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Abstract 

Stream temperature is directly and indirectly affected by climate change. To be able to project 

future changes in stream temperature, historic trends and factors influencing these trends need to 

be understood. There is a demand for daily data to analyse historical trends and future changes in 

stream temperature. However, long-term daily stream temperature data are rare and observations 

of coarse temporal resolution (e.g. once-a-month) do not allow for robust trend analyses. Here, we 

present a methodology to reconstruct a national long-term daily stream temperature record (1960-

2080) from 40 years of once-a-month observations (for 45 Scottish catchments). This involved 

implementing climatic and hydrological variables in generalized additive models. These models were 

then used in combination with regional climate projections (UKCP18 Strand 3 - RCP8.5) to predict 

future spatio-temporal temperature patterns. 

The results indicate that for the Scottish dataset (i) in addition to air temperature, the dominant 

environmental controls on stream temperature are unique combinations for each catchment; (ii) a 

general increase of up to 0.06 °C/year in historic stream temperature over all catchments resulted 

mainly from increases in spring and summer stream temperatures; (iii) future spatial patterns in 

stream temperature are more homogenous and differ therefore from the past where temperatures 

in N Scotland were relatively lower (iv) future changes of up to +4.0 °C in annual stream temperature 

are strongest in those catchments which show lower stream temperature in the past (NW and W 

Scotland). These results are important in the context of water quality and stream temperature 

management. The methodology can be applied to smaller scale sites or to other national/global 

datasets enabling the analysis of historic trends and future changes at a high temporal resolution. 

Keywords 

historic stream temperature trends; future stream temperature changes; climate change; 

generalized additive models; long-term daily record 
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1. Introduction 

Stream temperature (Tw) is recognized as one of the main controlling factors for water quality 

(Aslam et al., 2018; Bloomfield et al., 2006; Delpla et al., 2009). It is known to influence 

biogeochemical processes (Durance and Ormerod, 2009; Seeney, 2019) and plays a vital role for in-

stream habitats (Caissie, 2006; Dugdale et al., 2017; Jackson et al., 2018) and the wider ecosystem 

(Dugdale et al., 2016; Watts et al., 2015). Tw is also economically important, e.g. for the supply of 

industry cooling water (Roberts and Maslin, 2021), as well as for the fishing industry (Donnelly et al., 

2020; Seeney, 2019). Air temperature (Ta) (Bolduc and Lamoureux, 2018; Briggs et al., 2018; Toffolon 

and Piccolroaz, 2015; Zhu et al., 2018), topography (Jackson et al., 2018; O’Sullivan et al., 2019), 

channel characteristics (Garner et al., 2017; Jackson et al., 2018; Justice et al., 2017), land use 

(Daraio and Bales, 2014; Garner et al., 2017; Jackson et al., 2018), distance to coast (Hrachowitz et 

al., 2010; Jackson et al., 2018) and temporal drivers like day of year (Jackson et al., 2018; Pohle et al., 

2019; Zhu et al., 2019), day length (Jackson et al., 2017a; Pohle et al., 2019) and hydrological 

conditions (Baker et al., 2018; Pohle et al., 2019; Toffolon and Piccolroaz, 2015) are all known to 

influence Tw.  

Evaluating long term historical trends in Tw worldwide has revealed that these can be either 

decreasing (e.g. in large parts of the tropics and southeast Asia) or increasing (e.g. in the Northern 

Hemisphere excluding the arctic regions) and are strongly correlated to trends in Ta (Wanders et al., 

2019), but the dominant trends reflect warming patterns with an average global increase in Tw of 

0.16 ◦C per decade between 1960 and 2014 (Wanders et al., 2019). For Europe, Webb (1996) 

identified an increase of up to ca. 1.0 °C in Tw and up to 1.4 °C in mean Ta during the 20th century. 

Others have shown that there has been a relatively stronger increase in Tw in Europe since the 1960s 

(Moatar and Gailhard, 2006; Pohle et al., 2019). More specifically for the UK, studies have also 

demonstrated an increase in temperatures for freshwater bodies since the 1970s or 1980s (Durance 

and Ormerod, 2009; Hannah and Garner, 2015; Orr et al., 2015; Watts et al., 2015; Webb and 

Walling, 1992). For a river in NE Scotland, for example, Pohle et al. (2019) observed higher warming 
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after 1961 with an increase in Tw of 0.2 °C per decade (analysed period: 1912-2016). They reported 

that this coincided with an increase in Ta of the same magnitude. For another Scottish upland river, 

Langan et al. (2001) reported an increase of 2.0 °C in maximum Tw for winter and spring over a 30 

year period (1968-1997). They also related this to changes in seasonal Ta. 

Changes in Tw are often closely related to changes in Ta as both are influenced by atmospheric 

conditions, solar radiation, wind speed/humidity and evaporation/condensation (Arora et al., 2018; 

Caissie, 2006; Jackson et al., 2018; Kelleher et al., 2021; Lisi et al., 2015; Michel et al., 2020; Webb et 

al., 2008). Furthermore, Rabi et al. (2015) highlighted the importance of Ta in the preceding days, 

indicating the delayed response of Tw to net radiation compared to Ta. 

Under the RCP8.5 level of radiative forcing, Ta may increase in the future by more than 6.5 °C by 

2081-2100 in the north of Europe (Gutiérrez et al., 2021). Projections for seasonal UK air 

temperatures suggest that mean summer Ta may increase by 3.6 °C - 5.2 °C, and mean winter Ta by 

1.8 °C – 3.6 °C by 2061-2080 compared to 1981-2000 (Met Office, 2019). For UK climate projections, 

the UKCP18 Strand 3 dataset (Met Office Hadley Centre, 2018) indicates the potential for an increase 

in summer surface Ta of up to 7.0 °C and winter surface Ta of up to 4.0 °C at the RCP8.5 level of 

radiative forcing (2061-2080 relative to 1981-2000). Even though a stronger increase in surface Ta is 

mostly expected for southern England, Scotland’s surface Ta is estimated to increase by up to 5.0 °C 

in summer and 4.0 °C in winter by 2061-2080 (relative to 1981-2000) (Met Office, 2019). 

The overall future increase in Ta is expected to result in raised summer Tw in many temperate climate 

zone catchments (Dugdale et al., 2018). Van Vliet et al. (2011) explored the impact of Ta and 

discharge changes on future daily Tw for 157 global river stations and predicted increases in annual 

mean stream temperatures of +1.3 °C, +2.6 °C, and +3.8 °C under Ta increases of +2 °C, +4 °C, and 

+6 °C, respectively. For the UK, a range of studies also suggested a general increase in mean annual 

Tw in the future (2071-2100), ranging between 1.0 °C to 3.6 °C under different climate scenarios (van 

Vliet et al., 2015, 2013). However, climate change has both direct and indirect impacts on stream 
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temperature, which are spatially variable (Liu et al., 2020; Punzet et al., 2012; van Vliet et al., 2013). 

Furthermore, in addition to climate, changes in hydrological conditions, landscape/channel 

characteristics and natural/artificial thermal inputs (Arora et al., 2016; Caissie, 2006; Dick et al., 

2017; Dugdale et al., 2018; Jackson et al., 2017a; Kelleher et al., 2021) have also been recognised to 

influence changes in Tw. A general understanding of controls on Tw and knowledge of sensitive sites 

is therefore important for management strategies now, but also in future. Generating such 

understanding relies on the availability of high spatial and temporal resolution Tw data. Studies with 

long-term data are typically available for single sites (Kedra, 2017; Pohle et al., 2019; Rabi et al., 

2015; Webb and Walling, 1992), while efforts for many sites generally involve shorter-term data 

(Arora et al., 2018; Jackson et al., 2018, 2017b, 2017a; Lisi et al., 2015; Steel et al., 2016). Only a few 

international studies such as Garner et al. (2014); Arora, Tockner and Venohr (2016); Piccolroaz et al. 

(2016); Michel et al. (2020); and Kelleher, Golden and Archfield (2021) have analysed long term-data 

across multiple sites (Hannah and Garner, 2015). Still, the temporal resolution in such Tw datasets is 

typically coarse (i.e. less than daily). Coarse temporal resolution is known to introduce bias, as it is 

unlikely to represent the complete thermal variability of daily data (Koch and Grünewald, 2010). 

Being able to deduct high resolution data from such low resolution longer-term Tw datasets across 

many sites would therefore provide an important step towards understanding Tw trends and 

changes over longer periods of time (Isaak et al., 2012; Moatar and Gailhard, 2006; Orr et al., 2015), 

as well as the controls on past and future Tw patterns.  

A few studies, such as Seyedhashemi et al. (2022) and Zhu et al. (2019), have focused on obtaining 

daily stream temperature from coarser resolution data sets. These involved a range of different 

modelling approaches such as different regression models (Koch and Grünewald, 2010), k-nearest 

neighbour (St-Hilaire et al., 2012), dynamic 1-D water energy routing modelling (Wanders et al., 

2019) or standard statistical models such as ai2stream (Piccolroaz et al., 2016). These studies mostly 

agree on improved model performance by including current Ta and preceding (1 – 2 days) Ta and Tw 

(Koch and Grünewald, 2010; St-Hilaire et al., 2012; Wanders et al., 2019). While these studies are all 
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focusing on modelling daily Tw from Ta and in some cases include variables for seasonality or flow, 

combinations of a variety of climatic and hydrological variables are not considered. Hence there is a 

need for a relatively simple and widely applicable methodology to obtain long-term daily Tw records 

from coarser temporal observation records by implementing simple climatic and hydrological 

variables. One such solution to acquire historical high temporal resolution datasets is by 

reconstruction from temporal sparse data by generalized additive models (GAMs) as shown by Pohle 

et al. (2019). GAMs are similar to generalized linear models but replace the linear form by a sum of 

smooth functions providing a flexible method to identify nonlinear effects in regression models 

(Hastie and Tibshirani, 1986) and are therefore suitable to consider complex relationships between 

Tw and different environmental variables and model Tw under a changing environment (i.e. change in 

seasons). The application of GAMs to derive daily Tw data from coarser resolution data would then 

enable better understanding of (i) the relative importance of various drivers for Tw and (ii) potential 

changes in Tw under future climate scenarios.  

The main aim of this study was to create a national daily stream water temperature dataset from 

once-a-month observations and use this to gain insights into annual as well as seasonal historic and 

future spatial patterns in stream water temperature. This was achieved by developing and applying 

GAMs to a long-term once-a-month national dataset for Scotland, UK. The specific objectives were 

to (i) reconstruct a national long-term daily Tw record, (ii) analyse historic trends and the role of 

environmental controls and (iii) explore future trends to identify most vulnerable sites.  

2. Methods 

2.1 Study catchments and data 

This study focussed on 45 catchments across Scotland (Figure 1 and Appendix A), covering 

~33,200 km2 (approximately 43 % of mainland Scotland) in total. These catchments are part of a 

long-term national water quality monitoring programme, the Harmonised Monitoring Scheme 

(HMS). The HMS dataset contains monthly Tw for 56 rivers (monitored since mid-1970s) across 
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mainland Scotland collected once a month near the mouth of the network draining the represented 

catchment as part of regulatory water quality sampling (Scottish Environmental Protection Agency, 

2013). Monitoring in eleven catchments ceased prior to 2015, so that the dataset for this study was 

reduced to those 45 catchments with more complete and comparable long-term records (Figure 1a 

and Appendix A). Complementary runoff data at the same or nearby sites were extracted from the 

national river flow archive (NRFA) (UK Centre for Ecology & Hydrology, 2019). The average distance 

between an HMS and nearby NRFA sampling site is 295 m with a maximum of ~1.7 km (for 

catchment 37, which drains and area of 164 km2). 

The 45 catchments are representative of a range of different environmental conditions, in terms of 

climate, topography and land cover (Figure 1 and Appendix A). Catchment size varies between 

~60 km2 and 4580 km2. Mean elevation of the catchments ranges from 79 m to 458 m (Figure 1a) 

with lower mean catchment elevation mostly occurring in central Scotland and higher elevations in 

the north (the area of the Cairngorms and Highlands). Mean annual catchment precipitation ranged 

from 766 mm to 2693 mm (Figure 1b), with lower precipitation values in the east compared to west 

of Scotland. For the reference period 1981-2010, annual mean air temperature (Ta) as catchment 

averages ranged between 5.8 °C and 8.5 °C (Figure 1c), higher temperatures are observed in the 

central and southern part of Scotland. Scotland’s main land uses are moorland grazing and arable 

agriculture (Morton et al., 2007). Woodland cover is between 8 % and 57 % for individual 

catchments, with higher values in southern Scotland (Forestry Commission, 2020) while settlement 

density is the highest in the southern central area (Figure 1d). Observed mean annual discharge for 

all catchments ranges from 265 mm to 2454 mm. Baseflow index (BFI), as derived from modelled 

runoff using the baseflows function implemented in R package hydrostats (Bond, 2016), is between 

0.14 and 0.52 (Figure 1e) showing lower groundwater contribution estimates in southern Scotland 

and along the west coast. The geology of Scotland is showing a clear division of mostly sedimentary 

basement in the south and metamorphic basement in the centre and north divided by the highland 

boundary fault. At the HMS sampling points annual mean Tw for the reference period 1981-2010 
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ranged between 8.0 °C to 10.5 °C (Figure 1f), with higher temperatures mostly in the south of 

Scotland. 

While the HMS dataset provides monthly Tw data, higher resolution observations for the River Gairn, 

a 146.5 km2 sub-catchment of the Dee (catchment 41 in Figure 1a) were used to independently 

evaluate the approach. The Gairn dataset consists of minimum and maximum Tw data at 15 min 

intervals for the period 2013 – 2017, logger issues resulted in a data gap for early 2016, but this did 

not affect the modelling approach as the calibration period was defined from mid-2012 to end 2014. 

The 15 min interval data were averaged to generate hourly and daily records. To replicate the 

monthly sampling of the HMS dataset, data of a single day within a month were extracted for the 

sampling days available for catchment 41. As no information on the specific sampling time was 

available, 10:00 am was chosen to replicate the single measurement of a day. 

Daily meteorological data (maximum and minimum Ta [°C] and precipitation,[mm]) for the time 

period 1960 - 2015 were obtained from HadUK-Grid at a spatial resolution of 1 km x 1 km (Met 

Office et al., 2018). Average daily Ta was calculated as the mean of maximum and minimum daily Ta. 

From the UKCP18 dataset, we also extracted future 12 km x 12 km resolution daily meteorological 

data (1980 – 2080), for 12 climate projections simulated using the HadRM3 Regional Climate Model 

for the RCP8.5 level of radiative forcing (Met Office Hadley Centre, 2018). This future climate dataset 

was partially downscaled to a 5 km x 5 km resolution and spatially bias corrected following Rivington 

et al. (2008b). This bias correction method assesses the climate model’s ability to simulate daily Ta 

and precipitation interpolated observations (Perry et al 2009) for each 5 km x 5 km grid cell, from 

which correction factors are developed. For precipitation this means (I) correcting the number of dry 

days (P <0.2mm), by subtracting a value (generally <0.3mm) from all rainfall events so that the mean 

number of modelled dry days matches observations. This is performed as Rivington et al. (2008a) 

identified a systematic error where there were too many days with low precipitation amounts and 

(II) a correction to match the Mean Annual Total (MAT) precipitation, which corrects for the models’ 
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original error and the dry day correction. For maximum and minimum Ta, the minimised value was 

the difference between the observed and modelled sum of daily means per month. The mean 

correction values (+ or -) for the 1960-1990 baseline period for each month were identified per grid 

cell and applied additively. On the assumption that errors in regional climate model estimates for 

the observed period are systematic, and therefore exist in future projections, the correction factors 

were applied to the 12 future climate projection daily data. The objective of this method is to 

minimise the changes to individual daily data values and so maintain the climate change signal 

within the HadRM3 projections. Future catchment average precipitation and Ta were then calculated 

for all catchments from the 5 km downscaled dataset.  
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Figure 1: Catchment characteristics. a) catchment ID’s and sampling points, mean elevation of 

individual catchments (calculated based on OS Terrain 50; contains Ordnance Survey data © Crown 

copyright and database right [2022]). b) mean yearly precipitation per catchment based on HadUK-

Grid. c) mean air temperature (1981-2010) as catchment average based on HadUK-Grid. d) mean 

woodland cover per catchment (based on Forestry Commission, 2020) and settlements in brown 

(based on National Records of Scotland 2016). e) calculated average base flow index per catchment 

(1981-2010) based on streamflow observations. f) mean stream temperature per catchment (1981-

2010) based on sampling points from HMS dataset. 

2.2 Reconstructing daily stream temperature data from monthly observations 

Figure 2: Structure of model approach to simulate daily stream temperature data based on runoff, air 

temperature, precipitation, day length, cumulative air temperature, snowmelt and snowmelt/runoff 

ratio.  

Daily Tw was modelled for the individual catchments using generalized additive models (GAMs) with 

seven potential explanatory variables, calibrated using the monthly observed Tw values from the 

HMS dataset (Figure 2). The explanatory variables include daily values for Ta, cumulative Ta, 

astronomical daylength, total precipitation, snowmelt, runoff, and the ratio of snowmelt over runoff 

(Figure 2). These variables were selected because they (i) have been recognised by other studies to 
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have the strongest influence on changes in Tw, as summarized in the introduction, and (ii) are 

relatively simple to obtain, and thereby most consistently and readily available. Appendix B provides 

a summary of the Pearson correlation coefficients between individual predictors. Catchment Ta data 

were extracted from the UKCP18 dataset, as a weighted average of all grid cells covering the 

individual catchments. Cumulative Ta was computed as the cumulative sum of air temperature 

throughout the thermal year (1st December – 30th November). The astronomical daylength was 

derived using the R software package oce (Kelley et al., 2018) for each catchment centroid.  

To obtain variables related to precipitation and runoff, a snow model and hydrological model, were 

used, respectively. The snow model is based on a single-layer degree-day model (Spencer, 2016) and 

runs on a daily timestep. It was used to simulate effective precipitation and snowmelt based on 

observations of total precipitation and Ta from HadUK-Grid data for the past and bias corrected 

UKCP18 data for the future. Daily runoff was simulated using the conceptual hydrological model 

TUWmodel (Parajka et al., 2010) for each catchment to enable closing data gaps in the past and 

runoff modelling for the future. It was parametrized by calibrating against observed daily runoff 

from the national river flow archive (NRFA) dataset (UK Centre for Ecology & Hydrology, 2019) using 

the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) for natural logarithms of runoff (Krause et al., 

2005). The internal snow routine of the TUWmodel was deactivated to explicitly account for snow as 

simulated by the single layer degree-day snow model.  

The GAMs were then used to model Tw for all possible combinations of the seven potential 

explanatory variables, using the GAM function of the mgcv package (Wood, 2021) implemented in R 

(R Core Team, 2021). To account for antecedent conditions, a moving average over the preceding 

days was applied to Ta, cumulative Ta and astronomical day length. The time window for which the 

moving average was applied was determined by the highest correlation (based on Pearson 

correlation coefficient) between the moving average of Ta and Tw observations for each catchment. 

For the TUWmodel and GAMs, the data prior to 1996 was chosen as a warmup period for the 
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models, while data from 1996 – 2005 were chosen for calibration and 2006 – 2015 for validation. 

This allowed for calibration and validation of the models using near-continuous observed timeseries. 

All possible combinations of the seven variables resulted in a maximum of 128 different GAMs per 

catchment. Firstly R2 > 0.7 was used to select the best 20 GAMs (out of the 128 runs) for stream 

water temperature in both the calibration and validation period, as R2 is a simple way to determine 

the quality of a linear model. In case more than 20 GAMs fulfilled this criterion they were 

additionally ranked and selected based on their Akaike Information Criteria (AIC). The wider model 

performance of the selected GAMs Tw models is summarised in Appendix B. In addition to R2, this 

includes the independently calculated bias, root mean square error (RMSE), Nash-Sutcliffe efficiency 

(NSE) (Nash and Sutcliffe, 1970) and Kling-Gupta-efficiency (KGE) (Gupta et al., 2009), which were all 

calculated using the hydroGOF R package (Zambrano-Bigiarini, 2020). Finally, the results of the top 

20 GAMs were plotted in form of response curves against the explanatory variables to identify and 

exclude physically implausible models for each catchment individually. 

To independently evaluate the modelling approach, we used it to simulate daily Tw data based on 

the monthly subsampled data for the Gairn catchment, which were then compared with the 5 years 

(2013 – 2017) of daily observed discharge and Tw timeseries. As the timespan for the River Gairn 

dataset represents a shorter timespan (mid 2012 – start 2017) compared to the HMS dataset (mid-

1970s – 2015), the calibration period was adjusted to mid 2012 – end 2014 and the validation period 

to early 2015 – end 2016. 

To identify dominant controls on simulated daily Tw for individual catchments, the p-value for 

variable significance was calculated using Pearson correlation. A variable was considered as 

significant for a GAM with p ≥ 0.01/n (n= 7; number of variables in the model). The total importance 

for each variable per catchment was calculated as the sum of times it was considered as significant. 
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2.4 Analysis of historical trends  

Daily Tw was calculated for outputs of each of the 20 best performing GAMs. Averages of these 20 

results are presented in sections 3.2 and 3.3, so that each catchment has one value but with 

consideration of uncertainty in the modelling. Using a five-year starting window, annual and 

seasonal (Winter: Dec – Feb, Spring: March – May, Summer: Jun – Aug, Autumn: Sept – Nov) trends 

in form of Sen slopes (Sen, 1968) were calculated for a 30-year period using 1961, 1971 and 1981 as 

the starting year. This means for the starting year 1961, trends for five 30-year periods (starting 

1961, 1962, 1963, 1964, 1965) were calculated. The significance of a trend was evaluated using the 

Yue & Wang (2004) variance correction for autocorrelated data. Where four out of five 30-year 

windows indicated a significant trend (p-value < 0.05) in the same direction, a significant trend was 

assumed for the entire period and a median Sen slope over all models for the entire period was 

calculated; in case of more than one insignificant or contrasting trend, results were marked as 

“contrasting trends”. This approach was chosen to allow for identification of consistencies and 

artefacts in the dataset.  

2.5 Future stream water temperature trends  

The period between 1981 and 2010 was considered the ‘baseline’ for future Tw projections. The 

future projections were generated based on the climate data. Future cumulative Ta, snowmelt, 

runoff, and ratio snowmelt/runoff for the 12 climate projections were generated as described in 

Section 2.2. These were then used for each of the best 20 GAMs from the historical dataset to 

calculate Tw for each climate projection. Results from the 12 projections were then averaged to a 

single dataset of future Tw (2031 – 2080) for each of the 20 models. Trends for future Tw were 

calculated according to the same procedure as for the historical dataset. We focussed specifically on 

trends in annual and seasonal Tw between 1981 – 2010 and 2051 – 2080, to consider the longest 

possible period into the future. 
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3. Results 

3.1 Model performance and evaluation 

Overall, the modelling approach showed good performance across all catchments (Figure 3, 

Appendix B). Mean R2 over all 900 models (20 models per catchment) is 0.94 for calibration and 0.93 

for the validation period (Appendix B). Other independent model evaluation criteria, which were not 

used in the model selection process, further indicate the suitability of the approach (Figure 3 and 

Appendix C). 

 

Figure 3: mean model performance for validation period of individual catchments. a) R2 and b) Kling 

Gupta Efficiency c) Nash Sutcliffe Efficiency d) Root mean square error. 

The quality criteria for the individual catchments also indicate a good performance (Figure 3) with 

mean R2 ranging between 0.87 – 0.96, mean KGE 0.87 – 0.98, mean NSE 0.86 – 0.96 and mean RMSE 

0.94 °C – 1.55 °C. These values have been calculated as a mean for the selected models of each 

catchment individually. All quality criteria are showing similar spatial patterns with relatively lower 
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model performance for catchments in northwest and south Scotland (Figure 3). There was no clear 

relationship between model performance and catchment size. 

 

Figure 4: Model results for the River Gairn: a) timeseries of observed and simulated Tw (incl. range), 

b) scatterplot observed vs simulated Tw for calibration and validation period, c) exceedance 

probability for observed and simulated Tw in calibration and validation period. 

The modelling approach also performed well for the independent test using the dataset from the 

River Gairn. Mean R2 (calibration 0.93, validation 0.89) was only slightly lower than the mean over all 

catchments (Appendix C). The data gap in early 2016 (due to logger issues) did not affect the models 

as the calibration period was defined from mid 2012 to end 2014. The simulated data are within the 

range of the observed Tw (Figure 4 a & b), although the models do seem to slightly overestimate Tw 

for temperatures < 5 °C. Nevertheless, they indicate a good fit for higher temperatures, which is 

most important here in the context of warming and temperature thresholds. 
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3.2 Environmental controls on stream water temperature and historic trends  

 

Figure 5: Number of times variables have been recognised as significant in top 20 models for 

individual catchments. a) Ta b) cumulative Ta c) precipitation d) runoff e) snowmelt f) daylength.  

The importance of environmental controls on Tw based on the selected models per catchment 

indicated a unique combination of variables for each catchment (Figure 5). Although some spatial 

patterns existed, specific grouping of catchments in terms of the dominant controls to Tw was not 

possible. Overall, Ta had the most dominant control (Figure 5a). Cumulative Ta was relatively more 

important in northeast Scotland (Figure 5b) while the spatial pattern for daylength was the opposite 

(Figure 5f). Precipitation and runoff had a similar importance over all catchments (Figure 5c & d). 

Snowmelt had no significant relationship with Tw in the central area of Scotland and individual 
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catchments in the north (Figure 5e), which is consistent with relatively low snowfall in these areas 

compared to the rest of Scotland. We also found that the ratio of snowmelt/runoff had no significant 

relationship with Tw for any of the catchments. 

Response curves of GAM model means to individual explanatory variables (Appendix F) indicated 

that catchments with lower Ta in the past generally also show lower Tw. A similar pattern was found 

for catchments with relatively higher elevations showing on average lower Tw. However, specific 

grouping of catchments based on their response curves was not possible.  

 

 

Figure 6: Sen slope describing stream temperature trend for 30-year period with different starting 

years from 1961 to 2010. a) starting year 1961 annual trend, b) starting year 1961 winter trend, c) 

starting year 1961 spring trend, d) starting year 1961 summer trend, e) starting year 1961 autumn 

trend, f) starting year 1971 annual trend, g) starting year 1971 winter trend, h) starting year 1971 

spring trend, i) starting year 1971 summer trend, j) starting year 1971 autumn trend, k)starting year 
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1981 annual trend, l) starting year 1981 winter trend, m) starting year 1981 spring trend, n) starting 

year 1981 summer trend, o) starting year 1981 autumn trend.  

The historical data analyses consistently revealed either an increase in annual Tw or contrasting 

trends over different 30-year periods (Figure 6). All catchments indicated an increase in annual Tw 

from 1981 (Figure 6k). The annual trends seem to be linked mainly to spring and summer Tw, as 

winter most often shows contrasting trends, regardless of the starting window. Trends in autumn 

are more complex, as they revealed cooling or contrasting trends for starting window 1961, but 

warming in more recent decades. 

 

3.3 Changes in future stream water temperature  
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Figure 7: Past stream temperature (1981-2010) a)-e) in comparison to future stream temperature 

(2051-2080) f)-j) on annual and seasonal levels; and change of future stream temperature compared 

to past k)-o).  

The future annual and seasonal Tw are showing different spatial patterns compared to the past. 

Almost all future Tw (2051-2080) are consistently warmer than the current baseline (1981-2010) 

(Figure 7 top two rows, respectively), with the strongest increase in Tw in summer, and spatially, in 

northwest and west of Scotland. Future annual, spring, summer and autumn Tw show a homogenous 

spatial pattern across Scotland (Figure 7f & h-j), winter shows a more diverse spatial pattern with 

generally colder catchments in the north (Figure 7g). All future projections show warming. Overall 

change in Tw (Figure 7k-o) is showing a contrary spatial pattern to past Tw (Figure 7a-e) leading to 

more homogenous Tw all over Scotland in the future (Figure 7f-j). 
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Figure 8: Modelled future stream temperature for the Dee catchment (catchment 41 in Figure 1a) in 

comparison to baseline period 1981-2010 (using re-analysis data of climate scenarios). a) mean 

annual stream water temperature over time b) annual mean temperature for individual periods c) 

winter mean temperature for individual periods d) spring mean temperature for individual periods e) 

summer mean temperature for individual periods f) autumn mean temperature for individual 

periods. 

Daily baseline and future Tw revealed the same temporal variation throughout the year, with a 

consistent amplitude (Figure 8a). Figure 8 b-f also reveal that while annual and seasonal Tw 

consistently increase in Tw over time, this is strongest in summer, followed by spring, autumn, and 
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winter (see also Figure 7k-o). This indicates that the increase in summer and spring Tw is the is main 

cause for the increase in annual Tw. 

There is a strong negative correlation between annual Tw in the past and the future temperature 

increase (Appendix E subfigure c). This indicates that catchments with currently low annual Tw will 

undergo a stronger increase in Tw in the future compared to catchments already showing higher Tw 

in the past. This will lead to more homogenous but also consistently higher Tw all over Scotland in 

the future (see also Figure 7). 

 

4. Discussion 

4.1 Reconstructing long-term daily stream water temperature data from monthly observations 

This study demonstrated that implementing relatively simple climatic and hydrological variables in 

GAMs is a suitable method to derive long-term daily Tw from once-a-month observations. Here, we 

developed and applied the approach for 45 catchments across Scotland, providing a high resolution, 

national, long-term spatial dataset of Tw. The evaluation across sites revealed an R2 of 0.93 in the 

validation period. Furthermore, the R2 was 0.89 for a shorter period of fully independent observed 

daily data. Also, other quality criteria showed reasonably good performance in calibration and 

validation period for both main and test dataset (Appendix C). The simulated data shows an overall 

good fit compared to daily observations and a slight overestimation for Tw below 5 °C can be seen as 

acceptable considering that under future climate predictions Tw is in general expected to increase. 

While further analysis is needed to better understand factors that lead to an overestimation of Tw 

for the temperatures below 5 °C, it is speculated that this might be connected to the representation 

of snowmelt. Relatively few days of observed Tw data had snowmelt and most of the models that 

had to be excluded due to being hydrological implausible included the snowmelt predictor. Previous 

studies that developed approaches for high temporal resolution mostly focussed on a single 

catchment (Koch and Grünewald, 2010; St-Hilaire et al., 2012; Zhu et al., 2018). Even though other 
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studies show the suitability of modelling daily Tw from only Ta using more sophisticated approaches 

such as machine learning (Zhu et al., 2018), our approach shows comparable results in the quality of 

the models with mean R2=0.94 over all selected models after calibration. While the method revealed 

an overall good performance, it could be expanded by applying different model combinations for 

different seasons. This would address previously established positive relations between specific 

variables and Tw on a seasonal basis. For example, Simpson et al. (2010) demonstrated a seasonal 

relationship between Tw and rainfall or flow respectively; and Hrachowitz et al. (2010) showed that 

the role of different landscape controls is also varying with the season.  

A limitation of the data used is that Tw and runoff for individual catchments were only observed at a 

single point near the catchment outlet. Studies that explored spatial variation in Tw data within 

individual catchments in Scotland showed that there are complex internal Tw patterns between 

tributaries and variations with river order (Hrachowitz et al., 2010; Jackson et al., 2021, 2017b). The 

analysis of the historical part of the dataset is also not considering any natural or anthropogenic 

changes in the environment of the catchments. Changes in land use and riparian woodland over 

time can have significant impacts on Tw (Hrachowitz et al., 2010; Jackson et al., 2021; Moore et al., 

2005; Ogilvy et al., 2022). Other anthropogenic influences like dams, water pumping, deviations, 

intakes and associated changes in discharge have also been shown to influence Tw (Michel et al., 

2020; Seyedhashemi et al., 2021). Exploring this role would be a crucial next step towards improved 

modelling of future Tw timeseries. A starting point for anthropogenic influences could be to calculate 

trends for datasets that allow for Before-After-Control-Impact comparison or inclusion of artificial 

thermal inputs into the model where such data are available. Other uncertainties within the 

obtained historical dataset are related to the uncertainties introduced by implementing the UKCP18 

RCP8.5 (e.g. interpolation) and HMS datasets (e.g. sampling time and frequency of the HMS dataset). 

Nevertheless, the developed method allowed us to gain a broad understanding of historical trends 

on widely available climatic and hydrological data.  
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4.2 Controls on spatial patterns and historical stream water temperature 

The results showed that each catchment’s Tw is a response to a unique combination of 

environmental controls. This corresponds with findings by others (Jackson et al., 2017a), who 

showed catchment-specific relationships between Tw and their Ta metric, indicating that 

relationships were not transferable between catchments. Nevertheless, certain environmental 

controls were more dominantly correlated to Tw than others. Ta and cumulative Ta were included in 

most models for all catchments, indicating the strong relationship of preceding and current Ta on Tw. 

This corresponds with findings from a wide range of previous studies which showed a close relation 

between Ta and Tw as well as the importance of preceding Ta (Hannah et al., 2004; Hrachowitz et al., 

2010; Jackson et al., 2018; Jonkers and Sharkey, 2016; Koch and Grünewald, 2010; Pohle et al., 2019; 

St-Hilaire et al., 2012; Wanders et al., 2019; Webb et al., 2003). Catchments for which snowmelt 

appeared unimportant for determining Tw also showed a relatively lower importance of Ta. We found 

that these catchments typically have relatively lower elevation with less presence of snow. This 

observation is in contrast to findings of Lisi et al. (2015) who revealed that low elevation catchments 

in Alaska were more sensitive to changes in Ta, although in Alaska Ta is generally lower overall.  

While Hrachowitz et al. (2010) found specific spatial patterns in the relationship between Ta and Tw 

as a result of river order and elevation, we were unable to identify these. This might be a result of 

the single point measurements used for this study which are located close to the outlet and 

therefore not providing a strong variation in river order. The observed historical trends are 

consistent with other studies describing an average Tw increase of 0.22 °C per decade 1981-2001 

(Jonkers and Sharkey, 2016) and a Tw increase of 0.46 °C 1990 - 2006 (Simpson et al., 2010) for rivers 

in Britain. More specifically, our results correspond to the previously reported increase in Tw of 

0.2 °C per decade for the River Spey (catchment 39) since 1961 as described by Pohle et al. (2019) 

and an increase of 2.0 °C in maximum Tw for winter and spring over a 30 year period for the Girnock 

Burn (sub-catchment of catchment 41) from 1968 to 1997 (Langan et al., 2001). This study 

additionally provides insights into the temporal and spatial consistency of those trends. The 
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identified seasonal trends correspond with Jonkers & Sharkey (2016), showing spring has the highest 

warming rates, followed by autumn, summer and then winter. However, it is contrary to the findings 

from Simpson et al. (2010), who described autumn and winter had the strongest increasing trends in 

England and Wales. This discrepancy might be caused by Simpson et al. (2010) solely focusing on 

streams in England and Wales where annual temperatures are on average higher than in Scotland, 

while Jonkers & Sharkey (2016) have investigated streams in whole Britain (including Scotland) and 

our study provides a more detailed focus only on Scotland. 

4.3 Future stream water temperature  

In general, future increases in Ta will lead to catchments experiencing warming Tw in the future, even 

for those catchments that have not experienced warming in the past. Our results show that 

catchments with lower mean Tw in the past will experience stronger increase in Tw in the future, 

which will lead to less spatial variability in annual Tw across Scotland. This could be caused by a 

variety of internal and external factors e.g. climate variability (Laizé et al., 2017), changes of snow 

melt timing (Lisi et al., 2015), or elevation dependent warming (Isaak and Luce, 2023). As the spatial 

patterns in Tw change do not fully match the spatial patterns of Ta increase based on UKCP18 Strand3 

projections (Met Office, 2019) it indicates a non-linear relationship between Ta and Tw. This is also 

supported by response curves showing a s-shaped relationship between Ta and Tw (Appendix F 

subfigure a) and highlights the importance of other site-specific variables such as precipitation, 

discharge, snowmelt and daylength. Considering other studies for a region also included here, 

Jackson et al. (2018) described higher maximum Tw in northwest Scotland during summer and lower 

maximum Tw in northwest Scotland and the Cairngorms during winter under “extreme” climate 

conditions. The spatial pattern described by Jackson et al. (2018) in winter can also be observed in 

the projected Tw of this study, while summer Tw are more homogenous. This discrepancy could be 

explained by the fact that Jackson et al. (2018) analysed maximum Tw whilst our study focused on 

annual and seasonal averages. 
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The predicted increase of up to 4 °C in annual Tw is within the range of + 3 °C to + 4 °C by 2080 – 

2090 (compared to 1990-2000) as described by Michel et al. (2022) for Switzerland applying the 

same climate scenario. However, compared to UK focused studies, the increase in average annual Tw 

is above the predicted increase of 1.2 °C – 1.4 °C for Tw for UK rivers by 2071 – 2100 based on SRES 

B1-A2 (van Vliet et al., 2013) and also above the RCP8.5 predicted increase of 1.4 °C – 1.8 °C by 2080 

(van Vliet et al., 2015). This might be mostly related to different changes in Ta as the UKCP18 Strand 

3 used here predicts a stronger increase in Ta (summer surface Ta up to 7.0 °C and winter surface Ta 

up to 4.0 °C) for Scotland than the SRES B1–A2 and UKCP09 RCP 8.5 scenarios used by van Vliet et al. 

(2013 and 2015) respectively, which predicted increase of Ta of up to 4.0 °C and 2.0 °C, respectively. 

The future increase of Tw of 1.9 °C for the River Dee is also slightly higher than the predicted increase 

of 1.4 °C by the end of the 21st century (Hrachowitz et al., 2010). It has to be noted that Hrachowitz 

et al. (2010) models are based on the regional UKCP09 dataset with a medium emission scenario 

while the presented study is based on a regional climate (UKCP18 RCP8.5) high emission scenario. 

We have therefore evaluated an updated but worse scenario than previously suggested. 

While Van Vliet et al. (2013) found no spatial or seasonal variation for Tw throughout the UK with 

maximum warmings of 1.2 – 1.4 °C, Jackson et al. (2018) identified most (climate) sensitive streams 

to be in the north and nortwest of Scotland and the Cairngorm Mountains, this spatial pattern can 

also be observed in the change of mean summer Tw of this study. 

Our study also considers only one ensemble (12 projections) of a high emission climate scenario for 

future predictions of Tw, however, as van Vliet et al. (2015) has shown, different scenarios will have 

different changes in Ta and impacts on hydrology and therefore also on Tw.  

While UKCP18 RCP8.5 provides plausible projections for the future it is not without uncertainties, 

which are also associated with downscaling UKCP18 RCP8.5 as described by Rivington et al. (2008). 
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4.4 Wider implications and future work 

The methodology developed here has widespread applications and could be used to create long-

term daily records from a wide range of temporally coarse national, international, and global 

datasets which are more widely available than daily datasets typically required for robust trend 

assessments. Indeed, it has the potential to be applied to smaller scale sites as well, i.e., at a sub-

catchment level for individual tributaries. As such, our work could be expanded to analyse more 

Scottish streams (e.g., streams monitored over a shorter period or where monitoring has ceased 

prior to 2015) to identify their unique parameter sets and include those catchments as part of the 

national dataset. Observed runoff could be fully replaced by calculations based on the hydrological 

model used in this study or any other suitable rainfall-runoff model (Ouellet-Proulx et al., 2017), in 

places where field observations of runoff are temporally coarse. Our method could therefore help to 

understand the role of environmental controls on different catchments and might allow transfer of 

models to ungauged sites. Even though the models are different for individual catchments the 

response curves indicate common general trends. Hence, in future work it could be assessed how a 

mean model for whole Scotland compares to the mean models for the individual catchments 

investigated in our study and how this might affect the uncertainty within the results. Results could 

also be used to identify climate sensitive catchments which might require more detailed monitoring 

and management implications. For example, for streams of high ecological status in Scotland, the 

increase of Tw is limited to a max. 2°C from ambient Tw due to infiltration and no breach of 20 °C; for 

streams of good ecological status the uplift is limited to a max. 3°C from ambient Tw and no breach 

of 23 °C (Scottish Environment Protection Agency, 2016). Based on our projections, none of the 

analysed catchments are expected to exceed the thresholds for streams of good ecological status, 

however, summer temperatures of up to 20 °C especially in the southwest of Scotland are reaching 

the limits for streams of high ecological status. Using the temperature maps produced in this study, 

it has been possible to identify sites that are associated with the highest temperature increases, 

which are in the northwest and west of Scotland. This information could be used as an initial 
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assessment to identify “at risk” catchments for thermal refugia and catchments to focus on 

implementing thermal moderation measures e.g., introducing/increasing riparian vegetation. 

 

5. Conclusion 

We successfully developed a national long-term daily stream water temperature (Tw) record from 

over 40 years of once-a-month observations by implementing simple climatic and hydrological 

variables in generalized additive models. This allowed us to (i) analyse historical trends as coarser 

temporal resolution (e.g., once-a-month observations) is likely to introduce bias, (ii) understand the 

role of environmental controls for individual catchments, and (iii) predict future changes under 

regional climate projections (UKCP18 Strand3, RCP8.5) in Tw to identify climate sensitive sites. The 

method performed well with R2 ranging between 0.87 - 0.96 for individual catchments across 

Scotland. Even though, uncertainties within the resulting datasets are to be expected based on the 

results of the performance test for the GAMs (Appendix C) and due to uncertainties introduced by 

the used datasets (UKCP18 RCP8.5 and HMS). A fully independent evaluation with a shorter-term 

daily dataset (for the River Gairn) resulted in R2 = 0.89. By analysing 45 catchments in contrasting 

environmental conditions, we found air temperature (Ta), cumulative Ta and daylength appear to be 

the most important factors influencing Tw in Scotland. Nevertheless, precipitation and runoff also 

show moderate importance for all catchments while snowmelt shows no importance for catchments 

in the south of Scotland (catchments which experience less snowfall in general due to low elevation 

and on average higher Ta). While cumulative Ta was relatively more important in northeast Scotland, 

daylength showed a contrary spatial pattern with lower importance in the northeast. In the past 

(1981-2010), mean annual Tw was highest in southern Scottish catchments (9.5 °C), though historical 

showed an increase of up to 0.04 °C/a in annual Tw for individual catchments in the southwest and 

central Scotland for the same period. Future changes are showing an increase of up to 4.0 °C in 

annual Tw compared to 1981-2010 for catchments located in the northwest and west of Scotland 
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leading to a more homogenous spatial pattern in the future with mean annual Tw reaching up to 

10.0 °C (2051-2080). Based on our Scotland wide analysis, we have been able to identify catchments 

in northwest and west Scotland as the most climate sensitive sites, i.e., catchments with strongest 

future increase in Tw. These catchments should therefore require more detailed monitoring in the 

form of higher spatial and temporal resolution measurements and should be considered for Tw 

management approaches such as introducing or increasing riparian vegetation. Our approach was 

developed and tested for relatively large-scale catchments in Scotland. While these data represent 

sites with variable catchment characteristics, the wider transferability of the approach to different 

climate zones still needs to be tested. Ta will likely have a consistently dominant control, but the role 

of other factors may vary when the approach is applied to further national, international or even 

global datasets. Depending on the geographical settings, other variables might also need to be 

included into the modelling approach (e.g. glacial meltwater). Nevertheless, the developed 

methodology enables the analysis of historic trends and future changes at a high temporal 

resolution. It also has the potential to be applied to smaller scale sites (as demonstrated with the 

independent Gairn dataset), i.e., at a sub-catchment level for individual tributaries to analyse Tw with 

a higher spatial resolution.  
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Highlights: 

- Daily stream temperature can be modelled from once-a-month observations 

- Simple environmental variables in GAMs enable stream temperature modelling 

- Air temperature and daylength highest importance in predicting stream temperature 

- Spatial patterns in historic annual stream temperatures are linked to spring and summer 

- Historic colder catchments show strongest future warming across Scotland 
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