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Abstract
Background: Machine learning methods are used in the classification of various car-
diovascular diseases through ECG data analysis. The concept of varying subcutaneous 
implantable cardiac defibrillator (S-ICD) eligibility, owing to the dynamicity of ECG 
signals, has been introduced before. There are practical limitations to acquiring longer 
durations of ECG signals for S-ICD screening. This study explored the potential use of 
deep learning methods in S-ICD screening.
Methods: This was a retrospective study. A deep learning tool was used to provide de-
scriptive analysis of the T:R ratios over 24 h recordings of S-ICD vectors. Spearman's 
rank correlation test was used to compare the results statistically to those of a “gold 
standard” S-ICD simulator.
Results: A total of 14 patients (mean age: 63.7 ± 5.2 years, 71.4% male) were recruited 
and 28 vectors were analyzed. Mean T:R, standard deviation of T:R, and favorable 
ratio time (FVR)—a new concept introduced in this study—for all vectors combined 
were 0.21 ± 0.11, 0.08 ± 0.04, and 79 ± 30%, respectively. There were statistically sig-
nificant strong correlations between the outcomes of our novel tool and the S-ICD 
simulator (p < .001).
Conclusion: Deep learning methods could provide a practical software solution to 
analyze data acquired for longer durations than current S-ICD screening practices. 
This could help select patients better suited for S-ICD therapy as well as guide vec-
tor selection in S-ICD eligible patients. Further work is needed before this could be 
translated into clinical practice.
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1  |  INTRODUC TION

The subcutaneous implantable cardiac defibrillator (S-ICD) is an es-
tablished totally avascular alternative to the traditional transvenous 
defibrillators (TV-ICDs). S-ICDs offer defibrillation therapy while 
avoiding lead-related complications associated with traditional ICDs 
(Lambiase, 2022). However, the Achilles heel of the S-ICD to date 
remains the relatively high rate of inappropriate shocks when com-
pared with conventional TV-ICDs. T-wave oversensing (TWO) is still 
the most common cause of inappropriate shock delivery in S-ICDs 
(Knops et al., 2020).

Appropriate functioning of the S-ICD relies on the presence of 
vectors with suitable ECG morphology. As such, not all patients are 
eligible for S-ICDs, and pre-implant ECG screening is performed on 
all potential candidates to ensure they have at least one vector that 
meets the screening criteria (Francia et al., 2018; Groh et al., 2014; 
Olde Nordkamp et al., 2014; Randles et al., 2014; Rudic et al., 2018). 
Surface ECGs of few seconds duration done in multiple postures are 
used as surrogates for the three standard S-ICD vectors. These are 
assessed via an automated screening tool built-into an S-ICD pro-
grammer to determine eligibility (Rudic et al.,  2018). A major pre-
dictor of eligibility is the T:R ratio. ECG signals sensed by at least 
one vector needs to pass screening in at least two postural positions 
for the patient to be deemed eligible. Unfortunately, despite this 
screening process, TWO remains the commonest cause of inappro-
priate shock therapies in S-ICD patients (Kamp & Al-Khatib, 2019). 
This is significant as inappropriate shock therapies can have detri-
mental effects on the quality of life, psychological well-being, can 
result in the induction of ventricular arrhythmias and increase all-
cause mortality (Daubert et al., 2008).

T-wave morphology is dynamic and can alter with position, ex-
ercise, electrolyte disturbance, progression of myocardial diseases, 
and changes in autonomic function (Al-Zaiti et al.,  2011; Assanelli 
et al., 2013; Hasan et al., 2012; Madias et al., 2001; Mayuga & Fouad-
Tarazi, 2007). This can provide an explanation for the occurrence of 
TWO events in vectors with ECG signals that originally passed the 
S-ICD screening. It is important to highlight that not all TWO events 
result in inappropriate shocks. If the TWO episode is not sustained 
long enough to result in capacitator charging, it will pass unmarked, 
and no record of the event is made. This is because an S-ICD is only 
programmed to store episodes of tachycardia that result in capacitor 
charging. This preserves both battery life and memory capacity of the 
system. Therefore, the true incidence of TWO in the S-ICD popula-
tion is not known.

The concept of the potential varying of S-ICD vectors eligibil-
ity over time was previously presented in a published study by Wiles 
et al. (Wiles et al., 2021) The study demonstrated that the vector score 
which determines S-ICD eligibility is dynamic in real-life ICD popula-
tion. For that study, an S-ICD simulator provided by the device manu-
facturer was utilized for vector assessment. The clinical significance of 
this dynamicity has not yet been evaluated. However, it sheds light on 
the possibility that acquiring screening data over a much longer period 
than for conventional screening can enable more reliable and descrip-
tive screening of the ECG signals sensed by the S-ICD vectors and can 

aid patient and vector selection in S-ICD candidates. The ultimate goal 
would be reducing the risk of TWO and inappropriate shocks.

The authors of this article have also previously introduced a 
novel deep learning-based screening tool, which provides a detailed 
descriptive analysis of the behavior of T:R ratios from an S-ICD per-
spective could be obtained (Dunn et al., 2021). We theorize that this 
tool can guide patient selection as well as vector selection in S-ICD 
recipients. The aim of this study was to clinically apply this tool to 
screen a cohort of ICD patients for S-ICD vectors eligibility and as-
sess our findings against a “gold standard”—an S-ICD simulator.

2  |  METHODS

This is a retrospective correlation study. In our previous study 
Wiles et al. (2021), adult ICD (transvenous and S-ICD) patients were 
asked to wear Holter monitors for 24 h to record ECG signals corre-
sponding to their S-ICD vectors. Then, these ECG recordings were 
analyzed using an S-ICD simulator to assess the vector scores au-
tomatically at regular intervals. Mean vector scores were also ana-
lyzed and a new concept—Eligible Vector Time (EVT), representing 
the percentage of all the screening assessments with passing vec-
tor scores—was introduced in the study. The study concluded that 
the S-ICD vectors eligibility in an ICD population is dynamic (Wiles 
et al., 2021).

The same 24 h Holter recordings, sampling rate 500/s, from our 
previous study were first downloaded. Then, the recordings were 
analyzed by our deep learning tool. First, the data is split into 10 s 
segments. Then, phase space reconstruction (PSR) was utilized to 
convert the ECG signal into compressed 32 x 32 pixel PSR images, 
one image for each 10 s worth of ECG data.

Phase space reconstruction is a popular technique in waveform 
analysis for representing nonlinear characteristics of time series set 
of data using delay maps. Typically, when a signal is examined, it is 
plotted against time. To construct the PSR of the signal, a copy of the 
signal, which is delayed by a given amount of time, is first created. 
Then, the original signal is plotted against the delayed signal. At each 
time increment, a single point in the phase space reconstruction is 
created. Each point has an x-axis value equal to the value of the orig-
inal signal at that time increment and a y-axis value equal to the value 
of the delayed signal at that time increment. By removing the time 
axis from this plot, the repetitive behaviors of the signal can be seen 
(Rocha et al., 2008). An example of how a signal can be transformed 
into its PSR image is illustrated in Figure 1.

Several techniques have been used before to analyze PSR. Box 
counting, where simply the image or the phase space is divided 
up into a grid and the number of boxes occupied by the image is 
counted. Also, measuring the area covered by the PSR plot and cal-
culating summary statistics for rows and columns of the PSR matrix.

In the algorithm used here, a multilayered Convoluted Neural 
Network (CNN) is trained to automatically determine the optimal 
features to extract from the transformed ECG 32 × 32-pixel PSR im-
ages. This CNN is made up of a number of feature extraction blocks, 
followed by a regression block. The outputs from the preceding 
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feature extraction blocks are flattened to a 1D vector and fed into 
a series of fully connected (dense) layers of neurons to arrive at the 
final regression output: the T:R ratio.

The end result is a plot showing the mean T:R, standard deviation 
(SD), and the number of 10 s segments that has T:R above a prede-
termined threshold for the ECG signals sensed by each lead/S-ICD 
vector over the recorded period. See Figure 2. For further details on 
the algorithm development, refer to our previously published work 
by Dunn et al. (Dunn et al., 2021)

The time that a T:R ratio of a vector was deemed favorable 
(below the eligibility threshold) was calculated as a percentage of the 
whole recording (=number of 10 s segments with T:R below eligibil-
ity threshold/total number of 10 s segments in the recording × 100). 
For this article, this was labeled as favorable ratio time or FRT.

2.1  |  Statistical methodology

Data analysis was done using RStudio 1.4.1106 running R 4.0.5. 
Continuous data were presented as mean ± SD. The distribution 
of the data was checked using normality tests and plots, and his-
tograms. The correlation was checked using Spearman's rank coef-
ficient among variables that fit interval, ordinal or ratio scale, and in 
paired observations with monotonic relation assumption.

To correlate the outcome of our deep learning tool with that 
of the S-ICD simulator, the following were compared statistically: 
(mean vector score + standard deviation of the vector score) and 
(mean T:R + standard deviation of the T: R, mean T:R + standard devi-
ation of T:R) and EVT, and finally FRT and EVT.

3  |  RESULTS

3.1  |  Patients' demographics

A total of 14 patients (mean age: 63.7 ± 5.2 years, 71.4% male) were 
recruited in the original study. The primary and alternate vectors for 
each of the patients, amounting to a total of 28 vectors were ana-
lyzed. A total of 13 (92.9%) patients had transvenous ICDs. There 
was a high prevalence of ischemic heart disease (42.9%) and severe 
(ejection fraction <35% on echocardiogram) LV dysfunction (28.6%) 
in the recruited cohort. The main indication for ICD therapy was 
secondary prevention (71.4%). See Table  1 for detailed patients' 
demographics.

3.2  |  T:R assessment

Mean T:R was lower in the primary vectors when compared to the 
alternate vectors (0.20 ± 0.06 vs. 0.22 ± 0.06, p = .30). Standard de-
viation of the T:R (a representation of dynamicity) was also lower 
in the primary vectors (0.07 ± 0.02 vs. 0.09 ± 0.02, p  = .11). This 
has translated to a higher favorable ratio time (FRT) in the primary 
vectors when compared to the alternate vectors (87.1 ± 14.13 vs. 
70.4 ± 16.16%, p = .07).

Mean T:R for all the 28 vectors combined was 0.21 ± 0.11, stan-
dard deviation for all the 28 vectors combined was 0.08 ± 0.04, and 
the FRT for all the vectors combined was 79 ± 30%. For individual 
assessment of each vector, see Table 2.

F I G U R E  1 Illustrates how a phase 
space reconstruction (PSR) image of the 
sine wave is created. As the sine wave has 
a repeated behavior, the sine wave signal 
could have any length and the phase 
space points generated from this signal 
would continuously trace and retrace the 
resulting circle figure which represents 
the PSR image of the sine wave.
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n = 14 (%)

Demographics Mean age (years ± 95% Cl) 63.7 (±5.2)

Male 10 71.4

Device Primary prevention 4 14

Secondary prevention 10 71.4

Transvenous ICD 13 92.9

Subcutaneous ICD 1 7.1

Comorbidities Ischemic heart disease 6 42.9

Severe LV systolic dysfunction 4 28.6

Previous atrial arrhythmia 3 23.1

Hypertension 3 23.1

Airway disease 3 23.1

Diabetes 2 14.3

Valve disease (>mild) or valve 
surgery

2 14.3

Previous CABG 2 14.3

Cerebrovascular disease 1 7.1

Peripheral vascular disease 1 7.1

eGFR < 60 mL/min/1.732 (n = 10) 1 10

eGFR < 30 mL/min/1.732 (n = 10) 1 10

Abbreviations: CABG, coronary artery bypass graft surgery; eGFR, estimated glomerular filtration 
rate; LV, left ventricle.

TA B L E  1 Patient demographics.

F I G U R E  2 One example of the results of vector analysis produced by our tool; This is the T: R analysis of the alternate S-ICD vector of 
patient 03.
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3.3  |  Correlation

Mean vector score was higher in the primary vectors when compared 
to the alternate vectors (412.6  ± 191 vs. 105.6 ± 139.2, p  = .008). 
Standard deviation of vector scores was lower (i.e., more stable vec-
tor scores) in the primary vectors when compared to the alternate 
vectors (95.23 ± 76.17 vs. 160.56 ± 60.73, p = .10), and the EVT was 
significantly higher in the primary vectors when compared with the 
alternate vectors (64.55 ± 19.07 vs. 13.05 ± 15.34%, p < .001). Mean 
vector score for all the vectors combined was 259.09 ± 129.60 (95% 
CI), the standard deviation of the vector score for all the vectors 
combined was 127.89 ± 49.36 (95% CI), and the EVT for all the vec-
tors combined was 38.80 ± 15.45 (95% CI).

There were statistically significant strong correlations between 
the outcomes of the proposed tool and the S-ICD simulator; Mean 
T:R ratio + standard deviation of T: R correlated strongly with mean 
vector score + standard deviation of mean vector score, Rho = 0.636 
(p < .001). Mean T:R ratio + standard deviation of T:R in correlated 
strongly with eligible vector time (EVT), Rho  =  0.668 (p  < .001). 
Favorable ratio time also correlated with eligible vector time (EVT), 
Rho  =  0.652 (p  < .001). See Table  3 and Figures  3–5 for detailed 
results.

4  |  DISCUSSION

4.1  |  T:R ratio

The S-ICD has three ECG signal sensing vectors, each with their 
own T:R ratio. A major predictor of eligibility during the ECG signal 
screening of a vector is the T:R ratio (Francia et al., 2018; Maurizi 
et al.,  2016; Olde Nordkamp et al.,  2014; Srinivasan et al.,  2017). 
Large T:R ratios are unacceptable because if the T wave sits above 
the S-ICD sensitivity level, this can result in double counting 
whereby a T wave following a QRS is interpreted as another R wave. 
This “double counting” can result in inappropriate diagnosis of ven-
tricular tachycardia and subsequently activation of shock therapy. 
Despite the pre-implant screening, the commonest cause of inap-
propriate shocks in the S-ICD population remains TWOS (Aydin 
et al., 2012; Bardy et al., 2010; Burke et al., 2015; Dabiri Abkenari 
et al., 2011; Jarman et al., 2012; Olde Nordkamp et al., 2012). It is 
important to note that different factors such as changes in posture, 
heart rate, electrolytes concentrations, body weight, fluid shifts, and 
lung congestion can cause detectable dynamic changes on surface 
ECG recordings (Al-Zaiti et al.,  2011; Assanelli et al.,  2013; Hasan 
et al., 2012; Madias, 2005; Madias et al., 2001; Walker et al., 2003). 
Subsequently, the T:R ratio is not fixed in the same individual. This 
could provide a potential explanation for the occurrence of TWO in 
S-ICD vectors that previously passed S-ICD screening.

Because of the crucial role of the T:R ratio in the sensing mech-
anism of the S-ICD and its subsequent determination of S-ICD eligi-
bility and TWO events, it was chosen specifically as the parameter 
to be tracked and analyzed by our novel tool. A T:R ratio eligibility 

cutoff ratio of 1:3 was chosen based on the manual S-ICD screening 
tool following the manufacturer's guidelines (Randles et al., 2014), 
although the manual screening method is now highly replaced with 
automatic screening methods, as they follow the same principles.

The concept of integrating deep learning methods in clinical prac-
tice is not new. Machine learning methods are already being used in 
the classification and the prediction of various cardiovascular dis-
eases through ECG data analysis (Fan et al., 2018; IEEE Conference 
Publication|IEEE Xplore, 2021; Kiranyaz et al., 2016; Lih et al., 2020; 
Pourbabaee et al.,  2018; Roberts,  2001; Rocha et al.,  2008; 
Vemishetty et al.,  2019; Zhang et al.,  2020). Convolutional neural 
networks (CNNs) have been used before in ECG analysis for classi-
fying heart attacks, and arrhythmias as well as for predicting blood 
pressure (Fan et al., 2018; Kiranyaz et al., 2016; Lih et al., 2020; Liu 
et al.,  2018; Miao et al.,  2020; Pourbabaee et al.,  2018; Sangaiah 
et al., 2020; Zhang et al., 2020). However, to the best of our knowl-
edge, integrating deep learning tools to predict S-ICD eligibility has 
not been reported before.

4.2  |  Practical considerations

Our previous work Wiles et al. (2021) has utilized a S-ICD simulator- 
provided by the S-ICD manufacturer—in order to analyze the vector 
score over the 24 h recordings in real-time, that is, it took 24 h for 
the S-ICD simulator to analyze a 24 h ECG recording for one vector. 
As the S-ICD simulator essentially replicates the sensing mechanism 
of a S-ICD in real-time, it can be considered as a “gold standard” for 
evaluating various durations of ECG signals sensed by S-ICD vec-
tors. Our study demonstrated that the outcomes of our novel tool 
correlate strongly with those of the “gold standard” S-ICD simula-
tor, aside from being time-efficient. The simulator—aside from being 
not readily available—runs in real time and analyses the ECG signals 
sensed by the S-ICD vectors consecutively, which can be a time-
consuming process, particularly if it is required to analyze recordings 
of even longer durations. Our tool can provide detailed descriptive 
analysis of the T:R ratios simultaneously for the ECG signals sensed 
by all the vectors across the recordings within a few minutes without 
compromising on accuracy.

Acquiring screening data for eligibility in S-ICD candidates over 
a longer period than for conventional screening practices seems 
like a reasonable approach to minimize the effect of the—at least 
theoretical—dynamicity of S-ICD eligibility. However, this approach 
increases the burden of data analysis required to assess S-ICD eligi-
bility. Our tool represents a practical software solution that could 
provide detailed data analysis within minutes; thus, facilitating in-
formed decision-making and could guide patient selection as well as 
vector selection in S-ICD candidates.

While the R:T ratio rather than the T:R ratio is more common in 
literature, the reason for choosing T:R ratio for this work can be at-
tributed to the deep learning algorithm used for data analysis; as the 
T-wave amplitude approaches 0, very small changes in the amplitude 
can result in extreme changes in the R:T ratio (but not T:R ratio). This 
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massive variation in R:T ratio makes it inappropriate for use as a label 
in the algorithm, and for this reason, the T:R ratio is used instead 
(Dunn et al., 2021).

The results of this study denote overall more favorable ratios in 
the primary vectors on average. However, this might not be true for 
every individual patient. This highlights the importance of individu-
alizing S-ICD screenings and tailoring the device programming for 
each patient.

There are some limitations to our study; first, the relatively low 
number of ECG signals were analyzed in this study. Second, only 
the ECG signals sensed by the primary and alternate vectors were 

available for analysis, because the Holter that was used to collect the 
S-ICD vectors was limited to recording only two simultaneous chan-
nels. Also, the S-ICD simulator analyzed the data at 1 min intervals, 
while our novel tool provided analysis of the T:R ratios at 10 s inter-
vals. In addition, the role of the SMART PASS algorithm that could 
help differentiate between R and T waves based on other charac-
teristics rather than just their amplitudes, was not considered in this 
study. We propose that our algorithm is to be used as a supplement 
and not a replacement of the SMART pass algorithm, that is, ECG sig-
nals are processed/filtered first through the SMART pass algorithm, 
and then, analyzed using our algorithm as an additional step.

TA B L E  2 Results of T: R assessment using the deep learning tool.

Study ID Vector Mean T:R T:R standard deviation
T:R segments 
over threshold

T:R segments 
below 
threshold

Favorable ratio time 
(FRT) (%)

01 Alternate 0.274 0.078 2045 6565 76.25

01 Primary 0.057 0.064 28 8582 99.67

02 Alternate 0.075 0.062 5 8785 99.94

02 Primary 0.175 0.064 84 8706 99.04

03 Alternate 0.045 0.047 4 8686 99.95

03 Primary 0.110 0.107 411 8279 95.27

04 Alternate 0.199 0.138 980 7630 88.62

04 Primary 0.164 0.107 545 8065 93.67

05 Alternate 0.113 0.076 20 8590 99.77

05 Primary 0.102 0.046 10 8600 99.88

06 Alternate 0.363 0.180 4902 3708 43.07

06 Primary 0.187 0.098 414 8196 95.19

07 Alternate 0.297 0.139 4003 4607 53.51

07 Primary 0.479 0.026 8605 5 0.06

08 Alternate 0.382 0.059 6949 1740 20.03

08 Primary 0.311 0.032 1420 7269 83.66

09 Alternate 0.338 0.023 4778 3832 44.51

09 Primary 0.168 0.031 10 8600 99.88

10 Alternate 0.048 0.040 0 8610 100

10 Primary 0.153 0.049 2 8608 99.98

11 Alternate 0.260 0.139 3452 5158 59.91

11 Primary 0.203 0.088 410 8200 95.24

12 Alternate 0.381 0.060 7346 1264 14.68

12 Primary 0.195 0.027 0 8610 100

13 Alternate 0.203 0.107 944 6760 87.75

13 Primary 0.340 0.107 2891 4813 62.47

14 Alternate 0.142 0.070 168 8442 98.05

14 Primary 0.143 0.105 413 8197 95.20

Mean Primary 0.20 ± 0.06
(95% CI)

0.07 ± 0.02
(95% CI)

87.1 ± 14.13
(95% CI)

Mean Alternate 0.22 ± 0.06
(95% CI)

0.09 ± 0.02 (95% CI) 70.4 ± 16.16
(95% CI)

Mean Combined 0.21 ± 0.11(95% Cl) 0.08 ± 0.04(95% Cl) 79 ± 30
(95% Cl)
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Theoretically, our deep learning tool could be potentially used 
to predict the risk of TWO events and allow informed decisions to 
be made by the physicians and patients alike prior to committing to 

S-ICD therapy. The tool could also be used to guide vector selection 
in S-ICD eligible patients. However, further work is needed before 
it is possible to apply our tool to clinical practice. A prospective 

F I G U R E  3 Mean T:R ratio + standard 
deviation of T:R (x-axis) in correlation 
with mean vector score + standard 
deviation of mean vector score (y-axis) 
using Spearman's rank correlation test. 
Rho = 0.636 (p < .001) denoting strong 
correlation.

F I G U R E  4 Mean T:R ratio + standard 
deviation of T:R (x-axis) in correlation 
with eligible vector time (EVT; y-axis) 
using Spearman's rank correlation test. 
Rho = 0.668 (p < .001) denoting strong 
correlation.

F I G U R E  5 Favorable ratio time (x-
axis) in correlation with eligible vector 
time (EVT; y-axis) using Spearman's rank 
correlation test. Rho = 0.652 (p < .001) 
denoting strong correlation.
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study, with a larger number of recruited patients, and a more con-
trolled data protocol, is needed to assess the effect of different 
physiological states, such as exercise, sudden changes in position 
or mental stress on the ECG recordings, and subsequently, the out-
come of our deep learning tool. In addition, our algorithm needs 
to be tested on ECG signals, acquired from a larger number of pa-
tients, or simulated patients, that are processed with the widely 
utilized SMART PASS algorithm, to assess if our algorithm could 
improve upon the current method of sensing vector selection.

5  |  CONCLUSION

T:R ratio—a crucial element in the S-ICD sensing mechanism and 
a major determinant of S-ICD eligibility—is dynamic in “real-life” 
ICD patients. Deep learning methods could provide reliable and 
time-efficient analysis of T:R ratios. This could help with the S-ICD 
screening process as well as guide vector selection in S-ICD eligible 
patients. Prospective studies with larger cohorts of recruited pa-
tients are needed before the findings from our study could be trans-
lated into clinical practice.
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