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“Super” SERPINs—A stabilizing
force against fibrinolysis in
thromboinflammatory conditions
Steven J. Humphreys, Claire S. Whyte and Nicola J. Mutch*

Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical
Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom

The superfamily of serine protease inhibitors (SERPINs) are a class of inhibitors that
utilise a dynamic conformational change to trap and inhibit their target enzymes.
Their powerful nature lends itself well to regulation of complex physiological
enzymatic cascades, such as the haemostatic, inflammatory and complement
pathways. The SERPINs α2-antiplasmin, plasminogen-activator inhibitor-1,
plasminogen-activator inhibitor-2, protease nexin-1, and C1-inhibitor play
crucial inhibitory roles in regulation of the fibrinolytic system and inflammation.
Elevated levels of these SERPINs are associated with increased risk of
thrombotic complications, obesity, type 2 diabetes, and hypertension.
Conversely, deficiencies of these SERPINs have been linked to hyperfibrinolysis
with bleeding and angioedema. In recent years SERPINs have been implicated in
the modulation of the immune response and various thromboinflammatory
conditions, such as sepsis and COVID-19. Here, we highlight the current
understanding of the physiological role of SERPINs in haemostasis and
inflammatory disease progression, with emphasis on the fibrinolytic pathway,
and how this becomes dysregulated during disease. Finally, we consider the role
of these SERPINs as potential biomarkers of disease progression and therapeutic
targets for thromboinflammatory diseases.
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Introduction

Serine proteases are powerful proteolytic enzymes that function in crucial pathways such

as coagulation, fibrinolysis, inflammation, and the complement system (1–3). The general

mechanism of action of these proteases is cleavage of peptide bonds, thereby converting

proteins from inactive zymogens to active enzymes. The prolific nature of these serine

proteases requires exquisite regulation which is the task of the superfamily of serine

protease inhibitors (SERPINs). In most SERPINs the amino acid sequence in the reactive

center loop (RCL) mimics that of the enzymes target protease and upon cleavage the

serine protease is dynamically “trapped” in an irreversible 1:1 complex (4–6), leading to

the classification of SERPINs as suicide inhibitors. The detailed structure and mechanism

of SERPINs has recently been elegantly reviewed and will not be described in depth

herein (7). SERPINS with a role in haemostasis include antithrombin, heparin cofactor II,

protein-Z-dependent protease inhibitor, and α1-antitrypsin. This review focuses on

SERPINs with a role in fibrinolysis (8, 9). Although there is some evidence that α1-

antitrypsin participates in fibrinolysis its primary role is regulation of neutrophil-derived

proteases (10–14). SERPINs like α2-antiplasmin (α2AP), plasminogen-activator inhibitor-

1 and -2 (PAI-1 and -2), protease nexin-1 (PN-1), and C1-inhibitor (C1-INH) play
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crucial functions in the fibrinolytic system, by inhibiting plasmin,

tissue-type plasminogen activator (tPA), and urokinase-type

plasminogen activator (uPA) (Figure 1) (9, 15). Elevated levels of

several SERPINs have been associated with a plethora of disease

states including type 2 diabetes, obesity, metabolic syndrome,

and hypertension. They have been identified as prognostic

markers in several cancers including, renal, breast, lung, head

and neck, colorectal, and ovarian cancers (16–19) and have been

implicated in cancer progression and metastasis. These areas fall

out with the scope of this review and have been described in

detail elsewhere (20, 21). In this review we will focus on the

biological function of the SERPINs that modulate fibrinolysis,

how this is perturbed during thromboinflammatory diseases, as

well as highlight existing and novel aspects to exploit for novel

therapeutics.
α2-Antiplasmin—“the alpha SERPIN”

α2AP is the principal inhibitor of plasmin in vivo (22). It is an

unusual SERPIN as its extensive C-terminal lysine-rich tail initially

docks to the kringles of plasmin forming a non-covalent complex

(23). Following plasmin cleavage of the RCL a stable covalent 1:1

plasmin-antiplasmin (PAP) complex is formed. The main plasma

pool of α2AP is secreted by hepatocytes (Figure 2) (24) and

circulates at 70 µg/ml, over 1,000-fold higher than PAI-1 (25).

Despite being the dominant fibrinolytic SERPIN in plasma its

level is surprisingly still lower than the zymogen concentration of

its target enzyme, plasminogen (200 µg/ml) (26). However, the
FIGURE 1

The fibrinolytic response. Coagulation results in thrombin cleavage of fibrino
blood cells, stabilising the clot. Once bleeding has been controlled and dam
network. Fibrinolysis occurs when plasminogen activators, urokinase- (uPA
degrades fibrin into fibrin degradation products (FDP) which can be efficientl
inhibit the activity of these serine proteases to avoid uncontrolled activity t
arrows signal catalytic conversion of proteins and enzymes from inactive to
arrows denote the specific inhibition of enzymes by different SERPINs.
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inhibitor is covalently cross-linked to fibrin through the action of

the transglutaminase, activated factor XIIIa, during thrombus

formation thereby localising it at the site of action and

enhancing its efficacy (27, 28). Our laboratory has previously

shown that cross-linking of α2AP into a thrombus is dependent

on flow or shear stress (29) and others have demonstrated that

compaction of clots is sufficient to promote the crosslinking

reaction (30). Interestingly, despite its plethora of other

substrates, the antifibrinolytic action of factor XIIIa is exclusively

accounted for by cross-linking of α2AP (31) illustrating the

“alpha” role of this SERPIN in modulating fibrinolysis. α2AP

exists in several forms within the circulation (32). The secreted

form, Met-α2AP, is cleaved by α2AP cleaving enzyme (APCE) to

form Asn-α2AP (33) which cross-links thirteen times faster to

fibrin, due to exposure of glutamine 2 in this truncated form

(32). The C-terminus is post-translationally modified by an as

yet unidentified enzyme in the circulation with downstream

impact on the interaction with plasmin(ogen) (32).

Dysregulation of α2AP disrupts the fibrinolytic balance leading

to a risk of thrombosis or bleeding (34, 35). Congenital α2AP

deficiencies, in which the mutation perturbs protein levels and/or

function are associated with excessive or delayed bleeding

following trauma and/or spontaneous rebleeding (36, 37). An

acquired deficiency in α2AP can occur due to infusion of

thrombolytic agents and is commonly associated with severe liver

disease and acute leukaemia (36, 37). In contrast, elevated levels

of α2AP are linked with diseases such as atherosclerosis thereby

provoking the risk of ischemic stroke (IS) and myocardial

infarction (MI) (38, 39). Experimental models of IS indicate that
gen into fibrin. Fibrin threads become crosslinked, trapping platelets and
age to vessel repaired, the fibrinolytic pathway acts to dissolve the fibrin
) and tissue-type- (tPA), cleave plasminogen to plasmin. Plasmin then
y cleared from the circulation. Serine protease inhibitors (SERPINs) act to
hat can lead to bleeding complications and dysregulated activity. Solid
active states, while dashed arrows signal proteolytic activity. Blunt red
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elevated levels of α2AP lead to a reduction in thrombus dissolution

and enhanced necrosis, while neutralisation of this SERPIN during

thrombolytic therapy significantly improves outcomes (40).

Increased levels of α2AP are directly linked to adverse outcomes

in terms of ischemic brain injury, swelling, microvascular

thrombosis and mortality following cerebral thromboembolism

(41). Several avenues have been pursued to neutralise the activity

of α2AP, including microplasmin and plasmin infusions,

neutralising antibodies, and synthetic peptides (42–44). In a

mouse model of IS infusion of plasmin or immunoneutralization

was shown to temporarily lower systemic α2AP levels for around

24 h (43).

Significantly elevated levels of circulating α2AP have been

identified as a key component in the pathophysiology of

pulmonary arterial hypertension (PAH), contributing to poorer

outcomes and higher mortality (45, 46). Reduced interactions

between prekallikrein, factor XI (FXI) or α2AP, with small high-

density lipoprotein subclasses correlate with higher mortality in

PAH patients (47). A significant relationship has also been

observed between α2AP and obstructive sleep apnoea (OSA),

cardiomyopathy, congestive heart failure, and atrial fibrillation

(48). Interestingly, increased levels of both α2AP and PAI-1

correlate with augmented prothrombotic activity in patients with

OSA (49). These data suggest that inhibition of these SERPINs

may be potential therapeutic option to down-regulate thrombotic

complications in OSA. Interestingly, a significant decrease in

α2AP activity has been observed in arterial hypertension,

reflecting a shift to a hyperfibrinolytic state (50). The implication

of these findings is not year clear and requires further exploration.

Therapeutic targeting of α2AP is an attractive strategy which

could mitigate the bleeding risk associated with conventional

anticoagulant and thrombolytic therapy. A phase 1 clinical trial

in patients with acute lower extremity arterial or bypass

occlusion indicated that catheter-delivered plasmin at high doses

significantly reduced systemic α2AP by 39% resulting in >50%

clearance of the thrombus in 79% of patients (51). This

interesting study indicates that consumption of endogenous

α2AP is a safe and effective way of promoting thrombolysis in

vivo. A novel monoclonal antibody that inactivates α2AP, TS23

(42, 52), has been used in phase 1 clinical trials in healthy

individuals, but outcomes are not yet available. A randomised

phase 2 clinical trial was started earlier this year to evaluate the

efficacy of TS23 in treating acute pulmonary embolism (53), with

results expected in 2024. These developments are promising and

signify considerable interest in targeting this SERPIN for a

variety of thrombotic and cardiovascular conditions and one

would hope that new drugs and compounds directed toward

α2AP may be on the horizon in the not-too-distant future.
Plasminogen activator inhibitor-1
—“the premier PAI”

PAI-1 is a 45 kDa glycoprotein and the “premier” inhibitor of

plasminogen activators (PAs) (54). PAI-1 is highly expressed in

many tissues, including placenta, gallbladder, liver, lung, and
Frontiers in Cardiovascular Medicine 03
kidney as well as various cell-types such as platelets,

syncytiotrophoblasts, adipocytes, smooth muscle cells (SMCs),

endothelial cells, and fibroblasts (Figure 2) (55–59). Levels of

PAI-1 in plasma are relativity low (20 ng/ml) (60) with the main

circulating pool found within the α-granules of platelets (61).

PAI-1 is expressed by megakaryocytes, the precursor cells of

platelets (62, 63) and is packaged into α-granules during

biogenesis. However, mRNA can be found within platelets where

the inhibitor is synthesised to a limited degree in its active form

(62). Unlike other SERPINs, PAI-1 can spontaneously transition

from its unstable active form (half-life ∼1 h) (64), to a more

thermodynamically stable latent form, extending the half-life to

∼2–4 h (65). Plasma PAI-1 levels are known to oscillate in a

circadian rhythm, peaking in the morning (66, 67) thereby

reducing fibrinolytic potential (68). This diurnal variation in

PAI-1 has been postulated to explain the morning peak in

adverse cardiovascular events (69, 70). Circulating levels of PAI-1

are influenced by the 4G/5G genetic polymorphism in the

promoter region (71). Elevated levels of PAI-1 in the morning

are most apparent in homozygotes for 4G and intermediate for

heterozygotes (72, 73).

Deficiency in PAI-1 is associated with hyperfibrinolysis, which

can be either congenital or acquired. A complete PAI-1 deficiency

is characterised by a mild-moderate bleeding diathesis most

commonly associated with trauma or surgery (74). Despite equal

prevalence in males and females, PAI-1 deficiency is usually

diagnosed earlier in females due to menorrhagia and postpartum

haemorrhage (75). Acquired deficiency in PAI-1 is a common

consequence of cirrhosis of the liver and observed clinically as

increased levels of circulating D-dimers and fibrin degradation

products (FDPs) (76–78). Conversely, elevated PAI-1 incites a

hypofibrinolytic state, which has been linked to increased risk of

venous and arterial thrombosis (79, 80).

Elevated levels of PAI-1 have been correlated with IS (81–83).

Similarly increased levels of inflammatory markers and fibrinolytic

inhibitors, including PAI-1, were recorded in intracranial large

artery atherosclerosis (ILA), a major cause of IS (81, 84).

Importantly, PAI-1 and C-reactive protein could predict ILA

progression independent of other biomarkers assessed; these data

highlight the unique relationship between pro-inflammatory and

hypofibrinolytic states (81). Elevated plasma levels of TNF-α,

PAI-1, and tPA, markers of immuno-inflammatory activation

and endothelial dysfunction, correlate with stroke diagnosis (85).

The “sterile” thromboinflammatory state observed in stroke

patients is observed in other conditions such as venous

thrombosis, diabetes and autoimmune diseases (86). A

retrospective observational clinical trial is currently investigating

differences in factor VIII, tPA, and PAI-1 as biomarkers for the

occurrence of intracranial haemorrhage in patients with acute IS,

pre- and post-treatment with alteplase (87). A population-based

case-control study demonstrated that elevated levels of PAI-1 are

predictive of venous thrombosis (88). Interestingly, a recent study

investigating deep vein thrombosis (DVT) in patients following

total hip arthroplasty, found that PAI-1 expression was a

postoperative biomarker (89). Similarly, PAI-1, fibrinogen, and

D-dimers were predictive of postoperative DVT following surgery
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for lower limb trauma (90). Collectively these studies highlight the

prognostic power of PAI-1 in a variety of thromboinflammatory

conditions, however, this would require further work to establish

and standardise normal ranges.

Attenuated fibrinolysis is a significant factor in obesity-

associated thrombosis, attributed to an increase in PAI-1 levels

(91–93). Elevated gene expression and plasma tPA are also

observed in obesity which is suggested to be a compensatory

mechanism to overcome PAI-1, despite this, hypofibrinolysis

persists (94, 95). Adipocytes are proposed as the principal source

of PAI-1 with enhanced synthesis primarily driven by the

proinflammatory cytokines TNF-α and TGF-β1 (93, 96, 97).

Interestingly, in healthy individuals there was no arterio-venous

differences in PAI-1 antigen or activity across an adipose tissue

bed (98). An interesting study on glycosylation of PAI-1

suggested that in lean individuals the primary source of PAI-1 is

platelets while in obese subjects the glycosylation pattern of

plasma PAI-1 mimicked that of adipose tissue, suggesting these

cells contribute to circulating levels (99). Recently hepatocytes

have been described as an alternative source of increased PAI-1

and tPA in obesity due to alterations in the hepatic PAI-1/tPA

gene regulatory pathways (95). Further research into the various

cellular sources of plasma PAI-1 could be fruitful for future

targeting of this SERPIN in various cardiometabolic diseases.

The most frequent cause of MI is rupture of atherosclerotic

plaque, leading to occlusive thrombus formation. Many cells that

express PAI-1, such as platelets, macrophages, and SMCs reside

within the plaque milieu (100–102). Atherosclerotic progression

is associated with platelet activation and PAI-1 secretion thereby

promoting thrombus resistance to lysis (103–106). Recurrence of

MI has also been linked to increased plasma levels of PAI-1

(107, 108). It was suggested that this causality may arise due to

the multifaceted role of PAI-1 in aging, fibrinolysis, and

endothelial injury (109, 110), with elevated levels provoking a

prothrombotic and profibrotic state, thereby impairing clot

breakdown and driving endothelial dysfunction (111). The onset

of acute MI follows diurnal oscillations, with most cases

occurring in the morning between 6:00 am and noon (112).

Misalignment between the internal and external clock, for

instance during daylight saving time, have been associated with

increased risk of MI (113). A recent study on acute MI

determined a correlation between tPA and PAI-1 levels with

highest levels recorded in the morning (114), in agreement with

earlier studies (66–68, 70). However, treatment with the anti-

platelet drug clopidogrel gave rise to elevated levels of PAI-1 in

those acute MI patients resistant to clopidogrel, but not

clopidogrel-sensitive patients (114). These interesting data suggest

that increased evening PAI-1 may relate to platelet activation and

underscore the diurnal changes that occur both naturally in this

SERPIN and in response to drugs. Several clinical trials are

currently investigating PAI-1 in different thromboembolic

conditions. Eplerenone, a selective aldosterone receptor

antagonist, was shown to attenuate the morbidity and mortality

of patients with acute MI (115), and is being analysed to reduce

PAI-1 levels in aldosterone-induced MI in a randomised control

study (116). A first-in-class orally available PAI-1 inhibitor for
Frontiers in Cardiovascular Medicine 04
the treatment of fibrosis and fibroproliferative disorders is

currently in phase 1 clinical trials (117). Metformin, a type-2

diabetes treatment, is currently being investigated in a phase 4

non-randomised trial for its use in PAI-1 deficient individuals to

prevent/stabilise cardiac fibrosis (118).

During the COVID-19 pandemic thromboembolic

complications were quickly recognised as a consequence of severe

disease (119, 120). Reduced fibrinolytic capacity, observed as

prolonged clot lysis, increased clot strength, and elevated platelet

counts, were observed in 70% of COVID-19 patients (121). This

has been attributed to variations in fibrinolytic factors such as

PAI-1 (>2-fold), tPA (>1.6-fold), and thrombin activatable

fibrinolysis inhibitor (TAFI) (>1.7-fold) in critically ill

COVID-19 patients (122). Dysregulation of haemostasis in

patients with severe COVID-19 is linked to an aberrant

hyperinflammatory state triggered by the cytokine storm (123).

We demonstrated elevated PAI-1 in a cohort of hospitalised

COVID-19 patients that supressed plasmin generation and tPA-

mediated lysis thereby driving the suboptimal fibrinolytic

response (124). Interestingly, a direct association between PAI-1

and hypofibrinolysis was also observed during the SARS-CoV

outbreak of 2002 (125). A double-blind randomised phase 2

clinical trial of a novel PAI-1 inhibitor (TM5614) to evaluate its

efficacy in treating severe COVID-19 (126) has unfortunately

been suspended due to challenges in patient recruitment and

drug manufacturing issues. Similarly, a case-control prospective

clinical trial to assess the predictive power of PAI-1 in the

development of severe COVID-19 was initiated but has not been

updated suggesting issues with recruitment (127).

These studies and observations indicate that PAI-1 is a

powerful player in defining the physiological and

pathophysiological response. A diverse portfolio of PAI-1

inhibitors, including antibodies, nanobodies, antibody fragments,

and peptides, have been reported in the literature but we are yet

to see a drug traverse the pipeline for clinical use (128–130).
Plasminogen activator inhibitor-2
—“the incognito PAI”

PAI-2 is expressed in multiple cells, such as monocytes,

granulocytes, trophoblasts, epithelial and endothelial cells

(Figure 2) (131–133). Elevated PAI-2 is observed in pregnancy

and is related to increased cellular expression by the

trophoblastic epithelium of the placenta (134). PAI-2 lacks a

signal peptide for release (135), and therefore its function is

presumed to be intracellular, as reflected by the negligible levels

in plasma. Nonetheless, this “incognito” SERPIN has the capacity

to inhibit many extracellular proteases, despite reduced efficacy

toward tPA and uPA compared to PAI-1 (136, 137). Studies

related to PAI-2 in pathophysiological states are limited, however

there are reports to suggest that PAI-2 can modulate venous

thrombus (138), coronary artery disease (139, 140), and cerebral

artery occlusion (83). Upregulation of PAI-2 has also been

observed in patients with acute respiratory distress syndrome

(ARDS) (141). Interestingly, PAI-2 expression is markedly
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FIGURE 2

Cellular origins of SERPINs involved in fibrinolysis. Plasminogen activator-1 and -2 (PAI-1 and PAI-2), Protease nexin-1 (PN-1), alpha2-antiplasmin (α2AP),
and C1-inhibitor (C1-INH) are all synthesised by various cell types throughout the body.
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increased after exposure to inflammatory stimuli such as TNF-α,

suggesting a role for this SERPIN in inflammation (131, 132) as

well as other processes such as apoptosis (142), infection (143)

and cancer (144).

An instrumental study into the role of PAI-2 in fibrinolysis

demonstrated that venous thrombi from PAI-2 deficient mice

harboured 12-fold higher levels of active uPA (138). There was
Frontiers in Cardiovascular Medicine 05
also pronounced improvement in thrombus resolution in both

PAI-1 and PAI-2 deficient mice; this is likely linked to the

overexpression of uPA and the observed infiltration of

inflammatory cells, such as neutrophils and macrophages (138,

145, 146). Interestingly, enhanced monocyte-derived uPA activity

(150-fold) has been associated with reductions in PAI-1 and

PAI-2, 1.6- and 2.1-fold respectively, and more efficient
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dissolution of thrombi (146–148). In contrast, formation of

thrombi was only impaired by PAI-1 deficiency (138), indicating

a complex interplay of these two SERPINs in venous thrombus

formation and resolution.

PAI-1 and PAI-2 have been investigated in IS, in a model of

middle cerebral artery occlusion (MCAO) (83). They found that

24 h post-stroke, levels of PAI-2 and PAI-1 mRNA were

significantly overexpressed, 19- and 237-fold, respectively. PAI-1

deficient mice had a 31% decrease in brain infarct volume 24 h

post-MCAO, however this was not observed in PAI-2 deficient

mice, suggesting this SERPIN has limited impact on secondary

brain damage post-stroke (83). The role of PAI-1 in brain injury

is well established but given the limited studies on PAI-2 the

significance of this SERPIN in this setting remains unclear (109,

149, 150).

Clearly, we currently lack an understanding of the relevance of

PAI-2 in both the intracellular and extracellular space. The distinct

elevation of plasma PAI-2 in pregnancy and the relationship with

inflammation demands further attention and underscores are

limited knowledge. PAI-2 has been presumed to function

intracellularly yet the limited studies available indicate that it can

“escape” to the circulation which may be promoted under certain

pathophysiological conditions and/or environmental settings.
Protease nexin-1—“the binary SERPIN”

PN-1 was originally identified in glial cells in the 1970s (151)

and has subsequently been found in a variety of cells including

epithelial, fibroblasts, glial cells, and trophoblasts (Figure 2)

(152, 153). Within the SERPIN superfamily PN-1 is the

phylogenetically closest relative to PAI-1, sharing both structural

and functional homologies (154, 155). PN-1 levels are negligible

in plasma but, like its phylogenetic cousin PAI-1, it is found at

high concentrations within platelet α-granules (156). Activated

platelets secrete PN-1 in response to agonist stimulation which

attenuates plasmin generation and activity (156). PN-1

demonstrates “binary” function as it targets the primary serine

proteases of the coagulation and fibrinolytic cascade, thrombin

and plasmin, as well as other enzymes within these pathways

including factor XI (FXI), tPA and uPA (156–158).

In the last two decades the focus on PN-1 has intensified with

various links to haemophilia (159) and fibrosis (160) reported.

Cardiac fibrosis is defined as an excessive accumulation of

extracellular matrix (ECM) proteins (161) promoting myocardial

stiffness and altered systolic function (162). Elevated PN-1 was

recorded both in vivo and in vitro in mouse models of fibrosis

(163), with mRNA expression increased 5.5- and 1.9-fold in the

plasma and myocardium, respectively. This increase is

hypothesised to be attributed to PN-1 inhibition of uPA in the

extracellular space (164). Aspirin attenuates PN-1 levels in

cardiac fibrosis due to repressed phosphorylation of Erk1/2-PN-1

and blockage of the MAPK-Erk1/2-PN-1 pathway in cardiac

fibroblasts, suggesting utility as a drug target or marker of

disease progression (163, 165). There are currently no drugs with

antifibrotic activity approved for clinical use (166), although
Frontiers in Cardiovascular Medicine 06
PAI-1 has been highlighted (117, 118). Given the close

phylogenetic connection between these SERPINs further work

into the role of PN-1 in this setting could be of value.

PN-1 inhibits thrombin generation and activity in vitro,

more efficiently than other SERPINs, with an inhibitory

constant (Ki) of 1.41 × 10−6 M−1s−1 (167) compared to Ki of

1.08 × 10−4 M−1s−1 for antithrombin (168). In PN-1 deficient

mice thrombus formation was augmented, as characterised

both in ex vivo collagen-induced flow models and in vivo

FeCl3 induced injury (169). Neutralising antibodies to PN-1

enhance thrombin activity in mild to moderate haemophilia A

and mild haemophilia B patients highlighting its potential as a

treatment for haemophilia activity (159, 170). These studies

reveal that the role of PN-1 in thrombin inhibition could be

exploited as a future pharmacological intervention.

Nonetheless, the capacity of this “binary SERPIN” to also

inhibit plasmin and uPA in vivo must be teased out before

development of therapeutic strategies.
C1-inhibtor—“the bountiful SERPIN”

C1-INH is the most abundant protease inhibitor in plasma

circulating at a massive 250 µg/ml (171), perhaps reflecting the

diversity and number of protease targets. It was conventionally

considered an inhibitor of the complement pathway (C1r and

C1s) and the contact system (FXIIa, FXIa, and kallikrein),

however, it has also been shown to target enzymes in the

fibrinolytic pathway, including plasmin, tPA, and uPA (15,

172). C1-INH is primarily produced by the liver, but is

expressed in other cell types, such as monocytes/

macrophages, endothelial cells, SMCs and fibroblasts

(Figure 2) (173–176). Platelet α-granules also harbour C1-

INH although this accounts for only 0.08% of the total

circulating pool (177, 178).

A deficiency or impaired function of C1-INH is associated

with angioedema, both hereditary (HAE) and acquired (179,

180). Acute attacks in HAE patients (C1-INH-HAE) are

characterised by swelling of deep tissue and mucosa, as a

consequence of local vascular leakage and an increase in

bradykinin (181). Interestingly, the most common sites of

swelling in these patients are in areas of high fibrinolytic

activity, such as the lips, mouth, tongue, eyelids and genitalia

(182, 183). A recent study investigating the risk of

comorbidities in HAE found increased risk of hypertension,

arterial and venous embolism, in line with C1-INH’s

multifunctional role in various pathways (184, 185).

Antifibrinolytic drugs, such as tranexamic acid can reduce the

severity of HAE attacks (186, 187), however the efficacy of this

treatment is exceptionally variable (188, 189). There are many

studies, both interventional and observational, investigating

C1-INH deficiency, but the majority focus on the link with

angioedema (190–193). Interestingly, angioedema is a common

side-effect of thrombolytic therapies (194, 195) suggesting

further linkage between these pathways, however, C1-INH

function in the fibrinolytic pathway has largely been
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overlooked and understudied (171, 196). To add to the

complexity while C1-INH directly inhibits both plasmin and

tPA, it can itself be inactivated by plasmin cleavage (171).

Additionally, there have now been several studies to indicate

an increase in various prothrombotic plasma proteins,

including factor XIIa, prothrombin, D-dimer and thrombin

generation in C1-INH deficient patients (181, 197–199).

Replacement therapies with human C1-INH reduce circulating

levels of these markers thus lowering thrombotic risk (200,

201). C1-INH deficient mice also show increased activation of

the coagulation pathway and venous thrombosis (202).

Interestingly, in the general population low levels of C1-INH

correlate with an increased risk of venous thrombosis (203).

C1-INH has been investigated in COVID-19 disease, partly due

to its similarities in disease progression as HAE, including immune

activation driving inflammation, endothelial dysfunction, and

altered fibrinolysis (204, 205). Elevated C1-INH was identified in

patients with severe, but not non-severe COVID-19 (206, 207).

Current randomised clinical trials are studying C1-INH in

relation to COVID-19 to reduce disease progression (208) and its

use as a co-therapy with icatibant, a competitive antagonist to

bradykinin, on the pulmonary manifestations of COVID-19

disease (209).

C1-INH is critical in the inhibition of multiple enzymes/factors

in the contact, complement, and fibrinolytic systems (172).

Research in this field is divided on whether there are thrombotic

risks associated with C1-INH deficiency, accentuating an

opportunity to bridge gaps in our knowledge. The “bountiful”

array of protease targets of this SERPIN in the inflammatory,

haemostatic and complement pathways has directed attention

toward its value as a therapeutic and predictive biomarker, with

ongoing clinical studies highlighting its potential in various

thromboinflammatory conditions.
Concluding remarks

SERPINs play multi-functional roles targeting serine

proteases in the complement, coagulation and fibrinolytic

pathways, orchestrating a fine balance between promotion and

inhibition of these pathways. In the last few decades, many

studies have helped decipher the behaviour of α2AP, PAI-1,

PAI-2, PN-1, and C1-INH in thrombotic and inflammatory

diseases. Primarily these SERPINs have been suggested to have

predictive powers, although their precise role in different

disease settings has not been fully disentangled and additional

studies would be necessary to standardise normal ranges.

Nevertheless, elevated levels of these SERPINs are related to

the incidence, severity, and prognosis of various

thromboembolic diseases, including ischemic stroke,

myocardial infarction, along with pathogenic infections, such

as COVID-19 and sepsis, and inflammation, such as

angioedema. Evidently, the power and regulatory capacity of

PN-1 and PAI-2 are understudied thereby currently precluding

their viability as therapeutics, but yet leave the door open to
Frontiers in Cardiovascular Medicine 07
future research in the field. However, there is currently

significant interest in targeting α2AP, PAI-1, and C1-INH in a

variety of thromboembolic and inflammatory conditions.

Understanding the complex interplay of SERPINs in regulating

the fibrinolytic response is imperative to define their critical

role in maintaining haemostasis and will provide clues as to

the intertwined relationship between the fibrinolytic,

inflammatory and complement systems. Despite the current

state of knowledge and rational for various SERPINs as

therapeutics, there are currently an exceptionally limited

repertoire of drugs with regulatory approval to target these

inhibitors. With the current interest in thromboinflammation

it is a prime opportunity to propel these “super” SERPINs into

the limelight to understand their biological function and

utility as therapeutic targets.
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