

86.16
% 
[8514 
/ 
9882], 
CI: 
85.46-
86.83 

5.00
% 
[72 / 
1440
], CI: 
3.93-
6.26 

99.93% 
[8514 / 
8520], 
CI: 
99.85-
99.97 

14.46
% 
[1440 
/ 
9960], 
CI: 
13.77-
15.16 

7.23 
per 
thousan
d [72 / 
9960], 
CI: 
5.66-
9.10 

3 1300
0 

95 90.53% 
[86 / 
95], CI: 
82.78-
95.58 

88.69
% 
[1144
5 / 
12905
], CI: 
88.13-
89.23 

5.56
% 
[86 / 
1546
], CI: 
4.47-
6.82 

99.92% 
[11445 
/ 
11454], 
CI: 
99.85-
99.96 

11.89
% 
[1546 
/ 
13000
], CI: 
11.34-
12.46 

6.62 
per 
thousan
d [86 / 
13000], 
CI: 
5.29-
8.16 

4 8541 31 83.87% 
[26 / 

87.34
% 

2.36
% 

99.93% 
[7433 / 

12.91
% 

3.04 
per 



Uni
t 

N N_cance
rs 

sens spec PPV NPV RR CDR 

31], CI: 
66.27-
94.55 

[7433 
/ 
8510], 
CI: 
86.62-
88.04 

[26 / 
1103
], CI: 
1.55-
3.43 

7438], 
CI: 
99.84-
99.98 

[1103 
/ 
8541], 
CI: 
12.21-
13.64 

thousan
d [26 / 
8541], 
CI: 
1.99-
4.46 

5 839 5 100.00
% [5 / 
5], CI: 
47.82-
100.00 

85.01
% 
[709 / 
834], 
CI: 
82.41-
87.37 

3.85
% [5 
/ 
130], 
CI: 
1.26-
8.75 

100.00
% [709 
/ 709], 
CI: 
99.48-
100.00 

15.49
% 
[130 / 
839], 
CI: 
13.11-
18.12 

5.96 
per 
thousan
d [5 / 
839], 
CI: 
1.94-
13.85 

RR, recall rate; CDR, cancer detection rate; sens, sensitivity; spec, specificity. 

3.4.1 Are there differences in performance across mammography X-ray 

units? 

3.4.1.1 Sensitivity 

sens_subset <- filter(subset, cancer == 1) 
#Exact Fisher's test due to small counts in continguency table 
fisher.test(table(sens_subset$Unit, sens_subset$Mia_recall_new
)) 

##  
##  Fisher's Exact Test for Count Data 
##  
## data:  table(sens_subset$Unit, sens_subset$Mia_recall_new) 
## p-value = 0.51 
## alternative hypothesis: two.sided 

3.4.1.2 Specificity 

spec_subset <- filter(subset, cancer == 0) 
#Chi-squared test 
chisq.test(table(spec_subset$Unit, spec_subset$Mia_recall_new)
) 

##  
##  Pearson's Chi-squared test 
##  



## data:  table(spec_subset$Unit, spec_subset$Mia_recall_new) 
## X-squared = 38.83, df = 4, p-value = 7.57e-08 

3.4.1.3 Recall rate 

RR_subset <- subset 
#Chi-squared test 
chisq.test(table(RR_subset$Unit, RR_subset$Mia_recall_new)) 

##  
##  Pearson's Chi-squared test 
##  
## data:  table(RR_subset$Unit, RR_subset$Mia_recall_new) 
## X-squared = 38, df = 4, p-value = 1.12e-07 

3.4.1.4 Cancer detection rate 

Unit 4 was excluded from the per-unit comparison of cancer detection rate. 35 
additional positive studies from this unit were provided to the vendor. 
Therefore, the cancer detection rate reported for this unit (for the test dataset) 
was artificially low. 

CDR_subset <- filter(subset, Unit != "4") 
 

# cancers detected by MIA 
CDR_subset$cancer_MIA <- if_else(CDR_subset$cancer == 1 & CDR_
subset$Mia_recall_new == 1, 1, 0) 
 

#Chi-squared test 
chisq.test(table(CDR_subset$Unit, CDR_subset$cancer_MIA)) 

##  
##  Pearson's Chi-squared test 
##  
## data:  table(CDR_subset$Unit, CDR_subset$cancer_MIA) 
## X-squared = 0.4384, df = 3, p-value = 0.932 

3.5 Performance on screen detected cancers stratified by 

lesion size 

subset_small <- subset %>%  
  filter(is.na(size_tumour) | size_tumour ==  "<15mm") 
 

Mia_sens_small <- calc_sens(subset_small$Mia_recall_new, subse
t_small$cancer) 
 
subset_big <- subset %>%  



  filter(is.na(size_tumour) | size_tumour == ">=15mm") 
 
Mia_sens_big <- calc_sens(subset_big$Mia_recall_new, subset_bi
g$cancer) 
 
sens_subset <- filter(subset, size_tumour == "<15mm" | size_tu
mour == ">=15mm") 

• Mia performance on lesions <15mm: 91.01% [162 / 178], CI: 85.81-94.77 

• Mia performance on lesions >=15mm: 93.69% [104 / 111], CI: 87.44-97.43 

3.5.1 Is there a difference in performance between small and large 

tumours? 

chisq.test(table(sens_subset$size_tumour, sens_subset$Mia_reca
ll_new)) 

##  
##  Pearson's Chi-squared test with Yates' continuity correcti
on 
##  
## data:  table(sens_subset$size_tumour, sens_subset$Mia_recal
l_new) 
## X-squared = 0.3553, df = 1, p-value = 0.551 

4 Mia recall rate range pre and post software 

update 

Monthly recall rate range pre and post software update with the initial 
recalibrated site-specific threshold (0.293801). Minimum and maximum recall 
rate shown 

data_full$Mia_recall_overall <- ifelse(data_full$MIA >= new_th
reshold_overall, 1, 0) 
 

# mammography unit upgrade dates 
unit1_upgrade <- as.Date("2019/02/01") 
unit2_upgrade <- as.Date("2019/03/01") 
unit3_upgrade <- as.Date("2019/05/01") 
unit4_upgrade <- as.Date("2016/09/01") 
 
# exclude validation set 
# exclude Feb 2016 as only partial data is available for that 
month 



# determine software version 
 
data_subset <- data_full %>%  
  filter(dataset != 'validation_v1', dataset != 'validation_v2
') %>%  
  filter(StudyDate >= as.POSIXct("2016/03/01")) %>%  
  mutate(software = case_when( 
    Unit == '1' & StudyDate > unit1_upgrade ~ '1.8', 
    Unit == '2' & StudyDate > unit2_upgrade ~ '1.8', 
    Unit == '3' & StudyDate > unit3_upgrade ~ '1.8', 
    Unit == '4' & StudyDate > unit4_upgrade ~ '1.8', 
    TRUE ~ '1.7' 
  )) 
 

data_subset %>%  
  group_by(software, month = floor_date(StudyDate, 'month')) %
>% 
  summarise(recalls = sum(Mia_recall_overall), N = n(), RR = r
ecalls/N*100) %>%  
  select(-month) %>%  
  ungroup() %>%  
  group_by(software) %>%  
  arrange(RR) %>%  
  slice(c(1, n())) %>%  
  knitr::kable(.) 

## `summarise()` has grouped output by 'software'. You can ove
rride using the 
## `.groups` argument. 

software recalls N RR 

1.7 63 760 8.28947 

1.7 183 1382 13.24168 

1.8 79 332 23.79518 

1.8 86 223 38.56502 

5 Reader 1 recall rate range pre and post 

software update 

Monthly recall rate range pre and post software update. Minimum and maximum 
recall rate shown 

data_full$Mia_recall_overall <- ifelse(data_full$MIA >= new_th
reshold_overall, 1, 0) 



 

# Convert reader opinions to 1 (recall) & 0 (no recall) 
 

data_subset <- data_subset %>% 
  mutate(Reader1Opinion = case_when( 
  OpinionLeft_1 == OpinionRight_1 ~ OpinionLeft_1, 
  OpinionLeft_1 == 'Review Required' | OpinionRight_1 == 'Revi
ew Required' ~ 'Review Required', 
  OpinionLeft_1 == 'Review (Symptoms)' | OpinionRight_1 == 'Re
view (Symptoms)' ~ 'Review (Symptoms)', 
  OpinionLeft_1 == 'Routine Recall' | OpinionRight_1 == 'Routi
ne Recall' ~ 'Routine Recall' 
)) 
 

data_subset$Reader1Opinion[data_subset$Reader1Opinion == 'Revi
ew Required' | data_subset$Reader1Opinion == 'Review (Symptoms
)'] <- 1 
data_subset$Reader1Opinion[data_subset$Reader1Opinion == 'Rout
ine Recall'] <- 0 
 

data_subset %>%  
  group_by(software, month = floor_date(StudyDate, 'month')) %
>% 
  summarise(recalls = sum(Reader1Opinion == "1"), N = n(), RR 
= recalls/N*100) %>%  
  select(-month) %>%  
  ungroup() %>%  
  group_by(software) %>%  
  arrange(RR) %>%  
  slice(c(1, n())) %>%  
  knitr::kable(.) 

## `summarise()` has grouped output by 'software'. You can ove
rride using the 
## `.groups` argument. 

software recalls N RR 

1.7 37 966 3.83023 

1.7 84 1218 6.89655 

1.8 7 282 2.48227 

1.8 13 164 7.92683 
 

  



Appendix E4 – Precision-recall curve 

 
PR stands for precision recall. The y-axis shows positive predictive value (“precision”); the 

x-axis shows sensitivity (“recall”). 

 

AUC: area under the curve. 

                  

 
  

 
  

 
  

 
  

 
  

 
  

        

           

      

 
  
 
  
  
 

 
  

 
  

 
  

 
  

 
  

 
  


