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A B S T R A C T

Yield forecasting is a critical first step necessary for yield optimisation, with important consequences for the
broader food supply chain, procurement, price-negotiation, logistics, and supply. However yield forecasting is
notoriously difficult, and oft-inaccurate. Premonition Net is a multi-timeline, time sequence ingesting approach
towards processing the past, the present, and premonitions of the future. We show how this structure combined
with transformers attains critical yield forecasting proficiency towards improving food security, lowering prices,
and reducing waste. We find data availability to be a continued difficulty however using our premonition
network and our own collected data we attain yield forecasts 3 weeks ahead with a testing set RMSE loss of
0.08 across our latest season.
1. Introduction

Precise and accurate yield forecasting is a key component in Fresh
Produce (FP) Supply Chain Management (FSCM), since it plays a crit-
ical role in price negotiations, logistics, and scheduling. In particular
accurate yield estimates, are required a minimum of 3 weeks ahead (in
the strawberry domain) which we call the horizon (Fig. 1), so that ad-
equate time can be given to bidding, labour timetabling, logistics, and
procurement. However, forecasting FP is incredibly difficult especially
over a 3-week horizon where any number of variabilities can exist such
as environmental fluctuations. Dealing with the latter would necessitate
some weather forecasting to be considered, which is a problem in its
own right. Instead, we show how good yield forecasting can be and
improve upon current practices while allowing for future works to delve
specifically into weather forecasting.

Yield forecasting is difficult in particular due to the lack of data
needed to develop forecasting models. Such data is mostly non-existent,
or incredibly difficult to attain, largely because of the difficulty around
data collection, the perceived sensitivity with which this data is held,
and the lack of clear benefits to the digital collection of such data. We
also see resistance to the positive dynamic impetus of modernisation
requiring a departure from growers’ previous fixed practices.

FP optimisation is of global strategic importance since horticulture
and agriculture are some of the biggest producers of greenhouse gasses,
such that there can be a significant benefit to optimising production
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or minimising waste. In the UK our government has committed to
reducing greenhouse gasses to net 0 by 2050, and agriculture has
been expressly named as a key contributor of greenhouse gasses in the
United Nations Climate Change Conference 2021 (COP21). Inaccurate
forecasting or more specifically under/overestimation leads to food
waste and destruction costs or importing of FP from abroad. Assuming
the cause of this discrepancy/variability is adverse weather conditions,
then those same weather conditions will have affected geographically
approximate growing sites. In the UK climate discrepancies usually
mean fruit must be imported from abroad, given our size, to meet
any given procurement contract, as all the neighbouring growing sites
will have suffered the same adverse environmental conditions and thus
under-production.

Other works (outlined with more detail in Section 1.1) have sought
to solve the lack of data availability in agriculture using satellite/
remote-sensing data, using various machine learning, statistical, and
some deep learning techniques. In this paper, we show how we can
collect data at some scale but with local/ high granularity, including
fruit images, weather conditions, and irrigation data locally. Here we
shall focus specifically on strawberry yields of strawberry tabletop
and how we can predict them. We exemplify this approach at our
Riseholme strawberry tabletop/polytunnel growing site and employ
this data to create accurate forecasts with this 3-week horizon/ window
to meet the needs of the bidding and procurement process. We do all
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Fig. 1. Past (purple-pink), present (blue) and premonition (yellow) timelines/ windows overlayed on a depiction/rough reference of strawberry yields through the years of 2020
and 2021 along with temperature. Depicting the point of prediction relative to (at the seam of) horizon and history.
this in collaboration with Berry Gardens Growers (BGG), one of the
UK’s largest soft, and stone fruit producers, and with their direction
on industry standards to keep as close to the typical expectations as
reasonably possible. We also have fortnightly visits by agronomists to
ensure we are growing the strawberries satisfactorily.

We use this data in various neural network architectures in Section 2
and evaluate their performance in Section 4, since the literature would
suggest that deep learning approaches are the most performant even
for FP. Of these new architectures, we showcase our Premonition Net-
work which seeks to improve upon current tabular/sequence prediction
approaches using all three forms of context, the past, the present, and
the premonition of the future. We use the past to learn the overarching
distribution, we use the present to set some scale and granularity, and
we use the premonition for variability from the standard distribution.

1.1. Related work

There are relatively few works in strawberry yield prediction using
deep learning, instead, the majority focus on statistical machine learn-
ing, and almost none refer to privacy considerations (Maskey et al.,
2019; van der Velde and Nisini, 2019; Jafari et al., 2020; Bouras et al.,
2021; Gastli et al., 2021; Hopf et al., 2022; Paudel et al., 2021; Zhu
et al., 2022; Bali and Singla, 2022). However, several papers have
stressed that a lack of data availability (Pearson et al., 2019; Durrant
et al., 2021, 2022), or more specifically a high expense of acquisition
significantly hinders the smooth application of state-of-the-art neural
networks towards the creation of powerful forecasting models (Chen
et al., 2019; Maskey et al., 2019; Jafari et al., 2020; Gastli et al., 2021;
Nassar et al., 2020). Many of the aforementioned papers largely choose
to tackle this lack of data by using satellite imagery although in some
cases they use the California strawberry commission data paired with
the California strawberry commission irrigation management informa-
tion system (CIMIS). Unfortunately, the data mentioned in these papers
are behind multiple walls, and the CIMIS data is currently unavailable
from the original source, so while we were able to find an excerpt of the
CIMIS data elsewhere we were unable to find the full dataset making
it very difficult to compare to.

Many different proposals for methods of predicting/forecasting
yield (generically) exist, some using classical machine learning
2

(e.g. Paudel et al., 2021) others such as those by Nassar et al. (2020) use
neural networks in their specific case a mixture of CNN, LSTMs, GRUs
and some attention heads. However, all emphasise the need for better
forecasting systems as demand increases and supply decreases due to
global factors such as (but not limited to) COVID-19 and the Russia-
Ukraine war. Current yield forecasting methods are highly archaic,
often times they can be as simple as forecasting the average of the last
few years’ yields, or simple linear models based on heat hours. One such
example is the European Commission’s MARS crop forecasting system
(MCYFS) which has purportedly seen no improvement in its forecasting
performance since 2006 and uses no machine learning. Lastly, the work
by Paudel et al. (2021) shows that machine learning can already at the
very least match (at the start of the season) or beat existing large-scale
traditional crop yield forecasting systems such as the aforementioned
MCYFS system.

The MCYFS system from 2006 to 2015 has a median MAE of 0.379,
0.368, 0.570 in soft wheat durum wheat and grain maize (van der
Velde and Nisini, 2019). The most performant forecasts for this system
appear to be sunflower yields at 0.162 MAE. However the assessment
carried out by van der Velde does not state over what period these yield
predictions are made specifically whether that be a few weeks, days or
months ahead making this also a difficult comparison to make. It is also
apparent that forecasting is becoming increasingly difficult with the
higher degree of variability in climate conditions as the performance of
this largely static forecasting system seems to be in slow decline (van
der Velde and Nisini, 2019).

More sophisticated and bespoke machine learning for strawberry
tabletop forecasting has still a long way to go, with only a handful of
applications appearing in the literature. However, as previously stated
data is incredibly difficult to attain in this domain. Nassar et al. (2020)
appears to show how the compound deep learning models outperform
standalone deep learning models and traditional machine learning
models. Nevertheless, as with much work in this space, it is difficult to
garner any concrete comparable statistics. From one of their diagrams
(14) we believe we can see their most performant model to produce an
MAE loss of roughly 0.14 or 14% MAPE. They call this model Attention-
ConvLSTM2D. While we do not have access to the same data as they
have, we have seen even simple GRU models attain similar performance
in our strawberry tabletop. However, we believe we can improve this

performance on our own data by means of attention as their paper
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Fig. 2. Seven day rolling average line-plot of the strawberry yields of both the 2020 and 2021 seasons.
a

ould also suggest, but instead of standalone attention heads we intend
o use a much more complex and performant transformer model.

Transformers as proposed by Vaswani et al. (2017) are state-of-
he-art neural network components for sequence-to-sequence problems.
trawberry yield prediction is such a problem thus we are keen to
mplement and use them in this scenario, having used other methods to
arying degrees of success in the past (Onoufriou et al., 2020, 2021a).
e also note that in contrast to our previous techniques transformers

nd their attention heads can help focus the neural network into parts
f the data that are most important thus reducing the need for quite as
uch data compared to equivalently complex neural networks.

In short, yield forecasting is essential for improving on food security,
nd sustainable development (Zhu et al., 2022). Yield estimation is
ifficult due to a lack of data availability and thus a lack of research
sing modern data-hungry techniques in this domain (Chen et al., 2019;
askey et al., 2019; Jafari et al., 2020; Gastli et al., 2021; Nassar et al.,

020). Most attempt to solve this data shortfall by using remote sensing,
r by using a select few difficult-to-attain datasets like the California
ommissions data (Jafari et al., 2020; Nassar et al., 2020; Zhu et al.,
022). Few works have applied modern deep learning/neural networks
uccessfully to agriculture, especially strawberries, the majority use
ither old neural network forms or do not use neural networks at all.

. Material and methods

We have collected 3 years of strawberry tabletop data at our Rise-
olme campus. This data comprises 2 polytunnels, each with 5 rows of
trawberry tabletop, each tabletop being 20 m long. Thus in total, we
ad 200 m of strawberry tabletop over any single season. Over these
ows we had two different June bearing varieties at any one time from
riscoll’s Zara, Katrina, and Malling Centenary. Fig. 3 shows the two
arieties chosen for the 2021 growing season from the aforementioned
hree, as can be seen, their performance while similar, differ in that
atrina is expected to output more total yields in any given picking
ession on average. The data capture devices we employed for this
trawberry tabletop was:

• Irrigation data from the tabletop irrigation system. This includes
features describing the nutrients, moisture levels, soil tempera-
ture, input irrigation, and irrigation runoff. With a sample rate of
3

1 sample per 2 min. t
• Environmental data from a central weathervane which collected
information about: Temperature, humidity, wind direction, wind
speed, solar radiance, and precipitation. With a sample rate of 1
sample per 15 min.

• Yield weight and quality data from our strawberry picking team.
With a sample rate of 2 full picks per row per week.

2.1. Data wrangling

One of the biggest challenges when working with any time-series
dataset is to ensure synchronicity. Since all 3 data sources are sam-
pled at different sometimes overlapping intervals it was necessary to
re-sample the datasets to achieve synchronisation. We opted to syn-
chronise over the 15 min intervals to match the weathervane data. We
later downsampled the synchronised data to a much more manageable
4-hour interval when fed into our MTT.

One of the other challenges when working with any data is missing
or unrepresentative samples. Unfortunately in real-world scenarios we
always expect to capture some missing or inaccurate data, especially
when humans are necessarily involved in the process. We chose to
use a forward-fill strategy whereby any missing values are filled with
the last known values. The only features not forward-filled are ones
that are sampled too infrequently to be able to reasonably forward-fill
them. This means any missing values in yields for instance (which are
collected bi-weekly) are removed as we cannot reasonably infer them
from neighbouring values.

Now that we have a regular dataset with no missing values we can
begin example extraction as per Fig. 1. We create hopping windows
that end on/are aligned to observed yield outcomes in the current/
predicted-for year. The window lengths we chose are 21 days for the
premonition, 12 weeks for the present and the cumulative period for
both combined in the previous year as the past. This way we have
information on adverse weather forecasts, current strawberry perfor-
mance, and performance of strawberries at the same site last year. We
then create time sequences using expected date ranges. the historic data
and when we have specific outcomes for fruit yields. This meant we
roughly formed 2 examples for every week in the growing season. We
then further split this data by row into training (2, 3, 4, 6, 7, 8, 10),
and testing (1, 5, 9) sets, while further subdividing the training set into
training and validation using k-fold cross-validation where 𝑘 = 𝐵𝑡 with

batch size of 𝐵𝑠 = 32 which resulted in 𝐵𝑡 = 10 batches. We held out

he two final shuffled batches as a per-epoch validation set. We split in
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Fig. 3. Yield performance of the Katrina and Zara strawberry varieties over the 2021 growing season.
his manner to ensure there is no overlap between training and testing
equences, and it enables us to have a full multi-year view since there
re not enough years of data with which to hold out.

Finally, we normalised our dataset feature-wise using a basic linear
ransformation Eq. (1).

′⟨𝑡⟩
𝑖 = (𝑏 − 𝑎)

𝑥⟨𝑡⟩𝑖 − 𝑚𝑖𝑛(𝑥𝑖)
𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖)

+ 𝑎 (1)

Where the desired normalised feature value for 𝑥𝑖 at timestep 𝑡 post
normalisation 𝑥′⟨𝑡⟩𝑖 is in [𝑎, 𝑏]. We chose our range to be [−1, 1]. We
inverted our results to real values using the inversion Eq. (2).

𝑥⟨𝑡⟩𝑖 = (𝑥′⟨𝑡⟩𝑖 − 𝑎)
(𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖))

𝑏 − 𝑎
+ 𝑚𝑖𝑛(𝑥) (2)

2.2. Architecture

As can be seen in Fig. 4, our MTT consists of 3 differently param-
eterised transformers merged together using a dense layer. Thus our
architecture is comprised of 3 encoders, 3 decoders and a dense layer.

2.2.1. Encoder and decoder
As is standard for transformer networks it is necessary to decide

upon some form of positional encoding (Vaswani et al., 2017). In our
case we use a standard fixed positional encoding where even positions
are encoded using Eq. (3) and odd positions are encoded using Eq. (4).

𝑃𝐸𝑝𝑜𝑠,2𝑖 = 𝑠𝑖𝑛(
𝑝𝑜𝑠

100002𝑖∕𝐷
) (3)

𝐸𝑝𝑜𝑠,2𝑖+1 = 𝑐𝑜𝑠(
𝑝𝑜𝑠

100002𝑖∕𝐷
) (4)

his positional encoding for each odd and even position is then added
o the feature vector to allow the neural network some context into
he order of inputs. There was no need to form a tokenised input
mbedding since we already have a distinct feature space described in
ur feature vector directly from the tabular sequences.

.2.2. Dense
The dense layer is a simple linear layer with enough weights to form

he weighted sum of the inputs and concatenate them into a singular
alue output in Eq. (5)

̂ =
∑

𝑎 𝑊 +
∑

𝑎 𝑊 +
∑

𝑎 𝑊 (5)
4

𝑡 𝑡 𝑛 𝑛 𝑓 𝑓
Towards gathering data we employed our own data collection
pipeline on our Riseholme strawberry tabletop site, the respective
yields of this site can be seen in Fig. 2. All the following data is
streamed into MongoDB and accessed using aggregation pipelines to
help speed up the transformation process.

2.2.3. Weight initialisation
For weight initialisation, we used the default pytorch Kaiming

uniform initialisation as defined in Algorithm 1 for leaky-ReLU (Nair
and Hinton, 2010; Radford et al., 2015).

Algorithm 1 Kaiming uniform weight initialisation using leaky-ReLU
with the fan-in method. where 𝑎: (default 0 for ReLU, or -0.01 for leaky-
ReLU) is the negative slope of the rectifier used after this layer. 𝑊 :
a randomised weight matrix with mean 0 and variance 1 (shape e.g
(64, 32)) mode: is a flag which represents a different value for the fan
whether the method being used is for feedforward or backpropagation
(e.g if mode = fanin then fan = 64 else fan = 32 given previous example
𝑊 matrix).
function kaiming_uniform_weight_init(𝑎, 𝑊 , d)

if mode = fanin then
fan = 𝑑𝑖𝑚(𝑊 , 0)

else
fan = 𝑑𝑖𝑚(𝑊 , 1)

std =
√

2
(1+𝑎2)×fan

return 𝑊 ⋆ std

2.2.4. Loss function
We chose to use the Mean Squared Error (MSE) as our loss function

where MSE =
∑𝑁−1

𝑖=0 (𝑦−𝑦̂)2

𝑁 . This allows us to exponentially penalise large
more errors than small errors on our continuous yield forecast. We
in particular seek to reduce the networks tolerance for larger single
errors as these would mean even if the total error was the same,
being particularly peaked in one prediction would result in the growers
having to import fruit that particular week. We would much rather
be consistently out by a known amount than having almost perfect
performance one week and then large errors the next.

As is commonly the case we use Adaptive moment (ADAM Kingma
and Ba, 2014) as our neural network optimiser as it is has been shown

to be more performant than just first order or second order moments
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Fig. 4. (a) Multi Timeline Transformer (MTT) architecture whereby three single transformers that each process different data streams, are merged by a learned dense layer to weigh
their significance. (b) A full single transformer architecture comprised of fixed positional encoding, encoder, decoder, and linear layers notably missing Softmax. (c) Multi-head
attention mechanism with query, key, and value matrices. This is a sub-components of transformer encoder and decoders with optional masks to maintain the temporal blindness
when processing all the data simultaneously. (d) Scaled dot-product attention showing the various matrix operations necessary to compute. this is a sub-component of multi-head
attention.
Fig. 5. Three timeline transformer loss training, validation and testing sets, per epoch of training. Beyond 62 epochs (pink vertical line) validation and testing loss steeply increases
again. It should be noted that we plot root mean squared error (RMSE) against epoch while our loss function was MSE, this is so the loss is converted back into human-readable
proportions.
and is by and large the defacto standard. We calculated our first order
moments 𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑡 𝑚̂𝑡 =

𝑚𝑡
1−−𝛽𝑡1

and second order
moments.

2.3. Models

We primarily focused on two different types of model. One holistic
model that learned from all of the training rows using random subsets
5

for training and validation (Fig. 5). Then we also attempted to create
smaller weaker predictors as an ensemble only trained on a smaller
set of the training data to each other as an ensemble to attain sim-
ple certainty metrics, which we deem would be invaluable towards
building trust in the models and enabling re-investigation of uncertain
scenarios. We split the training data used into 3-row sets of tabletop
for each ensemble member. Each ensemble member is equivalent to the
base MTT, including weight initialisation, loss function, and optimiser.
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Fig. 6. Ordered forecasts of single MTT compared to ground truth with a horizon of 3 weeks and a history of 12 weeks.
Table 1
Expected errors by forecasting source. All models are from our previous
work trialling different methods on the same dataset.

Forecaster Expected error

Grower 25%a

Agronomist 17%a

Recurrent Neural Network (RNN) 21%
Long-Short Term Memory network (LSTM) 38%
Gated Recurrent Network (GRU) 16%
Multi-Timeline Transformer (MTT) 8%
Ensemble of MTT (average) 27%
Ensemble of MTT (median) 30%

aThese are estimates and may not be representative of any grower or
agronomist specifically but are instead ballpark figures for illustration
based on our information from our industry partners.

verall this means there was a one-row overlap between the first–
econd and second–third MTT. The results of our two current attempted
pproaches along with our past approaches and expected forecasting
erformance of growers and agronomists can be seen in Table 1.

. Results

As can be seen in Table 1 our primary MTT that can forecast three
eeks ahead within 8% RMSE is a large improvement over current

apabilities as forecasts by agronomists tend to not only vary wildly
rom agronomist to agronomists (14 to 30%), rely on specialist human
resence, and are less accurate than our current model. However, a
arge caveat is that our model was created with intensive/high-quality
nvironmental and yield data, on a small site compared to the typical
ndustrial settings.

The results shown in Table 1 and Fig. 6 are a significant step forward
n the prediction of strawberry yields, however, there are some weak-
esses to our approach and the yield outcomes. Firstly our ensemble is
ignificantly underperforming especially since a single predictor trained
n the whole dataset beats the ensemble significantly. This is likely
ue to data, with almost three times the parameters, we suspect that
e require more training data to learn adequately, yet they receive
∕3 of the total training data each. However, as time progresses and
ore data becomes available to us over more seasons, we believe this

nsemble will outperform the single MTT while enabling ensemble-
ased certainty estimation. Secondly and most difficult is the data itself.
6

While we are fortunate to have access to our Riseholme campus and
the strawberry tabletop site, there is still a lack of data available for
use. This relatively small site means we likely have not learned some
of the more complex variances present on larger sites where the sensors’
immediate environment might be significantly different to another area
on the growing site some distance away meaning the data in such
scenarios might be significantly less representative of the conditions
experienced by the strawberries.

4. Discussion

Our strawberry dataset while covering 200 m of strawberries is
still limited. Commercial sites in comparison have hectares of such
crops, meaning our 200 m is not as representative of larger sites
with more intra-crop variability. However, as previously mentioned
data availability is scarce making it practically very difficult to collect
hectares of data, not least due to actual or perceived data sensitivity by
the respective growers. In spite of this, while there may need to be some
adjustments to account for more intra-crop variability of these larger
sites our neural networks perform well given the data availability.
While the sites are smaller and easier to learn, they also have fewer
data to do so, which we believe to be a fair trade-off with no loss in
difficulty between their larger sites and our smaller site.

We have a high level of intra-crop variability with our dataset in
the similarity between rows. Largely while there is inter-row variance
there is still a risk of overfitting since even if the neural network cannot
see row 1, for instance, it may be able to relate the yields of row 1 from
previously trained/known yields of row 2. We would have ideally liked
to have split by time, and claimed one whole season as a completely
separate testing set with none of those rows being trained on. However,
due to the reality of strawberry seasonality and that there are only
so many seasons with which it was possible to collect data, we had
to split in such a way as to give the neural networks context for at
least two seasons from start to finish. This is only necessary since the
current methods of strawberry prediction in industry are largely based
on the occurrences of the last season. As such we attempted to base
our methods on existing techniques, and intuitively the performance
of the strawberries last year will be related to the current season’s
performance unless some large shift in methods between the seasons
occurs.

Fig. 3 shows a significant number of zero/near-zero values. This is
due to the slow start at the beginning of every season as shown in Fig. 2.
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In our data collection, we still recorded fruitless strawberry picking
sessions to account for some strawberry plant varieties producing for
longer periods in the growing season, whereas others started later. This
is significant as the total berries one would expect to harvest over the
season is affected. In particular, for the 2021 season, we experienced a
very slow start to our season with very low yields when compared to
the 2020 season. Later in the season, we may also experience zero/near-
zero values, these are difficult to distinguish from actual low values
and bad picking sessions. One way that we might have made such
assumptions is by assuming the harvesting effect causes all temporally
adjacent picks of the same row to have diminishing returns.

Our MTT used an interval of 4 h despite our data being synchronised
over 15-minute intervals. This was a tradeoff between data density
(thus model complexity), and data availability. Since we only had a
finite number of concrete outcomes that we observed we had to limit
the complexity and weights of the model so that it could train its
fewer weights with what limited data we had for concrete observations.
In contrast, if we had used a data density of 15-minute intervals we
would have had to have significantly larger weight matrices being
backpropagated from the limited number of observed yield values.
If, however, we found ourselves with large hectare scale datasets
with many more observed outcomes we could tune the model to be
more complex to leverage this data, allowing the model to understand
much more complex relationships like the aforementioned expected
intra-crop variability.

It may also be noted that we use a simple missing data imputation
algorithm strategy namely forward-fill which involves filling missing
values with the last known value. This was chosen as we mostly only in-
curred individual or relatively sparsely missing data. In larger sites one
might expect to find entire regions that have some data unavailability
for some time, meaning more advanced data-filling strategies may be
necessary under such conditions. However, in our site, since the missing
values were relatively sparse, the forward fill strategy is sufficient
to allow us to leverage data in spite of any missing observations or
features. The only notable exception is that of yield values. Since yield
values were recorded sparsely a single missing value represents a much
larger significance. Thus any such missing values are excluded entirely.
Thankfully we had very few such missing values.

Due to the data scarcity, we used fixed positional encoding as
opposed to learned encoding. This means the gradients would not be
shared with the learned positional encoding. This is sufficient since in
the original transformer paper (Vaswani et al., 2017) fixed positional
encoding and learned positional encoding result in similar performance.

Finally, we chose to use a tri-transformer architecture merged using
a dense fully connected layer. We did this to allow the neural network
to train separate contextualising units for each potential timeline. This
way we can easily conceptualise the timelines as follows. The pasts
purpose is to have a broad view of the relationship between the features
and the expected outcomes. This is important as we want to ensure the
network has context for how yields are expected to outcome given past
scenarios. The present serves to contextualise how this current specific
season or crop is performing such that it can later be related to what
has happened in the past. The future timeline/transformer is to add
mitigations and adverse effects, such that high expected fluctuations
can be considered at the merging layer.

5. Conclusions

In this study, we propose a new multi-timeline transformer architec-
ture that outperforms many other forms of neural networks (including
CNNs, RNNs, LSTMs, and GRUs) in forecasting strawberry yields, even
on small datasets. Multi-timeline transformers are very capable of
learning from the past, the present, and the premonition of the future,
even when these use similar approaches to human forecasters. There
has been little work in forecasting strawberries using state-of-the-art
deep learning methods, and all of the works that do exist struggle with
7

data availability. Data is clearly the principal problem, as we need more
data to develop good machine learning models. Therefore, we need to
encourage the sharing and collection of more and better data so that
more impactful research can be performed. With more data, we can
properly test ensemble models and similarly data-hungry models.

Regarding our future work, one key area would involve imple-
menting certainty metrics that do not require the use of ensembles so
that we can keep the neural network parameters down. This would
reduce the necessary data to train more complex models. We also seek
to make transformers that are abelian compatible such that we can
use some of the previously proposed fully homomorphically encrypted
(FHE Gentry and Halevi, 2010) deep learning methods with these
currently incompatible but performant transformers (Onoufriou et al.,
2021b,a).

Lastly, we seek to find ways in which to make our data available for
wider use, currently that is not possible due to contractual constraints
which were necessary to enable us to collect this data with industrial
varieties in the first instance. However, we seek to remedy this in
future.
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