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Abstract
Reservoir modeling and simulation are vital components of modern reser-
voir management processes. Despite the advances in computing power and
the advent of smart technologies, the implementation of model-based opera-
tional/control strategies has been limited by the inherent complexity of reservoir
models. Thus, reduce order models that not only reduce the cost of the imple-
mentation but also provide geological consistent prediction are essential. This
article introduces reduced-order models based on the proper orthogonal decom-
position (POD) coupled with linear interpolation for upscaling. First, using
POD-based models, low rank approximate (LRA) are obtained by projecting the
high dimensional permeability dataset to a low dimensional subspace spanned
by its trajectories to decorrelate the dataset. Next, the LRA is integrated into the
interpolation algorithm to generate upscaled values. This technique is highly
scalable since low-rank approximations are achieved by the variation in the
number of modes used for reconstruction. To test the validity and reliability of
the model, we show its application to the practical dataset from SPE10 bench-
mark case2. From statistics of the error analysis, the classical POD algorithm
seems to be more preferred for LRA; however, since non-negativity of the
permeability data set is a priority, the constrained POD (non-negative POD)
algorithm described in this article is more appropriate. Finally, we compared the
POD-based models to a traditional industry-standard upscaling technique (e.g.,
arithmetic mean) to highlight our model benefits/performance. Results show
that the POD-based models, particularly the non-negative POD model, produce
considerably less error than the arithmetic mean model in the upscaling process.
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1 INTRODUCTION

Numerical modeling and simulation have been extensively used to design, optimize and manage multiphase flows in
subsurface reservoirs. The past decades have seen remarkable advances in this area. However, robust multiphase flow
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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simulations remain challenging due to the high-resolution heterogeneous properties of the reservoirs.1 Reservoir models
described on fine-scale discretization are required to capture the rock heterogeneity. These fine-scale reservoir mod-
els result in nonlinear high-order systems of equations known as the full-order model. Performing simulations on the
full-order model (FOM) is expensive, as vast computational resources and time are often required.2 Therefore, it is of
great interest to reparameterize reservoir properties like permeability and porosity through reduced-order models. To
this end, having a practical approach to represent the FOM of high dimensionality with a reduce order model (ROM) of
coarse-scale and low dimensionality is important.

Generally, the main objective of reduced-order modeling techniques is replacing the FOM with a reduced order model
(ROM) while preserving essential features of the original system, such as input-output behavior, stability, and passivity.
These reduce order models are simplifications of the FOM, having a much lower dimension on a coarser scale.3 Among the
ROM techniques, the grid-based upscaling method is popular for reparameterizing. Upscaling refers to the computation
of effective coarse properties based on fine-scale features. In upscaling, a heterogeneous property region consisting of
fine-grid discretizations is replaced with an equivalent homogeneous region, made up of a single coarse-grid cell with an
effective property.1

Upscaling techniques for subsurface reservoirs can be classified in terms of the parameters to be upscaled: single or
two-phase flow parameters.4 In single-phase parameter upscaling techniques, the fine-scale porosity 𝜙 and permeability
tensor K (or transmissibility T ) is upscaled to coarse-scale effective porosity 𝜙∗, and effective permeability K∗ ( or T∗)
respectively. In other cases where the two-phase flow parameters, such as relative permeability or/and capillary pressure,
are upscaled, the techniques used are referred to as the two-phase parameter upscaling, or simply two-phase upscaling.5

During practical reservoir simulations, single-phase static upscaling techniques are essential tools and can success-
fully be applied to develop reasonably accurate coarse-scale models for multiphase flows.6 The volumetric weighted
arithmetic mean is commonly used to obtain the upscaled coarse-scale effective porosity 𝜙∗. For permeability upscaling,
several methods have been introduced in the literature. Some of which are analytical and others numerical.2,7,8 Analytical
methods (also called averaging methods) such as the arithmetic, harmonic and geometric methods have the advantage
that they are usually faster than numerical algorithms; however, they have the disadvantage that when applied to a sec-
tor outside their strict domain of validity, they quickly become inaccurate. On the other hand, numerical methods are
based on the numerical solution of the pressure distribution and are more accurate but may become computationally too
intensive and slow.4

In this article, an effective and efficient model for permeability upscaling will be proposed and investigated. We
explore an adaptive approach where a reduced basis method (i.e., proper orthogonal decomposition (POD) and nonneg-
ative proper orthogonal decomposition (NPOD)) is combined with an interpolation algorithm. Here, the central idea
is to find an orthogonal transformation between the original permeability space (high fidelity permeability data) and
a low dimensional uncorrelated permeability space (low fidelity data set). Then, the low fidelity data is remapped to
the coarse simulation grid using an interpolation algorithm. The interpolation algorithm is embedded within the flow
simulator.

The main aim of this paper is to extract the primary information representative of the typical characteristics of
the permeability distribution from the high-fidelity data and represent it as a new set of independent variables of the
POD/NPOD modes from which we obtain low-fidelity data (LRA). As an advantage, the upscaling method presented
is data-driven. Like the analytic methods, our models are not based on the numerical solution for the pressure distri-
bution; hence they are faster. Also, there is minimal redundancy within the low fidelity data used during the dynamic
coarse-scale simulation since the method ensures that significant attributes of the high fidelity data are recognized, and
the dimension is reduced such that information loss is minimal. The process of LRA generation is essential because it
is not very likely that all the row/columns in high-fidelity data K are linearly-independent. Such collinearity may lead
to instabilities in the solution space, producing inconsistent results. Also, in zero permeability domains, simple averag-
ing methods are known to produce errors in the upscaled values. The LRA seeks to overcome this problem since the
dimension reduction is made in the transform domain, not the spatial domain. Finally, it can be applied to upscaling
tensors.

This proposed methodology presents two significant improvements over analytical methods: (i) It is scalable and
allows for qualitative and quantitative analysis of the discrepancies between reference and scaled-up data of the geolog-
ical reservoir even before dynamic simulations are performed. (ii) Dimension reduction using the POD model is in the
transform domain rather than the spatial domain, making it possible to overcome the problem of geological discontinu-
ities at the boundaries associated with analytical methods. The transform domain method can overcome these issues by
introducing geological spatial correlations into the scale-up process.
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This paper is organized as follows. In Section 2, we present the governing flow equations. Section 3 introduces
mathematical tools that will be used to build the upscaling model. Next, we describe the architecture and experimental
setup of the model in Section 4. Results and discussion is presented in Section 5. Finally, in Section 6, we present the
conclusion.

2 DESCRIPTION OF THE FLOW EQUATIONS

Fluid flow in porous media are described by a set of partial differential equations representing conservation of mass and
momentum, as a function of pressure, saturation, and velocity.

For an immiscible multiphase flow, the momentum conservation equation is described by the extended Darcy’s law
in the form of,

u
𝛼
= −KKr𝛼

𝜇𝛼S𝛼
(∇p𝛼 −𝒮mom,𝛼), (1)

where 𝛼 designates a phase. u is the saturated Darcy velocity. K is the absolute permeability tensor of the porous medium.
Kr, 𝜇, and p are the relative permeability, viscosity and pressure respectively. Finally 𝒮mom is the source/sink term.

Here, fluids are assumed to be incompressible, then from the continuity equation for multiple phases, the saturation
equation can be obtained in the form

𝜙
𝜕S𝛼
𝜕t

+ ∇ ⋅ (u𝛼) = Scty,𝛼 , (2)

𝜕u𝛼
𝜕n

= 0 ∶ no flow at boundary, (3)

S(t = 0) = S0 ∶ initial known saturation, (4)

where 𝜙 is the porosity. S𝛼 and Scty,𝛼 are the saturation and source/sink term of the 𝛼th phase, respectively. The saturation
equation is bounded by the constraint

∑N𝛼

𝛼=1S𝛼 = 1, 0 ≤ S𝛼 ≤ 1, where N𝛼 denotes the number of phases.
A control volume finite element method (CVFEM) formulation based on dual consistent CVFEM representation,

embedded in the families of triangular and tetrahedral finite element-pairs PnDG − Pm and PnDG − PmDG, is used to dis-
cretize and solve the set of equations. The numerical formulation is fully described in Gomes et al.9 When discretizing the
equations above, fine-scale mesh resolutions are required to fully capture the reservoir heterogeneities with each sub-grid
containing reservoir parameters like permeability and porosity. Running simulations with these fine-scale models is com-
putationally expensive. Therefore, some form of upscaling is required to transfer relevant features from the fine-scale
model to a coarse-scale model to reduce the computational burden.

Upscaling volumetric (additive) properties like porosity is relatively straightforward. The effective porosity is the bulk
volume weighted arithmetic average of the sub-grids. On the other hand, upscaling permeability is a complicated matter,
as it is not an additive variable (i.e., the equivalent permeability in the reservoir scale cannot be represented by arithmetic
means).

The permeability K may be defined as the ability of the fluid to flow through the pores connectivities in the porous
media and is also the most important parameter when simulating in a reservoir. Therefore reliable permeability upscal-
ing methods are required to accurately capture the heterogeneous structure of the fine-scale reservoir model when
represented by a coarse-scale model.

Thus this paper will focus on developing a fast and reliable upscaling technique for the permeability tensor K. When
upscaling the permeability of a grid blockΩ, our goal will be to obtain an upscaled (effective) permeability K∗ which gives
a very similar total flux in the grid block as the original permeability K, given the same pressure gradient.

3 REDUCE ORDER MODELING VIA POD

This section briefly introduces the proper orthogonal decomposition method and other essential tools used to buildup
our proposed reduce order model.
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3.1 Proper orthogonal decomposition

Proper orthogonal decomposition (POD) is a powerful and elegant modal decomposition method of data analysis aimed at
obtaining low-dimensional approximate descriptions of high-dimensional processes. POD has been developed by several
authors and known by different names depending on the field of studies.10 The POD technique provides an algorithm
to decompose a given data into a minimal number of basis functions or modes to capture as much energy as possible.
In fluid dynamics, it was first introduced by Lumley11 as a mathematical technique to extract coherent structures from
turbulent flow fields, it has also been used in vibration analysis,12 data analysis or compression,13,14 damage detection15

and as tool in deriving reduced order models for the shallow water equations.16

In Reference 17, an enhanced POD model known as weighted proper orthogonal decomposition was introduced and
used to numerically investigate the evolution of the swirling flow exiting the hydraulic turbine runner as the turbine dis-
charge is modified. Reddy et al.18 presented a constrained POD-based ROM to investigate propagation and compounding
of error through the time domain of the first-order wave equation.

More particularly, the application of POD and its variation for model reduction in multiphase flow has received much
attention, with different authors working on the applicability of POD-based models for state-space (saturation, pressure)
order reduction.19-22

3.1.1 POD setting

Given a non-negative data matrix X > 0 containing n rows and m columns, that is, X = [x1, … , xn]T such that xi ∈ Rm.
The rank of X is defined as the maximum number of linearly independent column/row vectors in the matrix. We let N
be the rank of X , such that N ≤ min(n,m). POD seeks to factorize X ∈ Rm×n in the form

X ≈ X̂ = UV , (5)

where U = (u1,u2, … ,ud) ∈ Rm×d contains the orthogonal basis vectors called the modes (or factors) and V T =
(v1, v2, … vd) ∈ Rn×d is the associated coefficient matrix. d is a specified rank for matrices U and V which is normally
much lower than the rank of X (i.e., d ≪ N). The matrices U and V are obtained by solving the following minimization
problem;

min
X̂

||X − X̂||2F = min
U,V

||X − UV ||2F , s.t UTU = I. (6)

Here ||X||2F =
∑

ij x2
ij is the square Frobenius norm and X̂ is the low rank approximate (LRA) of X . The solution to the

minimization problem relies on the covariance matrix R ∈ Rn×n defined by

R = 1
m

XXT . (7)

Note that, R is a symmetric positive semidefinite matrix with real, nonnegative ordered eigenvalues 𝜆1 ≥ … ≥ 𝜆n ≥ 0
and corresponding eigenvectors denoted by uj (j = 1, … ,n). Due to the structure of R we can choose the eigenvectors as
the orthogonal basis of X , that is, uj (j = 1, … , d) are the modes in Equation (3) above and V = UTX .

When the minimum is taken over all U,V of dimension d,23 then it holds that:

min
U,V

||X − UV ||2F =
n∑

j=d+1
𝜆j. (8)

When applying POD to practical problems, the choice of the d most relevant basis vectors is of central importance. A
strategy commonly used for choosing d is the energy criterion (EC).24 Here we assess the variance, which is the ratio
between the modeled variance and the total variance contained in X

EC =
∑d

j=1𝜆j
∑N

j=1𝜆j
. (9)

An adhoc rule frequently applied, the closer EC is to 1, the better.
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ONIMISI et al. 903

Here, the realization of POD is identical to PCA (principal component analysis), and its application in this work is to
reduce the dimension of the static model. We used POD in this work to reduce the dimension of the geophysical property.

3.2 A constrained proper orthogonal decomposition model

Although the POD model is optimal for low rank approximation, a major drawback is that the POD mode do not neces-
sarily conform to specific constraints, such as non-negativity. So when non-negativity of the data is desirable because the
underlying factor has a physical interpretation as in the case of upscaled permeability, an additional constraint will have
to be imposed on Equation (6) to ensure X̂ ≥ 0.

Adding the non-negativity constraint (U,V ≥ 0 ) to Equation (6) we arrive at the following optimization problem

min
U,V

||X − UV ||2F , s.t UTU = I U,V ≥ 0. (10)

A direct byproduct of the combination of UTU = I and U ≥ 0 entails that U is disjoint, meaning that each column of
U contains at most one non-zero element. While having disjoint modes may be considered as a kind of sparseness, it
is too restrictive for most problems (i.e., as in the case of permeability upscaling a sparse solution is not desirable). We
therefore wish to allow some overlap among the modes (i.e., column of U) to relax the disjoint property. The degree of
coordinate overlap can be represented by an orthogonality distance measure ||UTU − I||2 which vanishes only when U is
orthogonal.25

The relaxed version of Equation (10) becomes:

min
U,V

||X − UV ||2F + 𝛼||U
TU − I||2F , s.t UTU = I U,V ≥ 0. (11)

where 𝛼 > 0 is a balancing parameter between reconstruction and orthogonality. Now, the factor matrix U is a
near-orthogonal nonnegative matrix, that is, UTU ∼ I.26 Equation (11) describes the constrained POD method, which
we refer to henceforth as the non-negative POD (NPOD) model. The NPOD algorithm straightforwardly yields an
algorithm identical to the known orthogonal non-negative matrix factorization (ONMF).27 To solve Equation (11), an
iterative two-step strategy was adopted by alternatively optimizing U and V . At each iteration, one of the matrices is
optimized while the other is fixed. The resulting multiplicative update rules are obtained as

U ← U ⊙
XV T + 𝛼U

UVV T + 𝛼UUTU
, (12)

V ← V ⊙
UTX

UTUV
, (13)

where⊙ is the Khatri-rao product. The correctness of these solutions for U and V is assured by the fact that at convergence
they will satisfy the Karush–Kuhn–Tucker (KKT) conditions for Equation (11).

3.2.1 Karush–Kuhn–Tucker (KKT) conditions

The Karush–Kuhn–Tucker (KKT) conditions are used to obtain the solution for optimization problems constrained to
one or more equalities.

Consider an optimization problem:

min
x∈Rn

f (x).

subject to hi(x) ≤ 0, i = 1, … m,
lj(x) = 0 j = 1, … , r, (14)

where f is the objective function, hi(x) is the equality constraint and lj(x) is the inequality constraint. Assuming the
equation is differentiable, there exist constants ui(i = 1, … m) and vj(j = 1, … , l) called KKT multipliers that satisfy the
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904 ONIMISI et al.

following condition

0 ∈ 𝜕f (x) +
m∑

i=1
ui𝜕hi(x) +

r∑

j=1
vj𝜕lj(x), (15)

uiḣi(x) = 0 for all i, (16)

hi(x) ≤ 0, lj = 0 for all i, j, (17)

ui ≥ 0 for all i. (18)

Equations (15)–(18) are the stationary, complementary slackness, primal feasibility and dual feasibility conditions, known
as the KKT conditions.28 In the absence of the inequality constraints in Equation(14), the KKT conditions decompose to
the Lagrange conditions, and the KKT multipliers are called the Lagrange multipliers.

3.2.2 Derivation of multiplicative updates

The core idea for deriving the multiplicative updates in Equation (12) and (13) is based on the KKT conditions described
above. We start by defining the objective function29

𝒥 = 1
2
||X − UV ||2F +

𝛼

2
||UTU − I||2F . (19)

Then

𝒥 = tr(XTX − 2UTXV + V TVUTU) + 𝛼tr(UTUUTU − 2UTU + I), (20)

where tr(A) represents the trace of A. Let Ωij and Λjl be the Lagrange multiplier for the constraints Uij ≥ 0 and Vjl ≥ 0
respectively. The Lagrangian function  for the two multiplier metrics Λ = Λij and Ω = Ωij is expressed as

 = 𝒥 − tr{ΛUT} − tr{ΩV T}. (21)

For optimality, the KKT conditions requires

𝜕𝒥
𝜕U

= Λij, (22)

𝜕𝒥
𝜕V

= Ωij. (23)

Also from the KKT complementarity slackness condition we have

ΛUij = 0, (24)

ΩVij = 0. (25)

Incorporating Equation (22) and (23) into (24) and (25), respectively leads to

[UVV T − XV T + 2𝛼(UUTU) − 2𝛼U]ijUij = 0, (26)

[UTUV − UTX]ijVij = 0. (27)

Finally separating negative and positive parts of the gradient leads to the multiplicative update rules in Equation (12)
and (13).
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3.3 Re-mapping via interpolation

During upscaling, the LRA X̂ is remapped from the fine grid to the coarse grid using nearest neighbor interpolation
(NNI). Any interpolation methods aim to use a source dataset as the reference to construct a new scaled/interpolated
dataset. The new or constructed dataset depends on the interpolation ratio selected. Nearest neighbor is one of the simplest
interpolation techniques and is very useful when computational speed is an area of concern.

This method sets the value of an interpolated point to the value of the nearest existing data point. Therefore, for two
successive data points (xk, xk+1) ∈ X̂ , this method first find the mid value using these data points.30 Then values of x,
smaller than the mid value, corresponds to the value of yk and values greater than the mind value corresponds to the value
of yk+1. The kernel function f (x)which define the nearest neighbor interpolation technique, is a zeroth-degree polynomial
and is given by,

f (x) =

{
yk, x ≤ 1

2
(xk + xk+1),

yk+1, x > 1
2
(xk + xk+1).

(28)

4 SIMULATION MODEL SETUP

This work introduces a novel ROM for permeability upscaling. Here, we explored an adaptive approach where the NPOD
model combined with the nearest neighbor interpolation results in a coupled model (i.e., NPOD-NNI reduce order model).
The model involves two stages.

First, the permeability tensor K, a diagonal tensor {Kx(i, j),Ky(i, j)} with i = 1, 60 and j = 1, 220, is obtained from
fine-scale reservoir model (SPE10 model231). The NPOD model is applied to K to generate low rank approximation K̂.
The objective of the NPOD model is to extract the primary information from a large amount of data and represent it as
a new set of independent variables (modes). Thus using the NPOD model, the key attributes of the permeability data
are recognized, and the dimension is reduced, ensuring minimal information loss. This process is essential because it is
not very likely that all the row/columns in K are linearly-independent. Such collinearity may lead to instabilities in the
solution space, producing inconsistent results.

In the second stage, the LRA K̂ is re-mapped from the fine-grid to the coarse-grid using the NNI algorithm. The NNI
algorithm is embedded in the simulation codes within the ICFERST simulator. When running the simulation, high-order
numerical methods are used to solve the flow equations described in Section 2. Figure 1 illustrates the process of the
experimental model setup.

4.1 SPE 10th comparative solution project: Model 2

The SPE10 reservoir model31 was proposed as a benchmark for upscaling techniques and is, therefore, a good test case
for our methodology. Although the model is structurally simple, it is highly heterogeneous (see Figure 2).

The geological model consists of part of a Brent sequence which includes two units. The top part of the model (made
up of the first 35 layers) belongs to the Tarbert formation. Its lower part (made up of the remaining 50 layers) is an Upper
Ness sequence (fluvial). Both formations are characterized by large permeability variations, but are qualitatively different
as shown in Figure 3.

The Tarbert formation has relatively smooth permeability variations and has good communication in the vertical
and horizontal directions. However, the Upper Ness formation is fluvial and contains channels making the formation
particularly hard to upscale. From each formation, a layer will be extracted and studied.

4.2 Goodness of fit

“Goodness of fit” (gof) statistics are presented to validate the model’s performance. For the static model, qualitative analy-
sis on the LRA K̂ reconstructions are performed. In the dynamic model, we analyse the responses (such as flow behaviors)
of the fine-scale and corresponding coarse-scale model. The relative root-mean-square error is used to measure the quality
of LRA K̂ reconstructions and evaluate the performance of the different models.
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906 ONIMISI et al.

F I G U R E 1 Pseudocode describing the model setup

F I G U R E 2 SPE 10 model showing the spatial distribution of permeability [Colour figure can be viewed at wileyonlinelibrary.com]

RRMSE =

√
1

Nt
(X̂ − X)2

X2 , (29)

RRMSE =

√
√
√
√
√

1
Nt

∑Nt
i (Xi − X̂i)2

∑
i X̂i

2 , (30)

where X̂ and X are the observed and expected data, respectively, and Nt is the total number of elements in X . In order to
measure the amount of information loss during the LRA reconstructions, we used the Kullback Leibler (KL) Divergence,
defined as

 10970363, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5171 by U

niversity O
f A

berdeen, W
iley O

nline L
ibrary on [15/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


ONIMISI et al. 907

F I G U R E 3 Histogram of rock permeability (log Kx) for the SPE 10 model. The Tarbert formation is shown in blue and the Ness
formation in red [Colour figure can be viewed at wileyonlinelibrary.com]

DKL(P||Q) =
∑

x∈X
P(x) ln P(x)

Q(x)
. (31)

The significance of the DKL(P||Q) can be tested through its relationship to the minimum discrimination information (MDI)
statistics.

MDI = 2 ⋅ N ⋅ DKL(P||Q), (32)

where N =
∑

x. The MDI is Asymptotically chi-square distributed.32

Finally, to measure the performance of the model as the number of the modes increases, we define the explained
variance score by

EVS = 1 − Var(X − X̂)
Var(X)

, (33)

where Var is the variance. To select the number of retained modes to use in the dynamical simulation, we compare
the cumulative variance ratio, and the relative root mean square error of LRA reconstructions. We determine that the
minimum number of the POD modes acceptable is such that the conditions

EVS ≥ 97%, and RRMSE ≤ 10E − 1 (34)

hold.

5 SIMULATION RESULT

To validate the NPOD-NNI reduce order model for upscaling, two 2-dimensional heterogeneous permeability data from
the top and bottom layers of the SPE 10th comparative solution project31 are considered. For both test cases, the compu-
tational domain entails 6 m × 11 m with 13,258 triangular elements at fine-scale. Two wells (injector and producer) are
located at opposite ends (i.e., left and right end) of the reservoir. In all test cases at initial conditions, the computational
domain contains two fluids: fluid 1 with a saturation of 20% and fluid 2 with a saturation of 80%. Fluid 1 is injected with
a constant flow velocity (0.3 ms−1) through the left boundary displacing fluid 2 towards the right boundary. Pressure is
kept constant at the production end. The relative permeability is evaluated using the modified Brooks–Corey model.33
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908 ONIMISI et al.

1.3e-16

2.5e-11

1e-15
2e-15
5e-15
1e-14
2e-14
5e-14
1e-13
2e-13
5e-13
1e-12
2e-12
5e-12
1e-11

F I G U R E 4 Permeability distribution
(
in m2) of layer 20 (6×11 m) of the SPE10 Benchmark [Colour figure can be viewed at

wileyonlinelibrary.com]

F I G U R E 5 The RRMSE and Information loss using different modes for LRA reconstruction of the permeability distribution of layer20
[Colour figure can be viewed at wileyonlinelibrary.com]

Porosity and viscosity are set at 𝜙 = 0.2 and 𝜇 = 1cP respectively. Boundary conditions of no-flux across upper and lower
borders were set.

Results from low-rank approximation using the POD-based (i.e., POD and NPOD) models are first analyzed. Next,
numerical results from the POD-based upscaling models and an analytic upscaling method will be compared to those
obtained from fine-scale simulations.

5.1 Test case1: SPE10-Layer20

In this test, we used permeability data obtained from the 20th layer of the SPE10 model. This layer, as shown in Figure 4,
is an extract from the Tarbert formation having good communication in the vertical and horizontal directions. The data
described by a 60 × 220 matrix is decomposed using the POD and the proposed NPOD algorithm. The modes are extracted
and used in reconstructing the upscaled permeability. Analysis of the quality of reconstructions using different numbers
of modes is observed. In Figure 5A, as the number of modes used in reconstruction increases, the error asymptotically
tends to zero.

Theoretically, all information and characteristics of the original data would be recovered when all modes are used
in reconstruction using the POD algorithm; however, this is not the case for the NPOD model. This is because the opti-
mization problem in the NPOD model described in Section 3.2 has no exact solution, and only approximate solutions are
obtained using the KKT conditions. Hence, the error from the NPOD model will only approach zero but is never equal
to zero even if all modes are used in the reconstruction. Figure 5B shows the information loss during reconstructions. As
the number of modes increases, the information loss is minimized, tending asymptotically to zero.

Although from statistics of the error analysis for the statics model, the POD algorithm might seem more preferred for
LRA, as stated before, when non-negativity of the data set is a priority, the NPOD should be more appropriate, as will be
shown in Figure 6. The NPOD model can use a minimal number of modes to reconstruct the permeability image while
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(A) (B) (C)

(D) (E) (F)

F I G U R E 6 Images of reconstruction with 8200 triangular elements obtained from the POD and NPOD models using some selected
number of modes for layer20 [Colour figure can be viewed at wileyonlinelibrary.com]

retaining the geological details from the original data as opposed to the POD model. Reconstructed images using different
modes are generated using the POD-NNI (coupled POD with nearest neighbor interpolation) and NPOD-NNI models,
respectively. The LRA’s obtained from the POD algorithm are refined by taking the absolute value of the LRA data to
ensure non-negativity.

The permeability distribution in Figure 4 has 13,258 triangular elements, which is the reference image. Figure 6 shows
images of reconstruction with 8200 triangular elements obtained from the POD and NPOD models using five, twenty-five
and forty-two modes. The reference image has a rank of 60. In low-rank approximation generation, the number of modes
used in reconstruction is equivalent to their ranks. Thus the LRA reconstructed with 5, 25, and 42 modes correspond to
having ranks 5, 25, and 42, respectively.

Clearly, by increasing the number of modes (rank), the image gradually changes as they become sharper, smooth out
at the contours, and tones are marked, highlighting regions of high and low permeability more precisely.

The choice of the optimal rank for the LRA reconstruction is essential since if we go below a certain threshold, the
features of the original map will not be recovered. In this work, the optimal rank is selected by performing POD-based
models for a range of ranks and then choosing a rank based on the metric of goodness described in Section 4.2.

From Figure 7, the explained variance score is at EVS = 99%when the mode number reaches 42, and from Figure 5A,
the RRMSE for the LRA reconstruction using 42 modes is 4.627E − 2. Therefore, from Equation (33), it can be con-
firmed that a high reconstruction accuracy is achieved if the top 42 modes of layer 20 are adopted in computations for the
upscaling.

Table 1 shows the basic statistics of the LRAs reconstructed with 42 modes. As statistics of the permeability dataset
produced by the POD-based models indicate similarity with the original data set (static model), the next step is to
conduct numerical simulations to investigate the flow dynamics using the full (i.e., original ) and reduced(upscaled)
data set.

For running simulation, the ICFERST1 flow simulator is used. From Layer 20 data set, LRA K̂ using 42 modes are
obtained and mapped to the coarse-grid using the nearest neighbor algorithm. We simulate the fine-scale test case and
compare this to the coarse-scale test case. Figure 8 shows the permeability distribution and saturation flow profile of the
reference(fine-scale) test case and coarse test case using the NPOD-NNI model.

Here, we scaled up the reference test case from 13,258 elements to 1004 elements. Clearly, at the coarse level, the struc-
ture of the fine-scale permeability distribution is still preserved. The high and low permeable zones remain detectable.
Also, we note a similar flow behavior between the responses at the coarse-scale and the corresponding fine-scale test case.

Figure 9 shows the comparison plot of the cumulative production rate of fluids 1 and 2 using the POD based models
and the arithmetic mean (AM) upscaling model. Noticeably, from the curves, we observed a good match for the results
from the forward simulations between the proposed upscaling models and the reference test case.
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910 ONIMISI et al.

F I G U R E 7 Variiance explained by each of the modes of Kx [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 The mean, variance and standard deviation of the different datasets to be used in the dynamic simulation of layer20

Statistics

Dataset Mean Var STD

Reference 2.2993E + 2 5.3804E + 5 7.3351E + 2

POD 2.3185E + 2 5.3654E + 5 7.3249E + 2

NPOD 2.3209E + 2 5.3582E + 5 7.3199E + 2

(A) (B)

(C) (D)

F I G U R E 8 Top: fine-scale permeability distribution on a 13258 mesh grid and corresponding flow profile. Bottom: coarse-scale
permeability distribution on a 1004 mesh grid calculated by the NPOD model using 42 modes for LRA reconstruction and corresponding
flow profile [Colour figure can be viewed at wileyonlinelibrary.com]
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ONIMISI et al. 911

F I G U R E 9 Cumulative production curves for fluid 1 and 2 for the fine-scale reference test-case and coarse-scale test-cases using
NPOD-NNI and POD-NNI [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 2 The CPU times for the dynamical simulation carried out on an x86 64 quad-core machine running Linux and RRMSE of the
cumulative production rate of fluid 1 and fluid 2 from performances of reduced models in reproducing the original response of the references
case for layer 20

Method Mesh (elements) RRMSE Fluid1 RRMSE Fluid2 CPU time

Fine-scale 13.2 k 585m0.148s

AM 1 k 4.307e−1 1.241e−1 29m8.919 s

POD-NNI 1 k 4.953e−2 1.274e-2 42m52.696 s

NPOD-NNI 1 k 1.622e−2 3.860e-3 41m56.092 s

Statistically comparing the performance of reduced-models in reproducing the original response of the references case,
the RRMSE in table 2 shows that the NPOD model results in considerably less error than the POD model in the upscaling
process, albeit both POD and NPOD models performed better than the classic arithmetic mean upscaling model. Also,
as expected, the computational time is significantly reduced when using the upscaled models compared to the reference
case.

Comparing the production rate curves in Figure 9 and the results in Table 2 clearly illustrate the advantage of using
POD-based models over the classic arithmetic mean upscaling model as the performance of the POD-base model is more
accurate with a better curve fit. Even more remarkably, Figures 8 and 9 indicate clearly that the NPOD-NNI algorithm
could be used to represent the fine-scale model as fluid flow behavior are very similar.

5.2 Test case2: SPE10 layer 81

In the second test case, permeability data is obtained from the 81st layer of the SPE10 model. The layer, as shown in
Figure 10, is an extract from the Upper Ness formation. This formation is hard to upscale because it contains channels
resulting from rivers or running water deposits in a delta-plain environment.

Like in the first test case, similar analyses are carried out to investigate the performance of the upscaling model on
complex reservoirs. The permeability, described by a 60 × 220 matrix, will be decomposed using the POD and proposed
NPOD algorithm. The modes are extracted and used in reconstructing the upscaled permeability.

Figure 11 shows the associated error and information loss during reconstruction with different numbers of modes.
As the number of modes used in the reconstruction increases, both the error and information lost asymptotically tend to
zero.
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912 ONIMISI et al.

F I G U R E 10 Permeability distribution
(
in m2) of layer 81 (6×11 m) of the SPE10 Benchmark [Colour figure can be viewed at

wileyonlinelibrary.com]

F I G U R E 11 The RRMSE and Information loss using different modes for LRA reconstruction [Colour figure can be viewed at
wileyonlinelibrary.com]

The data can be said to have some sparseness since it is extracted from a channelized region with permeabilities having
significant variations in the orders of magnitudes. Thus, the correlation between the row/column of the data matrix is
minimal, with almost all modes required in the LRA generation to minimize the error and associated information loss.
Using the POD-NNI and NPOD-NNI, the reconstruction images from the different modes are generated. Figure 10 shows
the permeability distribution of SPE10 layer81 on a 13,258 triangular element, which describes the reference data set used
in this test. Figure 12 shows the images of reconstruction with 8200 triangular elements, obtained from the POD and
NPOD models using five, twenty-five, and fifty-five modes.

The reference image described in Figure 10 has a rank of 60. The LRA reconstructed with 10, 25, and 42 modes
correspond to ranks 10, 25, and 42, respectively. By increasing the number of modes (rank), the image gradually
changes, highlighting regions of high and low permeability more precisely. Estimating the number of modes to use LRA
reconstruction in the dynamic simulation will be determined based on Equation (33).

From Figure 13, the explained variance score is at EVS = 97% when the mode number reaches 51, and from
Figure 11A, the RRMSE for the LRA reconstruction using 51 modes is 1.07E − 1. Therefore, from Equation (33), it can be
confirmed that a high reconstruction accuracy is achieved if the first 51 modes of layer 81 are adopted in computations
for upscaling. We also note that when using the POD model, the cumulative energy contribution is at Ec = 97%when the
mode number reaches 44.

Table 3 shows the basic statistics of the LRAs reconstructed with 51 and 44 modes for the NPOD and POD models,
respectively. As statistics of the permeability dataset produced by the upscaling models indicate similarity with the original
data set (static model), the next step is to conduct numerical simulations to investigate the flow dynamics using the
original (i.e., high-fidelity data) and reduced (low-fidelity data) data set.

From Layer 81 data set, LRA K̂ using 51 modes are obtained and mapped to the coarse-grid using the nearest neighbor
algorithm. We simulate the fine-scale test case and compare it with the coarse-scale test case results. The permeability
distribution and saturation flow profile of the fine-scale and coarse-scale test cases using the NPOD-NNI are shown in
Figure 14
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ONIMISI et al. 913

(A) (B) (C)

(D) (E) (F)

F I G U R E 12 Images of reconstruction with 8200 triangular elements obtained from the POD and NPODbased models using some
selected number of modes for layer81 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 13 The variance explained by varying numbers of modes for Kx in layer81 [Colour figure can be viewed at
wileyonlinelibrary.com]

T A B L E 3 The mean, variance and standard deviation of the different datasets to be used in the dynamic simulation of layer81

Statistics

Dataset Mean Var STD

Reference 4.0194E + 2 1.7416E + 6 1.3197E + 2

POD 4.1498E + 2 1.7261E + 6 1.3138E + 2

NPOD 4.0951E + 2 1.7259E + 6 1.3137E + 2
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(A) (B)

(C) (D)

F I G U R E 14 Top: fine-scale permeability distribution on a 13,258 mesh grid and corresponding flow profile. Bottom: coarse-scale
permeability distribution on a 1004 mesh grid calculated by the NPOD model and corresponding flow profile [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 15 Cumulative production curves for fluid 1 and 2 of the fine-scale reference test-case and coarse-scale test-cases using
upscaling models [Colour figure can be viewed at wileyonlinelibrary.com]

Here, we coarsened the original mesh from 13,258 elements to 1004 elements. The original fine-scale permeability
distribution structure is slightly preserved at the coarse scale. Also, there is a similar flow behavior between the saturation
profile of the coarse scale and the corresponding fine-scale model.

Figure 15 shows the comparison plot of the cumulative production rate of fluids 1 and 2 using the different upscal-
ing models. Noticeably, from the curves, we observed a good match for the results of dynamic simulations between the
proposed models and the reference test case compared to the arithmetic mean upscaling model results. Statistically com-
paring performances of reduced-models in reproducing the original response of the references case, the RRMSE in Table 4
clearly shows that the POD-based models result in considerably less error than the arithmetic mean model in the upscal-
ing process. Furthermore, the CPU times for running the dynamic simulations using the upscaling models are similar
and much less than the reference model.

The cumulative production curves in Figure 15 and the results in Table 4 clearly illustrate the advantage
of using POD-based models compared to the existing analytic model for upscaling. More specificly, the NPOD
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ONIMISI et al. 915

T A B L E 4 The CPU times for the dynamical simulation carried out on an x86 64 quad-core machine running Linux and RRMSE of the
cumulative production rate of fluid 1 and fluid 2 from performances of reduced-models in reproducing the original response of the
references case for layer 81

Method Mesh (elements) RRMSE Fluid1 RRMSE Fluid2 CPU time

Fine-scale 13.2 k 597m53.423 s

AM 1k 4.0215e−1 2.087e−1 35m59.551 s

POD-NNI 1 k 1.115e−1 6.126e−2 42m29.484 s

NPOD-NNI 1 k 2.725e−2 4.466e−2 40m42.309 s

model seems a better choice for upscaling as the performance of the NPOD model is more accurate with a better
curve fit.

6 CONCLUSION

Proper orthogonal decomposition based reduce order models have evolved during the past decades as a promising
model order reduction technique for multiphase flow in large-scale heterogeneous systems. This work presents a novel
reduce-order modeling technique for upscaling heterogeneous domains. The main objective was to extract the primary
information representative of the typical characteristics of the permeability distribution from the high-fidelity data and
represent it as a new set of independent variables of the POD/NPOD modes from which low-fidelity data (LRA) are deter-
mined. Next, we conduct simulations involving high-order accurate numerical methods using this low-fidelity data on
coarse grids to investigate the multifluid flow behaviors.

The new ROM technique was evaluated using extracts from the SPE10 benchmark, and the results were compared
with an existing analytical upscaling method. As the numerical tests show, the upscaling model preserves the geological
structures and flow behavior from the fine-scale model. Moreover, the technique introduced significantly reduces the
redundancy of the high-fidelity data and provides qualitative and quantitative analysis of the static data. In future work,
we will extend the POD/NPOD to multilinear algebras to investigate high-order POD/NPOD reduce order models for
upscaling 3D domains.
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