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A B S T R A C T   

Greenhouse gas (GHG) modelling tools or the Intergovernmental Panel on Climate Change (IPCC) inventory 
methods are often used to identify suitable mitigation strategies for GHG emissions from rice, since measuring 
them in field is challenging and costly. Here we report an up-to-date quantitative review on methane (CH4) 
emission from rice paddies using information obtained from peer-review articles. Statistical analysis was con-
ducted on the factors controlling CH4 emissions and a generalised additive model (GAM) was developed to es-
timate emission factors (EFs). Results showed that emissions were strongly linked to water regime, soil texture 
and organic amendment practices. Fields that were rainfed during the dry season or saturated emitted 70% and 
56% that of continuously flooded fields, while applying straw off-season instead of within-season could decrease 
emissions by 48%. An independent dataset was used to evaluate the new model performance against existing 
models with the new model showing R2 values of 0.47 (n: 169), compared to 0.01–0.09 (n: 169) for the existing 
models. New baseline EFs was estimated at global, regional, and Country scale with result showing that using 
different pre-season water management when calculating baseline EFs at country level is vital in order to reflect 
the variation between tropical and temperate rice regions accurately. Our findings shows that the new model is 
more sensitive in capturing differences in management practices between tropical and temperate rice, and their 
impacts on CH4 emissions with baseline EF calculations accounting for these differences providing sound miti-
gation strategies.   

1. Introduction 

Rice is a major cereal crop for half of the world’s population ac-
counting for two thirds of the daily calories for nearly three billion 
people (Mosleh et al., 2015; Wang et al., 2017). Its production is a potent 
source of anthropogenic greenhouse gases (GHG), accounting for up to 
55% of the total GHG emission budget from agricultural soils (IPCC 
et al., 2013) and for 6–11% of the global methane (CH4) emissions from 
anthropogenic sources (Smith et al., 2021). With production increasing 
to meet the demand of a growing population, rice paddies will 
contribute to increased emissions from agricultural soils. The rising 
concerns of climate change will require climate smart management and 
increased consideration on use of resources, particularly through water 
management practices with traditional rice paddy management relying 

on large amounts of water (Tian et al., 2021). Studies carried out by 
Maraseni et al., (2018) covering eight rice producing countries in Asia 
show that the emissions per kilogram of rice decreased by 44–69% from 
1961 to 2014 due to improved productivity and crop intensity. How-
ever, with rice production, on average, requiring 2500 L of water per 
kilogram of rice, which is two to three times more than for other cereal 
crops (Bouman, 2008), and with CH4 emission being driven by flooding 
of fields (Yan et al., 2009; Smith et al., 2021), further research on 
climate smart management is needed to support reductions in emissions 
intensity. 

Water management and system of rice intensification are predicted 
to be the main factors for producing more rice with less energy, water 
and land resources in the future (Maraseni et al., 2018) with water 
management being one of the most common interventions for mitigating 
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emissions from rice paddies along with alterations to type and amount of 
fertilizer used, use of nitrification inhibitors, cultivar selection, incor-
poration of organic material or changes in tillage practices (Nayak et al., 
2015; Wang et al., 2018). Optimising water usage for rice paddy fields 
can therefore lead to a reduction in GHG emissions, and reduced pres-
sure on local water resources, with rice production using up to 40% of 
global water resources (Lampayan et al., 2015; He et al., 2020). Recent 
studies have shown that alternate wetting and drying, where the 
quantity of water and drainage period follows the plant’s growth stages, 
reduces CH4 emissions while having a lower yield penalty than the more 
traditional water mitigation options. It also reduces arsenic uptake by 
rice plants (Lagomarsino et al., 2016; Linquist et al., 2015; Norton et al., 
2017) and may reduce irrigation costs by reducing the amount of water 
use by 42% compared to continuously flooded fields (Linquist et al., 
2015; LaHue et al., 2016; Chidthaisong et al., 2018). Studies by Sri-
phirom et al. (2019) showed that alternate wetting and drying could 
reduce emissions by up to 23.1% during the dry season in Thailand 
compared to continuously flooded fields, while Lagomarsino et al. 
(2016) showed a reduction of up to 97% in Italy. Studies from California, 
North America showed a reduction in CH4 of 60–87% (LaHue et al., 
2016). Traditional water management strategies are, however, still 
useful mitigation strategies in areas where alternate wetting and drying 
might not be suitable. Studies have showed that single drainage can 
decrease CH4 fluxes by 45% compared to continuously flooded fields 
(Meijide et al., 2011), while the application of nitrogen (N) inhibitors 
could reduce both CH4 and soil N2O emissions by 21% and 24%, 
respectively (Nayak et al., 2015). Water usage during pre-season, and 
time between crop cycles, also influence emissions and should be 
included when considering mitigation strategies from rice paddies, with 
studies on a winter flooded rice site in the Mediterranean showing that 
63.1% of CH4 were emitted during the flooded fallow season (Martí-
nez-Eixarch et al., 2021). Wang et al. (2018) showed at sites with mul-
tiple rice cropping, that leaving the field drained for less than 30 days 
between crop cycles emitted 2.4 to 4.1 times more than fields which had 
longer durations of drainage. 

Incorporation of organic material may not be the most suitable for 
reducing emissions from rice as increased soil carbon leads to increased 
CH4 emissions with CH4 being a product of anaerobic organic matter 
decomposition (Meijide et al., 2017), however, carbon sequestration is 
one of the best countermeasures for mitigating agricultural GHGs, with 
soils storing two to three times more C than the atmosphere (Minasny 
et al., 2017; Begum et al., 2018a). Options for improving soil seques-
tration while minimising emissions include timing the incorporation of 
organic material correctly, e.g. incorporating straw immediately after 
harvest in the previous season, which can halve CH4 emissions 
compared to the application of straw just prior to transplanting (Wang 
et al., 2018). Management, soil and climatic conditions are highly var-
iable across regions and as such mitigation of GHGs from rice should be 
carefully considered, for the individual region or site, with focus on the 
reduction of a field’s total net GHG balance without yield penalty 
(Smith, 2012) with rice having a bottom-up mitigation potential of 10.6 
Tg CH4 y− 1 (Smith et al., 2021). 

GHG emissions are difficult, costly and time consuming to measure 
and thus many farmers and supply chain actors rely on GHG calculators 
to estimate their emissions and provide suitable mitigation options. The 
tools can be used to inform growers on how they best can minimise their 
environmental footprint without it having a negative impact on their 
finances (Hillier et al., 2011; Clift et al., 2014). For the tools to be 
effective, it is crucial that they can provide accurate estimates and 
mitigation options at a regional scale by considering the wide variation 
in management practices across the globe. There are, at present, several 
different models for predicting CH4 emissions from rice from the more 
advanced process-based models of DeNitrification-DeComposition 
(DNDC) and DayCent (Li et al., 2004, Cheng and Ogle, 2014) to the 
empirical tier 3 models of Wang et al. (2018) and the tier 1 IPCC (2019) 
methods. The process-based models are often too site specific to work on 

a global scale due to the amount of input parameters required (Del 
Grosso et al., 2011; Cheng and Ogle, 2014; Begum et al., 2018b) and as 
such the empirical models are more commonly used due to their 
simplicity. 

Studies done by Nikolaisen et al. (2023) showed that the empirical 
models for most rice-producing countries, could predict emission trends 
and management effects, but struggled to predict the magnitude of 
emissions, suggesting that the models lack sensitivity to key variables. 
As such, the ability to provide adequate mitigation options by only 
considering a handful of variables that influence these emissions may be 
limited, particularly if such models are prone to geographical bias. Soil 
texture, planting method, cultivar type and variation between single and 
dual cropping have not previously been included in CH4 emission 
models for rice. Water management practices, such as alternate wetting 
and drying or winter flooding in pre-season or use of biochar are also 
excluded, and emission data from temperate regions are greatly 
under-represented, raising concerns about the relevance of the existing 
models for estimating EFs globally. As many countries rely on the IPCC 
tier 1 methods for estimating emissions for their national reports, the 
accuracy of these models is crucial when it comes to GHG mitigation and 
reduction targets for each country. Our aim, therefore, is to produce a 
global empirical model for quantifying rice based CH4 emissions with 
the objectives being to (1) consider factors such as soil texture, planting 
method and the wide range of management practices that differ between 
countries, (2) emphasis on collection of data from non-Asian rice pad-
dies and (3) estimate updated baseline EFs and how these are currently 
calculated. Based on the new model, the updated EFs will be compared 
to existing, global, regional, and country-specific EFs, and the model will 
be evaluated against existing models using an independent dataset. 

2. Method 

2.1. Database collation 

Data on CH4 emissions from rice and influencing factors were 
collected using peer-reviewed articles published before 2022 through a 
comprehensive literature search. Google Scholar, Scopus and ISI-Web of 
Science were searched for the following keywords in various combina-
tions; “Rice”, “Paddy”, “Methane”, “CH4”, “emission”, “greenhouse gas”, 
“GHG” and each rice producing country based on Food and Agriculture 
Organization of the United Nations (FAOSTAT) list (FAO, 2019a). Only 
original data which directly measured CH4 emissions from fields were 
included; studies which involved use of greenhouses, laboratories, pots, 
or computer modelling in the data collection process were excluded. For 
a paper to be deemed suitable it needed to contain information on soil 
pH, soil organic carbon (SOC), water management practice during 
growing season, organic amendment where applicable and cumulative 
CH4 emission. In addition to the key variables, a range of additional data 
were collected when available (A.1). In total, 245 publications 
comprising 2301 measurements fit the quality criteria. Of these, 225 
with 2132 measurements were used for model creation, while papers 
published 2020 or later (169 datapoints from 20 publications) were held 
back for model evaluation. 

CH4 emissions were extracted directly from text, tables or figures 
within the publications and converted to seasonal, daily, and hourly 
emission values based on crop duration or recorded measurement 
period. If both measurement and crop duration were recorded, then 
measurement period was used for converting and calculating the emis-
sions. In cases where crop duration was not mentioned, estimation was 
made based on the same cultivar from the same country, or if months of 
sowing/transplanting and harvest where given, the number of months 
would be counted and multiplied by 30. If it was expressed as early, mid, 
or late in a month it was calculated by number of months multiplied with 
30 plus half a month (15 days). In publications where data were pre-
sented in graphs or figures rather than text, the online tool, Webplot 
digitizer, was used for extracting the data (Rohatgi, 2021). To 
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distinguish the climate zone of a location, the Köppen-Geiger climate 
classification maps and 2nd level climate class groups (Beck et al., 2018) 
were used as shown in Fig. 1 with group description in Table 1. 

In some cases, variables were aggregated into fewer classes. For soil 
texture, the United States Department of Agriculture (USDA) soil texture 
classification system was used. Based on sand, silt and clay content or 
soil texture description in individual studies they were divided into five 
classes: coarse, moderately coarse, medium, moderately fine, fine (FAO, 
2019b). Growing season was divided into single, early, late, wet, and dry 
season based on crop information for each study. Planting method was 
divided into three groups; ‘transplanted’ when seeds are germinated off 
site and planted in the field once they have reach preferred height, 
‘direct wet-seeding’ when seeds are broadcasted into flooded fields 
before fields are drained to allow seeds to germinate before fields are 
reflooded, and ‘direct dry-seeding’ for when seeds are drill seeded or 
broadcast on dry fields. Organic amendment was classed into the groups 
of biochar, green manure, farmyard manure, compost, and straw. Straw 
application was classed as either on (within) or off (outside) season since 
timing of straw incorporation affects CH4 emissions, in which on season 
was defined as straw incorporation right before (trans)planting of rice 
while off season if incorporated directly after harvest. If straw was left 
on field after harvest, but not incorporated before the start of the next 
planting, then it was classed as on season (Wang et al., 2018). Organic 
amendment was also classified by application methods of incorporated, 
surface-applied, burnt, or unknown. Amount of organic amendment was 
extracted and converted into dry weight for straw and fresh weight for 
compost and manures (t/ha) when necessary. In cases where moisture 
content of wet rice straw was not recorded, we used IRRI’s moisture 
estimate for straw which ranged between 15 and 18% (Jenkins, 1998; 
International rice research institute, 2005). The total amount of organic 
amendment applied for each plot was log transformed using ln(totOA +
1), to decrease the influence of individual extreme input values. 

For water regime, the IPCC (2019) classification groups were used, 
that is, continuously flooded, single/mid-season drainage, multiple 
drainage, dry and wet season rainfed, deep water or unknown. In 
addition to this, we added two new water regime groups: saturated for 
when fields where moist but not flooded, and alternate wetting and 
drying. The pre-season water regimes were grouped into flooded, short 
drainage, long drainage or unknown as per IPCC (2019). In addition, 
winter flooded was added as a variable to include European and North 
American fields that are left flooded during the fallow season. Where 
fields had double cropping and pre-season water was not described, 
sowing and harvest dates were used for calculating the number of days 
between cropping. We then used the IPCC (2019) pre-season water 
regime classification to determine the class; flooded if less than 30 days 
prior to planting, long drainage if left bare for more than 180 days or 
short drainage if less than 180 days. In cases where (trans)planting and 

harvesting dates were not provided, we assumed that if double cropping, 
late rice would often be planted directly after early rice in which the 
pre-season water regime for the late crop would be classed as flooded 
(less than 30 days). If single crop planting occurred with no indication of 
winter flooding, it was classed as long drainage. In some instances, 

Fig. 1. World map showing location of each experiment and climate distribution across continents.  

Table 1 
Definition and criteria for climate groups. Full list including those climates not 
included in our database and additional subgroups can be found in Beck et al. 
(2018) Table 2.  

Climate group (2nd) Definition Criterion  

Tropical Not (B) & Tcold≥18 
Af Rainforest pdry≥60 
Am Monsoon Not (Af) & Pdry≥100-Map/25 
Aw Savannah Not (Af) & Pdry<100-Map/25  

Arid Map<10xPthreshold 

Bs Steppe Map≥5xPthreshold  

Temperate Not (B) & Thot>10 & 0<Tcold<18 
Cs Dry summer Psdry<40 & Psdry<Pwwet/3 
Cw Dry winter Pwdry<Pswet/10 
Cf Without dry season Not (Cs) or (Cw)  

Cold Not (B) & Thot>10 & Tcold≤0 
Dw Dry summer Psdry<40 & Psdry < Pwwet/3 
Df Without dry season Not (Ds) or (Dw)  

Table 2 
Anova test of fixed effects showing the different variables impact on CH4 
emissions.  

Parametric terms:   

df F P-value  

Pre-season water 4 12.04 1.16e-10  
Planting method 2 12.09 6.10e-06  
Water regime 7 24.57 <2e-16  
Crop duration 1 37.57 1.08e-09  
Growing season 4 28.80 <2e-16  
Oa method 4 7.03 1.29e-05  
Soil texture 5 4.06 0.001  
Approximate significance of smooth terms:  

Edf Ref.df F p-value 

S(pH) 5.35 6.09 3.15 0.004 
S(Tot_oa): straw on season 2.74 3.33 47.28 <2e-16 
S(Tot_oa): straw off season 1.00 1.00 49.87 <2e-16 
S(Tot_oa): compost 2.15 2.62 9.84 9.84e-06 
S(Tot_oa): green manure 1.65 1.99 56.60 <2e-16 
S(Tot_oa): farmyard manure 2.18 2.64 25.73 <2e-16 
S(Country) 8.52 16.00 471.07 0.000 
S(Climate) 6.23 8.00 461.84 0.053 
S(studyid) 208.13 258.00 12.28 <2e-16 

Oa = Organic amendment. 
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where information was limited, or there was an indication of dual 
cropping, but no mention of it, we could not determine the pre-season 
duration and it was left as unknown. 

2.2. Statistics and final selection of variables for the new model 

Data were collected based on their availability and as a result were 
unbalanced. Histogram plots showed the emissions to be right skewed 
and were therefore transformed to achieve a normal distribution (B.1). 
Different transformations from natural log to root square, fifth root and 
cube root were performed on the CH4 emissions data to find the best 
normality fit. The cubed root appeared to normalise the distribution 
best, particularly for the variable kg CH4 per ha per day and was 
therefore adopted for the model. Since CH4 emissions depend on mul-
tiple factors, some categorical, some fixed while others random or 
continuous, a generalised additive model (GAM) was selected as the best 
approach as it allows modelling of both the linear and smooth non-linear 
effects of multiple covariates (Wood, 2006). R version 4.2.1, (R Core 
Team, 2022), RStudio version 2022.07.1–554 (RStudio Team, 2020) and 
mixed gam computation vehicle (mgcv) package version 1.8–40 (Wood, 
2006) was used for the creation of the model. A forward selection pro-
cedure was used to better understand the difference and interactions 
between the parameters, adding one at the time starting with the highest 
corelation coefficient to the response variable first. Akaike Information 
Criterion (AIC) was used to compare model value by evaluating model 
fit to data and parsimony, with the lower AIC value suggesting a better 
model. Restricted maximum likelihood (REML) estimation was used for 
estimating the random effects standard deviation and degree of 
smoothing (Wood, 2006). Modelling assumptions were assessed using 
residuals and fitted values against observed values (Fig. 2). 

Published experiments usually included one or more control repli-
cates, serving as a reference for one or more types of organic amendment 

treatments. By definition, these controls do not belong to a specific type 
of organic amendment and were thus labelled as OA_type = “None”, 
meaning that no conventional OA types include data with zero amounts. 
To precisely estimate the effects of each type of OA when amendment 
amounts approach zero, we constrained the marginal effects for each OA 
type to be zero for OA amount = 0, such that the predicted value at zero 
was that of the reference type, defined to be the control treatment. Of the 
2132 datapoints, 56 were removed when the amount of organic 
amendment applied was unknown, leaving 2076 datapoints for model 
fitting. From all the factors listed in supplement A.1, nine were included 
in the final selection, all of which had a significant effect on CH4 emis-
sions (p < 0.001). The response variable was the cube root of CH4 kg 
ha− 1 d− 1 and the explanatory variables were: pre-season water, water 
regime, crop duration, organic amendment method, soil texture, with 
smoothers being applied to pH, country, climate and study id as well as 
organic amendment amount by organic amendment type. The best 
candidate GAM was: 

E(CH4
(1/3))

=α0 + βPsw + γPm + δwr + θ×Cd + μGs + πOAm + ρSt

+ f 1(pH)+ f 2,OAt(log(tOA+ 1))+ f 3(Co) + f 4(Cl) + f 5(St)
Equation 1  

where. 

Psw = Pre-season water class (short drainage, long drainage, flooded, 
winter flooded) 
Pm = Planting method class (transplanted, direct dry-seeded, direct 
wet-seeded) 
Wr = Water regime during crop season (continuously flooded, single 
drainage, multiple drainage, alternate wetting and drying, rainfed 
wet or dry season, deep water, saturated 
Cd = Crop duration 
Gs = Growing season class (single, late, early, wet, dry) 

Fig. 2. Diagnostic plots of the GAM model reported 
in Equation (1). The normal Q-Q graph (a) is close to 
linear, indicating that the data distribution of cube 
root was approximately normal. The residual versus 
fitted values (b) suggest an almost constant variance 
with increasing means. The histogram of residuals is 
close to normality (c) while the correlation between 
observed and predicted emissions shows an accept-
able model performance with R2 value of 0.82 in cube 
root format (d) where the solid line is the reference 
line.   
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OAm = Organic amendment method (Incorporated, surface applied, 
burned, unknown, none), with a point constraint at zero (setting “pc 
= 0”) 
St = Soil texture class (fine, medium fine, medium, medium coarse, 
coarse, unknown) 

For the smoothers below fx are non-parametric penalized thin plate 
regression splines, while bs = “re” is the smoothed random effects. 

f1(pH) is a penalized thin plate regression spline (“tprs”) of pH value 
f2,OAt(tOA) is a tprs function of tOA (total organic amendment 
amount), estimated for each level of Organic amendment type OAt 
(straw on or off season, compost, farmyard manure, green manure, 
biochar or none), with a point constraint at zero (setting “pc = 0”) 
f3(Co) is a random intercept for Country 
f 4(Cl) is a random intercept for Climate group (Bs, Cs, Cw, Am, Aw, 
Df, Dw, Af) 
f 5(Si) is a random Study id intercept 

2.3. Evaluation of models 

For model evaluation, both the above model and four existing models 
were evaluated using independent data (test dataset). The four models 
used were: Yan et al., 2005; Wang et al., 2018; IPCC 2006; IPCC 2019. 
However, for prediction using the new model the study id was excluded. 
With use of an Excel-based model performance statistical package 
(ModEval: Smith and Smith, 2007), the measured and predicted CH4 
emissions were compared for the different models by calculating the 
sample correlation coefficient (R) to test for association between pre-
dicted and observed data, the root mean square error (RMSE) for total 
difference between the observed and predicted values, mean error (E) 
and mean difference (M) between observation and simulation for bias in 
the modelled results (Smith and Smith, 2007). 

2.4. Development of global, regional, and country specific EFs using 
predicted data 

Descriptive analysis of predicted data was performed using both R 
version 4.2.1, (R Core Team, 2022) and IBM SPSS version 28.0.0 (IBM 
Corp. Released, 2021) statistical packages. Global, regional, and country 
scale baseline EFs (kg CH4 ha− 1 day− 1) were estimated from the pre-
dicted data and estimated effects of the variables combining the data 
from both the training and test dataset, using three baselines in which 
only pre-season water status differed. For all Asian countries, apart from 
Japan and South-Korea, the baselines were short drainage in pre-season, 
continuously flooded during growing period and no organic amend-
ment. However, for countries that operated with single crop cycles, 
mostly in temperate regions such as Europe. American, Japan and South 
Korean rice paddies, we used a pre-season water management of long 
drainage, while Spain had winter flooded in pre-season, the remaining 
variables remained the same except study id and climate which was 
excluded for the EF predictions. The baseline EF (kg CH4 ha− 1 day− 1) 
values were derived using the following equation (equation (2)): 

EF(CH4
(1/3))

=α0 + βPsw + γPm + δwr + θ×Cd + μGs + πOAm + ρSt

+ f 1(pH)+ f 2,OAt(log(tOA+ 1)) + f 3(Co)
Equation 2 

Pre-season water were classed as short drainage for most Asian 
countries, long drainage for all North and South American countries, 
Portugal, Japan and South Korea and winter flooded for Spain. 

Water regime during crop season was classed as continuously floo-
ded for all plots. 

Organic amendment type was classed as none for all plots. 
All remaining parameters followed same principles as equation (1). 

3. Results 

3.1. Summary of the generalised additive model and modelled CH4 
emission 

The selected variables had a significant impact on emissions at 
probability levels p < 0.01 or p < 0.001 (Table 2). All variables that had 
smoothing applied had a highly significant (p < 0.01) impact on emis-
sions, except climate which was significant at the p = 0.05 level. The 
estimated effects of pH on CH4 emissions indicate lowest emissions at a 
pH level around 7, and increasing on either side of pH 7, for both more 
alkaline and more acidic soils. Below pH 5 and above pH 8, the confi-
dence intervals widen such that the impact on CH4 emissions cannot be 
confidently estimated from the present data (Fig. 3, Table 2). For the 
organic amendment (Fig. 4) emissions tend to increase with amendment 
amount for all amendment types. The impact of straw on season amount 
increases up until approximately 6.4 t/ha (2 on the transformed scale), 
but beyond this value, the effect on emissions becomes highly uncertain 
due to the widening of the confidence intervals visible in Fig. 4a. 

Predicted CH4 emissions across the dataset were 1.98 CH4 ha− 1 d− 1 

with highest mean value being predicted for Vietnamese rice paddies 
and lowest for rice fields in India (Table 3). Crop duration varied from 
64 days to 205 days across all data, with Vietnam having the shortest 
average seasonal crop duration of 97 days, while Spain had the longest 
of 156 days followed by Portugal (152 days); mean crop duration across 
all data was 114 days (C.1). For organic amendment types, straw on 
season and green manure resulted in the highest emissions, biochar the 
lowest. Emissions of CH4 when straw was applied on season were 38% 
higher than if straw was applied off season. For pre-season water regime, 
fields which were winter flooded or with long drainage showed a 38% 
and 23% reduction in CH4 emissions respectively when compared to 
fields with short drainage. Rice fields which were flooded pre-season 
emitted the most, with mean emissions of 3.29 kg ha− 1 d− 1 being 35% 
higher than those from short drained fields. Water regime during crop 
growing season showed continuously flooded fields having highest 
mean emissions followed by single drained fields; 2.29 and 2.14 kg ha− 1 

d− 1 respectively, while emissions decrease by as much as 38% for 
alternate wetting and drying, 66% for saturated and 70% for rainfed dry 
season fields, compared to continuously flooded fields. 

The four new explanatory variables included in this model were 
planting method, growing season, soil texture and organic amendment 
method. For planting method, direct wet-seeded plots had the highest 
average emissions while direct dry-seeded had the lowest (2.67 vs. 1.56 
kg CH4 ha− 1 d− 1). Transplanted rice paddies had an average emission of 
2.00 kg CH4 ha− 1 d− 1, though most data collected used this planting 
method (1574 compared to 338 for direct dry-seeded and 163 samples 
for direct wet-seeded). Using direct dry-seeded as the planting method 
can reduce emissions by 28% while direct wet-seeded increases emis-
sions by 25% compared to plants being transplanted. For growing sea-
sons, dry season had the lowest emissions, being 35% lower than wet 
season, while late season rice had the highest emissions at 29% more 
than early rice. Fields growing only one rice crop (classified as single 
season) had the second lowest emissions, with mean CH4 flux of 1.73 kg 
CH4 ha− 1 d− 1, which was 9% higher than dry season rice. For soil 
texture, moderately fine soil had the highest emissions; 5%, 9% and 31% 
higher than moderately coarse, coarse, and medium soil textures 
respectively, emitting almost twice as much CH4 as fine textured soils 
(44% reduction). For organic amendment method, incorporation had 
the highest emissions (2.72 kg CH4 ha− 1 d− 1) with burned (1.79 kg CH4 
ha− 1 d− 1) and surface applied (2.15 kg CH4 ha− 1 d− 1) emitting 34% and 
21% less (Table 3). 

3.2. Evaluation of the new CH4 model & existing models 

The new CH4 model was evaluated using independent data from 20 
publications. Modelled CH4 emissions were estimated in transformed 
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scale (cubed root) and back transformed to the original scale (kg CH4 
ha− 1 d− 1) for comparison with the measured data. The R values of the 
new model were 0.56 (n:169) for transformed and 0.47 (n:169) for back 
transformed predicted data (Fig. 5a–b) with existing methods ranging 

between 0.01 (n:169) and 0.09 (n:169) (Fig. 4a–b). When evaluating the 
model, we can clearly see some outliers, particularly when the data is 
back transformed but also for cube root values (Fig. 5a–b). However, 
compared to the existing models (Fig. 6a–b) the new model performs 

Fig. 3. Estimated pH effect with grey shadow representing 95 CI%, dots and rug marks represent partial residuals and observed pH values in the data respectively.  

Fig. 4. Estimated effect total organic amendment amount for each organic amendment type. Straw on season (a), straw off season (b), compost (c), green manure (d) 
and farmyard manure (e). Grey shades are 95% confidence bands representing uncertainty in the effect of total organic amendment alone (dark grey) and combined 
uncertainty in the effect of total organic amendment and the baseline estimate (light grey). Rug marks represent observed total organic amendment for each organic 
amendment type. 
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better and has reduced the outliers. 
All models were evaluated using the statistical routines suggested by 

Smith and Smith (2007). Model evaluation allows us to determine the 
behaviour and accuracy of model predictions; the full list of statistical 
measures calculated using ModEval, and plots of observed and simual-
ted values for each model, can be seen in supplement (Table E1). The 
evaluation of the new CH4 models shows a significant association be-
tween the measured and observed data with correlation coefficients of 
0.68 (n: 169) for the back transformed data. RMSE shows that the total 

difference between the observed and measured data is 63.70% with a 
relative error of 14.14 and mean difference of 0.20 for the back trans-
formed data (Table 4). Plots and evaluation of data which had uncer-
tainty recorded (standard deviation) for the individual publications was 
also assessed to capture the impact of management and how model 
performance improved when uncertainty was available (E.1-E.6) with 
ModEval statistical analysis showing a reduction in RMSE, relative error 
and mean difference along with improved correlation coefficients 
(Table 4, Fig. 7). 

Table 3 
Relative CH4 fluxes (kg ha− 1 d− 1) for different growing season water regime, pre-season water status, soil texture, planting method, organic amendment type and 
method and rice growing season. Values based on model predictions.  

Variables Mean flux Lower 95% CI Upper 95% CI Relative flux Lower 95% CI Upper 95% CI Nr.Samples  

(kg CH4 ha¡1 d¡1)  
Database summary 1.98 1.89 2.07    2076 
Water regime during crop growth 
Continuously flooded 2.24 2.12 2.37 1.00 1.00 1.00 992 
Alternate wetting and drying 1.39 1.07 1.71 0.62 0.51 0.72 93 
Deep water 1.26 0.65 1.87 0.56 0.30 0.79 20 
Single drainage 2.19 1.87 2.51 0.98 0.88 1.06 273 
Saturated 1.00 0.59 1.41 0.44 0.28 0.59 62 
Multiple drainage 1.69 1.55 1.83 0.75 0.73 0.77 561 
Rainfed wet season 1.87 1.12 2.61 0.83 0.53 1.10 59 
Rainfed dry season 0.68 0.40 0.97 0.30 0.19 0.41 16 
Pre-season water 
Flooded 3.29 3.01 3.56 1.00 1.00 1.00 219 
Long drainage 1.65 1.56 1.74 0.50 0.52 0.49 1079 
Short Drainage 2.14 1.93 2.34 0.65 0.64 0.66 489 
Winter flooded 1.32 1.05 1.59 0.40 0.35 0.45 64 
Soil texture 
Moderately fine 2.27 2.09 2.46 1.00 1.00 1.00 467 
Coarse 2.08 1.41 2.75 0.91 0.67 1.12 20 
Moderately coarse 2.16 1.89 2.43 0.95 0.91 0.99 239 
Medium 1.56 1.43 1.69 0.69 0.69 0.69 552 
Fine 1.28 1.17 1.39 0.56 0.56 0.57 425 
Planting method 
Direct wet-seeded 2.67 2.38 2.97 1.00 1.00 1.00 163 
Transplanted 2.00 1.89 2.10 0.75 0.80 0.71 1574 
Direct dry-seeded 1.56 1.40 1.72 0.58 0.59 0.58 338 
Organic amendment type 
Straw on season 3.36 3.05 3.67 1.00 1.00 1.00 255 
Green manure 3.29 2.92 3.66 0.98 0.96 1.00 138 
Biochar 1.36 0.96 1.76 0.40 0.31 0.48 109 
Farmyard manure 2.42 2.15 2.70 0.72 0.71 0.73 181 
Compost 2.86 2.05 3.68 0.85 0.67 1.00 86 
Straw off season 2.08 1.87 2.29 0.62 0.61 0.62 225 
Organic amendment method 
Incorporated 2.72 2.54 2.89 1.00 1.00 1.00 758 
Burned 1.79 0.86 2.71 0.66 0.34 0.94 22 
Surface applied 2.15 1.93 2.38 0.79 0.76 0.82 84 
Growing season 
Late season 3.09 2.70 3.48 1.00 1.00 1.00 129 
Early season 2.184 1.87 2.50 0.71 0.69 0.72 138 
Wet season 2.442 2.20 2.69 0.79 0.81 0.77 501 
Dry season 1.481 1.31 1.66 0.48 0.48 0.48 309 
Single season 1.73 1.63 1.83 0.56 0.60 0.52 999 
Country 
Vietnam 4.23 3.66 4.79 1.00 1.00 1.00 129 
Brazil 3.22 2.92 3.51 0.76 0.80 0.73 40 
South Korea 3.15 2.83 3.48 0.75 0.77 0.73 106 
Indonesia 3.06 2.64 3.48 0.72 0.72 0.73 164 
Italy 3.04 2.58 3.50 0.72 0.70 0.73 37 
Bangladesh 2.25 1.34 3.17 0.53 0.36 0.66 45 
Ghana 1.94 1.39 2.49 0.46 0.38 0.52 5 
Thailand 1.92 1.51 2.33 0.45 0.41 0.49 73 
China 1.85 1.73 1.97 0.44 0.47 0.41 799 
Myanmar 1.89 0.61 3.18 0.45 0.17 0.66 8 
Japan 1.66 1.28 2.04 0.39 0.35 0.43 71 
Spain 1.57 0.81 2.33 0.37 0.22 0.49 18 
USA 1.35 1.16 1.54 0.32 0.32 0.32 192 
Philippines 1.16 0.99 1.34 0.27 0.27 0.28 157 
Uruguay 1.10 0.62 1.59 0.26 0.17 0.33 6 
Portugal 0.73 0.65 0.82 0.17 0.18 0.17 6 
India 0.65 0.56 0.73 0.15 0.15 0.15 220  
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3.3. Modelled baseline EFs 

CH4 baseline EFs were estimated based on all fields being continu-
ously flooded with no organic amendment and with country specific pre- 
season water management. This meant that Japanese, South Korean and 
most of European and American rice paddies were assumed to have long 
drainage for pre-season water management, while Spain had winter 
flooding, since these fields have one crop rotation with rice. The 
remaining Asian and African countries mostly had short or flooded pre- 
season based on different crop rotations and thus the baseline used for 
EF estimates were set to short drainage. For estimating EFs at regional 
scale, East-Asia was divided into two regions in which China was 
separated from Japan and South Korea due to the differences in climate, 
crop management and pre-season water method. The mean modelled 

emission was 1.97 CH4 kg ha− 1 d− 1 (1.93–2.01) globally, with Africa 
having the highest regional predicted EF while South Asia had the 
lowest at 2.54 (2.54–2.54) and 1.16 (1.08–1.34) respectively. (Table 5, 
Fig. 8). 

4. Discussion 

4.1. Model advantages and the impact of variables on emissions 

Generalised Additive Models (GAMs) can account for both random 
and fixed factors and are thus suitable for analysing unsystematic data 
(Hastie and Tibshirani, 1990; Berk, 2017). Random effects enabled us to 
account for multiple scales of geographical and experimental clustering 
in the data, while smoothing splines provided the necessary flexibility 
for capturing ad-hoc non-linear relationships between the response and 
explanatory variables. Our model can estimate total emissions based on 
current practices and environmental conditions and predict response to 
management interventions, with associated uncertainty. In addition to 
the existing explanatory variables included in previous CH4 models used 
by IPCC, our model (Eq. (1)) includes effects of soil texture, planting 
method, growing season, organic amendment method, crop duration as 
a proxy to include impact of rice cultivars and a global classification 
system for climate groups (Beck et al., 2018). These new variables were 
added as they were all priori expected to influence CH4 emissions, and 
we found these effects to be supported by the available data. We also 
added additional classes to pre-season water and water regime during 
crop growth as research suggests they either affect CH4 emissions or 
more accurately represent the management in a country (such as winter 
flooding in pre-season which is common in parts of the USA and Euro-
pean countries either to maintain soil salinity and biodiversity (Martí-
nez-Eixarch et al., 2018) or because of soil being rich in clay and having 
poor drainage (Meijide et al., 2011; Pittelkow et al., 2014)). 

Planting method was considered important as it relates to water 
management practices and thus influence CH4 and N2O emissions by 
creating anaerobic or aerobic conditions which forms ideal conditions 
for the formation of CH4 through methanogenesis or N2O through 

Fig. 5. Model performance for the new model; (a) predicted vs. observed data for new model for transformed data (CH4 cube root), (b) predicted vs. observed data 
for new model for back-transformed data (CH4 kg ha− 1 d− 1). Solid line = reference line (1:1), dashed line = Ordinary Least Square estimate. 

Fig. 6. Model performance of existing models (a) Yan et al., 2005 and Wang et al., 2018, (b) IPCC 2006 and IPCC 2019 (CH4 kg ha− 1 d− 1). Solid line = reference line 
(1:1), dashed line = Ordinary Least Square estimate. 

Table 4 
ModEval output for all models showing differences in statistical performance 
between the five models.   

CH4 (cube 
root) 

CH4 SD 
(cube root) 

CH4 (kg 
ha− 1 day− 1) 

CH4 SD (kg 
ha− 1 day− 1) 

r ¼ Correlation 
Coeff. 

0.75 0.79 0.68 0.65 

Root mean square 
error of model 

21.58% 18.11% 63.70% 60.69% 

M ¼ Mean 
Difference 

0.04 0.03 0.20 0.23 

E – Relative error 3.99 2.38 14.14 12.90  
Yan et al., 
2005 

IPCC 2006 Wang et al., 
2018 

IPCC 2019  

Kg CH4 ha¡1 d¡1 

r ¼ Correlation 
Coeff. 

0.10 0.204 0.31 0.18 

Root mean square 
error of model 

102.94% 89.96% 106.14% 86.62% 

M ¼ Mean 
Difference 

0.49 0.50 1.00 0.27 

E – Relative error 34.06 34.62 69.42 18.55  
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denitrification and nitrification processes. For instance, studies have 
showed that direct dry-seeding systems decreased CH4 emissions by up 
to 60% compared to wet direct-seeding (Nayak et al., 2015; Wang et al., 
2018) which supports our findings of a 42% decrease in emission when 
using direct dry-seeding compared to direct wet-seeding. Soil texture 
was included as studies have indicated that the soil texture influences 
CH4 emissions with soils high in clay content having lower CH4 emission 
than those rich in sand or silt (Baldock and Skjemstad, 2000). Using soil 
texture class instead of silt, sand or clay content improved the AIC value 
of the model and allowed for more data points to be included as some 
papers had expressed soil texture by name and not by % of silt, sand, or 
clay. PH was another soil characteristic factor used in the model as it has 
a substantial impact on emissions and is, together with soil organic 
carbon (SOC) thought to be the most common soil variables recorded in 
published literature. The production of CH4 is sensitive to pH changes 
with methanogens being most active around neutral to slightly alkaline 
conditions (Garcia et al., 2000; Aulakh et al., 2001; Wang et al., 2018) 
which supports our findings that suggests CH4 emission being lowest at 
neutral levels, peaking at pH levels around 5.5 and 7.5 and could be 
caused by water management with pH neutralising during flooded 
conditions while emissions peak under the same conditions (Minasny 
et al., 2016; Ding et al., 2019). Effects of pH below 5 or above 8 (Fig. 3) 
were comparatively highly uncertain, so our model should be used with 
caution when seeking absolute emission estimates or when making 
comparisons between pH levels in these extreme ranges of pH values. 
Given that CH4 emissions are a product of the consumption, production, 
and transfer of methanotrophs and methanogens from soil into the at-
mosphere which processes are tolerant to pH variations (Bodegom et al., 
2001; Wang et al., 2018) the correlation between the emissions and pH 
may be driven by other factors within the soil as well as water 
management. 

SOC is often considered a key variable for soil conditions with several 
studies indicating an impact on CH4 emissions (Shang et al., 2011; Zhan 
et al., 2011), however SOC had no significant impact on emissions in our 
database and was therefore not included in the final model. Wang et al. 
(2018) model showed SOC having the smallest contribution on variance 
of all variables considered though still having a significant impact on 

emissions. They further stated that the controlling effect of SOC on CH4 
emissions may be outweighed by other variables with the weak relation 
between the two being controlled by labile carbon substrate from both 
inherent and external sources. Thus, with our model having significantly 
more variables included, the effect of SOC on CH4 emissions may be 
negligible with the positive relationship between the increase in emis-
sion and SOC for some experiments likely being related to increased 
carbon stock caused by the application of organic amendment and 
readily mineralizable carbon (Yagi and Minami, 1990; Wang et al., 
2018) meaning more carbon being available for methanogens, leading 
to increase in CH4 emitted. 

Organic amendment amount is another factor thought to have a 
significant impact on emissions, with results from previous CH4 models 
showing it being closely related to CH4 fluxes (Wang et al., 2018). In our 
model, we linked it with organic amendment type as the impact of 
organic amendment is a function of type, amount, and methodology of 
organic manure application, while application method was kept as a 
separate factor. The overall results show a significant impact on CH4 
emissions for all three factors (p < 0.001, Table 2) in which applying 
straw off season, compared to straw on season, would be a good miti-
gation strategy, supporting previous model findings (Wang et al., 2018). 

4.2. Evaluation of models 

For model evaluation, the model accuracy of predicted emissions was 
determined using RMSE, E and M, calculating mean error and bias 
(Smith and Smith, 2007) using out-of-sample prediction. Overall, the 
model performs well, however it fails to accurately predict extreme 
observations, particularly when the data is back transformed on the 
original measurement scale. This is in line with the large unexplained 
variation within and between studies (about 50%), which is by defini-
tion unpredictable. A separate evaluation was done for those papers that 
included standard error and number of replications, thus providing a 
more detailed evaluation than for the full database (E.1-E.2). The 
comparison between the models show that including the new factors 
which are strikingly different among rice growing regions improved the 
sensitivity of the new model and enabled it to capture emission more 

Fig. 7. ModEval plots used to check model accuracy on predicted emission values for all collected data in independent dataset. Where a and b are cube root values, c 
and d are back transformed values in kg ha− 1 d− 1. 
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Table 5 
Statistical summary of CH4 emissions (kg ha− 1 d− 1) and CH4-EF (%) at country and regional scale.   

Daily CH4-EF (kg CH4 ha− 1 d− 1)  Daily CH4-EF (kg CH4 ha− 1 d− 1)    

C.I.      C.I.    

Mean Median Lower Upper Snr Orig Snr   Mean Median Lower Upper Snr Orig Snr 

Region World 1.97 1.97 1.93 2.01 2238 1.77 334 Country Bangladesha 2.08 1.83 1.85 2.31 54 0.85 4 
S.Asiaa 1.16 0.99 1.08 1.23 296 0.65 40 Chinaa 2.41 2.50 2.38 2.46 850 2.61 21 
S.E.Asiaa 1.91 1.55 1.81 2.02 629 1.86 90 Indiaa 0.95 0.94 0.90 1.00 242 0.62 36 
Chinaa 2.41 2.50 2.38 2.46 850 2.61 21 Indonesiaa 1.96 1.84 1.87 2.04 164 2.68 44 
Africaa 2.54 2.54 2.54 2.54 5 NA  Philippinesa 0.97 0.87 0.91 1.02 171 0.89 34         

Thailanda 1.27 1.27 1.15 1.39 145 1.27 11         
Myanmara 1.49 1.64 1.13 1.85 8 NA NA         
Vietnama 3.60 3.19 3.36 3.84 149 5.35 1         
Ghanaa 2.54 2.54 2.54 2.54 5 NA NA            

E.Asiab 2.03 2.07 1.93 2.12 194 2.09 67 Italyb 2.21 2.47 2.03 2.39 41 2.38 15 
Europeb 2.16 2.47 2.00 2.33 69 2.21 25 Portugalb 1.36 1.15 0.91 1.82 10 NA NA 
N.Americab 1.25 1.16 1.19 1.30 204 1.64 88 Spainc 2.51 2.51 2.18 2.84 18 1.94 10 
S.Americab 2.04 1.99 1.94 2.15 46 1.61 3 Japanb 1.53 1.39 1.38 1.67 82 1.69 19          

South Koreab 2.39 2.32 2.31 2.47 112 2.25 48          
USAb* 1.25 1.16 1.19 1.30 204 1.64 88          
Uruguayb* 1.49 1.47 1.23 1.74 6 1.61 3          
Brazilb 2.13 2.12 2.04 2.22 40 NA NA 

EF = Emission factor. 
C.I is the 95% confidence interval range. 
Mean original (orig); mean CH4 (kg ha− 1 day− 1) from original data with the data available that fit the baseline EF categories of pre-season water condition, continuously flooded and no organic amendment. 

a Short drainage, continuously flooded, no organic amendment. 
b Long drainage, continuously flooded, no organic amendment. 
c Winter flooded, continuously flooded, no organic amendment. 
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accurately than the existing models. This supports the overall finding 
that the model can perform well for some of the data, but still lacks some 
sensitivity to particularly large emission values. Back transformation of 
data to the original scale has led to some bias with the predicted values 
mostly being lower than measured values. Using a bias correction to 
back transform the data could therefore result in more accurate data and 
model performance (Strimbu et al., 2018), though the model can predict 
emissions well. 

4.3. Global, regional, and country EFs 

Only a handful of countries use empirical or process-based models 
(IPCC tier 2 or 3) for estimating their emissions from rice for national 
reports submitted to the United Nations Framework Convention on 
Climate Change (UNFCCC), while the majority rely on baseline EFs 
through an IPCC tier 1 approach. EFs for rice based CH4 emissions have 
commonly been calculated using pre-season status of short drainage, 
continuously flooded as water regime during crop cycle and no organic 
amendment (Wang et al., 2018). After initial analysis of the data, 
management practices, climate, and other crop related patterns, we 
concluded that country specific pre-season water management should be 
used as existing method may have led to some bias considering same 
baseline EF calculation for all countries (Yan et al., 2005; Wang et al., 
2018). This meant that Japanese, South Korean, American and European 
rice paddies had long drainage for pre-season water management as 
these countries commonly grow one rice crop annually with winter 
being left fallow or with upland crops, with exception of Spain where 
winter flooding is a common practice. For North America long drainage 
was chosen when calculating EFs as all states except California which 
commonly are winter flooded has long flooding or upland crop rotation 
in winter season (LaHue et al., 2016). Globally, the new estimated 
baseline EF was higher than those presented by IPCC (2019). 

The change in baseline calculation for pre-season water management 

impact on country scale EFs can be seen particularly well for Italy in 
which the new EF of 2.21 kg CH4 ha− 1 d− 1 (Table 5) corresponds better 
to national inventory reports EF of 2.0 and 2.7 kg CH4 ha− 1 d− 1 for single 
and multiple drainage (National Inventory Report of Italy, 2020) than 
those currently used by IPCC (1.66 kg CH4 ha− 1 d− 1). Both the Spanish 
and Portuguese national communications reports (NCR) used the IPCC 
(2006) baseline EF of 1.30 kg CH4 ha− 1 d− 1 (National Inventory Report 
of Spain, 2020; National Inventory Report of Portugal, 2021), however, 
the new estimated baseline EF for Spain is significantly higher at 2.51 kg 
CH4 ha− 1 d− 1 while for Portugal it is almost the same as IPCC default at 
1.36 kg CH4 ha− 1 d− 1 (Table 5). Leaving fields flooded in winter as the 
common practice in Spain lead to higher emissions in the next rice 
season, particularly if organic amendment is applied off season (Martí-
nez-Eixarch et al., 2018)). The high EF calculated for Spain is signifi-
cantly higher than the mean measured emission and could be caused by 
the model accounting for the high application of farmyard manure of 
15.2 and 51 t/ha− 1 for some of the Spanish plots (Maris et al., 2016). 

Our EF is higher than the existing EFs of 0.65 and 1.27 kg CH4 ha− 1 

d− 1 for North and South America, as is the case for all other rice regions 
all our EF estimated where higher than the existing ones used by IPCC 
2019 and at country scale compared to Wang et al. (2018) at 1.25 and 
2.04 kg CH4 ha− 1 d− 1 respectively (Table 5). This difference results from 
the increased number of field measurements compared to previous 
models as well as the new way of estimating EFs. Approximately one 
third of all data were collected from China which mean daily emission 
were 2.02 while the estimated EF were calculated to 2.41 kg CH4 ha− 1 

d− 1, (Table 5). The new EF for China is significantly higher than the 
existing one of 1.30 kg CH4 ha− 1 d− 1 from Wang et al. (2018), but closer 
to the mean daily emission. IPCC EFs for Bangladesh and India are very 
similar at 0.85 and 0.97 kg CH4 ha− 1 d− 1 (Table 5), respectively, while 
the new estimated EF are much higher for Bangladesh than for India 
(2.08 compared to 0.95 kg CH4 ha− 1 d− 1, Table 5). According to India’s 
second biennial update report (BUR), the IPCC tier 2 and country 

Fig. 8. Comparison of predicted EF at global, regional and country scale against those calculated based on original data that fit the baseline variables selection of the 
three pre-season regions, continuously flooded, no organic amendment. In figure a and b Solid line = reference line (1:1), dashed line = Ordinary Least 
Square estimate. 
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specific EF approach was used for rice with seasonal EF estimate of 
159.74 kg/ha for continuously flooded fields (Ministry of Environment, 
Forest and Climate Change, Government of India, 2018) which is higher 
than our seasonal EF estimate of 107.40 kg/ha using average crop 
duration of 113 days based on mean crop duration from collated data for 
India (C.1). For Bangladesh, the 3rd National Communication Report 
(2018) used IPCC EF of 0.97 kg CH4 ha− 1 d− 1 which is significantly 
lower than our EF estimates. Both Vietnam and the Philippines used 
IPCC default values for their NIC reports (Ministry of Natural Resources 
and Environment, Government of Philippines, 2014, Ministry of Na-
tional Resources and Environment, Government of Vietnam, 2020). Our 
EF estimate of 0.97 kg CH4 ha− 1 d− 1 (Table 5) for the Philippines is 
higher than Wang et al. (2018) of 0.60, but lower than those estimated 
by Yan et al. (2003), which had an EF of 3.46 kg CH4 ha− 1 d− 1. While 
Vietnam, which had an EF of 1.13 from Wang et al. (2018) is signifi-
cantly higher at 3.60 kg CH4 ha− 1 d− 1 (Table 5) as our database con-
tained 149 datapoints while Wang et al. (2018) had 14 datapoints from 
Vietnam. The increase in EF value could therefore be due to increased 
sample number and variability in experiments. Ghana, Myanmar, and 
Thailand have not been included in previous models. We estimated the 
EF to be 1.27 kg CH4 ha− 1 d− 1 for Thailand, 1.49 for Myanmar and 2.54 
for Ghana. For Thailand (145 samples) the updated the EF corresponds 
well with EF estimated of original data of 1.27 kg CH4 ha− 1 d− 1 (11 
samples, Table 5). For Ghana, pre-season water status is unknown and 
for Myanmar the experiments either had organic amendment applica-
tion or long drainage in pre-season as measurements were done in wet 
season only, and thus EF calculation could not be performed on original 
data. The last two countries only have small sample number of five for 
Ghana and eight for Myanmar. The EF may therefore change as more 
publications become available. 

5. Conclusion 

Our findings show that consideration of key variables such as soil 
texture, planting method, and growing season, along with a global 
climate classification and additional classes to existing parameters, all 
have a significant impact on CH4 emissions from rice fields. The new 
parameters are, therefore, needed to reflect the impact of soil, envi-
ronment, and management practices on emission globally with the 
existing models for predicting CH4 emission from rice paddies lacking 
sensitivity to some of these factors. Moreover, our results shows that it is 
crucial to acknowledge the differences between temperate and tropical 
regions to provide accurate baseline EF estimates at regional and 
country scale in the future. Our results also include estimates for four 
new countries, and as such, not only provide an updated list of baseline 
emission and scaling factors globally but can improve the submission 
process of national inventory reports for these countries in the future. 
Our findings will provide nations with more accurate EF estimates which 
reflects the local management and environmental conditions. Particu-
larly for temperate rice regions with updated scaling factors and baseline 
EFs on average being higher than the existing factors produced by the 
Wang et al. (2018) and IPCC 2019 models. The inclusion of additional 
parameters and the large sample number collected has produced a new 
model which reflects the magnitude of the emissions more accurately 
than previous models and as such can aid countries in their aim to reach 
GHG reduction goals by setting more realistic emission estimates and 
mitigation objectives. 
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