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Abstract
Introduction: S-ICD eligibility is assessed at pre-implant screening where surface ECG 
traces are used as surrogates for S-ICD vectors. In heart failure (HF) patients un-
dergoing diuresis, electrolytes and fluid shifts can cause changes in R and T waves. 
Subsequently, T:R ratio, a major predictor of S-ICD eligibility, can be dynamic.
Methods: This is a prospective study of patients with structurally normal hearts and 
HF patients undergoing diuresis. All patients were fitted with Holters® to record their 
S-ICD vectors. Our deep learning model was used to analyze the T:R ratios across the 
recordings. Welch two sample t-test and Mann–Whitney U were used to compare the 
data between the two groups.
Results: Twenty-one patients (age 58.43 ± 18.92, 62% male, 14 HF, 7 normal hearts) 
were enrolled. There was a significant difference in the T:R ratios between both 
groups. Mean T: R was higher in the HF group (0.18 ± 0.08 vs 0.10 ± 0.05, p < .001). 
Standard deviation of T: R was also higher in the HF group (0.09 ± 0.05 vs 0.07 ± 0.04, 
p = .024). There was no difference between leads within the same group.
Conclusions: T:R ratio, a main determinant for S-ICD eligibility, is higher and has more 
tendency to fluctuate in HF patients undergoing diuresis. We hypothesize that our 
novel neural network model could be used to select HF patients eligible for S-ICD by 
better characterization of T:R ratio reducing the risk of T-wave over-sensing (TWO) 
and inappropriate shocks. Further work is required to consolidate our findings before 
applying to clinical practice.
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1  |  INTRODUC TION

We report a novel application of artificial intelligence and deep learn-
ing methods used to screen patients for S-ICD eligibility. Screening 
data are acquired over a much longer period than for conventional 
screening approaches and provide an in-depth description of the 
behavior of the T:R ratio over that period across the three S-ICD 
vectors (Dunn et al., 2021). We hypothesize that this novel screen-
ing approach could enable more reliable and descriptive screening 
to better assess patient eligibility for S-ICD implantation with lower 
risk of inappropriate shock therapy.

2  |  METHODS

This is a prospective observational study on healthy volunteers with 
structurally normal hearts and patients with a known history of 
heart failure admitted for diuresis on clinical grounds. None of the 
recruited patients had an ICD (TV-ICD or S-ICD). All the participants 
were asked to wear a seven lead/three channel Holter® monitors 
for 24 h. The leads for the Holters® were positioned so that they 
mimic and correspond to the three vectors (primary, alternate, and 
secondary) of an S-ICD (Figure 1).

The aim of our study was to quantify, describe and compare the 
degree of variation in T:R ratio observed in patients with HF and 
healthy participants with structurally normal hearts from an S-ICD 
vector perspective.

T:R ratio was chosen specifically as the parameter to be tracked 
and analyzed by our novel tool because of the crucial role of the T:R 
ratio in the sensing mechanism of the S-ICD and its subsequent de-
termination of S-ICD eligibility and TWO events. A T:R ratio eligibility 
cut-off ratio of 1:3 was chosen based on the manual S-ICD screening 
tool following the manufacturer's guidelines (Randles et al., 2014), 

although the manual screening method is now highly replaced with 
automatic screening methods, alas they follow the same principles.

Patients were recruited to the HF group based on clinical di-
agnosis of HF regardless of underlying left ventricular function on 
echocardiography and having received intravenous diuretic ther-
apy (at least 120 mg furosemide/24 h) on clinical grounds under the 
discretion of the treating physician. Patients' demographics (age, 
gender, cardiovascular history, LV function) were obtained from the 
medical records. There was no requirement for further patient fol-
low-up. The study was performed REC (17/SC/0623) approval and 
was granted R&D (RHMCAR0528) approval.

Raw data from the Holters were downloaded in ASCII (American 
Standard Code for Information Interchange) format at a frequency of 
500 Hertz (Hz). A bespoke tool developed by Dunn et al efficiently and 
accurately tracked and analyzed the T:R ratio for the leads corresponding 
to the S-ICD vectors over the 24-h recordings period (Dunn et al., 2021).

3  |  ARTIFICIAL INTELLIGENCE AND 
NEUR AL NET WORKING MODEL

Machine learning methods are already being used in a variety of 
applications such as the classification and the prediction of various 
cardiovascular diseases through ECG data analysis (Fan et al., 2018; 
Kiranyaz et al.,  2016; Lih et al.,  2020; Pourbabaee et al.,  2018; 
Roberts et al.,  2001; Rocha et al.,  2008; Vemishetty et al.,  2016; 
Vemishetty et al., 2019; Zhang et al., 2020). A well-recognized tech-
nique for preprocessing ECG data is to create its phase space recon-
struction matrix (PSR). Typically, manually selected features such as 
box counting as well as column and row statistics are extracted from 
the PSR of the ECG data which then can be used as inputs for a clas-
sification model. Convolutional neural networks (CNNs) have been 
used in ECG analysis for classifying heart attacks, atrial fibrillation, 

F I G U R E  1 Showing the typical S-ICD vectors on the left and on the right, the Holter® surface ECG positions. 1 = 1 cm infero-lateral 
to the xiphisternum. 2 = 14 cm superior to position 1. 3 = 5th intercostal space, parasternal position. 4 = 6th intercostal space left mid 
axillary line. 6 = Adjacent to 2. 7 = Adjacent to 4. Holter Channel A records between points 1 and 4 = surrogate of S-ICD primary vector. 
Holter Channel B records between points 2 and 3 = surrogate of S-ICD alternate vector. Holter Channel C records between points 6 and 
7 = surrogate of S-ICD secondary vector. 5 = 5th intercostal space right midclavicular line = neutral electrode. Image prior to annotation © 
Boston Scientific Corporation or its affiliates.
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and other arrhythmias as well as for predicting blood pressure (Cho 
et al.,  2020; Fan et al.,  2018; Jo et al.,  2021; Lih et al.,  2020; Liu 
et al.,  2018; Miao et al.,  2020; Pourbabaee et al.,  2018; Sangaiah 
et al., 2020; Zhang et al., 2020; Zhu et al., 2020).

The method we proposed diverges from standard approaches 
by using the whole PSR matrix as the input to a CNN model which 
to the best of our knowledge has not been attempted before. The 
proposed method is capable of automatically extracting a set of fea-
tures that are much more descriptive than those that are found man-
ually with more time-consuming methods.

For our tool, the data (in ASCII format) were first split into 10 s 
segments. Baseline drift correction techniques were applied, followed 
by adaptive band stop filtering to suppress power-line noise with 
a frequency of 50 Hz while a low pass filter was used to remove the 
remaining high-frequency noise. Then, PSR—a popular technique in 
waveform analysis for representing non-linear characteristics of time 
series set of data using delay maps—was utilized to convert the ECG 
signal into a compressed 32 x 32 pixel PSR image, one image for each 
10 s worth of ECG data. A Convolutional Neural Network (CNN) model 
was then trained to predict the T:R ratio from these PSR images with 
a high degree of accuracy without explicitly locating the R or T waves. 
The end result is a plot showing the variation of the T:R ratios for each 
lead/S-ICD vector over the recorded period (24 h in our study), where, 
for readability, the line graph is smoothed to where each point gives 
the average T:R ratio for the preceding half hour, thus making it easy to 
detect any period where the T:R ratio was consistently high and thus 
increased the risk of TWO. To better examine how the behavior of the 
T:R ratio differs between each lead, our tool can plot a histogram of 
what proportion of the 24-h screening period the T:R ratio of a particu-
lar lead spent in each range of T:R ratios (Dunn et al., 2021).

We note that it is more standard in the literature to consider the 
R:T ratio as opposed to the T:R ratio. Despite this, as the T-wave 
amplitude approaches 0, subtle changes in the T-wave amplitude 
can result in extreme variations in the R:T ratio, which makes the 
latter inappropriate for use as a label in our model. For this rea-
son, we use the T:R ratio as a dependent variable in our regression 
problem.

3.1  |  Statistical methodology

The distribution of the data was identified using histograms, 
QQ plots, and box plots. Parametric data were described using 
mean ± standard deviation (SD), and categorical data as n/N (%). The 
Welch two sample t-test, Wilcoxon rank test and Mann–Whitney U 
were used to compare between the continuous variables in the two 
groups.

4  |  RESULTS

Twenty-one patients were recruited into two groups: 7 patients in 
the structurally normal heart group and 14 patients in the heart 
failure group. The mean age was 58.43 ± 18.92 years (62% male) 
(Table 1). Age and gender were not significantly different for either 
mean or the standard deviation (SD) of the T:R ratio.

Mean T:R ratio was higher in the HF group (0.181 ± 0.084 vs 
0.104 ± 0.054, p  < .001), and the SD (a measure of dynamicity) of 
the T:R ratio was also higher in the HF group (0.093 ± 0.048 vs 
0.067 ± 0.036, p = .02). There was no significant difference found in 

TA B L E  1 Patients' demographics

Total number of participants N = 21 Heart failure N = 14

Structurally 
normal heart 
N = 7

Demographics: Mean age [years ± 95% CI] 58.43 ± 18.92 70 ± 11 36 ± 8

Male 13 61.9% 10/14 (71%) 3/7 (43%)

Cardiac co-morbidities: Heart failure 14 66.67% 14 0

Atrial fibrillation 6 28.57% 6 (42.85%) 0

LV diastolic dysfunction 4 19.05% 4 (28.57%) 0

Ischemic heart disease 6 28.57% 6 (42.85%) 0

LV systolic dysfunction 10 47.62% 10 (71.43%)
Ejection fraction 
% = 25.3 ± 6.97 [95% Cl]

0

Fluid loss in 24 h in mls for the HF group 2326.07 ± 1253.18 [95% Cl]

Furosemide dose in 24 h in mgs for the HF 
group

257.86 ± 45.86 [95% Cl]

Shift in Na levels before and after diuresis 
[mmol/l] for the HF group

1.93 ± 0.73 [95% Cl]

Shift in K levels before and after diuresis 
[mmol/l] for the HF group

0.49 ± 0.27 [0.95 Cl]
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the mean or the SD of the T:R ratio between different leads within 
the same group (Table 2, Figure 2).

To highlight the impact of the differences in the mean and SD 
of T: R between both groups, the percentage of time when the T:R 
ratio was found to be above the screening threshold (1/3) for the 
T:R ratio (unfavorable) was calculated and compared in both groups. 
The heart failure group had an unfavorable T:R ratio for significantly 
longer time in the 24-h tape compared to the normal group, this was 
also evident in all the vectors: (13.3% ± 10% vs 4% ± 8%, p = .26) in 
the primary vector, (9.7% ± 7.4% vs 3% ± 4%, p = .29) in the alternate 
vector, and (10.8% ± 12.8% vs <1%, p = .22) in the secondary vector 
(Table 3).

To summarize the results, T:R ratios of S-ICD vectors were higher 
at the baseline and exhibited more fluctuations in the HF group. This 
has translated into higher likelihood of unfavorable crossing of the 
screening threshold in HF patients when compared to the structur-
ally normal heart group.

5  |  DISCUSSION

Heart failure (HF) is a global cardiovascular disease with an esti-
mated prevalence of more than 37.7 million patients worldwide 
affecting 1%–2% of adults in developed countries (Chaudhry & 
Stewart, 2016). A high proportion of deaths among patients with HF 
occur suddenly and can be attributed to ventricular arrhythmias. As 
such many international guidelines recommend using implantable 
ICDs to reduce sudden death in patients with heart failure. Thus 
an ICD is recommended to reduce the risk of sudden death and all-
cause mortality in patients with symptomatic HF (NYHA Class II–III), 
and an LVEF ≤35% despite ≥3 months of optimal medical therapy 
(Class IA and IB indications in patients with ischemic heart disease 
and patients with dilated cardiomyopathy respectively Ponikowski 
& Voors, 2017).

Transvenous ICDs employ transvenous (intracardiac) leads for 
rhythm discrimination and delivery of defibrillation shock therapy, 

TA B L E  2 Comparison between the parameters of the T: R between both groups

Parameter

Group

p valueHeart failure Structurally normal heart

Mean T:R ratio 0.181 ± 0.084 (95% CI) 0.104 ± 0.054 (95% CI) <.001 (Welch two sample t-test)

Standard deviation of T:R ratio 0.093 ± 0.048 (95% CI) 0.067 ± 0.036 (95%CI) =.024 (Welch two sample t-test

F I G U R E  2 Box plots for the mean (p < .001) and standard deviation (p = .02) of the T:R ratio over 24 h screening period in the studied 
subgroups (heart failure patients undergoing diuresis vs healthy volunteers with structurally normal hearts). Leads A, B and C correspond to 
primary, alternate, and secondary vectors of an S-ICD respectively.
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and as such are associated with potential complications related to 
invasion of the vascular space. These comprise complications that 
can occur at the time of implants such as pneumothorax and car-
diac tamponade due to traumatic placement of lead(s), and long-term 
complications such as device infection of the device progressing to 
systemic sepsis and/or infective endocarditis with potentially fatal 
consequences. Additionally, ICD leads that remain in the vascula-
ture for many years may, ultimately, compromise flow or cause 
obstruction.

The S-ICD offers an alternative solution to the traditional TV-
ICD for prevention of sudden cardiac death in patients with heart 
failure. Studies have confirmed comparable efficacy to TV-ICD but 
the S-ICD avoids many of the complications associated with TV-ICDs 
and may be the only ICD therapy for patients with no venous access 
or at high risk of infective endocarditis (Kamp & Al-Khatib, 2019). 
Thus the AHA/ACC/HRS Guidelines for Ventricular Arrhythmia and 
Sudden cardiac death have a Class I recommendation for S -ICD im-
plantation in patients who are at a high risk for infection, or have no 
appropriate venous access and who have no indication for brady-
cardia or biventricular pacing and/or anti-tachycardia pacing (ATP) 
(Kamp & Al-Khatib, 2019).

However, not all patients are eligible for an S-ICD. Eligibility is 
identified during a recommended pre-implant screening process 
that is undertaken in all potential recipients. An S-ICD programmer 
with a built-in automated screening tool is utilized in screening. It 
has external ECG cables which can acquire ECG traces via position-
ing the skin electrodes on the chest wall using the same anatomical 
landmarks that would guide future S-ICD implantation. As such, ob-
tained ECG traces—usually of short duration of few seconds in multi-
ple postures—act as a surrogate for the three S-ICD vectors allowing 
non-invasive assessment of vector morphology and S-ICD eligibility. 
A major predictor of eligibility of a vector is the T:R ratio which is 
unique for every vector as varying the angle of recording alters the 
amplitude of both R wave and T wave. Vectors with lower T:R ratios 
are more likely to pass the screening and are safe for clinical use, 
while a vector that fails cannot be used in clinical practice. To be 
eligible for an S-ICD a patient requires at least a single vector to pass 
screening in at least two postural positions at the same amplitude. 
Patients with vectors that do not meet the screening criteria are at 
high risk of TWO and deemed ineligible for an S-ICD. This is import-
ant as inappropriate shock therapies can have detrimental effects on 
the quality of life, psychological well-being and can even result in the 

TA B L E  3 Differences in the “unfavorable” T:R ratios in both groups

ID Group

Primary vector Alternate vector Secondary vector

10-s segments of T: 
R > 1/3 N = 8640

Proportion of the 
24-h recording (%)

10-s 
segments >1/3 
N = 8640

Proportion of the 
24-h recording (%)

10-s 
segments >1/3 
N = 8640

Proportion of the 
24-h recording (%)

1 Normal 3 <1% 0 0% 23 <1%

2 Normal 2613 30% 19 <1% 0 0%

3 Normal 17 <1% 51 <1% 0 0%

4 Normal 1 <1% 3 <1% 1 <1%

5 Normal 0 0% 452 5% 14 <1%

6 Normal 2 <1% 12 <1% 277 3%

7 Normal 1 <1% 1074 12% 3 <1%

Mean 377 ± 731 4% ± 8% 230 ± 301 3% ± 4% 45 ± 76 <1%

8 HF 8 <1% 1524 17.6% NA NA

9 HF 1024 11.9% 815 9.4% NA NA

10 HF 1280 14.8% 219 2.5% NA NA

11 HF 0 0% 1828 21.2% NA NA

12 HF 2305 26.7% 637 7.4% NA NA

13 HF 0 0% 31 <1% NA NA

14 HF 1104 12.8% 5 <1% 37 <1%

15 HF 3555 41.1% 4652 53.8% 4054 46.9%

16 HF 389 4.5% 452 5.2% 291 3.4%

17 HF 5562 64.4% 417 4.8% 0 0%

18 HF 13 <1% 400 4.6% 222 2.6%

19 HF 808 9.4% 383 4.4% 2866 33.2%

20 HF 0 0 0 0 0 0

21 HF 2 <1% 406 4.7% 1 <1%

Mean 1146 ± 862 13.3% ± 10% 841 ± 640 9.7% ± 7.4% 934 ± 1105 10.8% ± 12.8%
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induction of ventricular arrhythmias (Daubert et al., 2008). Despite 
the current screening process, the incidence of inappropriate shocks 
is greater in S-ICDs when compared with conventional TV-ICDs and 
the most common reason for inappropriate shocks in S-ICDs is T-
wave oversensing (Boersma et al., 2017).

It is important to note that temporal variations in R wave and 
T wave amplitudes in the same individual are frequently observed 
on ECG recordings and thus, the T:R ratio—a major predictor of 
S-ICD eligibility—is not fixed in any given individual. Factors such 
as changes in posture and heart rate can influence ECG parame-
ters. Also changes in electrolytes concentrations, body weight, 
fluid shifts, and lung congestion can cause detectable dynamic 
changes on surface ECG recordings (Al-Zaiti et al., 2011; Assanelli 
et al., 2013; Hasan et al., 2012; Madias, 2005; Madias et al., 2001; 
Walker et al.,  2003). HF patients share a lot of the factors that 
cause variation in the ECG components, particularly patients with 
significant changes in their weight and shifting of their body fluid 
status over short time such as heart failure patients undergoing 
diuresis. The mere presence of LV dysfunction is an independent 
factor contributing to the variation of ECG parameters over time 
(Fosbøl et al., 2008).

Rhythm discrimination by the S-ICD and its vector sensing algo-
rithms has been shown to be non-inferior to TV-ICD systems (Gold 
et al., 2012). However, it is important to ensure that the S-ICD sys-
tem does not “over sense” T waves which can lead to inappropriate 
arrhythmia detection and shock therapy. This occurs when the T 
wave is of greater amplitude than the sensitivity level of the device 
and is miscounted as an R wave such that the device misinterprets 
a single heartbeat (QRS complex followed by a T wave) as two sep-
arate R waves with a short R: R interval, so doubling the detected 
heart rate.

We identified these signal analysis processes for S-ICD screen-
ing in HF patients as being suited to a novel mathematical approach 
employing artificial intelligence and neural networks analyzing vec-
tor data recorded over a 24-h period.

The concept of the potential varying of S-ICD vectors eligibility 
over time was previously presented in a study by (Wiles et al., 2021). 
The study demonstrated that the vector score which determines 
S-ICD eligibility is in fact dynamic in real-life ICD population. Our 
approach demonstrated that one of the main determinants of S-ICD 
eligibility—the T:R ratio—is in fact dynamic. The changes in the T:R 
ratio in some of the vectors that were observed over time in our 

F I G U R E  3 An example of the T:R ratio fluctuating overtime crossing the S-ICD screening threshold for the T:R ratio (0.33) on multiple 
occasions over the 24-h period. The histogram illustrates the exact number of 10-s segments at each T:R ratio throughout the 24-h 
recording. The above example represents the alternate vector for one of the patients who was recruited to the HF group.
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cohort of patients were significant enough in some instances to 
cause the T:R ratio to cross the threshold for the S-ICD screening 
(Figure 3).

The T:R ratios were unfavorable a priori in the HF group when 
compared to the normal hearts group. Importantly T:R ratios were 
more likely to fluctuate and cross the S-ICD screening threshold in 
HF patients than in the normal heart patients. The cohort of HF pa-
tients in our study shared many characteristics, such as rapid fluid 
and body weight shifts and quick changes in electrolyte concentra-
tions, known to cause dynamic changes in ECG signals.

In the event of multiple vectors passing the S-ICD screening—
not an uncommon occurrence—our tool can also guide the se-
lection of the most favorable vector for programming the S-ICD. 
The most favorable vector would be the most stable or the least 
likely to fluctuate and cross the screening threshold and thus the-
oretically pose the least risk of TWO and inappropriate shocks 
(Figure 4).

It is important to interpret our results with caution. Firstly, 
because of the relatively small number of patients involved in 

our study—though each patient provided significant amount of 
data on the behavior of the T:R ratio for the 3 standard S-ICD 
vectors for a much longer duration than that currently used in 
the day-to-day practice. It is also important to note that none of 
the patients recruited to our study in either group had S-ICD im-
plants or were candidates for an S-ICD. While it could be argued 
that our analysis will not apply to real-life S-ICD patients, many 
such S-ICD recipients fall into either of our recruited patients' 
cohorts. Also, T:R ratio, despite being a key component in the S-
ICD sensing process, is not the only parameter and other factors 
that play a role in the S-ICD sensing process such as QRS dura-
tion as well as the impact of the relatively newer S-ICD sensing 
algorithms, i.e., Smart Pass, were not examined in our analysis. 
It is also important to note that—while theoretically relevant—
there is no evidence that the fluctuations in the T:R ratios that 
were demonstrated in this study would inevitably lead to ad-
verse clinical outcomes such as TWO and inappropriate shocks 
and further work is needed to appreciate the clinical significance 
of our findings.

F I G U R E  4 An example of how our tool can help select the most suitable vector for programming the S-ICD. The analysis of the Holter 
recording for one of the patient recruited in the HF group: All the 3 leads had acceptable T:R ratios at some stage of the 24-h recordings, 
however, while the T:R ratios for leads A and B (corresponding to the primary and alternate vectors) showed significant fluctuations over the 
24-h recording and crossed the screening threshold multiple times, T:R ratio for Lead C (secondary vector) was stable in comparison and did 
not cross the threshold throughout the 24-h posing the least risk of TWO.
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6  |  CONCLUSIONS

T:R ratio, one of the integral components of the S-ICD sensing 
mechanism and a main determinant of S-ICD eligibility, has the ten-
dency to significantly fluctuate overtime, particularly in patients 
with heart failure when compared to patients with structurally nor-
mal hearts. This poses a theoretical risk for TWO and inappropriate 
shocks in HF patients who have S-ICDS fitted in after being found S-
ICD eligible following the current screening practices. Incorporating 
deep learning methods could enable more accurate and efficient 
screenings and the adoption of novel mathematical approaches for 
data analysis of longer, data-rich, screening practices to determine 
HF patient eligibility for S-ICD implantation seems promising. The 
principles of our study need to be tested in a larger, more diverse 
patient cohort and the clinical relevance of our findings needs to be 
further investigated before it is possible to apply our tool to clinical 
practice.
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