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ABSTRACT: The Frenkel line has been proposed as a crossover in the fluid region
of phase diagrams between a “nonrigid” and a “rigid” fluid. It is generally described
as a crossover in the dynamical properties of a material and as such has been
described theoretically using a very different set of markers from those with which
is it investigated experimentally. In this study, we have performed extensive
calculations using two simple yet fundamentally different model systems: hard
spheres and square-well potentials. The former has only hardcore repulsion, while
the latter also includes a simple model of attraction. We computed and analyzed a
series of physical properties used previously in simulations and experimental
measurements and discuss critically their correlations and validity as to being able
to uniquely and coherently locate the Frenkel line in discontinuous potentials.

■ INTRODUCTION
About a decade ago, a proposal was put forward that within the
supercritical fluid region of a phase diagram a clear crossover
exists between a “nonrigid” and a “rigid” fluid.1 This crossover,
now referred to as the “Frenkel line”, occurs at higher pressures
than the vapor curve in the vicinity of the critical point and
continues into the supercritical regime. It is different from the
Widom lines which start at the critical point. Widom lines
represent maxima or minima in thermodynamic properties
which diverge at the phase line, such as heat capacity or
compressibility. The Frenkel line is related to dynamic and
structural properties such as the velocity autocorrelation
function, diffusion constant, and coordination number.

The initial concept of the Frenkel line focused on dynamical
behavior and so proposed different dynamics-related observ-
ables in order to locate it. Specifically, the diffusion coefficient
may change when crossing the Frenkel line due the mean free
path becoming shorter than the molecular diameter. Above the
Frenkel line densities, there is likely to be a change in the
primary mechanism of diffusion from collective motion of
atoms/molecules at lower densities to individual atomic/
molecular movement between cages formed by tightly packed
nearest neighbors. This caging effect makes it possible for the
liquid to support a high-frequency shear wave: another
proposed signature of the Frenkel line.

Another property related to neighbor caging is the velocity
autocorrelation function (VACF), C(t) = ⟨v(0)·v(t)⟩. In a
free-flowing fluid, the VACF decays to zero at a rate which
increases with the number of collisions and therefore the
density. By contrast, a caged atom/molecule may oscillate,

leading to a region of negative VACF. The existence of a
negative region, or a turning point, in the VACF is another
candidate parameter mapping the Frenkel line. A notable
exception occurs for hard-sphere systems,2 where even in the
crystalline form there is no temperature-independent charac-
teristic frequency that could appear in the VACF. On this
basis, some authors have argued against the meaningfulness of
the Frenkel line in itself.3

Another proposed signature is the minimum in the Raman
frequency along an isochore.4 This is well defined for
molecules with a single Raman mode, although useless for
atomic fluids and ambiguous where there are several molecular
modes. The idea here is that the changeover comes between
the lowering of the frequency due to long-range coupling
between molecules and the increase in frequency due to short-
range repulsion.

Finally, the Frenkel line may have a signature in the
thermodynamic properties which are derivatives of the free
energy.5 Of these, the equation of state, heat capacity, thermal
expansivity, and compressibility are the easiest to determine.
These criteria have been successfully applied in soft-sphere and
Lennard−Jones models, which were the first systems in which
the idea of a Frenkel line was explored.6 For the specific case of
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heat capacity, a clear-cut CV = 2kB criterion was put forward to
represent the Frenkel line. As with the VACF, this criterion is
undefined for the hard-sphere system, pointing to hard spheres
being a pathological outlier case.

Unfortunately, while the quantities mentioned above may be
readily accessible in calculations and simulations, they are
prohibitively challenging to measure experimentally to the
accuracy required to determine such subtle changes.

On the other hand, structural measurements are much more
practically available and widespread.7 These do offer the
necessary accuracy and precision for the detection of subtle
crossovers.8 Several studies have correlated some of the
dynamic criteria for the Frenkel line, such as the minimum in
Raman frequency, to structural changes in nitrogen9,10 and
neon.11

For example, the coordination number for each atom/
molecule plateaus at about 12 neighbors. The coordination
number can be defined both precisely and arbitrarily from the
radial distribution function g(r)�normally as the mean
number of neighbors closer than the first nonzero minimum
in g(r). The g(r) is an experimentally measurable quantity
obtained from the structure factor S(q) measured in diffraction
experiments. Calculating the coordination number introduces
two sources of error, namely, counting the number of
neighbors and determining the minimum in g(r) which defines
whether a nearby atom counts as a neighbor or not. However,
as it is defined, it is obvious that the coordination number
should be proportional to density at low pressures and tend
asymptotically toward the close-packing limit�12 for identical
hard spheres�at high pressure. Although the change in
coordination number with pressure is not sharp but continuous
with pressure/density increase, the previously mentioned
studies have related them to the Frenkel line.

A more recent study successfully reproduced the exper-
imentally determined curves for nitrogen using a machine-
learned classical force field12 and showed that the changes in
coordination number correlate strongly with changes in
diffusion coefficient. The latter mirrors the behavior of the
coordination number and decreases continuously with
increasing pressure/density, yet the same qualitatively different
regions can be identified as for the coordination number.

The situation presented above shows a good level of
consistency and coherence between what is theorized about
the Frenkel line and what is experimentally determined.
However, the current picture still leaves open a couple of
fundamental questions concerning complex fluids: Do such
fluids also have a Frenkel line? If not, what are the minimum
features of an atomic/molecular potential that will lead to the
presence of a Frenkel line and its consistent identification?

Here, we tackle this by applying all of the previously used
criteria to two simple models, hard spheres and square-well
potentials. The difference between these models is a
fundamental one: hard spheres have zero potential energy, so
the phase behavior depends only on one independent variable
(e.g., density), and the Frenkel “line” becomes a point. The
square-well attraction means both the density and the
temperature affect the macroscopic behavior.

Looking at simplified models allows us to understand what
essential elements are required to reproduce key features and
properties of “real” molecular systems.

■ DESCRIPTION OF SQUARE-WELL SYSTEMS
The square-well potential provides a simple and elegant model
that captures the key physics of the interaction between
molecules in real fluids, with the hard-sphere interaction
preventing the direct overlap of the molecules and the square-
well interaction describing the cohesive force that attracts
molecules together. Within this model, particles interact with
each other via the pairwise potential
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where r is the distance between the particles. This describes
hard spheres with diameter σ that interact via an attractive
square well of depth ε and range λσ.

The hard-sphere system appears as three limiting cases of eq
1: (i) ϵ = 0, (ii) λ = 1, or (iii) 1/λ = 0. It does not have a
liquid−gas transition, but it exhibits an entropy-driven solid−
fluid transition, with a freezing density of ρfσ3 ≈ 0.943, a
melting density of ρmσ3 ≈ 1.041, and a maximum density of ρcp
= √2 when it is in the face-centered cubic close-packing limit.
Extrapolation of the fluid phase into the metastable region
leads to the pressure divergence at random close packing ρrσ3

≈ 1.23.
To obtain a liquid−gas transition, it is necessary to have

attractive interactions between particles. The square-well
potential (eq 1) with λ = 1.5 was one of the first to be
studied by molecular dynamics;13 it exhibits gas−liquid,
liquid−solid, gas−solid, and solid−solid phase transitions. It
is arguably the simplest model to capture this full range of
possibilities, and as a consequence, it has played a key role in
the development of the theory of the structure, thermody-
namics, and dynamics of fluids.

The model has been found to give a good description of the
thermodynamic properties of experimental fluids, and many
free energy models based on the square-well interaction
potential have been developed, most notably the statistical
associating fluid theory (SAFT),14−16 which are used in
practical engineering design calculations. Force field models for
molecular simulations have also been developed based on
square-well potentials.17 Slight modifications of the potential,
such as adding additional “steps”, have been found to provide a
good representation of a wide variety of molecules.18,19

Based on comparison of the kinetic theory results with
experimental data for the transport properties, specifically the
self-diffusion coefficient viscosity and thermal conductivity of
noble gases, it was found that the square-well potential offered
a good representation of the dynamics of experimental
fluids.20−22 These theoretical expressions form the basis for
the correlation and prediction of the viscosity of experimental
fluids.23

The square-well model has also been used to describe the
properties of colloidal systems,24−26 in particular protein
solutions. The thermodynamics of aqueous protein solutions
was found to be well described by the behavior of square-well
fluids.27,28 Square-well fluids also provide a good model for the
dynamics of these systems.29,30

Due to its simplicity and the important role it plays, there is
a large body of molecular dynamics and Monte Carlo
simulation data available for the thermodynamic properties,31

phase behavior,32−35 and transport properties36 of square-well
fluids of varying well width λ. In this work, we examine square-
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well systems with λ = 2. Results for the phase behavior are
given in the following section.

■ RESULTS
Phase Behavior. To determine the vapor−liquid coex-

istence region, multicanonical Monte Carlo simulations were
performed33,37,38 in cubic, periodic simulation boxes of side
length L = 7σ, 10σ, 12σ, and 15σ. The weights of the insertion
and deletion of the square-well particles were adjusted in order
to obtain uniform sampling of the number of particles in the
system. From these weights, the point of vapor−liquid
coexistence was determined by finding the chemical potential
at which the probability of the system being in the vapor phase
equaled the probability of it being in the liquid phase.

Our Monte Carlo results for the vapor−liquid-phase
coexistence curve with λ = 2 are shown as the open red
circles in Figure 1. We estimate the critical point to be located
at kBTc/ε ≈ 2.664 ± 0.002 and ρcσ3 ≈ 0.258 ± 0.002. Our
predictions for the coexistence curve compare well with the
results of Elliott and Hu,32 who used Gibbs−Duhem
integration (shown as black ×’s); they estimate the critical
point to be kBTc/ε ≈ 2.61, pcσ3/ε ≈ 0.17, and ρcσ3 ≈ 0.27, in
agreement with the older work of Vega and co-workers,39

which used Gibbs ensemble simulations (shown as black +’s);
they estimated the vapor critical point to be located at kBTc/ε
≈ 2.764 ± 0.023, pcσ3/ε ≈ 0.197 ± 0.026, and ρcσ3 ≈ 0.225 ±
0.018

We determine the solid−liquid coexistence line using MD
simulations at densities from ρσ3 = 1.0 to 1.4. In addition,

Figure 1. Temperature−density phase diagram for square-well systems with λ = 2. The open circles mark the vapor−liquid coexistence envelope, as
calculated using multicanonical Monte Carlo simulations in this work; previous simulation results from Elliott and Hu32 are depicted as “×”, and
calculations of Vega et al.39 are depicted as “+”. The red solid circles mark the solid−liquid coexistence region, as calculated using MD simulations
in this work. The small black squares represent the data points calculated in the current study along different isotherms.

Figure 2. (Left) Equations of state, as βP vs density (ρσ3) along the isotherms followed in the present study. The T = 2.5 kB/ϵ isotherm shows an
anomaly (discontinuity and pressure decrease on density increase) due to crossing the vapor−liquid coexistence region at the lower densities.
(Right) Event rates for square-well systems with λ = 2 at a temperature kBT/ε = 2.5 (blue), kBT/ε = 3 (orange), kBT/ε = 3.5 (red), and kBT/ε →
∞(black). The solid lines represent the core events, the dashed lines represent the capture/disassociation events, and the dotted lines represent the
bounce events.
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simulations were performed along the isochore ρσ3 = 1.3 for
temperatures from kBT/ε = 1 to infinity (the hard-sphere
limit). The free energy of the solid fcc phase could then be
integrated with respect to the hard-sphere system, which was
calculated using the equation of state of the hard-sphere solid
taken from ref 40, and the residual Helmholtz free energy at
ρσ3 = 1.21 is 7.984 ± 0.001.41

Based on the intersection of the vapor−liquid and solid−
liquid coexistence curves, the triple point is estimated to be
ρtσ3 ≈ 0.61, kBT/ε ≈ 2.16, and pcσ3/ε ≈ 0.056. Our melting
curve is in good agreement with previous estimates using the
cell model.42

Equation of State and Event Rates. Event-driven MD
simulations are performed using the DynamO43 code to
determine the structural, thermodynamic, and dynamic
properties in the one-phase region. The equation of state is
shown in Figure 2.

For single-component square-well systems, there are four
types of events:44 (i) core events, where the hard-sphere
portions of two particles collide, (ii) capture events, where two
particles enter each others’ interaction well, (iii) disassociation
events, where two particles exit each others’ square wells, and
(iv) bounce events, where two particles moving away from
each other are reflected back due to the square-well
interaction. At equilibrium, only two of the rates for the four
different events are independent. Only capture and disassoci-
ation events change the energy, so their rates must be equal.
The rate of bounce events bounce is

= =e e( 1) ( 1)bounce disassociation capture (2)

In addition, the pressure of a square-well system can be directly
related to the event rates44

= + [ ]p m
N

e1
( )

3
( 1)

2 1/2

core capture
(3)

The rates of the core and disassociation/capture events for the
square-well systems along different isotherms are shown in
Figure 2.

In the following sections, we examine various criteria for the
Frenkel line for square-well fluids with λ = 2. We begin with
the heat capacity and then move on to the VACF. We then
examine the diffusion coefficient. Finally, we define a
coordination number and describe its use in locating the
Frenkel line. The various criteria for the Frenkel line are then
compared to assess their consistency in determining its
location.
Energy and Heat Capacity. The isochoric heat capacity is

shown in Figure 3 and is in agreement with previous
simulations.31 Above the critical temperature, the heat capacity
has a peak with respect to density, which denotes the Widom
line; this lies at lower density than our simulations. In all of our
simulations, CV < 2kB, with the heat capacity increasing as T is
lowered and the attraction becomes more relevant. More
importantly, there is no discernible distinguishing feature with
the pressure increase/volume change, making the heat capacity
an ineffective parameter for locating the Frenkel line: this
follows from the Frenkel line being about dynamic rather than
structural properties. A similar lack of feature can be seen in
the compressibility (slope of EoS, Figure 2).

This is expected as the heat capacity of hard-sphere fluids is
exactly 3/2kB, which corresponds to the infinite temperature
limit of the square-well fluid, and the potential provides one

additional degree of freedom. This implies that the Frenkel line
will be undetectable with the heat capacity criterion at a
sufficiently high temperature for the square-well fluid.
Coordination Number. Within the literature of square-

well potential fluids, the coordination number is typically
defined as the total number of particles within the attractive
well (less than λσ apart). In this case, the energy per particle is
in fact the average coordination number, times − ϵ. There has
been work on developing models for the coordination number
of square-well fluids.45−47 This is found to vary approximately
linearly with density, with a slightly negative curvature for most
well widths; interestingly, however, this curve has a positive
curvature for small well widths (λ ≲ 1.1).47 A preliminary
observation is that there does not seem to be a clear change in
the slope of the variation of this definition of the coordination
number with density for square-well fluids. So, this criterion
seems to discount the presence of a Frenkel line for these
systems. On the other hand, the first coordination shell of the
hard-sphere system levels off at around ρσ3 = 0.9.48 Note that
the liquid transition density is ρσ2 ≈ 0.94. Compressibility also
appears to converge above ρσ3 = 0.9.

In contrast, in structural studies concerning real liquids, the
coordination numbers are customarily obtained by integrating
the respective pairwise radial distribution functions up to the
first nonzero minimum, as done in nitrogen and krypton
measurements by Pruteanu et al.9,10,49 The radial distribution
functions for the square-well fluids are shown in Figure 4. It is
readily visible for all temperatures that there is a discontinuity
at r/σ = λ = 2, which is characteristic of the square-well fluid.
Fortunately, the first minimum falls below this distance for all
conditions explored in the present study; hence, the
discontinuity does not influence the integral to obtain
coordination numbers as its upper limit is always below r/σ
= λ = 2. The coordination numbers extracted from the g(r)’s
shown above as a function of βP are presented in Figure 5 (we
use “beta pressure” in order to compare with the hard-sphere
limit). A similar trend to that seen in nitrogen is readily visible
here as well: at lower pressures/densities, the coordination
numbers increase almost linearly with pressure and show a
tendency to flatten asymptotically to 12 as pressure is
increased. The log variation of the coordination number was
calculated, and the square-well fluids were found to obey a

Figure 3. Isochoric heat capacity for square-well fluids with λ = 2.0 for
all kBT/ϵ ratios investigated in the present study.
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similar criterion to the Pruteanu−Ackland12 one for nitrogen.
The analytical and general form of the criterion (in
dimensionless quantities) is presented in the following
sections.
Velocity Autocorrelation Function. The velocity auto-

correlation function C(t) is defined as

= ·
·

C t
tv v

v v
( )

( ) (0)
(0) (0) (4)

where v(t) is the velocity of a particle at time t. To calculate
the velocity autocorrelation function, the particle velocities
were sampled with a time interval equal to one-tenth of the
mean time tavg between collisions for a hard-sphere system at
the same density, as estimated by the Carnahan−Starling
equation.50 It is plotted for the square-well fluids at several
different temperatures in Figure 6.

At low densities, the VACF monotonically decreases from its
maximum value of 1 to a minimum value of 0 at large times,

Figure 7. As the density increases, the autocorrelation function
begins to develop a minimum. This implies a characteristic
time, which could arise from either capture by the attractive
potential (bouncing events) or caging effects. At higher
densities the VACF has a negative region, implying the caging
affects the majority of particles. These are signatures of the
Frenkel line, but they are only visible in the VACF if they have
some characteristic time scale.51 For soft potentials, this time
may represent “almost harmonic” shear modes with a
frequency related to the excitation energy ℏω. For square
wells, there is no curvature to provide a distinctive frequency.
However, the caging effect and rattling modes still exist in this
extreme anharmonic limit.

In Figure 8, we plot the value of the first local minimum of
the VACF as a function of density (or pressure) along different
isotherms. Note that the hard-sphere system corresponds to
the limit T → ∞.

Figure 4. Radial distribution function for square-well fluids at kBT/ε = 2.5, 3, 3.5, and → ∞(i.e., hard spheres). The lines are labeled according to
their density, ρσ3.

Figure 5. All coordination number-related results for λ = 2 square wells and hard spheres. (Left) Coordination number vs pressure, CN vs βP.
(Right) d(log(CN))/d(βP) vs βP.
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Diffusion Coefficient. The integral of the VACF gives the
diffusion constant via a Green−Kubo relationship

= ·D t tv v
1
3

d ( ) (0)
0 (5)

The variation of the diffusion coefficient with density is shown
in Figure 9.

The diffusion coefficient changes continuously with
increasing βP throughout the whole range studied for all
considered temperatures. Looking its the evolution of its slope
with pressure, we can define (by correlation to the
coordination number) a point where this quantity equals
−0.05 for the location of the Frenkel line.
Criteria for Frenkel Line Based on Results Above. Due

to the relative simplicity of square-well and hard-sphere

systems, we were able to correlate the various changes in
different parameters and have managed to obtain a set of
general (dimensionless) equations for the location of the
Frenkel line on a phase diagram. The criteria were as follows.

• Heat capacity: does not correlate as it is fixed for
classical hard spheres and almost constant for square-
well fluids.

• Velocity autocorrelation function:

= <Cd
d( )

0,
2

min
3 2 FL

>Cd
d( )

0,
2

min
3 2 FL

Figure 6. Velocity autocorrelation function for square-well fluids above the critical temperature: (a) kBT/ε = 2.5, (b) kBT/ε = 3, (c) kBT/ε = 3.5,
and (d) kBT/ε → ∞ (hard-sphere limit). The lines are labeled according to their density, ρσ3.

Figure 7. Plot of the velocity autocorrelation function of square-well fluids at (a) kBT/ε = 2.5, (b) kBT/ε = 3, and (c) kBT/ε = 3.5. The lines are
labeled according to their density, ρσ3.
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• Coordination number:

× <
p

1
CN

dCN
d( )

0.13

• Diffusion coefficient:

> ×D m
p

d( ( / ) )
d( )

5 10
2 1/2

3
2

Applying these criteria to our current simulations of square
wells and hard spheres leads to the locations for the Frenkel
line in Table 1.

Two important observations are warranted at this point. The
variation of the coordination number with density along the
different isotherms becomes noticeably smoother as the
temperature increases. As a consequence, the Pruteanu−
Ackland criterion, as formulated, appears to struggle to identify
the Frenkel line at temperatures significantly above the critical
temperature, becoming more difficult to apply than the
diffusion-based and VACF minimum criteria. On the other
hard, while the coordination number- and diffusion coefficient-
based criteria work for both square-well and hard-sphere
systems, the VACF criterion does not. The original
formulation of the VACF criterion (visible oscillatory

behavior) correlates very well with the other criteria for
square-well fluids, identifying the same location for the Frenkel
line for most pressures/densities. It applies unequivocally for T
≫ Tc (3.76, 7.52, and 37.6 Tc) but seems to underestimate the
Frenkel line densities and pressures when compared to the
coordination number and diffusion criteria for T ≈ Tc (0.94,

Figure 8. (Left) Plot of the (local) minimum value of the velocity autocorrelation function, Cmin(t), shown for a range of temperatures as a function
of density. (Right) Variation of the minimum of the velocity autocorrelation function with density, dCmin(t)/d(ρσ3).

Figure 9. All diffusion constant-related results for λ = 2 square wells and hard spheres. (Left) Diffusion coefficient vs pressure, D/√T vs βP.
(Right) Variation of the slope of the diffusion coefficient with pressure, d(D/√T)/d(βP) vs βP.

Table 1. Location of the Frenkel Line with λ = 2 According
to the Criteria Named in the Present Study

system kBT/ϵ
βPres

(CN + D)
βPres

(VACF)
ρσ3

(CN + D)
ρσ3

(VACF)

square
wells

2.0

square
wells

2.5 0.70(15) 0.61(15) 0.68(2) 0.66(2)

square
wells

3.0 1.00(13) 1.08(15) 0.65(2) 0.66(2)

square
wells

3.5 1.25(14) 1.32(14) 0.64(2) 0.65(2)

square
wells

10 2.02(20) 2.12(20) 0.60(2) 0.61(2)

square
wells

20 2.41(22) 2.52(22) 0.61(2) 0.62(2)

square
wells

100 2.60(25) 2.88(25) 0.61(2) 0.63(2)

hard
spheres

∞ 2.70 6 0.61 0.78

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08056
ACS Omega 2023, 8, 12144−12153

12150



1.13, and 1.31 Tc), where a more appropriate criterion appears
to be a sudden change of slope of Cmin(t) with increasing
pressure/density, once oscillations are already identifiable. At
high densities, dCmin/dρ varies linearly with the density for all
temperatures. As the density decreases, there is a kink in the
variation of dCmin/dρ with density and its slope becomes zero.
In contrast, in hard spheres, the VACF criterion would indicate
significantly higher pressures/densities for the crossover, but as
it has been noted by previous researchers, it should not be used
due to the hard spheres being a pathological case.2 The origin
of this discrepancy must be the existence of an attractive
component.

■ DISCUSSION AND CONCLUSION
The hard-sphere and square-well potentials have played a
central role in the development of our understanding of the
behavior of molecular fluids and colloidal suspensions. We find
that both of these potentials produce Frenkel lines as identified
by the correlated coordination number−diffusion coefficient
criterion used in previous studies.9,10,12,49 The criterion was
found to also correlate with changes in the velocity
autocorrelation function, used for identifying the Frenkel
line, at least for square-well potentials. The notable exception,
as pointed by previous authors,2 is the hard-sphere system,

where the velocity autocorrelation is uninformative as to the
location of the Frenkel line, likely due to the describing
potential being pathological by only containing repulsive
interactions. The hard spheres, which have been interpreted on
occasion as a limiting case of square-well potentials, in the limit
T → ∞, can be viewed in this light in relation to the Frenkel
line if the coordination number/diffusion coefficient criteria
are solely employed. Moreover, the heat capacity criterion for
the identification of the Frenkel line was found not to hold in
either of our model systems, and hence, the behavior of the
heat capacity can be ruled out as a fundamental one relating to
the Frenkel line and the nonrigid to rigid fluid crossover.

A key finding of the present study is that the Frenkel line
does seem to originate/terminate at the triple point, Figures 10
and 11, as previously proposed by Pruteanu et al.12 This
provides the simplest and most clear-cut method for drawing
the Frenkel line on any phase diagram, whether of real or
model systems, by following the liquid-side isochore from the
immediate vicinity of the triple point, i.e., the density of the
liquid at the triple point. Based on this result and by correlating
previously proposed disjointed theoretical and experimental
criteria to uniquely locate the Frenkel line, we propose a set of
quantitative generalized equations to determine the location of
the Frenkel line in any given fluid.

Figure 10. Liquid-side triple-point isochore, critical isochore, and Frenkel line for square-well fluids as identified in the present study. Temperature
is in units of kB/ϵ, BPressure is βpσ3.

Figure 11. Location of the Frenkel line on temperature−density (left) and temperature−pressure (right) phase diagrams. In the T−p phase
diagram, the black line is the vapor curve while the red one is the melting line. The upward triangles are the CN + D criterion, and the downward
triangles are the VACF criterion.
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We do note however a curious coincidence: for the
particular choice of square-well width used in this study (λ =
2), the ratio TTP/Tc ≃ 0.8. This relative temperature (0.8 Tc)
was previously indicated as being the originating point of the
Frenkel line on the boiling curve by Yang et al.1,52 Further
studies involving different ranges (values of λ) of square-well
potentials will be needed in order to resolve this matter
definitively.

The Frenkel line tracks a crossover in behavior rather than
any discontinuity: It occurs over a narrow pressure range. As a
consequence, different manners of determining its location will
lead to slightly different values. Hard spheres are often used as
a model for colloidal suspensions: systems with completely
nonharmonic interactions. This work shows how the Frenkel-
line concept can be generalized to describe changes in
dynamical behavior even in these types of discontinuous
potentials.

The Frenkel line has similarities with the colloidal glass
transition, which is also a crossover rather than a discontinuous
transition. Both phenomena are density driven and related to
changes in the dynamical behavior; in the case of the colloidal
glass, the definition is usually in macroscopic viscosity rather
than diffusion constant. A key difference is that the Frenkel line
lies on the equilibrium phase diagram, while colloidal glasses
are typically metastable and exhibit aging phenomena.
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