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Abstract 

Background: 
Over 20 susceptibility single-nucleotide polymorphisms (SNPs) have been identified for 
esophageal adenocarcinoma (EAC) and its precursor, Barrett’s esophagus (BE), 
explaining a small portion of heritability. 
Methods: 
Using genetic data from 4,323 BE and 4,116 EAC patients aggregated by international 
consortia including the Barrett’s and Esophageal Adenocarcinoma Consortium 
(BEACON), we conducted a comprehensive transcriptome-wide association study 
(TWAS) for BE/EAC, leveraging Genotype Tissue Expression (GTEx) gene expression 
data from six tissue types of plausible relevance to EAC etiology: mucosa and 
muscularis from the esophagus, gastroesophageal (GE) junction, stomach, whole blood, 
and visceral adipose. Two analytical approaches were taken: standard TWAS using the 
predicted gene expression from local expression quantitative trait loci (eQTLs), and set-
based SKAT association using selected eQTLs that predict the gene expression. 
Results: 
While the standard approach did not identify significant signals, the eQTL set-based 
approach identified eight novel associations, three of which were validated in 
independent external data (eQTL SNP sets for EXOC3, ZNF641 and HSP90AA1). 
Conclusions: 
This study identified novel genetic susceptibility loci for EAC and BE using an eQTL set 
based genetic association approach. 
Impact: 
This study expanded the pool of genetic susceptibility loci for EAC and BE, suggesting 
the potential of the eQTL set based genetic association approach as an alternative 
method for TWAS analysis. 
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Introduction 

      Incidence of esophageal adenocarcinoma (EAC) has risen sharply over recent 

decades(1-4), and it is now the predominant subtype of esophageal cancer in the US 

and many other western countries. Patients diagnosed with advanced EAC have a 5-

year survival rate below 20%(5-10). Progress has been made in identifying genetic and 

environmental risk factors for EAC and its epithelial precursor lesion, Barrett’s 

esophagus (BE)(11). GE reflux(12,13), obesity(14,15), and tobacco smoking(16,17), 

collectively explain up to ~75% of cancer risk(18-20). While over 20 susceptibility single-

nucleotide polymorphisms (SNPs) have been identified through genome-wide 

association studies (GWAS) in the Barrett’s and Esophageal Adenocarcinoma 

Consortium (BEACON) and related efforts(21-29), these loci explain only a small portion 

of overall heritability (h2
g estimated as 0.25 for EAC; 0.35 for BE)(30), and few have 

been linked specifically to progression to cancer(22,29). 

      One of the notable methodological advances in the post-GWAS era is integrating 

the transcriptome into genetic association analyses(31,32). Evidence is abundant that 

trait-associated SNPs are more likely to be expression quantitative trait loci (eQTLs)(33), 

which are pervasive in the human genome(34-38). Motivated by the premise that eQTL 

may influence disease phenotypes by altering gene expression levels, association 

approaches leveraging eQTL and transcriptome data in genotype-tissue expression 

(GTEx)(38), namely transcriptome-wide association studies (TWAS), have become a 

mainstream approach in post-GWAS analyses, leading to the discovery of multiple 

novel susceptibility genes(39-42), for prostate(43), ovarian(44), breast(45), and 

colorectal cancers(46,47). Notably, the initial TWAS method - PrediXcan(31) - first 
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builds a genetic prediction model for gene expression, then assesses genetically 

predicted gene expression for its association with a trait of interest, much resembling 

the classical instrumental variable regression approach in econometrics. In the same 

vein, newer methods for TWAS(32,48) removed the requirement of individual-level 

genetic data by exploiting GWAS summary statistics and genetic correlation data from 

external data such as the 1000 Genomes Project.  Recognizing a portion of eQTL 

regulation of gene expression can be conservative across tissues, new methodological 

development for TWAS has been focused on leveraging multiple tissues available in 

GTEx for improving power of genetic prediction and subsequent association(49,50). On 

the other hand, it has been noted with caution recently that TWAS can be prone to 

spurious results with expression data from non-trait-related tissues or cell types, and 

that the best practice may be choosing the most mechanistically related tissue(s) 

available(51). 

      In our view, the main challenge to apply TWAS to the EAC genetic research is that 

there is not yet a large set of BE samples, the mechanistically relevant tissue for EAC 

development, with both germline genotypes and transcriptome data available for eQTL 

mapping. Although the inherited genetic component of risk for BE largely coincides with 

that for EAC(30), the cellular origin of BE remains controversial, with hypotheses 

ranging from residual embryonic cells at the GE junction to undifferentiated gastric cells 

in the cardia(52-54). While the GTEx Project collected four upper gastrointestinal tract 

tissues, including mucosa and muscularis from the esophagus, GE junction, and 

stomach, a limitation of bulk RNA-sequencing data is that transcriptome profiles of rarer 

constituent cell types (such as progenitor cells) may not be well delineated.   
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      In this work, we conducted a comprehensive TWAS study for BE/EAC, leveraging 

six GTEx (V8) tissue types of plausible relevance to EAC etiology: mucosa and 

muscularis from the esophagus, GE junction, stomach, visceral adipose, and whole 

blood. Inclusion of the latter two tissues is in recognition that tissues beyond the 

esophago-gastric mucosa are likely to contribute biologically to the origins of BE/EAC. 

Abdominal obesity is a risk factor for these conditions, which not only affects reflux 

severity, but also increases levels of systemic inflammation through release of secreted 

mediators (55-57). Chronic inflammation is considered an important driver of BE/EAC 

pathogenesis, and the roles and contributions of circulating and infiltrating immune cells 

are under active investigation (58). We selected eQTLs collectively predicting RNA-

sequencing based expression and built prediction models. The eQTLs predicting 

protein-coding genes were assessed for gene-level associations with BE/EAC risk using 

a discovery dataset (BEACON/Cambridge GWAS), and top signals identified were then 

advanced for evaluation using an independent GWAS dataset from Bonn, Germany. We 

used two methods to assess gene-set associations for selected eQTL: i) standard 

PrediXcan (31), computing a linear combination prediction of gene expression, and ii) 

the sequence kernel association test (SKAT)(59), testing gene-set association among 

selected eQTLs that predict gene expressions. Originally developed for rare-variant 

association tests, SKAT was used here to assemble genetic associations from eQTL 

without using the prediction weights derived from an extant gene-expression dataset, 

e.g., GTEx. An eQTL-based aggregate association strategy has been reported 

previously (60), though the previous method used the sum of 1-df chi-square values for 

the individual eQTLs.  The following rationales motivate the eQTL aggregation strategy: 
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i) the existing GTEx tissue types may not capture the cellular origin of BE; ii) even if the 

etiologically-relevant cell types were contained in one of GTEx tissues, genetically 

predicted gene expression derived from bulk tissue RNA-seq profiles may not 

adequately represent the genetic component of gene expression in rarer yet 

etiologically-relevant cell types within that tissue. Therefore, we hypothesize that the 

gene-expression prediction weights for eQTLs derived from GTEx may not be always 

appropriate for the targeted genetic risk prediction for BE and EAC, and we postulate 

that a more flexible set-based global test of selected eQTLs may improve the likelihood 

of capturing genetic associations with disease risk which are otherwise obscured when 

evaluating surrogate gene expression measures from bulk tissue. 

Materials and Methods 

Individual-level data and summary statistics from existing GWAS 

Genome-wide association data from three genetic studies were obtained for this 

analysis. Given that our analytic plan encompassed a multitude of correlated analyses 

and included exploratory methodologic comparisons, e.g., two analysis strategies for six 

tissues and 3 trait comparisons of interest (BE vs control, EAC vs control and BE/EAC 

vs control), a discovery-validation approach was adopted to better control the potential 

false positive results. For the discovery set, individual-level genotype data were 

available from the BEACON consortium (dbGaP phs000869.v1.p1) (2,413 BE cases, 

1,512 EAC cases and 6,718 control participants) and the Cambridge GWAS (873 BE 

cases, 995 EAC cases, and 3,408 control participants); for validation, SNP summary 

statistics were available from the Bonn GWAS (1,037 BE cases, 1,609 EAC cases, and 

3,537 control participants). After quality control, the discovery set included 702,492 
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SNPs on autosomal chromosomes. An additional 4,541 controls of European ancestry 

were obtained from the database of Genotypes and Phenotypes (dbGaP) 

(phs000187.v1.p1, phs000196.v2.p1, and phs000524.v1.p1) and merged with the 

BEACON discovery data to increase statistical power to detect risk loci. The Michigan 

imputation server (61) was used to impute genotype data on chromosomes 1-22, with 

the most accurate and largest panel - the Haplotype Reference Consortium (HRC) 

(Version r1.1 2016) for European (EUR) as the population reference. Imputed genotype 

data included 5,312,829 SNPs with imputation quality score > 0.4, MAF> 0.05, call rate > 

95% and Hardy-Weinberg equilibrium P-value > 1e-5. For the Bonn dataset, imputation 

was previously carried out using the 1000 Genomes Phase1 EUR reference panel, and 

imputed genotype data included a total of ~9 million SNPs with minor allele frequency > 

0.001.  

 

GTEx germline sequencing data and RNA-seq transcriptome data for eQTL 

prediction of gene expression   

GTEx data (V8) from subjects of European ancestry were used in this analysis. RNA-

seq gene expression data were retrieved from 6 tissues of plausible biologic relevance 

to EAC development (esophagus GE junction: n=275, esophagus - mucosa: n=411, 

esophagus - muscularis: n=385, stomach: n=260, adipose - visceral: n=393, and whole 

blood: n=558). Transcripts per million (TPM) data were downloaded, and the trimmed 

mean of M values (TMM) normalization method was implemented in edgeR(62). For 

each gene in a tissue, gene expression values were standardized across samples. SNP 

genotypes were obtained from whole genome sequencing data for ~46,569,000 variants.  
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      The expression levels for a gene were modeled using an ElasticNet linear model 

with local SNPs in a 1Mb region flanking the TSS of the gene, and covariates including 

the top four genotype principal components, top 15 Probabilistic Estimation of 

Expression Residuals (PEER) factors, sex, age, sequencing platform indicator (Illumina 

HiSeq 2000 or HiSeq X), and sequencing protocol indicator (PCR based or PCR-free). 

The elastic net model was implemented using the R package glmnet(63). Highly 

correlated SNPs with Pearson correlation >0.9 were removed before running the elastic 

net model. The penalty parameter was selected by the minimum ten-fold cross 

validation error. The ten-fold cross-validated R2 for genetically predicted gene 

expression was used to summarize the strength of genetic prediction. The distribution of 

R2 for predicting gene expressions in a tissue is displayed by violin plot. Genes with 

estimated R2 >0.01 (correlation >0.1) for a tissue entered subsequent genetic 

association analysis, using the SNPs with non-zero estimated coefficients identified as 

eQTLs.  

eQTL set-based association analysis in the discovery set (Beacon and Cambridge 

individual-level data) 

For each of six tissues and three trait comparisons (BE vs Control, EAC vs Control, 

BE/EAC combined vs Control), gene-set association analyses were conducted by the 

following two approaches. First, in the standard TWAS approach, predicted gene-

expression from the GTEx-derived ElasticNet model was assessed for its association 

with the trait by a logistic model, adjusting for sex, age, and the top six genotype 

principal components. Second, the selected eQTLs from the GTEx-derived ElasticNet 

model were assessed for their collective association with the trait by SKAT(59), 
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adjusting for the same set of covariates. Manhattan plots were drawn to show p-values 

for gene SNP sets by chromosome. False discovery rate (Benjamini-Hochberg FDR) 

was used for to account for multiple testing. For genes of interest for discovery, 

individual SNP-trait associations were also assessed and plotted using LocusZoom 

software. To determine whether an identified gene-set association is caused by a 

previously identified risk SNP in the neighborhood, a SKAT model was also fitted to 

include the known GWAS SNP in the region.  

Validation of the discovered eQTL set based associations in the Bonn dataset 

Gene-level eQTL SNP sets putatively associated with a trait were next evaluated using 

Bonn GWAS summary data. The SKAT association statistics for the gene sets were 

approximated by a score-statistic method(64), using univariate summary statistics and 

the genetic correlation matrix computed from European ancestry participants of the 

1000 Genomes Project. For a few SNPs in the discovery set but missing in the 

validation set due to different imputation panels, we used the closest SNPs within 50 bp 

and with correlation > 0.6, whenever available, as the proxy to minimize the impact of 

missing SNPs. To account for multiple testing in the validation stage, the Hochberg 

adjusted p-value for controlling family-wise error rate was used.   

Data availability 

The BEACON data with supplemented controls were obtained from dbGaP 

(phs000869.v1.p1, phs000187.v1.p1, phs000196.v2.p1, and phs000524.v1.p1). The 

GTEx genotype and gene expression data were obtained from dbGaP 

(phs000424.v8.p2).  
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Results 

cis-eQTL predicted gene expressions in six etiologically relevant tissues 

Transcriptome data and germline whole-genome sequencing data from GTEx (V8) were 

analyzed for building genetic prediction models for gene expressions in each of six 

etiologically relevant tissues for BE/EAC: esophageal mucosa (n=411), esophageal 

muscularis (n=385), GE junction (n=275), stomach (n=260), adipose – visceral (n=393), 

and whole blood (n=558). Common SNPs (MAF>0.05) located within ± 500kb of the 

transcription starting site (TSS) of a gene were identified from GTEx whole-genome 

sequencing data and selected to predict the transcript abundance by the ElasticNet 

method. Figure 1a shows the violin plots of R2 for genes with at least 1 SNP being 

selected and R2≥0.01 (correlation of observed and predicted gene expression ≥0.1) in 

the six tissues. The four tissues in the upper GI tract (esophageal mucosa and 

muscularis, GE junction, and stomach) have a greater number of predictable genes and 

higher R2 in this subset: esophageal mucosa has the largest number of genes with 

R2≥0.01 (n=7463); GE junction has the highest median (0.037) despite the smaller 

sample size for junction tissue. There is substantial variability among the numbers of 

“genetically predictable” genes across tissues (5160 in blood ~ 7463 in esophageal 

mucosa), and the genes shared between tissues. The latter is exemplified by a Venn 

diagram in Figure 1b, which shows the overlapping set between the three esophageal 

tissues. Between any two tissue types, 35~45% of genes are not shared, underscoring 

the significance of both cross-tissue and tissue-specific genetic regulation of gene 

expression.  
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eQTL set based association analysis identified susceptibility loci for BE and EAC 

in BEACON/Cambridge discovery set 

The selected eQTLs in the genetic prediction models were assessed for association 

with BE, EAC, or BE/EAC as a combined trait in BEACON/Cambridge discovery set, 

using two methods: 1) the standard TWAS approach, where the predicted gene 

expression from the ElasticNet model was assessed for its association with the trait in a 

logistic regression model; 2) the gene-set association method SKAT, using the selected 

eQTLs from the ElasticNet model. Across six tissues and for three trait association 

comparisons, there are a total of 116,853 gene set associations being tested. Because 

of high correlations between p-values from the same genes across different tissues and 

trait comparisons, the Bonferroni procedure can be overly conservative. Instead, false 

discovery rate (FDR) was used to adjust for multiple testing, in part because it can 

effectively account for correlation. Figure 2 shows the Manhattan plots of p-values for 

the three comparisons using the two methods (standard TWAS on the bottom of each 

panel and SKAT-eQTL on the top). No genes analyzed by the standard TWAS 

approach satisfied FDR<0.05 (minimum FDR=0.187, e.g., EXOC3, BARX1, and LDAH). 

In contrast, the SKAT-eQTL method identified a total of twenty-one genes with 

significant associations at FDR<0.05 (red dotted line in Figure 2), representing a mix of 

novel and known loci. Table 1 shows eight novel eQTL set-based associations in six loci 

that either have not been reported previously or are independent of the known GWAS 

SNP in conditional analysis. Table 2 shows thirteen loci that have been previously 

linked to susceptibility, containing putative genes including LDAH, BARX1, ALDH1A2, 

and CRTC1.  
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      One consistent theme in Table 1 and 2 is that SKAT-eQTL produced uniformly 

smaller p-values than the standard TWAS method for these eQTL set associations, 

suggesting that the weighted linear combination of eQTL for predicting these gene 

expressions may not always be powerful to capture genetic associations. For example, 

EXOC3 is located in locus 5p15.33, 220kb away from the known risk SNP rs9918259, 

with its flanking region containing 28 selected cis-eQTLs in adipose tissue, explaining 

4.2% of variability in its gene expression. When assessed by SKAT, this set of SNPs 

was significantly associated with BE/EAC with p-value 8.24×10-6 (FDR=0.0365). The 

standard TWAS analysis yielded a larger p-value, 1.81×10-5. Figure 3 shows the 

regional plots of the three novel loci that were discovered in BEACON/Cambridge 

discovery set and validated in Bonn data. Specifically, Figure 3a shows a cluster of cis-

eQTLs, located in the EXOC3 gene, that were individually associated with BE/EAC at a 

moderate level of significance (p-value 10-2 ~10-4). Previous meta-analysis identified 

rs9918259 as a risk SNP in CEP72/TPPP. Adjusting for rs9918259 in the SKAT 

regression model attenuated the p-value for EXOC3 gene set association from 8.24×10-

6 to 2.98×10-3, suggesting that the SNP set of eQTL predicting EXOC3 gene expression 

may add new evidence for association at this locus. 

      The remaining seven eQTL sets in Table 1 are all >10 Mb away from the closest 

existing GWAS SNP; adjusting for existing GWAS SNPs did not reduce the gene-set 

association significance. Of top interest is HSP90AA1(65,66), which is located on 

chromosome 14, with no GWAS risk SNPs previously identified. This gene was 

identified by association of 94 eQTLs in blood with BE. The regional plot in Figure 3e 

shows widespread individual eQTL associations over a 1-Mb window around this gene, 
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exemplifying the power of gene-set association in aggregating signals that may not 

reach genome-wide significance individually. Four eQTLs of ZNF641(67) gene were 

identified in esophageal junction, collectively associated with BE/EAC (p-

value=3.81×10-6), and also individually associated with BE/EAC with less significance 

(Figure 3e).       Table 2 shows loci identified by eQTL gene-set association analyses 

which have been previously linked to risk of BE and EAC. All are located within 0.5 Mb 

of an existing GWAS SNP; all but three (CRTC1, SSBP4 and JUND) became non-

significant when adjusting for the closest GWAS SNP(s). Six eQTL sets including 

CRTC1, SSBP4 and JUND are from 19q13.11, a locus harboring three risk SNPs in 

CRTC1 that have been consistently detected in previous GWAS efforts. The top 

association in this locus is THEM161A (p=9.02×10-10). Adjusting for the three known risk 

SNPs in the region (rs10423674, rs10419226, rs199620551) does not completely 

remove association significance for CRTC1, JUND, and SSBP4, suggesting that this 

region may have independent risk alleles other than the three known risk SNPs. The 

locus 3q27.1 contains rs9823696, the only previous risk SNP linked to EAC but not BE. 

Rather than HTR3C and ABCC5, the nearest genes to this GWAS variant, gene-set 

analysis implicated YEATS2 and ABCF3. The remaining genes in Table 2 were 

reported in prior GWAS as candidate risk genes based on their proximity to index SNPs: 

LDAH/GDF7 (2p24.1), BARX1 (9q22.32), and ALDH1A2/AQP9 (15q21.3).  

Three eQTL set associations in Table 1 were replicated using Bonn GWAS data 

We evaluated all association signals identified in Table 1 using the SKAT method and 

summary statistics from the Bonn GWAS (with 1000 Genomes EUR LD structure) 

(Table 3). Because the trait association analyses were based on HRC imputation, and 
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the available Bonn summary statistics were imputed based on 1000 Genomes data (V3), 

a small number of SNPs were missing for some of the eight genes. eQTL SNP sets for 

three genes had evidence of replication in the Bonn data, using the Hochberg adjusted 

p-value <0.05 as the threshold for confirming candidate associations: EXOC3, ZNF641, 

and HSP90AA1. In particular, EXOC3 (p=0.0000185) and ZNF641 (p=0.00378) 

remained significant even using the stringent Bonferroni correction. Twelve out of 26 

eQTLs for EXOC3 had a univariate p-value <0.05 (minimum p-value 1.69×10-7). Three 

out of four eQTLs for ZNF641 also have univariate p-values <0.05.  

 

Discussion  

Advanced esophageal adenocarcinoma is a deadly disease with rising incidence in 

Western countries. International efforts including BEACON and other European studies 

have identified ~20 susceptibility SNPs, though collectively these risk SNPs explain only 

a small portion of the genetic heritability. Polygenic risk scores (PRS) based on GWAS 

hits have not been able to significantly improve prediction beyond environmental risk 

factors. In our view, current genetic studies have reached a plateau in discovery, largely 

due to the rarity of the cancer and the limited available sample sizes. In this work we 

conducted TWAS for EAC and BE, using data from six etiologically relevant GTEx 

tissues. The standard TWAS method using predicted gene expression was compared to 

a novel approach that assessed gene-level eQTL-set associations by SKAT. Individual-

level genetic data from BEACON/Cambridge were used as the discovery set and 

summary statistics of genetic data from Bonn were used as the validation set. Using a 
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significance threshold of FDR<0.05 in the discovery set, standard TWAS identified no 

associations, while the SKAT approach yielded 13 eQTL set associations in 11 loci. 

Among them, 8 eQTL set associations (5 loci) are novel findings, either representing 

novel susceptibility regions without previously identified risk SNPs, or in the case of 

EXOC3, a novel signal independent of known risk SNPs in the neighborhood. Among 

the genes from the known loci, our results suggest that there are potentially 

susceptibility genes at 19p13.11 independent of the three known risk SNPs. Notably, 

the loci identified by eQTL set associations largely did not overlap with loci previously 

reported for gastro-oesophageal reflux disease (GERD), a major risk factor for 

BE/EAC and a clinical trait by itself. For eQTLs in Tables 1 and 2, only one eQTL 

rs9636202 (ISYNA1) was found to be a GERD risk locus previously reported (68). 

These results represent a significant advance in identifying novel inherited genetic risk 

associations for BE/EAC, since the publication of the first GWAS meta-analysis in 2016 

(22).  While we underscore the importance of discovering new candidate risk loci for a 

rare cancer with limited study samples available, we also acknowledge that caution is 

needed in interpreting eQTL set associations. Functional laboratory studies are 

essential to identify causal variants and genes that are driving observed associations.   

      One interesting observation is that there is no finding from the standard approach, 

while SKAT-eQTL produced 13 significant eQTL set associations. All set associations in 

Tables 1 and 2 have smaller p-values from SKAT-eQTL, some substantially more 

significant (e.g., HSP90AA1 and KRTAP5-8, for which p-values of the standard TWAS 

are greater than 0.05). This analysis is a single observation of applying two methods 

applied to GWAS datasets, therefore does not establish the power comparison between 
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the two methods. A formal power comparison using simulated genetic datasets is 

necessary and will be pursued in future work. Here we merely conjecture why an eQTL-

set ensemble association may be advantageous in the context of BE/EAC studies. The 

prevailing theory for TWAS using imputed gene expression is that the genetic 

component of gene expression for genes relevant to disease etiology can be accurately 

predicted, using etiologically relevant tissue samples. As noted previously, however, a 

complicating factor is that most tissues are comprised of multiple cell types in varying 

abundance, and only a subset of these cell types – often representing a small fraction of 

overall cells – may be the most relevant to disease development. This indeed may be 

the case for BE/EAC, as candidates for the cell-of-origin include subpopulations of 

precursors in the GE junction or gastric cardia. That said, cancer development is a 

multi-faceted process involving not only stem-like precursor cells, but also the tissue 

microenvironment, comprised of and influenced by multiple constituent cell types. It is 

quite possible that for this reason, a more flexible gene-set association method, such as 

SKAT, may outperform standard TWAS. If this hypothesis is true, one may envision that 

the SKAT-eQTL association approach could be applied successfully on a wider scale 

and similarly help accelerate discovery of novel loci for other types of cancers. 

      Compared to the standard GWAS analysis for individual SNP associations, the 

eQTL set based aggregation approach provides better power in detecting loci that 

contain multiple eQTL association signals. In Supplementary Figure 1, we show the 

locus zoom plots for the individual SNP associations combining the discovery and 

validation set from the eight loci identified in Table 1. None of the SNPs in these regions 

reached the p-value cutoff of 5×10-8. However, the set-based method can assemble and 
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detect multiple eQTL associations in a locus with single variants reaching moderate 

levels of significance.    

       Rarely employed in TWAS, the discovery-validation design we adopted is partly 

driven by the multitude of analyses we intended to conduct using two analytical 

approaches and 6 potentially relevant tissues, and for 3 trait comparisons of interest, as 

well as the lack of access to individual-level genetic data in Bonn study. The latter is a 

limitation of current analysis. Confirmation of discovery-stage associations, using an 

independent validation dataset, reduces the possibility of false positive discoveries. As 

noted before, though motivated by the goal of deciphering causal pathways of disease 

etiology, the original TWAS approach is not immune to spurious findings. This is 

particularly true for the SKAT-eQTL approach – it is essentially a gene-set association 

method assembling risk associations that are individually unlikely to survive the 

multiple-testing penalty. Three novel eQTL set associations (EXOC3, SENP6, 

HSP90AA1) were validated by the Bonn summary data, each of which has multiple 

individual risk SNPs with a moderate level of association (Figure 3).  

      We end our discussion with several other limitations and future work. First, while 

delivering several novel susceptibility signals, the power of our TWAS is limited by the 

sample size of BE/EAC cases due to its rarity. Compared to existing TWAS for other 

cancers, our sample size is much smaller. New population-based genetic studies are 

needed to improve power and further advance EAC genetic research. Second, our 

analyses were restricted to European ancestry participants. Although the incidence of 

EAC in whites is much higher than that in African Americans, future studies are needed 

for eQTL and TWAS in broader populations. Third, although our genetic findings are 
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promising, experimental studies are needed to understand the mechanisms of genetic 

risk predisposition.  
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Tables 

Table 1. Novel eQTL set-based genetic associations with BE, EAC, or BE/EAC. 

 

a Distance between the gene and the most significant GWAS risk SNP identified from previous GWAS. 
b P-value for association analyses in standard TWAS. 
c P-value for eQTL gene-set SKAT association. 
d FDR based on the pooled set of p-values for eQTL gene-set SKAT associations across three trait comparisons and six tissues.  
e P-value derived from the SKAT model adjusting for GWAS risk SNPs. 
 

 

 

 

 

 

 

Locus Gene Tissue Trait # 
eQTLs R2 

Most 
significant 

GWAS SNP 

Distance 
(Mba) TWAS-Pb SKAT-Pc FDRd P-adje 

5p15.33 EXOC3 Adipose BE/EA 28 0.042 rs9918259 0.22 1.81×10-5 8.24×10-6 0.037 2.98×10-3 
6q14.1 SENP6 Blood BE/EA 51 0.046 rs76014404 13.92 2.23×10-3 7.12×10-6 0.036 5.32×10-6 
11q13.4 KRTAP5-8 Adipose EA 23 0.047 rs4930068 69.26 0.27 1.41×10-5 0.049 3.28×10-5 
12q13.11 ZNF641 Junction BE/EA 4 0.014 rs1247942 65.90 5.16×10-6 3.81×10-6 0.025 2.26×10-6 
14q32.31 HSP90AA1 Blood BE 94 0.040 -- -- 0.66 8.49×10-6 0.037 -- 
16q23.1 CFDP1 Stomach BE/EA 5 0.011 rs1979654 11.07 3.98×10-3 4.29×10-6 0.026 2.67×10-6 
16q23.1 CHST5 Junction BE 21 0.026 rs1979654 10.84 0.36 2.45×10-6 0.022 3.14×10-6 
16q23.1 BCAR1 Blood BE 335 0.021 rs1979654 11.14 0.13 6.08×10-6 0.034 1.12×10-5 
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Table 2. eQTL set-based genetic associations with BE, EAC, or BE/EAC at thirteen risk regions reported in prior GWAS. 

 

a Distance between the gene and the most significant GWAS risk SNP identified from previous GWAS 
b P-value derived from association analyses in standard-TWAS 
c P-value derived from association analyses in SKAT-TWAS 
d FDR based on p-value derived from association analyses in SKAT-TWAS 
e P-value derived from association analyses in SKAT-TWAS after adjusting for GWAS risk SNP 
 

 

 

 

 

Locus Gene Tissue Trait # 
eQTLs R2 

Most 
significant 

GWAS SNP 

Distance 
(Mba) TWAS-Pb SKAT-Pc FDRd P-adje 

2p24.1 LDAH Junction BE/EA 25 0.179 rs7255 0.005 1.94×10-4 7.11×10-8 2.37×10-3 0.429 
2p24.1 GDF7 Blood BE/EA 15 0.079 rs3072 0.012 0.146 3.38×10-7 5.67×10-3 0.641 
3q27.1 YEATS2 Stomach EA 6 0.018 rs9823696 0.368 0.160 5.18×10-6 0.030 0.942 
3q27.1 ABCF3 Adipose EA 43 0.063 rs9823696 0.120 0.223 1.45×10-5 0.049 0.339 
9q22.32 BARX1 Adipose BE/EA 5 0.028 rs11789015 0.002 4.35×10-6 3.03×10-6 0.022 0.386 
15q21.3 ALDH1A2 Adipose BE/EA 19 0.023 rs66725070 0.022 3.58×10-3 7.87×10-7 0.012 0.506 
15q21.3 AQP9 Blood BE/EA 206 0.018 rs2464469 0.068 0.573 8.08×10-6 0.037 0.054 
19p13.11 JUND Blood BE/EA 347 0.011 rs10419226 0.413 0.221 2.62×10-6 0.022 0.041 
19p13.11 SSBP4 Blood BE 44 0.011 rs10419226 0.273 0.904 1.82×10-6 0.019 0.006 
19p13.11 ISYNA1 Blood BE/EA 206 0.028 rs10419226 0.258 0.679 1.35×10-5 0.046 0.085 
19p13.11 KLHL26 Blood BE/EA 32 0.015 rs10419226 0.055 0.212 3.21×10-7 5.67×10-3 0.428 
19p13.11 CRTC1 Adipose BE/EA 21 0.061 rs10419226 0.009 0.130 6.61×10-8 2.37×10-3 0.002 
19p13.11 TMEM161A Mucosa BE/EA 4 0.013 rs10423674 0.412 4.25×10-3 9.02×10-10 1.07×10-4 0.203 
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Table 3. Association of eQTLs for the eight genes in Table 1 with BE, EAC or BE/EAC risk in Bonn GWAS. 

 

a Number of SNPs with univariate p-value< 0.05 in Bonn data. 
b Minimum univariate p-value in Bonn data.  
c Validation SKAT p-value in Bonn data. 
 

 

 

 

 

 

Locus Gene #eQTLs Trait #snps in  
Bonn 

#snps 
(P<0.05)a MinPb Bonn_Pc Hochberg_P 

5p15.33 EXOC3 28  BE/EA 26  12 1.69×10-7 1.85×10-5 1.48×10-4 
6q14.1 SENP6 51  BE/EA 48  3 3.55×10-4 5.01×10-2  0.189 
11q13.4 KRTAP5-8 23  EA 20  2 8.02×10-4 0.162 0.324 
12q13.11 ZNF641 4  BE/EA 4  3 4.26×10-3 3.78×10-3 0.026 
14q32.31 HSP90AA1 94  BE 89  14 0.012 8.28×10-3 0.049 
16q23.1 CFDP1 5  BE/EA 5  1 0.028 0.053 0.189 
16q23.1 CHST5 21  BE 20  2 9.81×10-3 0.063 0.189 
16q23.1 BCAR1 335  BE 328  11 4.63×10-3 0.464 0.464 
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Figure Legends  

Figure 1. Predictive eQTL models for gene expression across 6 tissues in GTEx. (a) Violin plots for R2 estimates for genes with 

R2≥0.01. (b)  Venn diagram of genes with R2≥0.01 in three esophageal tissues in GTEx. 

Figure 2. Manhattan plots for p-values derived from two methods: eQTL set-based association by SKAT (top); standard TWAS using 
predicted gene expression (bottom). (a) BE versus control. (b) EA versus control. (c) BE/EA vs control. The line for FDR=0.05 is 
based on all three trait associations.   

Figure 3.  Regional plots for novel loci that were discovered in Beacon/Cambridge discovery set and validated in Bonn data. (a) 
eQTLs of EXOC3 in discovery. (b) eQTLs of EXOC3 in validation. (c) eQTLs of ZNF641 in discovery. (d) eQTLs of 
ZNF641 in validation. (e) eQTLs of HSP90AA1 in discovery. (f) eQTLs of HSP90AA1 in validation. 
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